Polyhedral geometry and polymake

Dominic Bunnett

October 6, 2020

Intro

We are all familiar with convex polygons.

- Polyhedral geometry Geometric objects with 'flat sides'.
- For example polyhedral cones and polytopes.
- Polytopes are d-dimensional generalisations of 2-dimensional convex polygons and 3-dimensional convex polyhedra.

Definitions: Polyhedral Cones

Definition

Let $S = \{u_1, \dots, u_r\} \subset \mathbb{Z}^n$. Define

$$C = \mathsf{Cone}(S) = \left\{ \sum_{i=1}^r \lambda_i u_i \mid \lambda_i \geq 0 \right\} \subset \mathbb{R}^n.$$

Definition

 $\dim C = \dim \operatorname{\mathsf{Span}}_{\mathbb{R}} S$

Definitions: Polytope

Definition

Let $S = \{u_1, \dots, u_r\} \subset \mathbb{Z}^n$. Define

$$P = \mathsf{Conv}(S) = \left\{ \sum_{i=1}^r \lambda_i u_i \mid \sum_{i=1}^r \lambda_i = 1, \ \lambda_i \geq 0 \right\} \subset \mathbb{R}^n.$$

 $\dim P = \text{dimension of the smallest affine space containing } P.$ In the example above, P has dimension 2.

Definitions: Faces

Definition

 $Q \subset P$ is a face if $Q = P \cap H$, where $H \subset \mathbb{R}^n$ is a hyperplane and P lies on one side of H.

Definition

- Faces of dimension 0 are called Vertices
- 2 Faces of dimension 1 are called Edges
- **3** Faces of dimension dim P-1 are called **Facets**

Examples

P a 3-dimensional polytope.

Let

- $\mathbf{0} \ V = number of vertices$
- 2 E = number of edges
- **3**F = number of faces

Theorem (Euler's polyhedron formula)

$$V + F - E = 2$$

We can quickly check: (V = 4) + (F = 4) - (E = 6) = 2

Inequality description of a polytope

A polytope can also be described by a series of linear inequalities.

$$P = \{(x, y) \in \mathbb{R}^2 \mid y + x \ge -1, y \le 1, x \le 1\}.$$

Definition

A polytope $P \subset \mathbb{R}^n$ is a simplex if $V(P) = \dim P + 1$.

Remark

Given $p_0, \ldots, p_n \in \mathbb{R}^n - \{0\}$ we can decide if $P = \mathsf{Conv}(p_0, \ldots, p_n) \subset \mathbb{R}^n$ is a simplex by computing the determinant of the matrix $M = (p_0 \mid \cdots \mid p_n)$.

Definition

 $P \subset \mathbb{R}^n$ a polytope containing the origin. Define P's dual to be

$$P^{\circ} = \{ u \in \mathbb{R}^n \mid m \cdot u \ge -1 \text{ for all } m \in P \}.$$

We say that P is reflexive if P° is a lattice polytope, that is, the vertices of P° are all lattice points.

Definition

Let P be a polytope. Consider the following function $L_P(t) = \#\{tP \cap \mathbb{Z}^n\}$. Then

$$L(P,t) = a_d(P)t^d + a_{d-1}(P)t^{d-1} + \cdots + a_0(P)$$

is the **Ehrhart polynomial** where $a_i(P) \in \mathbb{Q}$ and $d = \dim P$.

Definition

Let C be a cone. Suppose that $C = \operatorname{Cone}(S)$, with $S = \{u_1, \dots, u_r\} \subset \mathbb{Z}^n$. We say that C is smooth if S forms part of a \mathbb{Z} -basis of \mathbb{Z}^n .

Not a smooth cone.

Definition

A polytope is smooth if each of the cones generated by the vertices are smooth.

Appearance in Linear Optimization

Consider a linear functional $I: \mathbb{R}^n \to \mathbb{R}$.

Question

Given a polytope $P \subset \mathbb{R}^n$, what is

$$\max\{I(p) \mid p \in P\}$$

and which points $p \in P$ attain this value?

 $\begin{array}{c|c} \mathbb{R}^2 & & & \mathbb{R} \\ \hline & & & & \\ \hline P & & & & \\ \hline \end{array}$

Appearance in geometry

$$\mathbb{Z}^n = \{(a_1, \dots, a_n) \mid a_i \in \mathbb{Z}\} \longleftrightarrow \{x_1^{a_1} \cdots x_n^{a_n}\} \subset \mathbb{C}[x_1, \dots, x_n]$$

$$P \cap \mathbb{Z}^n \longleftrightarrow \{x_1^{a_1} \cdots x_n^{a_n} \mid (a_1, \dots, a_n) \in P \cap \mathbb{Z}^n\}$$

Consider P = Cone((2,0,0),(0,2,0),(0,0,1)). Then

$$P \cap \mathbb{Z}^3 = \{(2,0,0), (0,2,0), (0,0,1), (1,1,0)\}.$$

Giving us the monomials: $\{x_1^2, x_1x_2, x_2^2, x_3\}$.

$$\Phi_P: \left(\mathbb{C}^*\right)^3 \longrightarrow \mathbb{C}^4$$
$$(t_1, t_2, t_3) \longmapsto (t_1^2, t_1 t_2, t_2^2, t_3).$$

We define the variety $X_P = \overline{\text{Im}(\Phi_P)}$.

Now time for polymake

• All names must come with a dollar sign:

Coordinates for polytopes have an extra 1 in the first position:

This is the polytope Conv((0,0),(1,0),(0,1)).

Properties are called in the following way:

Individual properties:

• \$P a polytope, P's **F Vector**

To compute this:

• Suppose $p \subset \mathbb{R}^n$ is a polytope and $I : \mathbb{R}^n \to \mathbb{R}$ a linear functional. Then $L = (L_1, \dots, L_n)$ can be expressed as a vector (taking the canonical basis of the dual vector space).

We can solve this via: