
A survey of asymptotic classes and
measurable structures
Richard Elwes
University of Leeds

Dugald Macpherson
University of Leeds

1 Introduction

In this article we survey a body of results about classes of finite first
order structures in which definable sets have a rather uniform asymp-
totic behaviour. Non-principal ultraproducts of such classes may have
unstable theory, but will be supersimple of finite rank. In addition, they
inherit a definable measure on definable sets.

The starting point for this work was the following result of [11] on
definability in finite fields.

Theorem 1.1 ([11]) Let ϕ(x̄, ȳ) be a formula in the language Lrings for
rings, with x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , ym). Then there is a
positive constant C, and a finite set D of pairs (d, µ) with d ∈ {0, . . . , n}
and µ a non-negative rational number, such that for each finite field Fq
and ā ∈ Fmq , ∣∣|ϕ(Fnq , ā)| − µqd

∣∣ ≤ Cqd−(1/2) (∗)

for some (d, µ) ∈ D.
Furthermore, for each (d, µ) ∈ D, there is a formula ϕ(d,µ)(x̄) which

defines in each finite field Fq the set of tuples ā such that (∗) holds.

This result rests on the Lang-Weil estimates for the number of F-
rational points of an absolutely irreducible variety defined over the fi-
nite field F. The proof uses partial quantifier elimination for pseudofi-
nite fields, derivable from the paper of Ax [2] which introduced pseud-
ofinite fields: any formula ϕ(x̄) is a boolean combination of formulas
∃y(g(x̄, y) = 0), where g ∈ Z[X̄, Y ]. (In fact, by adding a set C of
constants to the language, the authors arrange that ϕ is equivalent to a
conjunction of similar formulas, rather than an arbitrary boolean com-
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bination; there is an alternative effective proof in [20], based on Galois
stratification.) The reason why µ may be a fraction (rather than an inte-
ger as in Lang-Weil), is that the existential quantifier ranges over a finite
set. Oversimplifying considerably, the set defined by ∃y(g(x̄, y) = 0) is,
for some k, the image of a k-to-1 projection map of the variety defined
by g(x̄, y); thus, its measure is 1

k times that of {(x̄, y) : g(x̄, y) = 0}.
As a short application of Theorem 1.1, noted in [11], it follows that the

finite field Fq is not uniformly definable in Fq2 . Theorem 1.1 also yields
that pseudofinite fields are supersimple of rank 1, with an associated
definable and finitely additive notion of measure on the definable sets.

The present article is a survey of recent work stimulated by The-
orem 1.1. The idea, initiated in [43], is to consider classes of finite
structures in which definable sets satisfy the same kind of asymptotic be-
haviour as for finite fields. In the initial work of [43], only a 1-dimensional
version was considered, and the error terms were as in Theorem 1.1.
More recently, Elwes [18] has developed a theory of higher dimensional
asymptotic classes where the error terms are weaker – see Definition 2.1
below.

There is also a notion of measurable structure: a supersimple structure
of finite SU-rank equipped with the kind of measure function on defin-
able sets which exists, by virtue of Theorem 1.1, in pseudofinite fields.
Any ultraproduct of members of an asymptotic class will be measurable
(Theorem 3.9 below) but there are also measurable structures which do
not even have the finite model property, so cannot arise from asymp-
totic classes; see Theorem 3.12. Familiar supersimple structures such as
the random graph, smoothly approximable structures, and pseudofinite
fields, are all measurable.

One of the main results in this area is a theorem of Ryten [51], stem-
ming from earlier work of Ryten and Tomašić [52], that for any natural
number d, the collection of all finite simple groups of Lie rank at most d
forms an asymptotic class (Theorem 6.1 below). This opens the possibil-
ity of variations of the Algebraicity Conjecture of Cherlin and Zilber that
any simple group of finite Morley rank is an algebraic group. Namely,
the following seems reasonable, and, unlike the Algebraicity Conjecture,
incorporates the classes of twisted finite simple groups.

Conjecture 1.2 If G is a simple group with measurable theory, then G
is a Chevalley group (possibly of twisted type) over a pseudofinite field.

In Section 2 below we give the current definition of asymptotic class,
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and some examples. Measure is introduced in Section 3, again with
examples and discussion of the connection with asymptotic classes, and
with Hrushovski’s notion of unimodular theory. Smoothly approximable
structures provide an important class of examples, and we describe in
Section 4 how these fit into the framework. In Section 5, we survey
results from [51] and [52] on measure in ACFA, and an extension of
Theorem 1.1 to finite difference fields. This yields the above result on
finite simple groups of fixed Lie rank, sketched in Section 6. We turn
in Section 7 to measurable groups, and asymptotic classes of groups, of
low dimension. The main results here, due to Elwes and Ryten, are that
any 2-dimensional asymptotic class of groups consists of groups with a
uniformly definable soluble subgroup of bounded index (Theorem 7.5),
and an analogue of Hrushovski’s result on groups of finite Morley rank
in a stable theory which act transitively on a strongly minimal set. The
paper concludes with a section on open questions.

If C is a class of finite structures in a language L, then the asymptotic
theory of C is the collection of all sentences which hold in all but finitely
many members of C. Equivalently, it consists of those sentences which
hold of any non-principal ultraproduct of members of C. Notation is
introduced locally, but we try to stick to the convention that for a for-
mula ϕ(x̄, ȳ), x̄ = (x1, . . . , xn), ȳ = (y1, . . . , ym), with ȳ the parameter
variables. The algebraic closure of a field K is denoted K̃. We write
A |̂

C
B to mean that the sets A and B are independent over C (in the

sense of model-theoretic non-forking).
Though this material is close to stability and simplicity, our intention

is that little knowledge of simplicity theory is needed to follow this paper;
the reader can refer to [48] and [60]. For details of the ranks mentioned
(S1-rank, D-rank, SU-rank), see [35]. For background on the model
theory of finite and pseudofinite fields, we refer to the original paper [2],
the survey [14], or to [21]. For background on ACFA, see [12]. For the
structure of the finite simple groups of Lie type, see [10].

Acknowledgement: We thank the referee for a meticulous and helpful
report.

2 Asymptotic classes

Definition 2.1 (Elwes, [18]) Let N ∈ N, and let C be a class of finite
L-structures, where L is a finite language. Then we say that C is an
N-dimensional asymptotic class if the following hold.
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(i) For every L-formula ϕ(x̄, ȳ) where l(x̄) = n and l(ȳ) = m, there
is a finite set of pairs D ⊆ ({0, . . . , Nn} × R>0) ∪ {(0, 0)} and for each
(d, µ) ∈ D a collection Φ(d,µ) of pairs of the form (M, ā) where M ∈ C
and ā ∈ Mm, so that {Φ(d,µ) : (d, µ) ∈ D} is a partition of {(M, ā) :
M ∈ C, ā ∈Mm}, and∣∣|ϕ(Mn, ā)| − µ|M | d

N

∣∣ = o(|M | d
N )

as |M | −→ ∞ and (M, ā) ∈ Φ(d,µ).
(ii) Each Φ(d,µ) is ∅-definable, that is, {ā ∈ Mm : (M, ā) ∈ Φ(d,µ)} is

uniformly ∅-definable across C.
We may write Dϕ for D, and will call {Φ(d,µ) : (d, µ) ∈ D} a (defin-

able) asymptotic partition. We write h(ϕ(Mn, ā)) := (Dim(ϕ(Mn, ā)),
Meas(ϕ(Mn, ā))) := (d, µ) where (M, ā) ∈ Φ(d,µ), except that if d = µ =
0 we work with the convention that Dim(ϕ(Mn, ā)) = −1. We call C a
weak asymptotic class when C satisfies the asymptotic criteria (i) for all
ϕ, but the Φ(d,µ) are not assumed to be definable.

Remark 2.2 1. In this context the o-notation in (i) means the follow-
ing: for every ε > 0 there is Q ∈ N such that for all M ∈ C with |M | > Q

and all ā ∈Mm where (M, ā) ∈ Φd,µ, we have∣∣|ϕ(Mn, ā)| − µ|M | d
N

∣∣ < ε|M | d
N .

2. For every member of an N -dimensional asymptotic class, the uni-
verse of the structure is viewed as being N -dimensional.

3. Unlike the presentation in [43] and [18], the definition covers all
formulas ϕ(x̄, ȳ), not just those in which x̄ is a singleton. It is a theorem
(Theorem 2.3 below) that this is equivalent to the same condition just
for formulas ϕ(x, ȳ).

4. The focus of [43] was on the case when N = 1 (the case for finite
fields).

5. The general theory below works equally well with tighter error
terms: in 1 above, replace = o(|M | d

N ) by < C|M | d
N−

1
2N , where C is a

constant depending on ϕ. Many of the known examples of asymptotic
classes satisfy this constraint. However it is not clear that envelopes
of smoothly approximable structures satisfy it. For example, if p, q are
distinct primes, and M is the disjoint union of two infinite-dimensional
vector spaces, one over Fp, the other over Fq, is M approximated by an
asymptotic class satisfying the tighter error terms?

6. It is easy to create artificial examples of N -dimensional classes
(for any N) in which the µ are irrational, or even transcendental. This
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can be done just using sets with a unary predicate. We do not know of
natural examples with transcendental µ.

7. It is immediate that any reduct of an asymptotic class is a weak
asymptotic class. However, the definability clause (ii) can be lost under
reducts. Elwes [18, Section 2.2] has shown that if C is an asymptotic
class, and D is a class of finite structures uniformly interpretable in
C, then D is a weak asymptotic class. If C and D are uniformly bi-
interpretable (without parameters), then D will also be an asymptotic
class. This is relevant to Section 6 below (bi-interpretations between
classes of simple groups and fields or difference fields).

