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We consider low-dimensional groups and group-actions that are definable in a supersimple theory of finite rank.
We show that any rank 1 unimodular group is (finite-by-Abelian)-by-finite, and that any 2-dimensional asymp-
totic group is soluble-by-finite. We obtain a field-interpretation theorem for certain measurable groups, and give
an analysis of minimal normal subgroups and socles in groups definable in a supersimple theory of finite rank
where infinity is definable. We prove a primitivity theorem for measurable group actions.
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1 Introduction

The study of groups of finite Morley rank has achieved a remarkable depth in recent years, and it is natural to ask
to what extent a similar analysis can be done in the context of a supersimple theory of finite rank. However, this
has turned out to be problematic in general, and many basic ingredients remain unavailable. For instance, even the
possible structure of a group of rank 1 is not yet fully understood. In this paper we prove some elementary results
about low-dimensional supersimple groups and group-actions under various extra hypotheses, most notably that
of measurability: the assumption that the system of definable sets admits a finitary counting measure, as deve-
loped in [8, 9, 3, 4].

The results of the latter half of the paper can be seen as paving the way for a classification of asymptotic groups
acting on 1-dimensional sets in the mold of [5].

2 Rank-1 unimodular groups

We begin by recalling the definition of an important condition on first order structures.
Definition 2.1 We say that a first-order structure M is unimodular if for any parameter-definable sets X and Y

in M eq, if f1, f2 : X −→ Y are definable epimorphisms with fibres of constant sizes k1 and k2, respectively,
then k1 = k2.

We remind the reader that for supersimple structures of finite rank, and for definable sets (but not necessarily
for types, see [13, Example 5.1.15]), S1-rank, SU -rank, and D-rank coincide. See for instance [7, 6.13 and 6.14].
In this paper we shall use S1-rank in keeping with [6].

We begin some group-theoretic analysis.
Remark 2.2 Let G be a group. Let B ⊆ G be the set of elements with finite conjugacy classes in G. Then B

is a characteristic subgroup of G.
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P r o o f. To see that B is closed under multiplication, notice that given b1, b2 ∈ G we have

(b1 · b2)G ⊆ (b1)G · (b2)G,

where (b1)G and (b2)G are finite. The rest is clear.

Recall the following:
Remark 2.3
1. A group G is a BFC group (bounded finite conjugacy-classes) if all the conjugacy classes of G have finite

size, and if there is a finite bound to their sizes.
2. If G is a BFC group, then G′ is finite [10, Theorem 3.1].

We can now prove the following generalisation of [9, Theorem 5.15].
Theorem 2.4 Let G be a group of S1-rank 1, definable in a unimodular structure. Then G is definably and

characteristically (finite-by-Abelian)-by-finite.

P r o o f. We assume that our model is sufficiently saturated. If G has infinite exponent, then by saturation
there is g ∈ G of infinite order. But then CG(CG(g)) is infinite (as gn ∈ CG(CG(g)) for all n ∈ N) and Abelian,
and hence by S1-rank considerations must be of finite index in G. So assume that G has finite exponent. Hence
for any element y ∈ G, the group 〈y〉 generated by y is definable.

Claim 2.4.1 G contains a finite non-identity conjugacy class.
P r o o f. Suppose not, so all non-identity conjugacy classes are infinite. As G is a disjoint union of its conju-

gacy classes, S1-rank 1 forces that there be finitely many, n say.
We define an equivalence relation ∼ on the set of conjugacy classes:

C1 ∼ C2 :⇔ (∃y1 ∈ C1, y2 ∈ C2)(〈y1〉 = 〈y2〉).
Suppose that there are n2 different ∼-classes of conjugacy classes. For a conjugacy class yG we denote its ∼-equi-
valence class by ỹG.

Now 〈y1〉 has Φ(|〈y1〉|) many distinct generators, where Φ is Euler’s totient function. But NG(〈y1〉) acts tran-
sitively on the set of generators of 〈y1〉 which are conjugate to y1, and so by the Orbit-Stabilizer Theorem there
are exactly |NG(〈y1〉)|/ |CG(〈y1〉)| of these. Notice too that if 〈y1〉 = 〈y2〉, then

|NG(〈y1〉)|/ |CG(〈y1〉)| = |NG(〈y2〉)|/ |CG(〈y2〉)|.

So Φ(|〈y1〉|) = |ỹG
1 | · |NG(〈y1〉)|

|CG(〈y1〉)| .

Picking representatives xi, notice that for each conjugacy class xG
i , we have that there is a map f : G −→ xG

i

given by f(g) := xg
i which has constant fibre of size Ki := |CG(xi)|. Put K := lcm{Ki | i ≤ n}. Now let

{Gir | 1 ≤ i ≤ n, 1 ≤ r ≤ K

Ki
}

be a family of pairwise disjoint copies of G. We obtain a new map f1 :
⊔n

i=1

⊔ K
Ki
r=1 Gir −→ G by f1(g) := xg

i

for g ∈ Gir, which has constant fibre of size K.
Of course we may write {Gir | 1 ≤ i ≤ n, 1 ≤ r ≤ K

Ki
} as

{Gijr | 1 ≤ i ≤ n2, 1 ≤ j ≤ |ỹG
i |, and 1 ≤ r ≤ K

Ki
}

and f1 as f1 :
⊔n2

i=1

⊔|ỹG
i |

j=1

⊔ K
Ki
r=1 Gijr −→ G. But there is another map f2 :

⊔n2
i=1

⊔|ỹG
i |

j=1

⊔ K
Ki
r=1 Gijr −→ G, name-

ly f2(g) = g. Now we use the assumption of unimodularity to get

K =
∑n2

i=1

Φ(|〈yi〉|) · |CG(〈yi〉)|
|NG(〈yi〉)| · K

Ki
and 1 =

∑n2
i=1

Φ(|〈yi〉|) · |CG(〈yi〉)|
Ki · |NG(〈yi〉)| .
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If the exponent of G is odd, then all numbers in the above expression are odd except Φ(|〈yi〉|) which yields
a contradiction. So the exponent of G must be even, and hence G contains an involution, g, say, with conjugacy
class C, say. By assumption C is infinite. Define S(g) := {x ∈ G | xg = x−1}. Then gG · g ⊆ S(g) (as g is an
involution). Now if k is the maximum size of a centralizer of a non-identity element, then {S(h) | h ∈ C} is a
(k + 2)-inconsistent family, since if there were x ∈ S(h1) ∩ · · · ∩ S(hk+2), then there would be k + 1 distinct
elements h1hi, for all of which xh1hi = ((x−1)hi) = x, so every h1hi centralizes x, which is impossible by the
maximality of k. But then {S(h) | h ∈ C} contradicts G having S1-rank 1. � (Claim 2.4.1)

Let N be the union of all the finite conjugacy classes in G. By Remark 2.2, N is a characteristic subgroup.
If there are only finitely many finite conjugacy classes, then N is finite and hence definable, and G/N has only
infinite conjugacy classes. Moreover G/N certainly has S1-rank 1, and is also unimodular (as unimodularity is a
condition on Geq). But then G/N contradicts the claim.

