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An exposition of the group configuration theorem for stable theories,
following Chapter 5 of [Pillay-GST].

Introduction and Preliminaries

Work in monster model M of a stable theory T'.

Notation:
a,b,c,d,e,;w,x,y, z,a, 8,7 etc will take values in M9,
and A,B,C etc in P(M®9).

AB means AU B;
ab means (a,b) € M*9;
when appropriate, a means {a}; e.g. Ab is short for A U {b}.

Group configuration, first statement:

Let G be a connected A-definable group /0.

Let a,b,z € G be an independent triple of generics.

Let ' :=c xd, 2’ :==a xy/,and 2/ :=b xy (so 2/ =c xad' xy = xa').
Then we have

a
/ \
b X
/ ‘z7 \
VAR
/.’ <A\
c ) (4 y
satisfying:
e any non-collinear triple is independent
(*) (i.e. each element is independent from the other two);

e if (d,e, f) is collinear then acl®(de) = acl®l(ef) = acl®(df).

The group configuration theorem provides a converse statement:

if a tuple (a,b,c, x,y, z) satisfies (*),

then possibly after base change

(i.e. adding parameters independent from abexyz to the language),

there is a connected A-definable group G/0,

and there are (a’,b,c,2',y', 2") defined as above from G,

such that each unprimed element is interalgebraic with the corresponding primed
element.

Remark:

e.g. if each element realises a strongly minimal type,

(*) says that the Morley rank of a non-collinear triple is 3, and that of a collinear
triple is 2.



Stability theory preliminaries:
We have an independence notion, non-forking,
satisfying (even after adding parameters) for all A,B,C:

e Transitivity and Monotonicity:

A| BC< (A ] Band A | C)
B

e Symmetry:
Al CesC | A

e Reflexivity:

A A ACac®(D)
e “algebraic = nonforking”:

Al C& A ad®(C)

p € S(A) is stationary iff for any B,
rEpandz | B
A

defines a well-defined type p|p € S(AB),
the non-forking extension of p to AB.

p € S(A) is stationary iff it has a unique extension to acl®d(A).
So stp(a/B) := tp(a/ acl®(B)) is stationary.

Stationary types p € S(A) are definable,
i.e. T eliminates Hrushovski quantifiers:
for any formula/0 ¢(z,y), there is a formula/A

V(y) = dpz.g(z,y)

(read "d,z.” as "for generic z,”),
such that = ¢(b) iff for a = p with a | , b,

= ¢(a,b),
ie. iff ¢(z,b) € plp.
Note that for A C B,

dPle¢(x7 y) = dpx¢(£7 y)

The canonical base of a stationary type p € S(A), A = dcl®i(A), is the least dcl®
closed set Cb(p) C A such that the restriction of p to Cb(p) is stationary and p is its
non-forking extension,

i.e. such that all d,x. ¢(x,y) are defined over Ch(p).

Let aCb(a/B) := acl®d(Cb(stp(a/B))).
Then a | B < aCb(a/B) C acl®(C).

Example - ACF:

If K is a perfect subfield and p € S(K),

p is the generic type of an irreducible variety V over K;
p stationary < V absolutely irreducible;

Cb(p) = (perfect closure of) field of definition of V.

A A-definable group is a /-definable set G together with a relatively definable group
operation
(meaning that its graph is the restriction to G® of a definable set).

If G acts transitively on a /\-definable set S, with the action relatively definable, we
call (G, S) a A\-definable homogeneous space.



S is connected iff there is a stationary type s extending S such that if ¢ € G and
b = sy, then g * b |= slg

(i.e. Stab(s) = G).

s is then called the generic type of G.

If (G, S) is definable of finite Morley rank, S is connected iff MD(S) = 1,
and a € S is generic iff RM(a) = RM(S).

Generics and connectedness are defined for G by considering the left (equivalently:
right) action of G on itself.

Germs and Hrushovski-Weil

Definition:
Let p and ¢ be stationary types /(.

A generic map p — ¢ is the germ ﬁ, of a definable partial function f

(i.e. fo(x) =y is given by a formula/0 ¢¢(z,y,b)),

such that if a = pl, then fi(a) E qls,

where equality of germs is defined by f, = g, iff for a E Dloe, fo(a) = ge(a);
ie. = dpz.fo(z) = gc(x) .

Example:
In ACF, the generic maps p — ¢ are precisely the dominant rational maps locus(p) —
locus(q).

Lemma:
(i) "Equality of germs” is indeed an equivalence relation.

(i) For any B, if a k= plzs then fo(a) = alss-

(iii) Composition of germs is well-defined,
yielding a category structure with objects the stationary types.