The following theorem gives a more easily recognised criterion for
being an asymptotic class. By ensuring that the condition is really one
on one-variable definable sets, it gives an analogy to o-minimality, and
related minimality notions.

Theorem 2.3 (Lemma 2.1.2 of [18]) Suppose that C is a class of finite
structures which satisfies Definition 2.1 (clauses (i) and (ii)) for n =
1, i.e. for definable sets in 1 variable. Then C is an N -dimensional
asymptotic class.

Sketch of the proof. The proof is inductive. For a definable subset X
of Mn+1 consider the projection π : Mn+1 → M to the first variable,
and apply the assumption to π(X), and the inductive hypothesis to the
fibres Xa (a ∈ π(X)). The definability clause (ii) is essential.

We draw attention to the following non-example. The class of all fi-
nite total orders is not an asymptotic class of any dimension; for, as a
varies through a finite ordering, the formula x < a defines an arbitrary
proportion of the domain. In fact, by Proposition 3.9 (and Corollary
3.7) below, any nonprincipal ultraproduct of an asymptotic class is su-
persimple, so cannot interpret a partial order with an infinite chain (i.e.
cannot have the strict order property).

Example 2.4 1. By Theorem 1.1, the collection of all finite fields
forms a 1-dimensional asymptotic class. This class, when restricted
to fixed characteristic, has an important expansion. For any fixed p,
and positive integers m,n with m ≥ 1, n > 1, and (m,n) = 1, there
is a 1-dimensional asymptotic class C(m,n,p) of difference fields, namely
C(m,n,p) = {(Fpkn+m ,Frobk) : k > 0} – see Theorem 5.8. The automor-
phism here is not uniformly definable in the field. The classes C(m,n,p)
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130 R. Elwes and D. Macpherson

are significant for finite simple groups: C1,2,2 is uniformly parameter bi-
interpretable with the classes of Suzuki groups 2B2(22k+1) and the Ree
groups 2F4(22k+1), and C(1,2,3) with the class of Ree groups 2G2(32k+1).
See Section 6.

2. It is shown in [43, Theorem 3.14] that the collection of all finite
cyclic groups is a 1-dimensional asymptotic class. This follows from the
partial quantifier elimination (‘near model completeness’) of Szmielew
[55] for abelian groups. The multiplicative groups of finite fields form a
subclass.

3. For any odd prime p, the class Cp of finite extraspecial p-groups
of exponent p forms a 1-dimensional asymptotic class (see [43, Proposi-
tion 3.11]). Here, a group G is extraspecial if G′ = Z(G) = Φ(G) (the
Frattini subgroup), and G′ is isomorphic to the cyclic group Z/pZ. An
extraspecial group of exponent p is a central product of several copies of
the unique non-Abelian group of order p3 and exponent p, and a finite
one will have order p2t+1 for some t. The groups in Cp are bounded-by-
abelian (in fact, (Z/pZ)-by-abelian), but not abelian-by-bounded, that
is, they do not have an abelian normal subgroup of bounded index. The
quotient G/Z(G) carries definably the structure of a vector space over
the field Fp, equipped with an alternating bilinear form which comes
from the commutator map. An infinite ultraproduct of groups in Cp will
be ω-categorical, smoothly approximable (see Section 4), and supersim-
ple of rank 1, but not stable. See also Theorem 7.3, and the remark
after Lemma 7.4, for partial converses.

4. If q is a prime power with q ≡ 1 (mod 4), then there is a graph Pq
(known as a Paley graph) with vertex set the finite field Fq, with vertices
a, b joined if a − b is a square. By [43], the class C of all Paley graphs
is a 1-dimensional asymptotic class. Essentially, the reason is that by a
theorem of Bollobás and Thomason [7] (see also [8, Ch.XIII.2]), if U,W
are disjoint sets of vertices of Pq with m := |U ∪W |, and v(U,W ) is the
number of vertices of Pq joined to everything in U and to nothing in W ,
then

|v(U,W )− 2−mq| ≤ 1
2
(m− 2 + 2−m+1)q

1
2 +m/2.

It follows that an infinite ultraproduct of Paley graphs is elementar-
ily equivalent to the random graph, so has quantifier elimination. This
persists in sufficiently large finite Paley graphs, so corresponding asymp-
totic estimates hold for all formulas in one variable, and hence, by The-
orem 2.3, for all formulas. The definability clause of Definition 2.1 is
easily verified.
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There are analogous classes, interpretable in finite fields, associated
with other homogeneous structures. For example, if one considers primes
q ≡ 3 (mod 4), and defines a→ b (on Fq) whenever a− b is a square,
one obtains the Paley tournaments. These approximate the random
tournament as above; the analogue of the Bollobás-Thomason result
was proved in [22]. For more on this, see [56], and the results of Tomašić
[58] mentioned at the end of Section 3.

There is an analogue of the Paley graphs for arity 3 (so a class of
3-hypergraphs), considered in [43, Example 3.6]. For q ≡ 1 (mod 4)
one considers a hypergraph on Fq where {a, b, c} is an edge if a, b, c are
distinct and (a − b)(b − c)(a − c) is a square. The asymptotic theory
of such hypergraphs is that of the generic homogeneous two-graph (a
3-hypergraph which is a reduct of the random graph), not the generic
3-hypergraph.

5. By Proposition 3.3.2 of [18], if M is a smoothly approximable
structure, then M is the union of a chain of ‘envelopes’ which form
an asymptotic class. A basic example is an infinite vector space over
a finite field, obtained as a union of infinitely many finite dimensional
vector spaces. This example is 1-dimensional but in general such classes
will be of higher dimension. See Section 4. As a special case, consider the
smoothly approximable structure consisting of a set equipped with an
equivalence relation with infinitely many infinite classes. It is smooothly
approximated by a chain of structures each of size t2 (with t varying)
equipped with an equivalence relation with t classes all of size t. The
latter class of structures is an asymptotic class of dimention 2.

6. Suppose that C is a class of finite structures such that every in-
finite ultraproduct of members of C is strongly minimal. Then C is a
1-dimensional asymptotic class (Lemma 2.5 of [43]). This is an easy
consequence of Theorem 2.3.

In particular, let d be a positive integer, and let Cd be the collection
of all finite graphs of valency d whose automorphism group is transitive
on the vertex set. Then Cd is a 1-dimensional asymptotic class. The
reason is that any infinite ultraproduct M of members of Cd is itself
vertex transitive: take the ultraproduct of 2-sorted structures, with a
second sort for the automorphism group. It follows that M is strongly
minimal, so the last paragraph applies.

In the next section, it will be shown that if C is an N -dimensional
asymptotic class, then any infinite ultraproduct of members of C is su-
persimple of rank at most N (and, furthermore, measurable). A number
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of other model-theoretic properties of ultraproducts can be recognised
directly from asymptotics. One such is the following. The main issue
is to show, by an elementary argument with indiscernibles, that if the
asymptotic conditions hold then ϕ(x, ȳ) is unstable in some ultraprod-
uct.

Proposition 2.5 ([43]) Let C be a 1-dimensional asymptotic class.
Then some ultraproduct of members is unstable if and only if there is a
formula ϕ(x, ȳ), and for each k ∈ N some M ∈ C and ā1, . . . , āk ∈M `(ȳ)

with
(a) |ϕ(M, āi)| ≥ k for each i = 1, . . . , k, and
(b) |ϕ(M, āi)4ϕ(M, āj)| ≥ k for all distinct i, j ∈ {1, . . . , k}.

In Chapter 5 of [18], finitary criteria are given for ultraproducts to be
ω-categorical, or all to be 1-based.

3 Measurable structures

It was already noted in [11, 4.10, 4.11] that, because of Theorem 1.1,
pseudofinite fields are supersimple of S1-rank 1, and that there is a
definable ‘measure’ on the definable sets. Below, following Section 5 of
[43], we generalise this.

Definition 3.1 An infinite L-structure M is measurable if there is a
function h : Def(M) → N × R ∪ {(0, 0)} (we also write h(X) as
(Dim(X),Meas(X)) or (Dim,Meas)(X)) such that the following hold.

(1) For each L-formula ϕ(x̄, ȳ) there is a finite set D ⊂ N × R>0 ∪
{(0, 0)}, so that for all ā ∈Mm we have h(ϕ(Mn, ā)) ∈ D.

(2) If ϕ(Mn, ā) is finite then h(ϕ(Mn, ā)) = (0, |ϕ(Mn, ā)|).
(3) For every L-formula ϕ(x̄, ȳ) and all (d, µ) ∈ Dϕ, the set

{ā ∈Mm : h(ϕ(Mn, ā)) = (d, µ)} is ∅-definable.
(4) (Fubini) Let X,Y ∈ Def(M) and f : X → Y be a definable

surjection. Then there are r ∈ ω and (d1, µ1), . . . , (dr, µr) ∈
(N×R>0)∪{(0, 0)} so that if Yi := {ȳ ∈ Y : h(f−1(ȳ)) = (di, µi)},
then Y = Y1 ∪ . . .∪Yr is a partition of Y into non-empty disjoint
definable sets. Let h(Yi) = (ei, νi) for i ∈ {1, . . . , r}. Also let
c := Max{d1 + e1, . . . , dr + er}, and suppose (without loss) that
this maximum is attained by d1 + e1, . . . , ds + es. Then h(X) =
(c, µ1ν1 + . . .+ µsνs).
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If X ∈ Def(M) and h(X) = (d, µ), we call d the dimension of X and µ

the measure of X, and h the measuring function. We say that a complete
theory T is measurable if it has a measurable model (see Remark 3.8 (1)).