Hence there are infinitely many finite conjugacy classes in G. By compactness and saturation, they have boun-
ded size as otherwise G would contain infinitely many infinite conjugacy classes contradicting S1-rank 1. Thus N
is definable and infinite. By S1-rank 1 then, [G : N ] is finite, and moreover N is a BFC group. Therefore by Re-
mark 2.3, N ′ is finite, and G is (finite-by-Abelian)-by-finite.

3 Indecomposability theorem and field interpretation theorem

Before proceeding with our analysis of 2-dimensional groups, we will observe that two important theorems from
the study of groups of finite Morley rank have analogues in our context. First though we review some terminology.

The notion of a measurable structure is a strengthening of unimodularity, in which each definable set is as-
signed a dimension and measure. It implies supersimplicity of finite rank [8, Corollary 3.6]. An asymptotic class
is a class of finite structures, in which the cardinality of the definable sets is governed by their dimension and
measure. Any infinite ultraproduct from an asymptotic class is measurable. We refer the reader to [8, 9, 3, 4] for
further background on these notions.

In the context of an asymptotic class C of groups we may refer to an asymptotic group G. This term shall mean
that G is a non-principal ultraproduct of members of C.

We write M =
∏

i∈I Mi/U to mean that M is the infinite ultraproduct of {Mi | i ∈ I} given by the non-prin-
cipal ultrafilter U on I . We may refer to a structure Mi as a component of the ultraproduct.

We recall this definition from [6, Definition 4.2].
Definition 3.1 A first order theory is an S1-theory if every formula has finite S1-rank, and if for every defin-

able set P where S1(P ) = m and every formula ϕ(x, b), the set {b | S1(ϕ(M, b) ∩ P ) = m} is definable, uni-
formly in the parameters for P .

It is immediate that the theory of a measurable structure in which dimension and S1-rank coincide is an S1-the-
ory, which is a fact we shall use in the next section, particularly in the light of the following lemma.

Lemma 3.2 Let M be a measurable structure, where dim(M) = S1(M) ≤ 2. Then for any definable set X ,
we have dim(X) = S1(X).

P r o o f. (It will be convenient to work with the formulation of D-rank, see for instance [13, Definition 5.1.13].
However, bearing in mind the remark following Definition 2.1, we shall abuse notation and refer to it as S1-rank.)
Now by [8, Corollary 3.6] we know that S1(X) ≤ dim(X). We show that S1(X) ≥ dim(X). Suppose X ⊆ Mn.
We proceed by induction on n. For n = 1, the case where dim(M) = S1(M) = 2 and dim(X) = 2 is the only
one in which there is anything to prove. Suppose for a contradiction that S1(X) = 1. Then X divides over ∅, and
so there exists a k-inconsistent infinite family of conjugates of X , say {Xi | i ∈ I}, but by [8, Lemma 3.5] this
contradicts dim(M) = 2. Now suppose X ⊆ Mn. Consider the projection π(X) onto the first coordinate. By in-
duction we know that for each a ∈ π(X) we have dim(Xa) = S1(Xa), where Xa is the fibre over a. For each d′

we put

Yd′ := {a ∈ π(X) | dim(Xa) = d′}.

Now we may choose d such that d + dim(Yd) is maximal. Say dim(Yd) = e. Of course we have e ∈ {0, 1, 2},
and S1(Yd) = e. Also dim(X) = d + e, by the definition of measurability. Put Z :=

⋃
a∈Yd

Xa.
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If e = 0, then clearly S1(Z) = d. If e = 1, then the {Xa | a ∈ Yd} witness that S1(Z) ≥ d + 1. If e = 2, then
this must be witnessed by some k-inconsistent family {Ai | i ∈ N} of subsets of Yd of S1-rank 1. Put

Bi :=
⋃

a∈Ai
Xa.

Then for each i the fibres Xa witness that S1(Bi) ≥ d + 1, and moreover the family {Bi | i ∈ N} then witnesses
that S1(Z) ≥ d + 2.

In all cases this shows that S1(X) ≥ d + e.

One fact that we will make repeated use of without comment is this.
Lemma 3.3 Let G be a measurable group, and H1 ≤ H2 definable subgroups, with

(dim, meas)(Hi) = (di, µi) and (dim, meas)(Cos(H1 : H2)) = (e, ν)

(where Cos(H1 : H2) is the coset-space of H2 in H1). Then (d2, µ2) = (d1 + e, µ1 · ν).

P r o o f. This is immediate, since (dim, meas)(Cos(H1 : H2)) is well-defined by [9, Proposition 5.10].

The following is another condition on a first order theory which we will need.
Definition 3.4 Let T be a first order theory. We say that infinity is definable in T , or that T eliminates ∃∞, if for

every M � T and every formula ϕ(x̄, ȳ), the set {ā ∈ Mm | ϕ(Mn, ā) is finite} is ∅-definable.
It is immediate that in both measurable and S1-theories infinity is definable.
We now discuss an analogue of Zilber’s Indecomposability Theorem (see for instance [1, Theorem 5.26]) that

was proved by Hrushovski in the context of S1-theories (see [6, Theorem 7.1]). A more general version has been
obtained by Wagner for supersimple theories (see [13, Theorem 5.5.4]). The following is the version we will need.