(iv) A germ f, is invertible (i.e. an isomorphism) iff f, is injective on ply.

Proof:

(i) Symmetry and reflexivity are clear.
Suppose fp = ge on plpe and g. = hg on pleq.
Then clearly f, = hq on plpcd.
But ¢(z) := fy(x) = ha(x) is defined over bd,
so already ¢(x) € plpa(x).
SO fb = hd on p|bd~
(ii) WLOG, p,q € S(0).
al Bb=a |, B= fo(a) L, B;
but fy(a) | b,
so fp(a) | Bb.

(iii) Suppose f; :p—>qand g.:q—r.
By (ii), if a = plpe then ge(fo(a)) & 7loc,

—~

50 (ge o fp) is a germ : p — 7.
(iv) Clear.

Notation:
e Hom(p, q) := set of germs p — ¢;
e Iso(p, q) := set of invertible germs p — ¢;

e Aut(p) := group of invertible germs p — p.



Definition: _

A family of generic maps p — ¢ based on s is a family of germs {f; | b | s} of a
definable family of partial functions f,.

The family is canonical if for bb’ | s,

fo=fy eb="b.

Note that by definability of types, any family can be made canonical by quotienting
s by the definable equivalence relation of equality of germs.

Remark:
In ACF, algebraic families of dominant rational maps V' — W can be made canonical
by parametrising them using the Hilbert scheme of V' x W.

Remark:

If f. is a family of generic maps p — ¢ based on s,
let b |= s and = |= plp, and let y = fi(z);

then

x by | b yedd®(bx). (+)

Conversely, if (b, x,y) satisfy (+),
let fp(z) =y be a formula witnessing y € dcl®d(bx);

then f, is a canonical family of generic maps stp(z) — stp(y) based on stp(b).

Lemma:
In the correspondence of the previous remark,

(i) f. is invertible iff z € dcl®d(by) i.e. iff 2 and y are interdefinable over b
(ii) f. is canonical iff Cb(stp(zy/b)) = dcl*d(b)

Proof:
(i) Clear

(ii) Suppose that f, is canonical, and obtain (b, z,y) as above.
tp(zy/b) is stationary since tp(z/b) is,
so C := Cb(stp(zy/b)) C dcl®d(b).

If C # del*(b),

say b' # b with b’ =c band b’ | bx;

then zy | b, so zyb = ayb’,

so since fp(z) =y, also fi () =y,

but x |= plpy so this contradicts canonicity of the family £

For the converse, let fi,(z) = y be a formula witnessing y € dcl®(bx).

Suppose fb is not canonical. By definability of types,
some g. is canonical with ¢ € dcl®d(b) but b ¢ dcl®(c).
Then Cb(stp(zy/b) C decl®d(c) since

x ] b=x ] b=zy | b

and tp(zy/c) is stationary since tp(x/c) is and y € del®d(zc).
This contradicts dcl®d(b) = Ch(stp(zy/b)).

Remark:

Suppose (b, z,y) lie on a line” in the sense of the group configuation statement above,
i.e. acl®(bx) = acl®(zy) = acl®d(ybd).

So z is interalgebraic with y over b.

Since b € acl®d(ac), b is interalgebraic with Cb(stp(ac/b)); indeed:

let D = aCb(ac/b); then ac |  acl*(b),



so acl®(b) | ,, acl®(b),
so acl®l(b) = D.

So (b, x,y) is "nearly” a triple corresponding to a canonical family of invertible germs.

Lemma HW:

Suppose f is a canonical family of generic bijections p — p based on s.
Let Go :={fps | b= s} C Aut(p).

Suppose that Gg is closed under inverse,

and suppose that for by and by independent realisations of s,

ﬁn °© }Tb2 = ﬁ)s
with bg = slp, for i =1, 2.

Then, identifying ﬁ, with b,
the group G < Aut(p) generated by Gy is connected A-definable, with s its generic
type.

Remark:

This is essentially the Hrushovski-Weil ”group chunk” theorem.

There, one starts with a generically associative binary operation *, and then applies
the above statement to the germs of x — a * x to obtain a group structure extending
*,

Proof:
First, we show that any element of G is a composition of two generators.

It suffices to see that any composition of three generators
fb1 ° sz 0 fba
is the composition of two. But indeed, let b' = s|p, by 05
Then L L o
fon © for © fog = for © for © fy ' © fr, © fig
Now b | ba, so say fg,l o fp, = for with b = s independent from b and from by;
then b | b3 since:
/
VL, bs
so b J/b2 bs (since b’ € dcl®d(b”, be)),
so since b | ba,

b" | babs, and in particular b | bs.
Also V' | b.