Example 3.2 The basic motivating example of a measurable structure
is a pseudofinite field. Essentially, this was shown in [11]. If X ⊂ Fn

is definable (F a pseudofinite field) then Dim(X) (which equals its S1-
rank or D-rank) is just the algebraic-geometric dimension of the Zariski
closure of X in F̃n. The measure of any absolutely irreducible variety
in F will be 1. Measurability of any pseudofinite field was used in [28],
in a new proof of the well-known fact that any almost simple algebraic
group has a universal cover. The main point was that, by measure
considerations, if F is a pseudofinite field and G1, G are connected
algebraic groups defined over F , and f : G1 → G is an isogeny defined
over F , then |Ker(f) ∩G1(F )| = |G(F ) : f(G1(F ))|.

A key question is whether, conversely, every measurable field is pseud-
ofinite (see Section 8). An algebraically closed field cannot be measur-
able – see the remark after Proposition 3.15.

Generalising the case of pseudofinite fields, Proposition 3.9 below
shows that asymptotic classes yield measurable structures.

Definition 3.1 is slightly different from that in [43], since we do not
specify in the definition that M has a supersimple theory. However,
it follows from the next few lemmas, in particular Corollary 3.6, that
indeed if M is measurable, then Th(M) is supersimple of finite rank.
Similar arguments were communicated to the authors by Ryten, and can
also be found in [32]. The computations below are with D-rank, but by
[35, Section 6], in a supersimple theory in whichD-rank is finite, D-rank,
S1-rank, and SU-rank all agree for formulas. See [35] for definitions of
these ranks. In 3.3–3.6 below the sets are taken in an ambient structure
M , which is assumed to be measurable.

Lemma 3.3 Let n ∈ ω, and A1, . . . , An be definable sets, where
Dim(Ai) = d for each i.

(i) Dim(
⋃n
i=1Ai) = d.

(ii) If, in addition we have Dim(Ai1∩Ai2) < d for each distinct i1, i2,
then

(Dim,Meas)(
n⋃
i=1

Ai) = (d,
n∑
i=1

Meas(Ai)).
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Proof. We proceed by induction on n. For n = 2, pick any distinct
a1, a2, a3 ∈ M , and define f : A1 ∪ A2 → {a1, a2, a3} by f(x̄) := a1 if
x̄ ∈ A1\A2; f(x̄) := a2 if x̄ ∈ A2\A1; and f(x̄) = a3 if x̄ ∈ A1 ∩ A2.
Then (i) and (ii) are immediate from the Fubini condition.

Suppose now that both statements hold for n = k − 1. Then given
A1, . . . Ak, we may first apply the inductive hypothesis to A1, . . . Ak−1,
and derive statement (i) by applying the case n = 2 to

⋃k−1
i=1 Ai and Ak.

Now for (ii), we know by the inductive hypothesis that

(Dim,Meas)(
k−1⋃
i=1

Ai) = (d,
k−1∑
i=1

Meas(Ai)).

Now Ak ∩
⋃k−1
i=1 Ai =

⋃k−1
i=1 (Ak ∩ Ai), and so by (i) we know that

Dim(Ak ∩
⋃k−1
i=1 Ai) < d. Therefore we may apply the case n = 2 to find

that Meas(
⋃k
i=1Ai) = Meas(

⋃k−1
i=1 Ai) + Meas(Ak) =

∑k−1
i=1 Meas(Ai) +

Meas(Ak) =
∑k
i=1 Meas(Ai), as required.

Corollary 3.4 (Dim,Meas) is monotonic, that is, whenever A ⊆ B

are definable, then (Dim,Meas)(A) ≤ (Dim,Meas)(B) (under the lexi-
cographic ordering).

For convenience we assume that all the following occurs in the home
sort.

Lemma 3.5 Let X be a definable set, ϕ(x̄, ȳ) an L-formula, and
(b̄i : i ∈ ω) an indiscernible sequence where for each i ∈ ω we have
ϕ(Mn, b̄i) ⊆ X. Suppose that {ϕ(Mn, b̄i) : i ∈ ω} is inconsistent. Then
Dim(X) > Dim(ϕ(Mn, b̄i)).

Proof. Suppose not. Suppose Dim(X) = Dim(ϕ(Mn, bi)) = d. Then,
as {ϕ(Mn, b̄i) : i ∈ ω} is inconsistent, by compactness there exists some
minimal k such that Dim(ϕ(Mn, b̄1)∩. . .∩ϕ(Mn, b̄k+1)∩ϕ(Mn, b̄k+2)) <
d.

For i ≥ 1 define Ai := ϕ(Mn, b̄1)∩ . . .∩ϕ(Mn, b̄k)∩ϕ(Mn, b̄k+i). No-
tice that by indiscernibility and the minimality of k, we have Dim(Ai) =
d, and for i1 6= i2 also Dim(Ai1 ∩Ai2) < d. Say Meas(Ai) = µ. Thus by
Lemma 3.3, for any t ≥ 1 we have (Dim,Meas)(

⋃t
i=1Ai) = (d, tµ). But

then by Corollary 3.4 Meas(X) ≥ tµ for all t, which is clearly impossible.

Corollary 3.6 For any definable set X, we have D(X) ≤ Dim(X).

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511735219.004
Downloaded from https://www.cambridge.org/core. Universitaets Landesbibliothek Muenster, on 09 Feb 2021 at 17:18:24, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511735219.004
https://www.cambridge.org/core


A survey of asymptotic classes and measurable structures 135

Proof. We proceed by induction on r, showing (∗): if Dim(X) ≤ r then
D(X) ≤ r. The case r = 0 is automatic from clause (2) of Definition 3.1.

For the inductive step, assume (∗) below r, and suppose for a contra-
diction that Dim(X) = r, and D(X) ≥ r + 1.

By definition of D-rank, there is an indiscernible sequence (b̄i : i ∈
ω) and an L-formula ϕ(x̄, ȳ) where {ϕ(x̄, b̄i) : i ∈ ω} is inconsistent,
and for each i ∈ ω we have D(ϕ(Mn, b̄i)) ≥ r and ϕ(Mn, b̄i) ⊆ X.
By Lemma 3.5, we have Dim(ϕ(Mn, b̄i)) < r for each i. It follows by
the inductive hypothesis that D(ϕ(Mn, b̄i)) < r for each i, which is a
contradiction.

Corollary 3.7 If M is measurable, then M has a supersimple theory.

Remark 3.8 1. It is immediate from the definition, and noted in [43],
that measurability is a property of a theory; that is, if M is measurable
and M ≡ N , then N is measurable.

2. Less obviously, if M is measurable, and we adjoin to M finitely
many sorts from M eq, then the resulting structure is measurable – see
[43, Proposition 5.10]. In fact, the class of measurable theories is closed
under bi-interpretability.

3. A measurable structure may have many different measuring func-
tions. For example, for the random graph, there is a measure corre-
sponding to any edge probability p, where 0 < p < 1: we let p be the
measure of the set of neighbours of a vertex [43, 5.12]. This is gener-
alised in Theorem 3.10 below, and the remarks after it. If a theory is
measurable, then, rather as with Theorem 2.3, the measuring function
is determined by its restriction to definable sets in one variable.

4. It can happen that in a measurable structure M there are defin-
able sets X1 and X2 with Dim(X1) = Dim(X2) but D(X1) 6= D(X2).
For example, consider a structure (M,P,E) where P is a unary pred-
icate picking out an infinite subset with infinite complement, and E is
an equivalence relation partitioning P (M) into infinitely many infinite
classes, but with ¬P (M) a single E-class. Then D(P (M)) = 2 and
D(¬P (M)) = 1, but we can artificially choose a dimension and measure
such that Dim(P (M)) = Dim(¬P (M)) = 2.

One can modify this example to produce a measurable structure in
which D-rank is not definable. Indeed, consider the structure

(M,E,Fi)i∈ω,

where E is an equivalence relation whose classes {Xi : i ∈ Z} are all
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infinite, and for each i ∈ ω, Fi is an equivalence relation which agrees
with E except on Xi, which it partitions into infinitely many infinite
classes. There is a measuring function on M under which each Xi has
dimension 2. But D(Xi) = 1 for i < 0 and D(Xi) = 2 for i ≥ 0, and the
latter are not uniformly definable.

5. If M is measurable with measuring function (Dim,Meas), and
S ⊂ Mn is definable, there is an induced finitely additive probability
measure µS on the σ-algebra generated by the definable subsets of S:
for definable X ⊂ S, put

µS(X) =

{
Meas(X)
Meas(S) if Dim(X) = Dim(S),
0 if Dim(X) < Dim(S).

If S is defined by the formula ψ(x̄), we sometimes write it as µψ.
6. Ben-Yaacov [3] defines, in a measurable theory, the relation ā |̂ d

C
b̄,

to mean Dim(ā/C) = Dim(ā/C ∪ {b̄}), where, if ā = (a1, . . . , an),

Dim(ā/C) := min{Dim(ϕ(Mn, c̄)) : c̄ in C and M |= ϕ(ā, c̄)}.

He shows that this relation coincides with non-dividing, which, by sim-
plicity, agrees with non-forking.

Proposition 3.9 ([18]) Let C = {Mi : i ∈ ω} be an N -dimensional
asymptotic class, and M =

∏
i∈IMi/U be an infinite ultraproduct of

members of C. Then M is measurable, with (Dim,Meas)(M) = (N, 1).

Proof. We use the definability clause (ii) of Definition 2.1 to define
(Dim,Meas)(ϕ(x̄, ā)) for any ā ∈ Mm, assigning the appropriate d, µ.
Easy asymptotic arguments show that this is indeed a measure.