Remark 3.5 Let G be a group definable in a supersimple structure of finite rank. Let {Xi | i ∈ I} be a col-
lection of definable subsets of G. Then there exists a definable subgroup H of G such that:

(i) H ≤ 〈Xi | i ∈ I〉 and every element of H is a product of a bounded finite number of elements of the Xi’s
and their inverses.

(ii) Xi/H is finite for each i.
If each Xi is acl(∅)-definable, then so is H .
If the collection of sets Xi is invariant under conjugation, then H may be chosen normal in G. More generally,

if the collection of Xi is Σ-invariant for some collection of definable automorphisms Σ, then H may be chosen
to be Σ-invariant, too.

P r o o f. This is easily derived from Wagner’s more general result [13, Theorem 5.4.5], which yields the exis-
tence of a type-definable group of the desired kind. [13, Theorem 5.5.4] and compactness then give a definable
group, exactly as in the proof of the corresponding result for S1-theories [6, Theorem 7.1]. The final clause is a
consequence of [13, Remark 5.4.7].

Now we obtain a version of Zilber’s Field Interpretatation Theorem (see [1, Theorem 9.1]) applicable in our
context. This will not be used during the remainder of this paper.

Proposition 3.6 Let G be a group definable in a supersimple structure of finite rank in which infinity is defin-
able. Suppose that G = A � H , where A and H are each Abelian, definable in G, and 1-dimensional. Suppose A
has no proper non-trivial G-definable subgroups which are normal in G, and CH(A) = {1}. Then the following
wonderful things happen:

1. The subring K = Z[H]/annZ[H](A) of End(A) is a definable measurable field; in fact, there is an integer l

such that every element of K can be represented as the endomorphism
∑l

i=1 hi (hi ∈ H).
2. A ∼= K+. Also H is isomorphic to a subgroup J of K∗ and the conjugation action of H on A is its multi-

plication action on K.
3. If G is an ultraproduct of finite groups, then K is a pseudofinite field.
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P r o o f. Let B be the union of the finite orbits under the action of H on A. Then B is a G-normal subgroup
of A, and as infinity is definable, B is definable. Hence either B = {1} or B = A. If B = A, it follows that for
each a ∈ A, its point-stabilizer in H , that is CH(a), has finite index in H . Thus for any n and any a1, . . . , an ∈ A,
the group CH(a1, . . . , an) is non-trivial. Thus by compactness, CH(A) is non-trivial, a contradiction. Thus we
must have B = {1}, and thus the action of H on A \ {0} has only 1-dimensional orbits, and necessarily there are
only finitely many of them.

1. We consider the group ring Z[H] as a ring of endomorphisms of A, extending the conjugation action of H
by linearity. We will use the notation · for the action of Z[H] or its quotients/subrings on A. Let r ∈ Z[H]. Say

r =
∑

hi (hi ∈ H).

Since H is Abelian, ker(r) and im(r) of the endomorphism r : A −→ A are both definable H-normal subgroups
of A. Thus either ker(r) = A, in which case r ∈ annZ[H](A), or ker(r) = {0}, and im(r) = A and r is an auto-
morphism of A.

Let R = Z[H]/annZ[H](A). We have shown that R is a ring of automorphisms of A.
Now let a ∈ A \ {0}. Let W be the orbit of a under the conjugation action of H . From above we know that W

is a definable set of dimension 1. Applying Remark 3.5 to W we may find a definable 1-dimensional subgroup C
of A, where C ≤ 〈W 〉. Thus C is a definable subgroup of A of finite index, and further we may demand that C is
normalised by H . Thus C = 〈W 〉 = A. By compactness there is an integer l and A = W + · · · + W (l times).
We let

K = {∑l
i=1 hi | hi ∈ H}/annZ[H](A).

So K ⊆ R ⊆ End(A).
Suppose λ ∈ R \ {0} and b ∈ A such that b = λ · a. So there is ζ ∈ K, and ζ · b = a. So

ζλ − 1 ∈ R and (ζλ − 1) · a = 0.

Since R is a ring of automorphisms we deduce ζλ = 1. So in fact R is a field. Furthermore, for every λ ∈ R there
is ζ ∈ K and ζ = λ−1. Since R is closed under inverses, we deduce K = R. This concludes the proof of 1.

2. Now define ia : K −→ A by ia(λ) = λ · a. By the construction of K we know that ia is an additive iso-
morphism from K onto A. To make this an isomorphism of fields we must define the correct multiplication on A.
We use the symbol ⊗ to define the multiplication on A. Then the definition is: if b = λ · a and c = ζ · a, then

b ⊗ c := ia(λζ).

It is easily verified that ia is now an isomorphism of fields sending H to a finite index subgroup of A⊗.
3. Say G =

∏
i∈I Gi/U . By Łos’ Theorem, there is U ∈ U where the formulae which define the field structure

on K also do so on every Gi for which i ∈ U . So K is in fact a non-principal ultraproduct of finite fields, and
thus a pseudofinite field.

4 2-dimensional asymptotic groups

We now proceed to discuss groups of S1-rank 2. In all that follows, when we speak of a class C of groups being
P -by-bounded we shall mean that for each G ∈ C there is N � G, where N has property P , and |G : N | is finite
and bounded as G ranges across C.

We shall prove (Theorem 4.7 below) that a 2-dimensional asymptotic class of groups is soluble-by-bounded.
We will need the following, which is unknown at the level of measurable groups.

Remark 4.1 (Ryten) There is no 2-dimensional weak asymptotic class of simple groups.
Ryten shows that any class of finite simple groups of fixed Lie type and Lie rank is uniformly bi-interpretable

with a class of finite difference fields known to form an asymptotic class. It follows that for r ∈ N, the class of
simple groups of Lie rank ≤ r is an aymptotic class. Then using the classification of the finite simple groups he
shows that every weak asymptotic class of simple groups lies within a family of this form. As no infinite subclass
of any of these classes can have dimension equal to 2, the result follows. For more details see [11] or [12].
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We will say that a group G is n-soluble if it is soluble of derived length n. Similarly G is n-nilpotent if it is
nilpotent of class n. Now we need a group-theoretic fact.

Lemma 4.2
1. A finite-by-(n-soluble) group is definably ((n + 1)-soluble)-by-finite.
2. A finite-by-Abelian group is (2-nilpotent)-by-finite.

