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Let A be an abelian variety over the differential function field K of a complex
algebraic curve S with a rational vector field.

Recall the “Manin kernel”, a DCF-definable/K subset A# of A admitting
a number of descriptions, one being that it is the smallest Zariski-dense DCF-
definable subset of A.

Let T be the theory of A# with all induced structure (over K).
This is a rigid divisible commutative group of finite Morley rank.
Let T̂ be the theory of the universal cover of A#, in the sense of [covers-

fRM]. The aim of this note is to exhibit a natural analytic model of T̂ . We first
describe this model.

Let

0 // H // G
p

// A // 0

be the universal vector extension of A.
G is equipped with a canonical D-structure, i.e. a rational section

sG : G→ τG

where τG→ G is the twisted tangent bundle (aka first prolongation).
Let Gδ be the subgroup of “horizontal” points, i.e. for a differential field

extension K ′ ≥ K,

Gδ(K ′) = {x ∈ G(K ′) | (x, δx) = sG(x)}.

Then for U |= DCF , A#(U) = p(Gδ(U)) [Marker-maninKernels].
Taking the Lie algebras of these algebraic groups, we have

0 // LH // LG
Lp

// LA // 0

Now LG also has a natural D-structure induced from that on G,

LsG : LG→ LτG ∼= τLG

(c.f. [BP]), so we have subgroups LGδ and LA# := Lp(LGδ).
Now let S′ ⊆ S be a disc (or in fact any simply-connected domain) in

S, suppose S′ avoids the finitely many s ∈ S for which As is not an abelian
variety, and let L ≥ K be the differential field of meromorphic functions on S′.
We consider L-points, where we define

A#(L) := p(Gδ(L))

LA#(L) := p(LGδ(L)).
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As in [BP Appendix], we have relative exponential maps

LG(L)

expG

��

// // LA(L)

expA

��

G(L) // // A(L)

which respect the D-structures, hence restrict to

LGδ(L)

expG

��

// // LA#(L)

expA

��

Gδ(L) // // A#(L)

.

Now our claim is that,

expA : LA#(L)→ A#(L),

when considered as a structure in the language of T̂ (we discuss below exactly

how it may be so considered), is a model of T̂ .
Let us remark that in the constant case, i.e. when A is over C, the D-

structures on G and LG are trivial, and A#(L) = A(C), and LA#(L) =
LA#(C), and expA is the usual complex exponential map; so we are reduced to
the case of [covers-fRM Corollary 4.2.1].

We begin collecting some facts, (I)-(III) below, which we will need in the

proof our structure satisfies the axioms of T̂ .
By a remark credited to Hamm ([BuiumDiffAlgDiophGeom p.143]), over S′,

G analytically descends to the constants. In terms of L-points, this has the
following consequence:

Fact 0.1. Let s0 ∈ S′. Let G0 := Gs0 be the fibre of G over s0, a complex Lie
group, and let

expG0
: LG0 → G0

be its exponential map. There exists an isomorphism

θG : G(L)→ G0(L)

and a corresponding C-linear isomorphism

LθG : LG(L)→ LG0(L)

such that θG(Gδ(L)) = G0(C), and LθG(LGδ(L)) = LG0(C), and expG ◦LθG =
θG ◦ expG0

.

It follows that LGδ(L) is a 2g-dimensional C-vector space, and ker expG ≤
LGδ(L), and hence

ker expA ≤ LA# (I)

Since expG0
: LG0(C) � G0(C), it also follows that expG : LGδ(L) �

Gδ(L), and it follows by diagram-chase that

expA : LA#(L) � A#(L). (II)
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So we have:
LGδ(L)

expG

����

// // LA#(L)

expA

����

Gδ(L) // // A#(L)

.

Lemma 0.2.
A#(Ldiff) = A#(L). (III)

Proof. We first show LGδ(Ldiff) = LGδ(L).
Let X be a C-basis of LGδ. For any subdisc S′′ ⊆ S′ and corresponding

field L′ ≥ L of meromorphic functions, by the above Fact, LGδ(L′) is still a
2g-dimensional C-vector space, so LGδ(L′) = LGδ(L) = 〈X〉C.

So by the (proof of) the Seidenberg Embedding Theorem [MarkerDCF Lemma
A.1], for any y ∈ LGδ(Ldiff), we have y ∈ 〈X〉C(Ldiff ) = 〈X〉C = LGδ(L).

So LGδ(Ldiff) = LGδ(L), and hence LA#(Ldiff) = LA#(L).
Now Gδ(L′) = expG(LGδ(L′)) = expG(LGδ(L)) = Gδ(L). By another Sei-

denberg argument applied to algebraic extensions, we therefore have Gδ(Lalg) =
Gδ(L).

Hence A#(Lalg) = A#(L). But it follows from [Wagner FieldsFRM] that
A#(Ldiff) = A#(Lalg); this is discussed in [BBP-MLMM], Corollary 1.11 and
proof of Theorem 1.1(i).

So A#(L) |= T .
From now on, we mostly omit explicit mention of L, writing A# for A#(L)

and so on.
To make

expA : LA# → A#,

a structure in the language of T̂ , it remains to define Ĥ ≤ (LA#)n for each
connected definable subgroup H ≤ (A#)n.

If B is a connected algebraic subgroup of A, by [BBP 4.9] we have

A# ∩B = B#. (*)

Now LB# ⊆ LA#, and by (I) and (*) we have

LA# ∩ LB = LB#. (IV)

Now if H is a connected definable subgroup of A#, then H = B# where B
is the Zariski closure of H; indeed, by (*) we have H ≤ A# ∩ B = B#, and
meanwhile B# ≤ H since B# is the smallest Zariski-dense definable subgroup
of B.

Note that (An)# = (A#)n, and L(An)# = (LA#)n.

So for B a connected algebraic subgroup of An, we interpret B̂# as LB#.

Proposition 0.3. With the structure described above,

expA : LA#(L)→ A#(L)

is a model of T̂ .
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Proof. (A1) is by (I).
(A2)-(A5) are clear from the setup and (IV).
(A6) is by (II).
(A7) and (A8) follow from (I).
(A9)(I): by (IV), the exact sequence

0→ L(Ko)→ LG→ LH → 0

remains exact on applying (·#).
(A9)(II) is by (I).
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