It follows that all the classes of examples listed in Examples 2.4 yield
corresponding examples of measurable structures. In particular, the
random graph is measurable, as it is an ultraproduct of Paley graphs;
and any infinite vertex transitive graph of finite valency is measurable.

We mention some further examples and constructions. The first comes
from the generic predicate construction of [13].

Theorem 3.10 (5.11 of [43]) Let T be a complete measurable theory
over a language L with quantifier elimination, eliminating the quantifier
∃∞, such that for all M |= T and A ⊂M , acl(A) = dcl(A). Let P be a
unary predicate not in L, let L′ := L∪{P}, let S be a sort of T , and let
TP,S be the model companion of the theory of L′-structures satisfying T ,
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with P interpreted by a subset of S. Let T ′ be any completion of TP,S.
Then T ′ is measurable.

In the proof, one uses the measuring function µT for T , fixes p ∈ R
with 0 < p < 1, and for M |= TP,S , assigns to P (M) the measure
pµT (S). The partial quantifier elimination of [13, 2.6] makes this mea-
sure extendable to all definable sets. We expect that the assumption
acl(A) = dcl(A) is not needed, but it was assumed in [43] to avoid
complications.

As noted in [43], it follows from Theorem 3.10 that for any k ≥ 2, the
universal homogeneous k-uniform hypergraph Γk (that is, a universal
homogeneous structure with a single symmetric irreflexive k-ary rela-
tion) is measurable. It is not obvious that for k ≥ 2 this structure is
an ultraproduct of an asymptotic class, as there is no obvious analogue
for the Paley graphs of Example 2.4 (4). However, Beyarslan in [6] has
shown that for any k ≥ 2, Γk is interpretable in a pseudofinite field, so
it must at least be an ultraproduct of a weak asymptotic class.

The motivating example of a measurable structure is a pseudofinite
field. Any pseudofinite field arises as the fixed field of the automorphism
in a generic difference field, that is, in a model of ACFA. This, and the
last theorem, suggests the following construction technique for measur-
able structures, given by Hrushovski in Proposition 11.1 of [30]. The
definability of measure was not explicitly stated in [30], but uniqueness
was, and as noted in [18, 3.4.2], definability follows from uniqueness by
Beth’s Theorem.

Theorem 3.11 ([30]) Let D be any strongly minimal set over a lan-
guage L, assume that Th(D) has the definable multiplicity property
(DMP) and elimination of imaginaries, let σ be a generic automorphism
of a sufficiently saturated model of Th(D), and let K = Fix(σ), an L-
substructure. Then K is measurable, of dimension 1.

We remark that under assumption (DMP), by [13, 3.11(2)], there
is a generic automorphism (i.e. a model companion of the theory of
expansions of D by automorphisms).

Recall Hrushovski’s fusion construction [31], which, given two strongly
minimal sets M1,M2 with (DMP) in disjoint languages L1, L2 respec-
tively, yields a new strongly minimal set M in L1 ∪ L2 whose reduct
to each Li is Mi. It is shown in [31] that this construction preserves
the (DMP). Thus, there is a generic automorphism σ of M , and Fix(σ)
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will be measurable. As shown in Section 3.4 of [18], this yields the fol-
lowing, when applied to the fusion of two algebraically closed fields of
characteristics p1 and p2.

Theorem 3.12 ([18]) Let L1, L2 be disjoint languages for rings, and
L := L1 ∪ L2, and p1, p2 be distinct primes. Then there is a measurable
structure M whose reduct to each language Li is a pseudofinite field of
characteristic pi.

Note that M is not elementarily equivalent to an ultraproduct of an
asymptotic class, since there do not exist positive integers a1, a2 with
pa1
1 = pa2

2 .

Example 3.13 ([43]) For any field F , any infinite vector space over F ,
in the language of F -modules, is a measurable structure. In the partic-
ular case when F is infinite, such a structure cannot be an ultraproduct
of an asymptotic class. The point here, essentially, is that if M is any
strongly minimal set with (DMP) and definable Skolem functions, then
M is measurable, with dimension and measure equal to Morley rank
and degree. In vector spaces over an infinite field, this is applied after
naming a non-zero vector by a constant symbol.

The following definition is given in [26].

Definition 3.14 Let T be a complete theory. We say that T is uni-
modular if for any M |= T , definable sets X,Y in M eq, and definable
surjections fi : X → Y such that fi is ki-to-1 (for i = 1, 2, and with ki
a positive integer), we have k1 = k2.

We say that M is unimodular if Th(M) is.

Clearly any theory with the finite model property (e.g. an ultraprod-
uct of an asymptotic class) is unimodular. In fact, the following is almost
immediate from the Fubini condition.

Proposition 3.15 Let M be measurable. Then M is unimodular.

In the main applications of measure seen by the authors so far, only
unimodularity (plus finite rank supersimplicity with definability of some
dimension or rank) is used.

It follows immediately from Proposition 3.15 that an algebraically
closed field cannot be measurable. For example, in characteristic not
equal to 2, if F is an algebraically closed field, then the identity map is
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1-to-1, but the map x 7→ x2 is 2-to-1 on F \{0}. More generally, we have
the following theorem. Recall that a sufficiently saturated structure M
with supersimple theory is said to be 1-based if, for any subsets A,B of
M eq, A |̂

acleq(A)∩acleq(B)
B.

Theorem 3.16 (Theorem 4.2.6 of [18]) Any unimodular stable theory
of finite U -rank (and hence any measurable stable theory) is 1-based.

The main point in the proof is that by [26] (see also 2.4.15 and 5.3.2
of [48]), every minimal type of the theory will be 1-based. By the coor-
dinatisation of such structures by minimal types, this is sufficient (see
2.5.8 of [48]).

We have the following easy observation.

Proposition 3.17 Let M be ω-categorical. Then M is unimodular.

Proof. Suppose that M is ω-categorical, and X,Y are definable sets
in M eq and fi : X → Y are definable surjections with fi ki-to-1 (for
i = 1, 2, and with ki ∈ N). By adding finitely many sorts to M , naming
finitely many parameters, and adding dummy variables, we may suppose
that X,Y are disjoint subsets of M , and X,Y and the fi are ∅-definable.
Let a ∈ X, and D = acl(a)∩(X∪Y ). Then D is finite, by ω-categoricity,
and is closed under the fi and f−1

i . Thus, fi induces a ki-to-1 map from
D ∩X onto D ∩ Y and it follows by counting that k1 = k2.

Itay Ben-Yaacov [3] has investigated the connections between mea-
surable theories and continuous model theory, and in particular, with
measure algebras in an unbounded continuous logic. His main result is
a measure-theoretic version of the independence theorem [35] for sim-
ple theories. A version was proved earlier by very different means, for
pseudofinite fields, by Tomašić [59].

We mention also some work of Tomašić [58] which, in the context of
pseudofinite fields, makes connections between measure and exponential
sums, and ω-categoricity of reducts. It generalises the use of characters
in the proof of Example 2.4 (4) for Paley graphs. See also the survey
article by Szönyi [56] for combinatoiral applications of related results.

First, consider a measurable structure M with measuring function
(d, µ), and a definable set S in M , with induced probability measure
µS on the definable subsets of S, yielding a measure space (S,MS , µS),
where MS is the σ-algebra of subsets of S generated by the definable
subsets. Then if f : S → C is measurable with respect to this measure
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space (with C equipped with the Euclidean topology), we may form the
integral

∫
S
fdµS . In practice, Tomašić is only concerned with functions

of the form f = Σti=1αiχAi
, where the Ai are definable sets partitioning

S and αi ∈ C, and here,
∫
S
fdµS = Σti=1αiµS(Ai). Tomašić investigates

additive and multiplicative characters on a pseudofinite field F , and
proves the following. As elsewhere in this paper, F̃ denotes the algebraic
closure of the field F .

Theorem 3.18 ([58]) Let X be an absolutely irreducible variety over
a pseudofinite field F and let f be a rational function on X. Suppose
either

(i) χ is a multiplicative character of F of order k > 1 and f is not
a kth power of a rational function on X̃ (the corresponding variety over
F̃ ), or

(ii) χ is a nontrivial additive character of F of the form χa,1 (notation
from [58]) and f is not of the form gp − g for any g ∈ F̃ (X̃).

Then
∫
X(F )

χ ◦ f = 0.

Tomašić then considers reducts of a pseudofinite field F of the follow-
ing form. Let X be an absolutely irreducible variety over F , let f be a
regular function on X ×X, and let χ : X → C be a multiplicative char-
acter of order k > 1 (with the assumption of Theorem 3.18(i)). Given
x, y ∈ X(F ), define the binary relation Rj(x, y) to hold if χ(f(x, y)) =
e2πij/k. Then there is a binary structure (X(F ), R0, . . . , Rk−1) inter-
pretable in F . Ultraproducts of Paley graphs are really a special case,
with X(F ) = F , f(x, y) = x − y, and χ the quadratic character. Us-
ing Theorem 3.18, Tomašić shows that under certain conditions such
reducts are ω-categorical, and their measures, and the corresponding
structures in finite fields, share the ‘equidistribution’ properties of the
theorem of Bollobás and Thomason in Example 2.4 (4). In particular,
if X(F ) = F , f is a symmetric polynomial defining a conic, and χ is a
quadratic character, then (F,R0) is ω-categorical.

