--This file contains some of the commands used during the Macaulay2 --demonstration 1+1 3! binomial(4,2) factor(60) QQ ZZ/3 ZZ/32749 GF(4) RR -- don't use! CC -- or this one! --Ideals R=QQ[x_0,x_1,x_2,x_3] I=ideal(x_0*x_2-x_1^2, x_0*x_3-x_1*x_2, x_1*x_3-x_2^2) gb I gens gb I leadTerm I isPrime I dim(I) degree(I) hilbertPolynomial(I,Projective=>false) --Matrices A = matrix {{1,1,1,1},{0,1,2,3}} rank A kernel A gens kernel A entries transpose gens kernel A B = transpose(A)*A; det(B) rank(B) R=QQ[x,y,z] A=matrix {{1,x,x^2},{1,y,y^2},{1,z,z^2}} det(A) factor(det(A)) help det viewHelp det --First break --if/then a = 7; if a<8 then <<"a is less than 8"<(<i^2) for i from 0 to 9 do <(n^2+2*n+3); p(3) p(x) --find the ith smallest entry of a matrix f = (A,i) ->(B =sort flatten entries A; return(B_(i-1)); ); A=matrix{{100,10,1},{5,6,7}} f(A,1) f(A,2) f(A,3) f(A,10) --Finish by showing webpage of packages http://www2.macaulay2.com/Macaulay2/Packages/ --Other useful commands A=matrix {{1},{2},{3}} B = entries(A) C= flatten B R=QQ[x,y] S=QQ[t] f = map(R,S,{t,t^2}) diff(x,f) minors(2,A) jacobian ideal f Grassmannian(1,3)