P r o o f. Suppose G is finite-by-(n-soluble). Say that F � G is finite and G/F is n-soluble. So G acts on F by
conjugation. Let H := CG(F ). Then H is definable and |G : H| is finite. Now H(n) ≤ G(n) ∩ H . Since

{1} = (G/F )(n) = G(n)/F,

we have G(n) ≤ F and in particular H(n) ≤ F . But H commutes with F , so H(n) is Abelian and therefore H is
(n + 1)-soluble. The result follows since H is of finite index in G.

In the case where G/F is Abelian, i. e. n = 1, H ′ ≤ F again, but as H := CG(F ), we obtain [H,H ′] = {1}
as required.

Remark 4.3 Recall that for any type-definable group G and any set A of parameters, the A-connected com-
ponent of G, denoted G0

A, is the intersection of all type-definable subgroups of G over A of bounded index.
[13, Lemma 4.1.11] tells us that in the context of a simple theory, G0

A is a type-definable normal subgroup of
index at most 2|T (A)| in G.

Lemma 4.4 Let G be a group with S1-theory and S1-rank 2, and with no definable S1-rank 1 normal sub-
groups. Then at least one of the following holds: G is definably (2-nilpotent)-by-finite; or G contains a minimal
2-dimensional definable subgroup, which is normal in G.

P r o o f. Let B be the set of finite conjugacy classes of G. By Remark 2.2, B is a normal subgroup of G, and by
the fact that infinity is definable in S1-theories, B is definable. If S1(B) = 2, then G is (finite-by-Abelian)-by-fi-
nite, again by Remark 2.3. By Lemma 4.2 such a group is, in fact, (2-nilpotent)-by-finite. Thus we may assume
that S1(B) �= 2. Since S1(B) �= 1 we conclude that B is finite.

Suppose for a contradiction that there is an infinite descending chain G = W0 > W1 > W2 > · · · , where for
each i > 0 we have Wi < G, and dim(Wi) = 2, and Wi is definable over āi say. Notice that Wi is of finite index
in G. Let A :=

⋃
i∈N

āi.
In the notation of Remark 4.3, G0

A is of infinite index in G, as for all i ∈ N, G0
A ≤ Wi. Also by Remark 4.3,

G0
A is of bounded index in G. We have assumed a fair degree of saturation on G and we conclude that G0

A is infi-
nite. In particular, we may pick γ ∈ G0

A \ B, and consider Γ := 〈γG〉. Notice that Γ is infinite since γ �∈ B. Al-
so Γ � G, and Γ ≤ G0

A.
Now by Remark 3.5 there is a definable N ≤ Γ, where N � G and γG/N is finite. Hence N is infinite, so we

have S1(N) ≥ 1. But N ≤ G0
A, so [G : N ] is infinite, and thus S1(N) = 1, which is impossible.

Hence every such sequence G = W0 > W1 > W2 > · · · must stabilize at some finite stage. Thus there is a mi-
nimal 2-dimensional definable subgroup of G. Since there must be a normal subgroup of G of finite index inside
this minimal subgroup, it follows that it itself is normal in G.

Lemma 4.5 Let G be a unimodular group with S1-theory and S1-rank 2. If G contains a definable S1-rank 1
normal subgroup, then G is definably (4-soluble)-by-finite.

P r o o f. Suppose N is a definable normal subgroup and dim(N) = 1. Then by Theorem 2.4 there is a defin-
able and characteristic subgroup H of N which is finite-by-Abelian and of finite index in N .

Now we consider the quotient G/N . Suppose π : G −→ G/N is the quotient homomorphism.
Now the quotient G/N is a unimodular S1-rank 1 group, and by Theorem 2.4 it is definably a (finite-by-Abe-

lian)-by-finite group. Again, all pieces may be taken to be characteristic. We denote the bottom finite-by-Abelian
piece by J∗. Now let J := π−1(J∗), so that J∗ = J/N . Notice that (J∗)′ is finite, and that π−1((J∗)′) = J ′N .
Then we have the following tower of normal subgroups of G:

H ′ ≤ H ≤ N ≤ J ′N ≤ J ≤ G.
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Now consider J/H , which is a finite-by-Abelian group. J/H is an infinite group acting by conjugation on the fi-
nite set J ′N/H . So there is a definable subgroup of finite index J1/H ≤ J/H which is the kernel of this action.
Thus J1/H commutes with all the elements of J ′N/H . But now consider J ′

1/H: since

J ′
1/H ≤ J ′N/H ∩ J1/H

it must be Abelian. This shows J ′′
1 /H = 1 so J ′′

1 ≤ H . So J ′′′
1 ≤ H ′ and H ′ is finite. By considering the conju-

gation action of J1 on J ′′′
1 we see that there is a definable subgroup J2 of J1, with [J1 : J2] < ∞ and such that J2

commutes with J ′′′
1 . So J ′′′

2 ⊆ J ′′′
1 ∩ J2 and thus J ′′′

2 must be Abelian. So J2 is 4-soluble and definable, and it is
a finite index subgroup of G.

Lemma 4.6 Let G be a unimodular group with S1-theory and S1-rank 2. Then either G is definably (4-sol-
uble)-by-finite, or G is definably (finite-by-simple)-by-finite, and therefore interprets a simple group of S1-rank 2.

P r o o f. Suppose G has S1-theory and is of S1-rank 2. If G has a 1-dimensional definable normal subgroup,
then by Lemma 4.5, G is (4-soluble)-by-finite. So suppose that G has no such subgroup. Then by Lemma 4.4, G is
either 2-nilpotent-by-finite (which certainly implies (4-soluble)-by-finite), or G contains a minimal 2-dimensional
definable subgroup H , where H � G.

Now if H contains a 1-dimensional definable normal subgroup, then by Lemma 4.5, H is (4-soluble)-by-finite,
and so G is ((4-soluble)-by-finite)-by-finite, which implies (4-soluble)-by-finite. Otherwise H contains no 1-di-
mensional definable normal subgroups.

We consider N : the subgroup of H consisting of the finite conjugacy classes of H . Again N is definable and
normal and contains each finite normal subgroup of H . So either dim(N) = 2 in which case just as in Lemma 4.4,
H is 2-nilpotent-by-finite (which would again yield the result), or dim(N) = 0. In this case then H/N is measur-
able (by [9, Proposition 5.10]), 2-dimensional, and contains no proper definable normal subgroups of dimension 1
or 2 (since H does not), and no definable normal subgroups of dimension 0 (since all such subgroups of H lie in-
side N ).

Therefore H/N is definably simple. Obviously H/N is not Abelian as it contains infinite conjugacy classes.
So we conclude by [6, Corollary 7.4] that H/N is simple.

Theorem 4.7 Let C be a 2-dimensional asymptotic class of groups. There exists a positive integer m ∈ N and
a finite set of L-formulae {ϕ1(x), . . . , ϕn(x)} in one variable such that for every G ∈ C, one of the ϕi(x) defines
a normal subgroup of index less than m in G which is 4-soluble.

P r o o f. Suppose that for each finite set of L-formulae in one variable, no such m exists. Enumerate the L-for-
mulae in one variable: {ϕi(x) | i ∈ N}. Then for every n, m ∈ N there is Gn,m ∈ C so that none of ϕ0, . . . , ϕn

defines a 4-soluble subgroup of index at most m in Gn,m. Let U be a non-principal ultrafilter on N and let

G :=
∏

m∈N
Gm,m/U .

Now if G has S1-rank 1, then we may apply Theorem 2.4 to obtain a contradiction. Otherwise G has S1-rank 2,
and therefore G has S1-theory by Lemma 3.2. Moreover G is unimodular. By [6, Section 7], being 4-soluble is a
definable property. Thus G is not definably (4-soluble)-by-finite: if ϕj(x) defined a 4-soluble subgroup of index r
in G, then by Łos’ Theorem this would have to hold for unboundedly many Gm,m, and in particular it would hold
for some Gm,m, where m ≥ max{j, r} which is impossible. Thus, by Lemma 4.6, G interpets a 2-dimensional
simple group H .

Then by Łos’ Theorem again there is U ∈ U so that for all i ∈ U , the interpretation of H in G carries down to
interpret a 2-dimensional group Hi in Gi. Now if for some U ′ ∈ U and all i ∈ U ′ there was a proper non-trivial
normal subgroup Ni � Hi, then (setting Ni := {1} for i /∈ U ′) we would obtain a proper non-trivial normal sub-
group N =

∏
i∈N

Ni/U � H . Hence there is an infinite family H of 2-dimensional simple groups, and these com-
prise a weak asymptotic class. But by Remark 4.1, no such class exists.

At the level of measurable groups we get a dichotomy: either every 2-dimensional measurable group is 4-sol-
uble-by-finite, or there exists a simple one. The obstacle is a measurable version of Remark 4.1 which we have
not yet got, though some structural results for 2-dimensional measurable simple groups exist.
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5 Minimal normal subgroups and socles in groups of finite rank

For this section our standing assumption will be that G is a definable group in a saturated supersimple structure
of finite rank. When we come to Proposition 5.5, however we will also need to assume that infinity is definable.
The following will be our main concern fo this section:

Definition 5.1 A minimal (definable) normal subgroup of G is a non-trivial (definable) normal subgroup of G
properly containing no other non-trivial (definable) normal subgroup of G. The socle of G is the group generated
by the minimal normal subgroups of G.

Lemma 5.2 Suppose that G has no finite conjugacy classes. Then minimal normal subgroups of G exist and
are definable.

P r o o f. Suppose that H is a normal subgroup of G. Let x ∈ H . Then we may apply Remark 3.5 to the infinite
conjugacy class xG. Thus there is a non-trivial definable normal subgroup N � G with N ≤ H . In the case that H
is minimal normal, we must have that N = H , and therefore H is definable.

Now pick W a definable normal subgroup of G of minimal dimension, and suppose that

W = W0 > W1 > W2 > · · ·
is a descending chain of definable normal subgroups of G. Say Wi is defined over āi. Let A :=

⋃
i∈N

āi.
Then look at W 0

A: the A-connected component of W . This is type definable and of infinite index in W , since
for all i ∈ N, W 0

A ≤ Wi. Also by Remark 4.3, W 0
A is of bounded index in W . Assuming a fair degree of satura-

tion, we may conclude that W 0
A is infinite. In particular, we may pick γ ∈ W 0

A, where γG is infinite. Now consi-
der Γ := 〈γG〉. Then Γ is infinite, and Γ � G, and Γ ≤ W 0

A since γ ∈ W 0
A and W 0

A � G.
Now by Remark 3.5 there is a definable N ≤ Γ, where N � G and {x−1γx | x ∈ G}/N is finite, and hence N

is infinite. But N ≤ W 0
A, so [W : N ] is infinite, and thus dim(N) < dim(W ), which is impossible.

Thus any such sequence W0 > W1 > W2 > · · · must eventually stabilize, at which stage we obtain a minimal
normal subgroup.

Lemma 5.3
1. Any two distinct minimal normal subgroups centralise each other.
2. If in addition G has no non-trivial finite conjugacy classes, then the socle of G is definable, and is a finite

direct product of minimal normal subgroups.

P r o o f.
1. Suppose H and K are two distinct minimal normal subgroups. So [H,K] � G and [H,K] ⊆ H ∩ K, so by

minimality [H,K] = 1.
2. We first show
Claim 5.3.1 Suppose {Hi | 1 ≤ i ≤ n} is a set of minimal normal subgroups of G. There is J ⊆ {1, 2, . . . , n}

such that 〈Hi | 1 ≤ i ≤ n〉 =
∏

j∈J Hj (here
∏

means direct product).

P r o o f. We prove this inductively on n. Suppose m < n and there is Jm ⊆ {1, 2, . . . ,m} such that

〈Hi | 1 ≤ i ≤ m〉 =
∏

j∈Jm
Hj .

Consider Hm+1 ∩
∏

j∈Jm
Hj . Since it is a normal subgroup of G contained in Hm+1, this intersection is either

trivial or is Hm+1. � (Claim 5.3.1)
Let S be the socle of G. Since G has no finite conjugacy classes, each minimal normal subgroup is definable

and must have dimension at least 1. Now there must be a collection {Hi | 1 ≤ i ≤ n} of definable, minimal nor-
mal subgroups of G such that S =

∏n
i=1 Hi, since if not, then by Claim 5.3.1 we can find direct products of this

form for arbitrarily large n. But such a subgroup must have dimension at least n, which is impossible.

The following is a standard result.
Remark 5.4 Suppose that A is an Abelian group with no non-trivial proper definable characteristic subgroups.

Then either A is an elementary p-group for some prime p, or A is torsion-free and divisible.
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We are now in a position to classify the minimal definable normal subgroups:
Proposition 5.5 Suppose now that infinity is definable in G. Let M be a minimal definable normal subgroup

of G, and suppose that M is infinite. Then either 1., 2., or 3. holds:
1. M is an elementary p-group.
2. M is a Q-vector-space.
3. M is a minimal normal subgroup of G, and is a finite direct product of isomorphic, definable, simple groups.

P r o o f. The subgroup of finite conjugacy classes of M is normal in G and (since infinity is definable) is de-
finable. So it is either trivial or the whole of M . Suppose it is the latter. Then by Remark 2.3, we find that M is fi-
nite-by-Abelian. But M ′ is characteristic and by Remark 2.3 it is definable, so M ′ = {1}. So M is Abelian. It has
no definable characteristic subgroups, so by Remark 5.4 it is either of type 1. or type 2.

Now suppose the subgroup of finite conjugacy classes of M to be trivial. By Lemma 5.2, minimal normal sub-
groups of G exist and are definable, thus M is one such. Lemma 5.2 applied to M also shows that the minimal
normal subgroups of M are definable infinite groups. Let T � M be one such. Let x ∈ G and let T1 = xTx−1.
Since conjugation by x is an automorphism of M , it follows that T1 is also a minimal normal subgroup of M .
Therefore T1 = T or T1 ∩ T = {1}, so [T, T1] = {1}. Just as in Lemma 5.3 this shows that for any finite collec-
tion {Tj | j ∈ I} of distinct G-conjugates of T , there is a subset J ⊆ I such that

〈{Tj | j ∈ I}〉 =
∏

j∈J Tj .

Since dim(T ) ≥ 1 the possible number of G-conjugates in such a direct product has a finite upper bound. Thus

〈aTa−1 | a ∈ G〉 =
∏n

i=1 aiTa−1
i

for some n and a1, . . . , an ∈ G. So let

T0 = 〈aTa−1 | a ∈ G〉.

Thus, clearly T0 is definable, normal in G, and contained in M . We conclude T0 = M .
It only remains to show that T is simple. Say S � T . But there is a definable group Y such that M = T × Y

and so S � M . Since T is a minimal normal subgroup of M it follows that S = T or S = 1.

6 Measurable group actions

Suppose (G, X) is a structure consisting of a group G, a set X , and a group action map F : G × X −→ X . For-
mally we consider a language L = {G, X,F, m, 1, i}, where G and X are unary predicates, i is a unary function,
m is a function with arity 2, and F is a function with arity 2. We provide axioms stating that the elements with
predicate G form a group with respect to the symbols m, i, 1. The function F , when restricted to G × X , is ax-
iomatised to yield a group action of G on X . We have no concern with what the operations do elsewhere. For in-
stance, we might consider only models where on the ranges where the various functions should not be defined
they send all elements to 1.

We call such a first order structure a group action. Instead of using the function symbol F , we write F (g, x)
as g · x, for g ∈ G and x ∈ X .

A measurable group action will mean a group action which is measurable as a first order structure. Similarly,
an asymptotic class of group actions is an asymptotic class whose members are finite group actions, and an asymp-
totic group action will be an infinite ultraproduct of members of such a class.

If G is a group acting on a set X , and x ∈ X , then the stabilizer of x in G will be denoted by Gx. Similarly
if Y ⊆ X , then the setwise-stabilizer of Y in G is denoted by GY .

Primitive group actions play a central role in permutation group theory. Many questions about general actions
can be reduced to the primitive case. Recall that an action (G, X) is primitive if there is no non-trivial proper
G-congruence on X , or equivalently if every point-stabilizer Gx is a maximal subgroup.

We will say that a group action is definably primitive if for each x ∈ X the group Gx is definably maximal,
i. e. there is no definable group H where Gx < H < G.
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Proposition 6.1 Let G be a measurable group acting definably and transitively on a definable set X . Define ∼
on X by

x ∼ y :⇔ [Gx : Gx ∩ Gy] < ∞.

Then ∼ is a definable G-congruence.

P r o o f. First observe that as G is measurable, there are only finitely many finite values which [Gx : Gx ∩ Gy]
can take, so ∼ is definable.

∼ is obviously reflexive.
∼ is symmetric: for any x ∈ X and a ∈ G, µ(Gx) = µ(aGxa−1) = µ(Gax), so by transitivity of the action,

µ(Gx) = µ(Gy) for all x, y ∈ X . Also if x ∼ y,

µ(Gx ∩ Gy) · [Gx : Gx ∩ Gy] = µ(Gx) = µ(Gy) = µ(Gx ∩ Gy) · [Gy : Gx ∩ Gy],

so [Gx : Gx ∩ Gy] = [Gy : Gx ∩ Gy] < ∞.
∼ is transitive: suppose that x ∼ y, and y ∼ z. Then

[Gy ∩ Gx : Gy ∩ Gz ∩ Gx] ≤ [Gy : Gy ∩ Gz] < ∞.

So

[Gx : Gx ∩ Gy ∩ Gz] = [Gx : Gx ∩ Gy] · [Gx ∩ Gy : Gx ∩ Gy ∩ Gz] < ∞.

But also

[Gx : Gx ∩ Gy ∩ Gz] = [Gx : Gx ∩ Gz] · [Gx ∩ Gz : Gx ∩ Gy ∩ Gz],

so [Gx : Gx ∩ Gz] < ∞.
∼ is a G-congruence: suppose x ∼ y, so [Gx : Gx ∩ Gy] < ∞. So for any g ∈ G,

[gGxg−1 : gGxg−1 ∩ gGyg−1] = [Gx : Gx ∩ Gy] < ∞
but gGxg−1 = Ggx and gGyg−1 = Ggy so we have [Ggx : Ggx ∩ Ggy] < ∞ and gx ∼ gy.