We mention also work of E. Kowalski [36] on estimates for exponen-
tial sums over definable subsets of finite fields. It generalises the cor-
responding estimates for varieties (Weil, Deligne, and others) and the
main theorem of [11].
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4 Smoothly approximable structures

The class of smoothly approximable structures is a class of ω-categorical
supersimple structures of finite rank which properly contains the class of
ω-categorical ω-stable structures (so in particular the totally categorical
structures). A deep structure theory is developed in [15], which includes,
for example, proofs of the equivalence of smooth approximation, Lie co-
ordinatisability, and other notions, such as ‘strong 4-quasifiniteness’.
In [15] there is also a proof of a version of quasi-finite axiomatisabil-
ity, a Lachlan-style shrinking and stretching theory, results on definable
groups (they must be finite-by-abelian-by-finite) and much else.

Following Definition 2.1.1 of [15], we say that a finite substructure N
of a structure M is a k-homogeneous substructure of M if all ∅-definable
relations on M induce ∅-definable relations of N , and for any pair ā, b̄
of k-tuples from N , they have the same type in N if and only if they
have the same type in M . An ω-categorical structure M is smoothly ap-
proximated if it is a union of a chain (Mi : i ∈ ω) of finite substructures,
where for each i, Mi is an |Mi|-homogeneous substructure of M .

Smoothly approximated structures with primitive automorphism
groups were classified in [33]. Based on this, a list of rank 1 Lie ge-
ometries is identified in [15, Section 2.1.2]. Typical examples are vector
spaces (or their projective and affine versions) over finite fields, possibly
equipped with bilinear forms, but there is a rather more mysterious ex-
ample, the quadratic geometry. The sorts and languages to handle these
geometries are chosen with care in [15] to ensure flexibility in handling
slightly different automorphism groups (e.g. semilinear automorphisms,
which involve field automorphisms), and quantifier elimination and weak
elimination of imaginaries in certain cases. The authors define a Lie co-
ordinatised structure to be one built by covering constructions from Lie
geometries in a way indexed by a tree of finite height, and then prove
that a countable structure is smoothly approximated if and only if it
is Lie coordinatisable (i.e. bi-interpretable with a Lie cooordinatised
structure).

It is easily seen that the Lie geometries arise as direct limits of 1-
dimensional asymptotic classes. For example, given a finite field Fq, let
C be the collection of all finite dimensional vector spaces V over Fq,
equipped with a non-degenerate alternating bilinear form β : V × V →
Fq. We may code β by introducing a binary relation symbol Ra for
each a ∈ Fq, with Ra(x, y) whenever β(x, y) = a. Witt’s Lemma, which
says that partial isometries extend to total isometries, gives quantifier
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elimination, so we can reduce to considering the cardinalities of sets of
the form {x : β(x, v1) = a1 ∧ . . .∧ β(x, vr) = ar}, where a1, . . . , ar ∈ Fq,
and v1, . . . , vr ∈ V are linearly independent. Such a set has size 1

qr |V |.
Thus, there is some resemblance with the way, in the random graph,
1-types over a finite set {x1, . . . , xr} are determined by edges/non-edges
to each xi, with all sets of adjacencies equiprobable (assuming edge
probability 1

2 ); but unlike in the Paley graphs, we get precise results on
sizes of definable sets. The random graph is not smoothly approximable.

Theorem 4.1 (Section 3.3.2 of [18]) (i) Let M be a smoothly approx-
imable structure. Then M is the union of a sequence of substructures
(Mi : i < ω) such that each Mi is a |Mi|-homogeneous substructure of
M , and {Mi : i ∈ ω} is an asymptotic class.

(ii) Every smoothly approximable structure is measurable.

The Mi are also called envelopes in [15]. Theorem 4.1(i) rests on
rather precise information in [15, Proposition 5.2.2] on the sizes of de-
finable sets in envelopes; these cardinalities are given by polynomials in
certain dimensions. As a result, for smoothly approximated structures
for which only one canonical projective geometry is involved in the co-
ordinatisation, the asymptotics for the envelopes are much better than
that required in Definition 2.1 – see [18, Proposition 3.3.5].

Part (ii) of Theorem 4.1 follows immediately from (i) and Proposi-
tion 3.9, since any smoothly approximable structure satisfies the asymp-
totic theory of any approximating chain (Mi : i ∈ ω) of envelopes.

One question throughout this paper concerns the extent to which the
examples of asymptotic classes and measurable structures go beyond
finite and pseudofinite fields, and structures interpretable in them. It is
conceivable that any smoothly approximable structure is interpretable
in a product of pseudofinite fields, in which case Theorem 4.1 does not
provide new examples. Certainly, we have

Proposition 4.2 ([43]) Let M be a smoothly approximable Lie geome-
try. Then M is interpretable in a pseudofinite field.

As an example, consider an ℵ0-dimensional vector space V over a
finite field Fp, equipped with a non-degenerate symmetric bilinear form
β : V ×V → Fp. This is approximated by the family (Vn : n ≥ 1), where
Vn is an n-dimensional vector space. We may identify Vn with Fpn ,
viewed as a vector space over Fp. There is a trace map Tr : Fpn → Fp,
and we may put β(x, y) = Tr(xy) for any x, y ∈ Fpn . The trace map
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is uniformly definable (so definable in the limit). Indeed, its kernel has
index p in (Fpn ,+), and is uniformly defined as {xp − x : x ∈ Fnp}
(Hilbert’s Theorem 90). To define the trace, we just specify its value on
each of the p cosets of the kernel.

5 Measure and difference fields

The families of Suzuki and Ree finite simple groups are not uniformly in-
terpretable in finite fields. However, as is clear from their constructions,
they are uniformly interpretable in certain finite difference fields. In this
and the next section, we describe work of Ryten, based on joint work
of Ryten and Tomašić, which ensures that all families of finite simple
groups of fixed Lie rank form asympotic classes.

Ryten’s starting point is the following theorem of Hrushovski.

Theorem 5.1 ([31]) Let K̃ be an algebraically closed field of character-
istic p, let t ∈ N, and q = pt. Suppose V (x̄) is an algebraic variety over
K̃, and W (x̄z̄) ⊂ V (x̄) × V q(z̄) is an irreducible subvariety, where the
polynomials defining V q are the images under the automorphism y 7→ yq

of those defining V . Assume Dim(W ) = Dim(V ) = d, and that the
projection π1 : W → V is dominant of degree δ and π2 : W → V q is
quasi-finite of purely inseparable degree δ′. Then there is a constant C
depending on the total degree of W such that∣∣|{x̄z̄ ∈W (K̃) : z̄ = x̄q}| − δ

δ′
qd

∣∣ ≤ Cqd−
1
2 .

From this, Hrushovski proves

Theorem 5.2 ([31]) Any non-principal ultraproduct of difference fields
(F̃p,Frobk) is a model of ACFA.

Using these results, Ryten and Tomašić prove the following.

Theorem 5.3 ([52]) Let θ(x̄, ȳ) be a formula in the language of differ-
ence rings. Then there is a constant C ∈ R+ and a finite set D of pairs
(d, µ) with d ∈ Z∪ {∞} and µ ∈ Q+ ∪ {∞} such that in each difference
field (F̃p,Frobk), and for any ā ∈ F̃mp ,∣∣|θ(x̄, ā)| − µpkd

∣∣ ≤ Cpk(d−
1
2 )

holds for some (d, µ) ∈ D.
Moreover, for each (d, µ) ∈ D there is a formula θd,µ(ȳ) such that for
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144 R. Elwes and D. Macpherson

each (F̃p,Frobk), the above estimate holds for θ(F̃p, ā) with (d, µ) if and
only if (F̃p,Frobk) |= θd,µ(ā).

The proof has a somewhat different presentation in Chapter 2 of [51].
The theorem is derived from Theorem 5.1 rather as Theorem 1.1 is
derived from the Lang-Weil estimates. Formulas with quantifiers are
handled using Theorem 5.2, together with the following partial quantifier
elimination for ACFA.

Proposition 5.4 (1.5 and 1.6 of [12]) If θ(x̄, ȳ) is a formula in the
language of difference rings, then

ACFA |= θ(x̄, ȳ) ⇔
k∨
i−1

∃tθi(x̄, ȳ, t),

where θi = θi(x̄, σ(x̄), . . . , σ`(x̄), ȳ, σ(ȳ), . . . , σ`(ȳ), t, σ(t), . . . , σ`(t)) is a
quantifier free formula in the language of rings, and for any (M,σ) |=
ACFA and (x̄0, ȳ0, t0) ∈ θi(M), t0 is algebraic (in the sense of fields)
over {σi(x̄0), σi(ȳ0) : 0 ≤ i ≤ `}.

Ryten and Tomašić also note that, by Theorem 5.3, in a model of
ACFA, the family of finite dimensional sets is measurable, under a nat-
ural variant of Definition 3.1.

In [51], Ryten uses Theorem 5.3 to investigate an important class of
finite difference fields. Fix a prime p, and integers m,n with m ≥ 1,
n > 1, and (m,n) = 1. Let Cm,n,p be the collection {(Fpkn+m ,Frobk) :
k > 0} of finite difference fields. By Frobk we understand its restriction
to Fpkn+m , and notice that on this domain it is a solution in σ to the
equation Frobm ◦σn = id.

Consider the following conditions on a difference field (K,σ). Below,
with m,n as above, if (K,σ) is a difference field of characteristic p with
Frobm ◦σn = id, we say that the extension of difference fields (K,σ) ⊆
(L, σ′) is generic if Fix(Frobm ◦σ′n) = K.

