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Pseudofiniteness, unimodularity, and planar

incidence patterns

Motivation and speculations

Theorem [Green-Tao]:
For n >> 0,
given n points in R2,
there are at least n/2 straight lines passing through exactly 2 points (”ordi-
nary lines”).

Recall:
Let E ⊆ R2 be an elliptic curve, WLOG (i.e. after projective transforma-
tion) in Weierstrass form;
E(R) has an abelian group structure given by:
0 = point at infinity;
x + y + z = 0 iff x, y, z are the intersections with a straight line (counting
multiplicity).

Theorem [Green-Tao]:
Exists C s.t.
given K > 0,
for n >> 0,
given n points in R2,
suppose there are < Kn ordinary lines,
and suppose there are < C points on each line,
then up to CK points,
the n points form a coset H + a in the (abelian) group of smooth points of
an irreducible cubic plane curve,
with 3a ∈ H.

Fact:
H = Z/NZ or H = Z/2Z× Z/NZ.

Non-standard formulation:
Let P be a pseudofinite subset of R2, equipped with the ternary relation I

I(x, y, z) iff x, y, z distinct and co-linear.
Suppose |I(a, b, P )| <∞,

and |O(a, P )| <∞ where O(x, y) ≡ ¬∃z.I(x, y, z).
Then there is P ′ ⊆ P cofinite (definable??) which is a cofinite subset

of a coset H + a of a pseudofinite subgroup H of the smooth points of an
irreducible cubic plane curve (over ∗R),
with 3a ∈ H,
and I(x, y, z)↔ x+ y + z = 0 for distinct x, y, z ∈ P ′.

Furthermore, H is pseudocyclic or H = Z/2Z× C for C pseudocyclic.

Recall:
A type-definable set D is minimal if for any B (with D defined over B),
there is a unique non-algebraic pB ∈ S(B) on D.



2

pB is stationary, U-rank 1.
acl is a pregeometry on a minimal set.
Buechler’s dichotomy:

if the pregeometry is not locally modular,
thenD is strongly minimal (i.e. a type-definable subset of a strongly minimal
definable set).

Remark:
(P ′; I) is bi-interpretable with (H; +),
which is superstable unidimensional;
the divisible elements form a minimal set,
which is locally modular, non-trivial.

(More generally: have a map H → Ẑ× Z/2Z,
namely the inverse limit of [n],
and the fibres are minimal.)

Proof:
Note that (h+ a) + (h′ + a) + (h′′ + a) = 0↔ h+ h′ + h′′ = 0.
So x− x′ = y − y′ iff ∃z.z + x+ y′ = 0 = z + x′ + y,
so this interprets H,
with addition given by (x− x′) + (x′ − x′′) = (x− x′′).

A pseudocyclic group G, quotients of torsion subgroups G[n]/G[m] are
finite, and so are quotients of divisibility subgroups nG/mG.
These are the pp-definable subgroups ([Prest] 2.Z1). So there are no infinite
descending chains of such with infinite quotients, so by [Prest] 3.1,
G is superstable.

Minimality:
by this quantifier elimination, 1-types are determined by the cosets of these
subgroups they lie in; we’ve explicitly decided on the divisibility subgroups,
so only new thing that can happen over parameters is pg = b,
but then g is algebraic over b since G[p] is finite.

Unidimensionality:
these minimal types are manifestly non-orthogonal, because we can shift
between them by adding appropriate parameters.

Question [Green-Tao]:
Suppose a positive proportion of lines have > 2 points,
and a line has boundedly many points.

Does it follow that a positive proportion of the points lie on a cubic?

Hope:
A model-theoretic proof of the theorem should exist,
and maybe also a positive answer to the question.

Magicking group structures out of the vaguest traces is something model
theorists have been doing for decades;
moreover, this is in the end a minimal locally modular non-trivial structure,
and it is classical that any such looks a bit like this one,
and in particular it’s relatively easy to find the group.
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Moreover, the local modularity follows from minimality and pseudofinite-
ness, via unimodularity.

So even though there’s no obvious direct proof of minimality,
the group construction techniques may apply.

Preliminaries

Definition:
A minimal set D is unimodular if for any generic k1-to-k2 correspondence
on Dn,
meaning a definable X ⊆ Dn ×Dn with RM(πi(X)) = n and |π−1i (x)| = ki,
k1 = k2.

Equivalently: if a, b |= p(n), then mult(a/b) = mult(b/a).

Examples:
Algebraically closed fields are not unimodular;
consider X = {(x, y) | y = x2} (if char 6= 2).

Modules over division rings are unimodular.
So is e.g. (C; {x2 + y2 + z2 = 0}).

Strongly minimal pseudofinite → unimodular

Following Pillay’s note ”Strongly minimal pseudofinite structures”.
Let M = ΠUMi be pseudofinite.
Let D be a strongly minimal set in M .

Lemma:
Let X ⊆ Dn be definable.
There exists pX(q) ∈ Z[q] such that almost always
|X| = pX(|D|)

Proof:
By induction on Morley rank and degree of X.
Let X ′ ⊆ X with RM(X ′) = RM(X) =: n, deg(X) = 1,
and a projection map π : X ′ → Dn with all fibres of size k and RM(π(X ′)) =
n.

By induction, we have polynomials for X \X ′ and Dn \ π(X ′).
So set

pX(q) := pX\X′(q) + k(qn − pDn\π(X′)(q)).
�

Proposition:
D is unimodular.

Proof:
Suppose X is a generic k1-to-k2 correspondence,
Dn ←k1 X →k2 Dn.
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Then pX(q) = kipπi(X)(q),
but pπi(X)(q) has leading term qn.
�

Local modularity

Theorem [Hrushovski-Zilber]:
A unimodular minimal type is locally modular.

Theorem [Pillay]:
Any minimal set in a pseudofinite theory is locally modular.

Hence, a pseudofinite theory of finite U-rank is 1-based,
i.e. A |̂

acleq(A)∩acleq(B)
B.

Proof:
By the Buechler dichotomy, any U-rank 1 type is either locally modular or
strongly minimal.
So by pseudofiniteness, every U-rank 1 type is locally modular.
1-basedness follows by standard results (also due to Buechler).

Theorem:
If D is non-trivial locally modular minimal,
there is a type-definable minimal, hence abelian, group G,
and D is in definable generic finite-to-finite correspondence with G.

Moreover, G is 1-based, so the relatively definable subsets of Gn are
boolean combinations of cosets of acl(∅)-definable subgroups.

Remark:
pseudofinite + stable = / > 1-based (MacPherson-Tent).

pseudofinite + SU-rank 1 = / > 1-based (pseudofinite fields).

Proof sketch of unimod → loc.mod:
Details are in GST (section 2.4 up to 2.4.15, and section 5.3).

Define Zilber degree Z(a) := mult(a/d) where d |= p(n) is interalgebraic
with a.
Unimodularity → well-defined.
Z(a/b) := Z(ab)/Z(b).
If X is a Morley degree 1 partial type over b,
Z(X) := Z(a/b) where a ∈ X is generic over b.

Show that if Xb, Yc ⊆ D2 are ≥ 2-dimensional families of minimal sets
(”plane curves”), then for generic (b, c), |Xb ∩ Yc| = Z(Xb)Z(Yc).

(Proof: b |̂ c; using the rank condition, one sees that WLOG also b |̂
a
c

with a ∈ Xb ∩ Yc; then
Z(a/bc) = Z(abc)/Z(bc) = Z(c/ab)Z(a/b)Z(b)/Z(bc) = Z(a/c)Z(a/b)Z(c)Z(b)/Z(bc) =

Z(a/b)Z(a/c)
where we used

Z(a/c)Z(c) = Z(ac) = Z(c/a)Z(a) = Z(c/a) = Z(c/ab)
since Z(a) = 1 and b |̂

a
c,

and
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Z(bc) = Z(b)Z(c)
since b |̂ c.)

Conclude 2-pseudolinearity - there are no 3-dimensional families of
plane curves.
Indeed,
if Xa is such,
take a′ |= tp(a)|a,
let c ∈ Xa ∩Xa′ ;
let X ′a be the non-forking extension to ac,
which still has dim ≥ 2, so
|X ′a ∩X ′a′| = Z(X ′a)Z(X ′a′) = Z(X ′a)

2 = Z(Xa)
2 = |Xa ∩Xa′|,

which is nonsense.
Finally,

suppose there is a 2-dimensional family of plane curves;
consider such as a correspondence on D,
by considering compositions, using that the dimension doesn’t go up when
we do so, and using usual tricks (skipping lots, see 5.3.3 and paragraph after
it),
get a dim 2 definable group action,
which by stable group theory yields a definable field,
contradicting pseudolinearity (or, more directly, unimodularity).

So D is linear, i.e. locally modular.