Theorem 6.2 Suppose (G, X) is a measurable group action and G an infinite group, which acts transitively,
faithfully, and definably primitively on X . Let B � G be the subgroup of finite conjugacy classes. Then either 1.
or 2. holds:

1. dim(G) = dim(X). In this case either (a) or (b) holds:
(a) B is non-trivial. Then B is a definable divisible torsion-free Abelian subgroup of G, which has finite in-

dex in G, and which acts regularly on X . Also, B is a minimal definable normal subgroup of G.
(b) B is trivial. Then there is H � G where H is the unique minimal definable subgroup of G. It is of finite

index in G and H = Tn, where T is a simple group and n is some positive integer.
2. dim(G) > dim(X). Then B is trivial, and G acts primitively on X .

P r o o f. Consider first the case dim(G) = dim(X). First we observe that point-stabilizers Gx are finite by the
Orbit-Stabilizer Theorem.

(a) By measurability B is definable, and by Remark 2.2, B � G. As the action is transitive and faithful, B is not
contained in any Gx. So G = B · Gx, and thus B acts transitively on X . It also follows that B is of finite index
in G, bounded by |Gx|. Consider the derived subgroup B′. By Remark 2.3, B′ is a finite normal subgroup of G,
and so it is trivial. Thus B is Abelian. Therefore B acts regularly on X , and hence is minimal.

It follows that B is either torsion-free or an elementary p-group for some p. But then picking any b ∈ B \ {0},
since bG is finite, we may define the normal subgroup 〈bG〉 of G.

(b) Suppose N is a non-trivial, definable normal subgroup of G. Again G = N · Gx, and thus all definable nor-
mal subgroups N of G are of finite index (bounded by |Gx|) in G. Thus there can be at most one minimal defin-
able normal subgroup H . As the conjugacy classes here are infinite, Lemma 5.2 implies that minimal normal sub-
groups exist and are definable. Thus H must exist as the unique one such.
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Of course H is also the socle of G, so we may apply Proposition 5.5. Since H is not of forms (a) or (b) it must
be a product of definable, isomorphic simple groups. Thus H = Tn.

We move on to the case dim(G) > dim(X). In this case, point-stabilizers Gx are infinite. We begin by recal-
ling the fundamental equivalence relation on X:

x ∼ y :⇔ [Gx : Gx ∩ Gy] < ∞.

By Proposition 6.1, ∼ is a definable equivalence relation. By the definable primitivity of (G, X), it follows that it
has exactly one class or all its classes are trivial.

Claim 6.2.1 All the classes of ∼ are trivial (i. e. of size 1).
P r o o f. Suppose not, so there is exactly one class. Then all point-stabilizers Gx are commensurable and over

all x, y ∈ X , there exists a finite upper bound for the index [Gx : Gx ∩ Gy]. Thus the Bergman-Lenstra Theorem
(see for instance [13, Theorem 4.2.4]) produces a definable normal subgroup N � G uniformly commensurable
to all the Gx. Since the Gx are infinite N is non-trivial. Since it is normal N must act transitively on X . But it is
commensurable with any Gx and so the orbit of any x under N must be finite. But G is infinite, and the G action
is assumed faithful and so X must be infinite. This is a contradiction.

We deduce that all the ∼ -classes are trivial. � (Claim 6.2.1)

Claim 6.2.2 Suppose W is a subgroup of G but is not necessarily definable. Say W ≥ H,K, where H and K
are definable groups with m = dim(H) = dim(K) and dim(H ∩ K) < m. Then W contains a definable sub-
group S, where dim(S) > m, and |H : H ∩ S|, |K : K ∩ S| < ∞.

P r o o f. Consider 〈H,K〉: by Remark 3.5 there is a definable subgroup S with S ≤ 〈H,K〉 ≤ W and such
that Cos(H : S ∩ H) and Cos(K : S ∩ K) are finite sets. Thus S has dimension at least m. If dim(S) = m, then
it follows easily that H and K are commensurable. They are not, so dim(S) > m. � (Claim 6.2.2)

Now we suppose for a contradiction that x ∈ X and that Gx is not a maximal subgroup of G. So there exists W
where Gx < W < G. Of course W is not definable. Consider subgroups H∗ of G such that

1. H∗ is a definable subgroup of W ,
2. Cos(Gx : Gx ∩ H∗) is a finite set.
Let H be a subgroup of G of maximal dimension with these properties.
Claim 6.2.3 If g ∈ Gx, then H and gHg−1 are commensurable.
P r o o f. Suppose there was g ∈ Gx such that dim(H ∩ gHg−1) < dim(H). Then by Claim 6.2.2, W would

contain some definable S with dim(S) > dim(H) and Cos(H : S ∩ H) a finite set.
But [Gx : H ∩ Gx] < ∞ by assumption, and also

[H ∩ Gx : H ∩ Gx ∩ S] ≤ [H : H ∩ S] < ∞.

So we must have [Gx : H ∩ Gx ∩ S] < ∞. Thus [Gx : S ∩ Gx] < ∞, and so S satisfies both demands for H∗

groups. But dim(S) > dim(H) and this is a contradiction. � (Claim 6.2.3)
Firstly we conclude that dim(H) > dim(Gx). This is because the fundamental equivalence relation ∼ has all

trivial classes. So picking a ∈ W \ Gx, say y = a · x, then Gy = aGxa−1 has dim(Gx ∩ Gy) < dim(Gx). Then
by Claim 6.2.2, we find an H∗-type group S with dim(S) > dim(Gx).

Suppose now that g1, g2 ∈ Gx, and g1(Gx ∩ H) = g2(Gx ∩ H). Then g−1
1 g2 ∈ H , so g1Hg−1

1 = g2Hg−1
2 .

Since [Gx : Gx ∩ H] < ∞, it follows that H has only finitely many images under conjugation by elements of Gx.
Claim 6.2.3 shows that all those images are commensurable. So letting

H0 =
⋂

g∈Gx
gHg−1,

it follows that dim(H0) = dim(H) > dim(Gx). Furthermore H0 is normalised by Gx, H0 ⊆ H ⊆ W , and H0 is
definable. But now let

H1 = 〈Gx,H0〉 = {gh | g ∈ Gx, h ∈ H0}.
Then H1 is definable and Gx ⊂ H1 ⊂ W , and this contradicts the definable maximality of Gx.
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Finally we need to show that B is trivial. Suppose for a contradiction that there is a non-trivial finite conjugacy
class. Again B is a definable and a characteristic subgroup. B must act transitively on X . Now B′ � G is a finite
group and so by primitivity and faithfulness, it must be the identity. So B is Abelian and acts transitively and faith-
fully on X . So B acts regularly.