(1) K is a pseudofinite field of characteristic p.
(2) σ is an automorphism of K which satisfies Frobm ◦σn = id.
(3) Suppose U ⊂ AnN is an absolutely irreducible variety defined

over K and let σ(U) be the variety obtained from U by applying σ

to the coefficients of the defining polynomials; let the variables of U be
(x11 . . . xn1 . . . x1N . . . xnN ), those of σ(U) be (y11 . . . yn1 . . . y1N . . . ynN ).
Suppose V ⊂ U × σ(U) is an absolutely irreducible variety defined over
K, whose definition includes the equations yij = xi+1,j and yp

m

nj = x1j
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for i = 1, . . . , n−1 and j = 1, . . . , N . Suppose that V projects generically
onto U and σ(U), and that W is a K-algebraic set properly contained
in V . Then there is a point x ∈ V (K) \W (K) such that x = (a, b),
where a = (aij:1≤i≤n,1≤j≤N ), b = (bij : 1 ≤ i ≤ n, 1 ≤ j ≤ N), a ∈ U ,
b ∈ σ(U), and bij = σ(aij) for each i, j.

(4) Let K ⊆ L ⊆ H be a tower of finite field extensions. Suppose that
(K,σ) ⊆ (L, σ′) is a generic extension of difference fields. Then there is
an extension of difference fields (L, σ′) ⊆ (H,σ′′) such that (H,σ′′) is a
generic extension of (K,σ).

As suggested by the referee, it may be more elegant to replace (4) by
the statement:

(4’) any lifting of σ to K̃ commutes with the action of Aut(K̃/K).
It can be shown that (1)–(4) (and (4’)) are first order expressible.

Furthermore, basic facts about ACFA yield the following.

Proposition 5.5 ([51]) Let (M, τ) be a model of ACFA of characteristic
p, let K := Fix(Frobm ◦τn), and put σ := τ |K . Then (K,σ) |= (1)− (4).

By Proposition 5.5, conditions (1)–(4) axiomatise a theory, denoted
PSF(m,n,p). Ryten proves for PSF(m,n,p) some results similar to those
known for ACFA and PSF. The completions (and types) are described
through the following theorem.

Theorem 5.6 ([51]) Let (F, σ) and (E, τ) be models of PSF(m,n,p) with
a common substructure K (so σ|K = τ |K). Then (F, σ) ≡K (E, τ) if
and only if (F ∩ K̃, σ|F∩K̃) ∼=K (E ∩ K̃, τ |E∩K̃).

From this, near model completeness is proved: that is, for every for-
mula ϕ(x̄) there is a formula θ(x̄) which is a boolean combination of
existential formulas (in fact, formulas of a rather specific type), such
that PSF(m,n,p) ` ϕ(x̄) ↔ θ(x̄).

Using Theorem 5.2, Ryten proves the following theorem.

Theorem 5.7 ([51]) PSF(m,n,p) is the asymptotic theory of the class
C(m,n,p) of finite difference fields.

We show part of this, that every non-principal ultraproduct

(N,σ) =
∏
i∈N

(Fpnki+m ,Frobki)/U

satisfies PSF(m,n,p). Indeed, if (M, τ) =
∏
i∈N(F̃p,Frobki)/U , then
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146 R. Elwes and D. Macpherson

(M, τ) |= ACFA by Theorem 5.2. Also, N = Fix(Frobm ◦σn) and
σ = τ |N , so (N,σ) |= PSF(m,n,p) by Proposition 5.5.

Theorem 5.8 ([51]) C(m,n,p) is a 1-dimensional asymptotic class.

To see this, let Dp := {(F̃p,Frobk) : k ∈ N}, a class of difference
fields. There is a bijection F : Dp → C(m,n,p), with F((F̃p,Frobk)) =
(Fpkn+m ,Frobk). There is a corresponding function Fix defined on the set
of formulas of the language Ldiff of difference rings, defined inductively.
If (K,σ) ∈ Dp and F((K,σ)) = (M,σ) ∈ C(m,n,p), then for any Ldiff

formula ϕ(y) and tuple ā from M ,

(M,σ) |= ϕ(ā) ⇔ (K,σ) |= ϕFix(ā).

From this and Theorem 5.2, the uniform asymptotic estimates for for-
mulas in C(m,n,p) are rapidly derived. The definability clause (Defini-
tion 2.1(ii)) requires a little more work.

Finally, Ryten shows that in a pure pseudofinite field (in fact, in any
pure bounded PAC field) the only definable field automorphisms are
powers of the Frobenius. Thus, PSF(m,n,p) is a proper expansion of
the theory of pseudofinite fields of characteristic p, and C(m,n,p) is not
interpretable in any class of pure finite fields.

In [51, Chapter 3], Ryten proves a number of other results about
PSF(m,n,p), indicating that its complexity is somewhere between that
of PSF and ACFA. As for pseudofinite fields in [11], it is possible to
add constants to the language to ensure, in the partial quantifier elim-
ination, that only positive boolean combinations of existential formulas
are used, so model-completeness in the expanded language is obtained.
Model-theoretic independence is characterised algebraically. Elimina-
tion of imaginaries (over a language with constants for an elementary
submodel) is proved.

6 Asymptotic classes of simple groups

There is a natural notion of uniform parameter bi-interpretability be-
tween two classes C and D of finite structures. We do not give it formally,
but it requires a matching between C and D, and that each element of
C is bi-interpretable (not just mutually interpretable) with the corre-
sponding element of D, possibly using parameters, but with uniformity
of the interpretation across the families.

The non-abelian finite simple groups, excluding the sporadics, are the
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alternating groups Alt(n), the classical groups of Lie rank n over the
finite field Fq, and certain exceptional groups, namely E6(q), E7(q),
E8(q), F4(g), G2(q), and the twisted groups 3D4(q), 2E6(q), the Ree
groups 2F4(22k+1), the Suzuki groups 2B2(22k+1), and the Ree groups
2G2(23k+1). We may regard Alt(n) as having Lie rank n. We emphasise
that the twisted groups (including the classical unitary groups) do not
arise over algebraically closed fields, since their definition depends on
finite field extensions. They do not have finite Morley rank analogues.

Ryten shows that, for every family of non-abelian finite simple groups
of fixed Lie rank, other than those of Suzuki and Ree groups, the family
is uniformly parameter bi-interpretable (infact, bi-definable) with a class
of finite fields. With some additional work, it follows that such a family
is an asymptotic class. Care is needed here with the definability clause in
Definition 2.1, because of the role of parameters in the bi-interpretation.
For a given formula ϕ(x̄, ȳ), the corresponding Φ(d,µ) should be definable
without parameters.

For the Suzuki and Ree groups, the situation is more complicated. In
fact, the classes of groups {2F4(22k+1) : k ∈ N}, {2B2(22k+1) : k ∈ N},
are uniformly parameter bi-interpretable with C(1,2,2), and the class
{2G2(32k+1) : k ∈ N} is uniformly parameter bi-interpretable with
C(1,2,3). A word of explanation is necessary here. The twisted group
2E6(q), for example, is the fixed point set inside E6(q2) of a certain
automorphism σ which is a product of a graph automorphism (an auto-
morphism arising from the symmetry of the E6 Dynkin diagram), and
the Frobenius. All this data is definable in the field Fq2 , with which
2E6(q) is bi-definable, uniformly in q. However, in the case 2G2(32k+1),
for example, the automorphism σ is a product of a graph automorphism
and the automorphism x 7→ x3k

, a proper (unbounded) power of the
Frobenius. So to define 2G2(32k+1) uniformly, it is necessary to be able
to define the automorphism Frobk of F32k+1 , and hence to work in C(1,2,3).

It is hard to identify the right sources for the model-theoretic rela-
tionship between finite simple groups and fields. In work in his PhD
thesis, not subsequently published, Thomas showed definability of the
corresponding (pure) field in each finite simple group, uniformly across
each class of groups. There are related results in, for example, [39]. The
interpretation of the groups in the (difference) fields is pretty clear. For
the Suzuki and Ree groups it seems to have been known to Hrushovski
for a long time. Some consequences (e.g. decidability) are mentioned in
the introduction of [31].
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148 R. Elwes and D. Macpherson

The above results, together with Theorem 5.8, yield the following
theorem of Ryten.

Theorem 6.1 ([51]) Any family of non-abelian finite simple groups of
fixed Lie rank is an asymptotic class.

We mention two further results, beyond the measurable/asymptotic
class context. A group is pseudofinite if it is an infinite model of the
theory of finite groups.

Theorem 6.2 ([44]) Let G be a stable pseudofinite group. Then G has
a definable soluble subgroup of finite index.

The key point is that a non-principal ultraproduct of finite simple
groups of fixed Lie rank, though supersimple, is not stable, as a pseud-
ofinite field is interpretable in it. The proof of the theorem below rests
on this, together with slightly delicate arguments with chain conditions,
and basic facts about finite nilpotent groups. It is not possible here
to strengthen ‘soluble’ to nilpotent: as noted independently by Khélif
and Zilber, and not published, there is a metabelian pseudofinite stable
group which is not nilpotent-by-finite.

Theorem 6.3 (Wilson [61]) Every pseudofinite simple group is elemen-
tarily equivalent to a Chevalley group (possibly twisted) over a pseudofi-
nite field.

This builds on earlier work of Felgner. By Ryten’s work, ‘elementar-
ily equivalent’ can be strengthened to ‘isomorphic’ in Theorem 6.3. In
[50], Point proves that an ultraproduct of simple Chevalley groups of
fixed type (possibly twisted) is isomorphic to a Chevalley group over
the ultraproduct of the fields, and is simple.

7 Groups of low dimension

Theorem 6.1 above yields immediately the converse to Conjecture 1.2:
any Chevalley group (possibly twisted) over a pseudofinite field is mea-
surable. In this section we sketch beginnings of a general structure
theory for measurable groups, with a view to Conjecture 1.2. Many of
the results are jointly due to Elwes and Ryten. They can be found in
[18], and a joint paper [19] is in preparation.