So fbl o fb/ and fb_,l o be o fbg each "realise s”.

Now G is defined as pairs of realisations of s, modulo generic equality of their com-
positions, and the group operation is defined by composition.

Finally, to see that G is connected with generic type s:
if g = s and b |= s|4, then g* b = 5],
and then by induction the same holds for any g € G. |

In the context of the group configuration, we work with definable families of bijections
between two types, rather than from a type to itself. The following key lemma gives
conditions for this to give rise to a group.

Lemma A:
Suppose f, is a canonical family of generic bijections p — ¢ based on r.
Let b; and by be independent realisations of r and say

flgl © fb2 = gc
with g, a canonical family of generic bijections p — p based on s = stp(c),

and suppose
c | bifori=1,2. (+)

Then g, satisfies the assumptions of Lemma HW.



Remark:
In the finite Morley rank setting (e.g. ACF),

® < RM(c) = RM(s).

Proof:

Let ¢’ = s]e.

Let b |=7c,er-

Then by (+), be = bac, so say bjbe = bibac;
similarly, b’ = byc, so say bbyc’ = bibac.

Then _ o _ _ _
geoge = fy o foo fy o fu, = fy o fuy
* * * q
/ \ e / \
/N> | ./ e\
/ IEAN o /€. \
/. A o\
/0 \N |/ O\
/.7 b 2’ \I/ b_1> .\
* * ‘x p

Now (b,b},b5) is an independent triple,

since b; | b by choice of b}, since by | be,

and by |, by, since ¢ |, ¢/, since ¢ | ¢’ and b | cc’.
So b} and b, are independent realisations of r,

o say fy;! 0 fy, = o

Then by (+), ¢’ | b}, and hence ¢ | b}b
(since b | bibh, sob | 'by),

socd | c.

Similarly ¢ | ¢

O

The Group Configuration Theorem

Now we turn to applying this lemma to prove the group configuration theorem.
In fact, the proof we will give naturally proves a more general, less symmetric, state-
ment than that above.

Group Configuration Theorem:

a
/ \ X
b x / \
/ ‘z7 \ a/ \c
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Suppose (a,b, ¢, z,y, z) satisfy:

e any non-collinear triple is independent,

e acl®l(ab) = acl®(bc) = acl®(ac),

e z is interalgebraic with y over a, and a is interalgebraic with
Cb(stp(zy/a)); similarly for bzy and czx.

(*)

Then, possibly after base change,

there is a /\-definable homogeneous space (G, S),

and an independent triple (a’,b’, ') with o', b’ generics of G and a’ generic in S,
such that with b’ :=¢ xd’, 2’ :=a' %y, 2/ :=V xy (s0 2/ = xa xy = xa'),
each unprimed element is interalgebraic with the corresponding primed element.



Example:

In ACF, we can restate as follows:

(b, z,y) fits into a group configuration (i.e. extends to (a,b, ¢, x,y, z) satisfying (*))
iff it is a generic point of a ”pseudo-action”,

i.e. iff there is an algebraic group G acting birationally on a variety S,

and there are generically finite-to-finite algebraic correspondences f : G’ < G, g1 :
Si« Sandgs: S, S,

such that (b, z,y) is a generic point of the image under (f, g1, g2) of the graph ', C
G x S x S of the action.

(c.f. 6.2 in [HrushovskiZilber-ZariskiGeometries].)

Example:

if RM(a) = RM(b) = RM(c) = 2, and RM(z) = RM(y) = RM(z) =1,

and RM(abc) = RM(ab) = RM(bc) = RM(ac) = 4, RM(azy) = RM(bzy) = RM(czz) =
37

and there are no further dependencies,

then the conditions of the group configuration theorem are satisfied,

and we obtain a rank two group acting on a rank one set,

and with some further work one obtains a definable field,

such that the action is essentially (a,b)x — ax + b.

This is sometimes called the ”field configuration”, and appears in many proofs,

e.g. Hrushovski’s proof that unimodularity implies local modularity,

and hence that w-categorical stable theories are 1-based;

the proof of the Zilber dichotomy for Zariski structures;

and also e.g. Hasson-Kowalski’s work on trichotomy for strongly minimal reducts of
RCF.

Very rough sketch of proof:

(I) ”reduce acl®® to dcl®?” to show we may assume (b, z,y) to define a canonical
family of germs of canonical bijections as in Lemma A;

(IT) prove the independence assumption of Lemma A;

(III) connect resulting group action to original group configuration.