Fix x ∈ X . It is straightforward that the action of Gx on X is isomorphic to that of Gx on B by conjugation:
g(xb) �−→ g−1bg. (In fact G = B � Gx.)

Let b ∈ B \ {0} and x ∈ X . Then |OrbGx
(xb)| = |bGx |, and this is finite. So by the Orbit-Stabilizer Theorem,

|Gx : Gx ∩ Gxb | = |bGx | is finite, contradicting ∼ having trivial classes.

We end with a result that ties asymptotic group actions to the theory of finite primitive groups: a very well-de-
veloped body of research (see for instance [2]). We first comment that it is straightforward by Łos’ Theorem that
if (G, X) =

∏
i∈I(Gi, Xi)/U is a non-principal ultraproduct of finite group actions, then it is transitive (faithful)

if and only if there exists U ∈ U where for each i ∈ U the component (Gi, Xi) is transitive (faithful).
Proposition 6.3 Let (G, X) =

∏
i∈I(Gi, Xi)/U be a non-principal ultraproduct of finite group actions. Sup-

pose that the action is transitive, faithful, and dim(G) > dim(X). Then the following hold:
1. (G, X) is a primitive group action if and only if for all J ∈ U there is j ∈ J where the action (Gj , Xj) is

primitive.
2. Suppose that (G, X) is primitive. Let S(x) be a formula defining the socle of G (such exists by Lemma 5.3).

Then there is J ∈ U where for all j ∈ J the formula S(x) defines the socle in Gj .

P r o o f.
1. We start with the left to right direction. Suppose there is J ∈ U , and for each j ∈ J , (Gj , Xj) is imprimi-

tive. Select Bj a block of imprimitivity for each such j ∈ J . For j ∈ I \ J let Bj = Xj . Now let

B =
∏

i∈I Bi/U .

It is enough to show that B is a block of imprimitivity in (G, X).
Let g̃ ∈ G, where g̃ = (gi | i ∈ I), let

K = {j ∈ J | gjBj ∩ Bj = ∅} and Q = {j ∈ J | gjBj ∩ Bj = Bj}.

Since for each j ∈ J the set Bj is a block of imprimitivity, we have K ∪ Q = J , and so either K ∈ U or Q ∈ U .
Suppose K ∈ U . Then g̃B ∩ B = ∅. For suppose

x̃ = (xi | i ∈ I) and x̃ ∈ B ∩ g̃B.

Then there is ỹ = (yi | i ∈ I) such that ỹ ∈ B and g̃ỹ = x̃. By Łos’ Theorem there is J ′ ∈ U where for j ∈ J ′

we have gjyj = xj where yj ∈ Bj and xj ∈ Bj . As K ∩ J ′ �= ∅, this is a contradiction.
A similar argument shows that if Q ∈ U , then g̃B = B. Thus (G, X) is an imprimitive group action.
Now for the right to left implication, suppose that (G, X) is an imprimitive group action. Then by Theorem 6.2,

(G, X) is definably imprimitive. So pick x̃ = (xi | i ∈ I), x̃ ∈ X . Then there are formulae Gx̃(y),H(y) in one
free variable such that Gx̃(y) defines the point-stabilizer Gx̃ in G and H(y) defines a group H with Gx̃ ⊂ H ⊂ G.

It is a simple verification using Łos’ Theorem that there is a set J ⊆ I with J ∈ U such that for each j ∈ J
the formula Gx̃(y) defines the point-stabilizer Gxj in Gj , and H(y) defines a group Hj with Gxj ⊂ Hj ⊂ Gj .

Thus (Gj , Xj) is imprimitive for all j ∈ J .
2. Firstly consider a minimal normal subgroup M of G. We know from Lemma 5.2 and Theorem 6.2 that M

exists, is infinite, and is definable by a formula M(x, m̃), where m̃ = (mi | i ∈ I), say.
By Remark 3.5 for any x ∈ M there is a natural number nx such that any element of M is expressible as a

product of nx elements from xG ∪ (x−1)G. We may take nx to be the smallest such natural number. By compact-
ness the nx have a finite upper bound n. Now writing ε̄ = (ε1, ε2, . . . , εn), we find that G satisfies the following
sentence:

∀x(M(x, m̃) ⇒ [∀y(M(y, m̃) ⇒ (∃x1x2 . . . xn ∈ xG)(
∨

ε̄∈{−1,1}n xε1
1 xε2

2 . . . xεn
n = y))]).
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Then by Łos’ Theorem there is an ultrafilter set J ⊆ I such that for all j ∈ J we have that M(Gj ,mj) is a
normal subgroup of Gj , and

Gj � ∀x(M(x, mj) ⇒ [∀y(M(y, mj) ⇒ (∃x1x2 . . . xn ∈ xG)(
∨

ε̄∈{−1,1}n xε1
1 xε2

2 . . . xεn
n = y))]).

But this sentence asserts that for any x ∈ M(Gj ,mj), the set xG generates M(Gj ,mj). Hence M(Gj ,mj) is
a minimal normal subgroup of Gj .

Now by part 1. above we know that there is J ′ ⊆ J where J ′ ∈ U and for each j ∈ J ′ the action (Gj , Xj) is
primitive.

But now we appeal to a theorem about finite primitive permutation groups. [2, Lemma 4.3B] says that for a fi-
nite primitive permutation group G∗,

(i) either the socle is a minimal normal,
(ii) or the socle is the product of a minimal normal H and CG∗(H).

Suppose that M is the minimal normal defined by M(x, m̃). Now CG(M) is obviously definable by a formu-
la C(x, m̃), say, and there is a set J ′′ ⊆ I where J ′′ ∈ U such that for all j ∈ J the formula C(x, mj) inteprets
the centraliser in Gj of the group defined by M(x,mj). Thus either the formula M(x, m̃) or the formula

(∃y, z)(M(y, m̃) ∧ C(z, m̃) ∧ x = yz)

must define the socle on some J ′′′ ⊆ I , where J ′′′ ∈ U .
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