The central definability result for groups of finite Morley rank is the

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511735219.004
Downloaded from https://www.cambridge.org/core. Universitaets Landesbibliothek Muenster, on 09 Feb 2021 at 17:18:24, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511735219.004
https://www.cambridge.org/core


A survey of asymptotic classes and measurable structures 149

Zilber Indecomposability Theorem, which generalises the Indecompos-
ability Theorem for algebraic groups. In the supersimple case, we have
the following, proved first by Hrushovski [30] for S1-theories, that is,
supersimple theories of finite S1-rank in which the S1-rank is definable.

Theorem 7.1 (Wagner[60] Theorem 5.4.5) Let G be a definable group
in a supersimple theory of finite rank, and let Xi (i ∈ I) be definable
subsets of G. Then there is a definable subgroup H of G, and n ∈ ω,
and i1, . . . , in ∈ I, where

(i) H ≤ X±1
i1
·X±1

i2
· . . . ·X±1

in

(ii) Xi/H is finite for each i ∈ I.

Proof. This follows from 5.4.5 and 5.5.4 of [60], by compactness.

This is used repeatedly in arguments described below. It also yields,
for example, that any non-abelian definably simple measurable group
is simple, and that in a measurable theory, the derived subgroup of a
definable group is always definable.

A second useful tool, already heavily used by Wagner for groups in su-
persimple theories, is Schlichting’s Theorem [54], proved independently
by Bergman and Lenstra [5]. A family of subgroups H is uniformly com-
mensurable if there is n ∈ N bounding |H : H ∩ K| for all H,K ∈ H.
The version below is Theorem 4.2.4 of [60].

Theorem 7.2 ([54], [5]) Let G be a group and H a uniformly commen-
surable family of subgroups. Then there is a subgroup N which is uni-
formly commensurable to H and is invariant under all automorphisms of
G which stabilise H setwise. In particular, if H consists of all conjugates
of some H ≤ G, then N is normal in G.

It is well-known that every rank 1 superstable group is abelian-by-
finite. In the supersimple case, one expects ‘abelian-by-finite’ to be re-
placed by ‘finite-by-abelian-by-finite’, in view of the extraspecial groups
considered in Example 2.4(3). However, this is an open question. The
following result of Elwes and Ryten is proved in [18, 6.0.11]; it was
proved under the stronger assumption of measurability in [43].

Theorem 7.3 ([18]) If G is unimodular supersimple of rank 1, then G

has a definable normal subgroup H of finite index, such that H has a
finite central subgroup Z, with H/Z abelian.
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150 R. Elwes and D. Macpherson

The proof is a counting argument with unimodularity. It uses the fact
that if G is a BFC group (a group with a finite bound on the size of its
conjugacy classes) then the derived subgroup G′ is finite; see Theorem
3.1 of [47]. The key to the counting argument is the following lemma,
proved in [43] under measurability; the proof under unimodularity is
easily extracted from that of [18, 6.0.11]. It eliminates the possibility
of measurable groups with finitely many non-identity conjugacy classes,
all of full dimension.

Lemma 7.4 ([18], [19]) Let G be a group defined in a supersimple uni-
modular theory of finite rank. Then there is g ∈ G\{1} such that CG(g)
is infinite.

In [43], a cruder argument is given to prove the asymptotic class
analogue of Theorem 7.3. It states that any 1-dimensional asymptotic
class of finite groups consists of groups which are bounded-by-abelian-
by-bounded. The argument applies to any class of finite groups all of
whose ultraproducts are supersimple of rank 1.

These results, and the analogue for superstable groups, suggest that
any measurable 2-dimensional group should be soluble-by-finite. This
question is open, but some progress in this direction was made in [19].
Using Theorems 7.3 and 7.1 (to replace any 1-dimensional normal sub-
group by a definable one), Elwes and Ryten show that any counterex-
ample interprets a simple group G of dimension and S1-rank 2. Further
information is obtained: for example, the group G must have conjugacy
classes (in fact, infinitely many) of dimension 1, and it must also have
at least 1, but at most finitely many, conjugacy classes of dimension
2. Such examples could not arise as ultraproducts of an asymptotic
class, by the classification of finite simple groups. Thus, they prove the
following; a proof can be found in [18] or [19].

Theorem 7.5 Let C be a 2-dimensional asymptotic class of groups.
Then there is d ∈ N such that each group G in C has a subgroup of
index at most d which is soluble of derived length at most 4 (and uni-
formly definable in the class).

Elwes and Ryten have also investigated measurable structures (G,X),
where G is a group with a definable faithful action on X. The intended
analogy is with [42], on the structure of primitive permutation groups
of finite Morley rank (see also [9] in this volume). More specifically,
they generalise the theorem of Hrushovski [25], that in a stable theory, a
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connected group of finite Morley rank acting definably and transitively
on a strongly minimal set must have Morley rank at most 3, and either
acts regularly (so is a strongly minimal group) or is of form AGL(1, F )
or PSL(2, F ) in the natural action (F an algebraically closed field).

A permutation group G on a set X is primitive if there is no proper
non-trivial G-invariant equivalence relation on X, or equivalently if each
stabiliser Gx (x ∈ X) is a maximal subgroup of G. If G, X, and the
G-action on X are definable in some structure, we say that (G,X) is
definably primitive if there is no definable proper non-trivial G-invariant
equivalence relation on X, or equivalently if point stabilisers are defin-
ably maximal. Definable primitivity implies transitivity, as the orbit
equivalence relation is definable. We shall say that (G,X) is a measur-
able group action if G, X, and an action of G on X are all definable in a
measurable structure. It is an asymptotic group action if it is elementar-
ily equivalent to an infinite ultraproduct of an asymptotic class of group
actions.

Proposition 7.6 ([19]) Let (G,X) be a measurable faithful group ac-
tion, with G infinite, and suppose that G acts faithfully and definably
primitively on X. If Dim(X) < Dim(G), then G is primitive on X.

The proof uses Theorems 7.2 and 7.1, and in fact ‘measurable’ can be
weakened to ‘supersimple, finite rank, and eliminates ∃∞’. To start the
proof (and illustrate a useful argument), define ∼ on X, putting

x ∼ y ⇔ |Gx : Gx ∩Gy| <∞,

(where Gx denotes the stabiliser of x ∈ X). Then ∼ is a G-invariant
equivalence relation on X, so is definable, so either there is a single ∼-
class, or ∼-classes are singletons. The first case is easily eliminated. For
if there is a single ∼-class, then (because measurable theories eliminate
the quantifier ∃∞), there is a fixed upper bound on the indices |Gx :
Gx ∩ Gy| over all x, y ∈ X. Thus, by Theorem 7.2, there is N / G

uniformly commensurable to all the Gx, and the proof of 7.2 yields that
N is definable. Since N is normal and non-trivial, it is transitive on X.
However, as N is commensurable with Gx, the orbit of x under N is
finite, a contradiction as X is infinite.

Theorem 7.7 ([19]) Let (G,X) be an asymptotic group action which is
faithful and definably primitive, with Dim(X) = 1. Then Dim(G) ≤ 3,
and one of the following holds.
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(i) Dim(G) = 1, and G has a definable subgroup B of finite index
which is torsion-free divisible abelian and acts regularly on X. (In
this situation, for the description we only require measurability, not an
asymptotic group action.)

(ii) Dim(G) = 2. In this case, there is a definable pseudofinite field
K, and a definable infinite subgroup T of the multiplicative subgroup K∗,
such that G is isomorphic to K+ o T (a subgroup of AGL(1,K)) in its
natural action on (K,+)).

(iii) Dim(G) = 3. Here G has a unique minimal normal subgroup T ,
which is definable and isomorphic to PSL2(K) (K a pseudofinite field)
and its action on X is its natural action on the projective line.

A non-regular example in (i) would be K+ o {+1,−1}, where K is a
pseudofinite field in characteristic 0. For (ii), one might take K to be
an ultraproduct of fields Fp (p ≡ 1 (mod 4)) and T to be the squares
of K.

Sketch of the Proof. First, if Dim(G) = 1, then G is finite-by-abelian-
by-finite by Theorem 7.3, and in particular G has a subgroup B of
finite index defined as the union of the finite conjugacy classes of G.
As B / G, B is transitive (the orbits of B would yield a definable G-
invariant partition of X). Also the derived subgroup B′ is finite, so
trivial by definable primitivity, so B is abelian, and hence acts regularly
on X. The remaining analysis in this case is easy.

If Dim(G) = 2, then by Theorem 7.5, G is soluble-by-finite. A min-
imal normal subgroup A of G will be abelian, and transitive on X (by
primitivity); as A is abelian it acts regularly on X. It follows that we
may identify A with X and G with a semidirect product AoG1, where
G1 is the stabiliser of the identity of A (in its action by conjugation).
For the full description in (ii), a version of the Zilber Field Theorem is
used.

Finally, suppose that Dim(G) ≥ 3. In this case one may apply the
O’Nan-Scott Theorem, the standard reduction theorem for finite prim-
itive permutation groups; see [40] for a careful account of it. This,
and the fact that Dim(X) = 1, reduces us to a situation where G has
a unique minimal definable normal subgroup T , and T is simple and
T ≤ G ≤ Aut(T ). A further analysis, using extensive information about
finite simple groups, reduces to the case when T = PSL(2,K) (K a
pseudofinite field) in its action on the projective line. Tools used include
Aschbacher’s description of maximal subgroups of finite classical groups
[1].
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As with Theorem 7.5, it would be very nice to have a version of Theo-
rem 7.7 for groups with measurable theories, but the above proof makes
heavy use of finite group theory.