Proof of Group Configuration Theorem:
In the proof, we may at any time

e add independent parameters to the language, or
e replace any point of the configuration with an interalgebraic point of Me<.
Performing these operations preserves (*), and the conclusion allows them.

By adding further algebraic parameters whenever necessary, we will assume through-
out that acl®(@) = dcl®*(@), so types over ) are stationary.

(I) First, we see that it follows from (*) that if we let Z € M®? be the set z =
{21, ..., 24} of conjugates z; of z over ybxc, then Z is interalgebraic with z.
(Here, {21, ..., z4} is the image of (z1, ..., zg) under quotienting by the action by
permutations of the symmetric group Sy.)

For this, we require that the conjugates are interalgebraic, acl®(z;) = acl®d(z;).
Indeed, then acl®d(2) C acl®(zy, ..., 2,) = acl®(z);
and z € acl®d(2), since it satisfies the algebraic formula z € Z.

But indeed:

z € acl®(zc) Nacl®(yb) =: B by (*), but meanwhile zc | ybso B | B so
B C acl®(z).

So acl®l(z) = B,

and by the same argument acl®d(z;) = B for each z;.

Now let @’ [= tp(a)|abeayz-

Say a’x'c’ =y, azc. So a’bd’z'yz is also a group configuration.

So as above, the set Z of conjugates of z over ybx'c’ is interalgebraic with z.
Note that z € dcl®d(yba'c’).
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So add a’ as a parameter,
and replace y with yz’, b with bc’, and z with Z.
Then since 2’ € acl®¥(ya’) and ¢’ € acl®d(ba’),
the resulting group configuration is interalgebraic with the original,
and now satisfies
z € del®(by).

Repeating this procedure by adding an independent copy of b and enlarging a
and y and replacing x with an T,
we can also ensure that

z € dcl®Y(ay).

Finally, we repeat once more: add an independent copy ¢’ of ¢,
let o’2'd =y, azc,

let 4 be the set of conjugates of y over ba’zz’.

Now since 2’ € dcl®d(a'y) and z € dcl®d(by),

we have za’ € dcl®d(ba'y) and so zz’ € del®(ba'y).

So after replacing b with ba’, z with zz’, and y with 7,

so in the previous two cases y € dcl®(bz),

and now also z € dcl®(by).

Finally, replace b with Cb(yz/b), with which it is interalgebraic by (*).

(b, y, z) now corresponds to a canonical family f. of germs of bijections tp(y) —
tp(z) over r := tp(b).

To apply lemma A to obtain a group,
we must show that if b’ |= r|, and

]?b_/l o fo = Gu
with g, canonical,
thend | band d | V.

We may assume V' | abcxyz.
Say b'y'a’ =,c. bya.

So by canonicity, dcl®d(d) = Cb(stp(yy’/bb')).
Now y | abe, and b’ | yabe, so y | abeb’, and since o' € acl®(cb’), we have

y | adbb'.
Since also y’ € acl®d(yaa’), we have
yy' | oY
aa’
Similarly,
yy' | ad’.

bb’

So aCb(yy’/bb') = aCb(yy'/aa’bb’) = aCb(yy’/ad’),
so d € acl®¥(aa’).

Claim: b | ad’.

Proof: abe | b', s0 ab | V', s0oab | a sincea’ € acl®(cl’).
Buta’ | ¢,s0ab | a’,s0b | d'

Now a | b,sob | ad'.

So b | d, and similarly b’ | d, as required.

By (II) and Lemma A,

we obtain a connected /\-definable group G, with a generic action of its generic
type s on p := tp(y),

i.e. g*a is defined for g = s and a = p with g | s.

To get a A-definable homogeneous space,

define S to be (G x p)/E where (g,a)E(g’,a’) iff dsh.(hxg)xa= (h*xg')*xd,
with the action of G:

hx(g,a)/E := (h*g,a)/E.

Finally, we must show that the original group configuration is interalgebraic
with that of (G,S). This will involve adding further parameters.



First, let b = tp()|abeays-

Say y'V =pzac yb.

Say g = s codes f,,' o fy, 50y = g*y.

Then g is interdefinable with b over ¥'.

So add ¥’ to the language,

and replace b with g = s and z with g xy = p.

Now let ¢ = tp(¢)|abesyzs

and say b'z'c’ =44y bze.

Add ¢ to the language,

and replace a by b = s and z by 2/ =V xy = p.

Let h:=bxa™ "

r=axyand z=0b%*y, so z="hx*x.

So aCb(xz/ab) = acl®d(h); but also x and z are interalgebraic over ¢,
so aCb(zz/ab) = aCb(zz/c) = acl®(c).

So replace ¢ with h, and we are done.