We mention one further result which can be proved under the assump-
tion of measurability, but is open under just supersimplicity.

Theorem 7.8 ([43]) Let G be an ω-saturated measurable group. Then
G has an infinite abelian subgroup.

In the proof, one looks at a counterexample G of minimal dimension.
The exponent must be finite (as otherwise there are infinite cyclic sub-
groups), and by the minimality assumption, every definable subgroup is
finite or of finite index. Let N := {g ∈ G : gG is finite}. Then N is finite
or of finite index. But N 6= {1}, for by Lemma 7.4 there is g ∈ G \ {1}
with CG(g) infinite; then |G : CG(g)| is finite, so g ∈ N . If N is infinite,
then we may assume that N = G, so |G : CG(g)| is finite for all g ∈ G,
and it is then easy to construct an infinite abelian subgroup. Finally, if
N is finite but non-trivial, apply similar arguments to G/N .

Wagner has noted that a similar proof yields that any measurable
group has an infinite definable finite-by-abelian subgroup.

8 Further questions

If M is a 1-dimensional measurable structure, then it has SU-rank 1, and
so algebraic closure gives a pregeometry. It is natural to ask whether
this pregeometry satisfies the Zilber Trichotomy: trivial, locally modular
(so 1-based) non-trivial, and field-like. A trivial geometry arises for the
random graph or any vertex transitive graph of finite valency. Smoothly
approximable Lie geometries are locally modular, and, except for a pure
set, non-trivial. And pseudofinite fields (as well as ultraproducts of
classes Cm,n,p and some examples arising from Theorem 3.12) are non
locally modular.

It should be possible to construct a non locally modular 1-dimensional
measurable structure which does not interpret an infinite group. Let
M be the saturated, strongly minimal set constructed in [27], which is
known to have (DMP), is not locally modular, and has no infinite inter-
pretable group. Then M admits a generic automorphism σ. It seems
that a variant of Theorem 3.12 for finite Morley rank, mentioned in
Remark (viii) at the end of [30], should apply in M eq (to ensure elim-
ination of imaginaries), and yield that if N = Fix(σ) then the induced
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structure on N is measurable of dimension 1. We can ensure that N is
not 1-based: for algebraic closure in N is the same as that induced from
M , and (M, id) embeds in some model (M ′, σ′) of the theory of generic
automorphisms of models of Th(M), so that N := Fix(σ′) contains M ,
so contains a witness to non 1-basedness. Also, an infinite definable
group in N would yield, by a group configuration argument, an infinite
definable group in M , which is impossible.

However, we ask
Question 1. If M is a 1-dimensional measurable structure which is a

non-principal ultraproduct of an asymptotic class, and M is not 1-based,
must M interpret an infinite field?

The question can also be asked for structures interpretable in PSF.
In the same vein, we ask whether measurability can be used to sharpen
the group configuration results of [4].

Question 2. Is every ω-categorical measurable structure 1-based?

For this, a key example is Hrushovski’s construction in [29] of an
ω-categorical non-locally modular supersimple rank 1 structure. It is
unimodular, by Proposition 3.17, but we do not know whether it is
measurable. There is more chance of a positive answer to Question 2 for
structures interpretable in PSF. On Question 2, Elwes [18, 5.2.3] has
obtained some partial results analogous to Proposition 8 of [26].

Question 3. Is every measurable field pseudofinite?

By the results of Ax [2], a field F is pseudofinite if and only if it is
perfect, quasifinite (i.e. has absolute Galois group Ẑ), and satisfies the
PAC condition; the latter asserts that any absolutely irreducible variety
defined over F has an F -rational point. It is straightforward that any
supersimple field of finite rank is perfect. By an argument of Scanlon
([43, Theorem 5.18 and Appendix], see also [53]), any measurable field
is quasifinite, that is, has a unique extension of degree n for each n. We
do not know whether every measurable field satisfies the PAC condition.
It was shown in [49] that any supersimple division ring is commutative
and has absolute Brauer group, so the norm from any finite extension
to the field is surjective. By [45], any generic elliptic or hyperelliptic
curve defined over a supersimple field F has an F -rational point. If
F is supersimple and has a unique quadratic extension (e.g. if F is
measurable), then by [46] any elliptic curve defined over F has an F -
rational point.

Halupczok [23] has investigated a weakening of measure, where, rough-
ly speaking, the Fubini property is dropped but measure is assumed to
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be invariant under definable bijections. He has shown that for perfect
PAC fields with procyclic absolute Galois group (i.e. with at most one
extension of each finite degree) there is such a measure, but that in
general there is no such measure.

Question 4. Is every measurable simple group a (possibly twisted)
Chevalley group over a pseudofinite field?

Of course, Question 4 requires a positive answer to Question 3. Ques-
tion 4 looks difficult, but it has a positive answer, in unpublished work
of Hrushovski, for groups definable in Ryten’s theories PSF(m,n,p) of
measurable pseudofinite difference fields. In fact, Hrushovski classifies
infinite definable simple groups in ACFA, without use of the classifica-
tion of finite simple groups. Dello Stritto [personal communication] has
partial results which, modulo a positive answer to Question 3 and an
analogue for measurable difference fields, are likely to answer Question
4 positively for groups with a BN pair of rank at least 2.

It would also be interesting to obtain, without use of the classification,
structural results on asymptotic classes of finite simple groups.

Hrushovski (Appendix to [30]) has suggested that one might use re-
sults on measurable groups, in conjunction with a version of Theo-
rem 3.11 for structures of finite Morley rank, to study groups of finite
Morley rank.

Question 5. Is every 2-dimensional measurable group soluble-by-
finite? Equivalently, is every non-abelian infinite measurable simple
group of dimension at least 3?

Following Proposition 4.2, we ask:
Question 6. Is every smoothly approximable structure interpretable

in a pseudofinite field?

It would be helpful to compare measurability with some similar no-
tions in the literature. One such is unimodularity, and Proposition 3.17
suggests the following.

Question 7. Is every ω-categorical supersimple (finite rank) theory
measurable?

An example to try would again be Hrushovski’s construction from
[29].

Question 8. (Macintyre) Is there a natural example of a measurable
structure in which some measures are transcendental numbers?

We finish with some comments on other counting and measure prin-
ciples.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511735219.004
Downloaded from https://www.cambridge.org/core. Universitaets Landesbibliothek Muenster, on 09 Feb 2021 at 17:18:24, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511735219.004
https://www.cambridge.org/core


156 R. Elwes and D. Macpherson

There is a notion of measure investigated by Keisler in [34], and more
recently in [32]. The authors of the latter consider a sort X in a suf-
ficiently saturated model M̄ , and define a Keisler measure on X to be
a finitely additive probability measure on Def1(X), the collection of
parameter-definable subsets of X. A type, for example, is just a zero-
one measure. Here we are not requiring a measure on subsets of all
powers of M , so there is no Fubini-like assumption. If M is measurable,
then for any sort S, there is a definable Keisler measure on S: the two
measures will agree for definable subsets of S of dimension Dim(S), and
sets of lower dimension will have Keisler measure 0.

Keisler measure behaves particularly well for theories with the NIP
(that is, theories without the independence property) so is orthogonal
to the context of the present paper. For example, the authors show
that if T has the NIP, and µ is a Keisler measure on X, then there are
boundedly many ∼µ-classes of definable subsets of X, where Y ∼µ Z
whenever µ(Y4Z) = 0. They investigate existence and uniqueness of
Keisler measures on groups.

Next, model-theoretic ideas of Euler characteristic were developed
initially for o-minimal theories (see e.g. [17]) but more generally by
Krajiček [37] and later Krajiček and Scanlon [38]. The latter define a
strong ordered Euler characteristic on a structure M to be a function
χ : Def(X) → R, where R is a partially ordreed ring, the image of χ
takes values amone the non-negative elements of R, and we have

(a) χ(X) = χ(Y ) if X are in definable bijection,
(b) χ(X × Y ) = χ(X).χ(Y ),
(c) χ(X ∪ Y ) = χ(X) + χ(Y ) if X ∩ Y = ∅, and
(d) χ(E) = cχ(B) if s : E → B is a definable function and c =

χ(f−1(b)) for each b ∈ B.
The Euler characteristic is non-trivial if 0 < 1 in R and the image of

χ is not just {0}.
Unlike for our notion of measure, there is no associated dimension, and

indeed, the analogue of (c) for measure only holds if Dim(X) = Dim(Y ).
However, under this definition very similar counting arguments are avail-
able. For example, Scanlon (see the Appendix of [43]) has shown that
any field with strong ordered Euler characteristic is perfect and quasifi-
nite, and these conclusions follow by the same argument for measurable
fields.

Other questions about measure, and variations on measure are sug-
gested by Hrushovski at the end of [30]. For example, there is a sug-
gestion to consider finitely additive measures into Q[T ], which could
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incorporate the current notion of dimension (exponent of leading term)
and measure (coefficient of leading term).
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[59] I. Tomašić, Independence, measure and pseudofinite fields, Selecta Math.
12 (2006), 271–306.

[60] F.O. Wagner, Simple theories, Kluwer, Dordrecht, 2000.
[61] J.S. Wilson, On pseudofinite simple groups, J. London Math. Soc. (2)

51 (1995), 471–490.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511735219.004
Downloaded from https://www.cambridge.org/core. Universitaets Landesbibliothek Muenster, on 09 Feb 2021 at 17:18:24, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511735219.004
https://www.cambridge.org/core


Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511735219.004
Downloaded from https://www.cambridge.org/core. Universitaets Landesbibliothek Muenster, on 09 Feb 2021 at 17:18:24, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511735219.004
https://www.cambridge.org/core

