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Characterisation of pseudo-finite fields and

decidability of Psf

Introduction

In this talk we will apply the main result from the last talk. We will first establish the
characterisation of the pseudo-finite fields as the infinite models of the theory Tf of all
finite fields. This result motivates the following talks and in preparation we will further
investigate Psf. Closing we will sketch the proof of the decidability of Psf, Psf0, Tf , and
Tprime.

Preliminaries

Notation 1. Throughout we work in the language L of Rings. We denote by Tf the
theory of all finite fields, by Tprime the theory of all prime fields, by Psf the theory of
pseudo-finite fields, and by Psf0 the theory of pseudo-finite fields of characteristic 0.
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Characterisation of pseudo-finite fields

We want to show pseudofinite fields are exactly the infinite models of Tf . And we will
show a strong result alongside: Pseudofinite fields of characteristic 0 are exactly the
infinite models of Tprime.

Lemma 2 ([Cha05, Example 1.29]).

(i) Any infinite model of Tf is elementarily equivalent to a non-principal ultraproduct
of finite fields.

(ii) Any infinite model of Tprime is elementarily equivalent to a non-principal ultra-
product of prime fields.

Proof. We show (i). Let M |= Tf be infinite, and let I be the set of all sentences true
in M . If φ ∈ I, then ¬φ 6∈ Tf , i.e. there exists some finite field Mφ such that Mφ |= φ.
For each ψ ∈ I let

Xψ := {φ ∈ I |Mφ |= ψ}.

Then the set B := {Xψ | ψ ∈ I} is a filter base. Indeed, for each ψ ∈ I the set Xψ

is non-empty by construction, and if Xϕ1 , Xϕ2 ∈ B, then by the closure under finite
conjunctions of I

Xϕ1∧ϕ2 ∈ B and Xϕ1∧ϕ2 ⊆ Xϕ1 ∩Xϕ2 .

By Zorn’s Lemma we can extend B to an Ultrafilter U on I. Then

M ≡
∏
φ∈I

Mφ/U

by  Loś’s theorem. Since a principal ultraproduct of finite fields is finite, the ultraproduct
is non-principal.

Recall (the proof of) the following result from the second talk.

Theorem 3 ([Cha05, Theorem 6.4]). Let Q be the set of all prime powers, and let U
be a non-principal ultrafilter on Q. Then the field F ∗ =

∏
q∈Q Fq/U is a pseudo-finite

field.

Lemma 4. Any infinite model of Tf or Tprime is a pseudo-finite field.

Proof. By Lemma 2 and (the proof of) Theorem 3.

We tackle the other direction. The following result is immediate by  Loś’s theorem.

Lemma 5.

(i) A non-principal ultraproduct of finite fields is a model of Tf .

(ii) A non-principal ultraproduct of prime fields is a model of Tprime.

Now we need to do some work.

Definition 6 (Field of absolute numbers). If K is a field, and k0 ⊆ K the prime field

of K, then the (field of) absolute numbers of K is the field kalg0 ∩K. We write Abs(K)
to denote the field of absolute numbers of K.
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Lemma 7 ([Cha09, Theorem 4.10]). Let k0 = Fp or k0 = Q, and let E ⊆ kalg0 have at
most one extension of each degree. Then there is an ultraproduct F ∗ of finite fields such
that

Abs(F ∗) ∼= E.

When the characteristic of E is 0, then F ∗ can be chosen to be an ultraproduct of prime
fields.

Proof.

Case 1 (E is infinite of characteristic p). Let (ni)i∈N such that

Fpni = E ∩ Fpi! .

Then ni | (ni+1) for each i ∈ N. Let U be an arbitrary non-principal ultrafilter on N,
and set

F ∗ :=
∏
i∈N

Fpni/U .

Claim 1. Abs(F ∗) ∼= E.

Proof of Claim. By  Loś’s theorem char(F ∗) = p. Let d ∈ N. If Fpd ⊆ E, then Fpd ⊆ Fpni

for all i ≥ d, and F ∗ contains a copy of Fpd by  Loś’s theorem. If Fpd 6⊆ E, then Fpd 6⊆ Fpni

for all i ∈ N, and F ∗ does not contain a copy of Fpd by  Loś’s theorem. Since

E =
⋃
i∈N

Fpni ,

we are done.

Case 2 (E is finite of characteristic p). Let q := |E|, and U be an arbitrary non-principal
ultrafilter on P. We set

F ∗ :=
∏
m∈P

Fqm/U .

Then by  Loś’s theorem F ∗ has characteristic p, F ∗ contains a copy of Fq, and F ∗ does
not contain any copys of Fqd for 1 < d ∈ N. Hence Abs(F ∗) ∼= E.

Case 3 (E is of characteristic 0). We write Qalg as the union of an increasing chain Ln,
n ∈ N, of finite Galois extensions of Q. For each n let

En := Ln ∩ E,

and let I(n) be the (finite!) set of subfields of Ln which properly contain En. We will
find a sentence which describes En:
Choose some generator α of En over Q, and let fn(T ) be its (monic!) minimal polynomial
over Q. For each M ∈ I(n) choose a generator βM of M over Q, and let gM (T ) be its
minimal polynomial over Q. Set

gn(T ) :=
∏

M∈I(n)

gM (T ).

Consider
θn := ∃t.fn(t)

.
= 0 ∧ ∀t.gn(t) 6 .= 0.

3



Characterisation of pseudo-finite fields and decidability of Psf Eric Osterkamp

Claim 2. For any field E′ of characteristic 0 with prime field K, and Kalg written as
a union of an increasing chain L′n

∼= Ln, n ∈ N, of finite Galois extensions of K

E′ |=
n∧
i=0

θi =⇒ E′ ∩ L′n ∼= En.

Proof of Claim. By construction.

Now consider the sets

An := {p ∈ P | Fp |=
n∧
i=0

θi}.

Claim 3. For all n ∈ N the set An is infinite.

We will make use of the following consequence of Tchebotarev’s Theorem.

Corollary 8. Let f0(T ), ..., fm(T ), g(T ) ∈ Z[T ], T a single variable. Let L be the Galois
extension of Q obtained by adjoining all roots of the polynomials fi(T ), i ∈ {0, ...,m},
and g(T ). Assume there is a subfield E of L such that Gal(L/E) is cyclic and

E |=
m∧
i=0

∃t.fi(t)
.

= 0 ∧ ∀t.g(t) 6 .= 0.

Then the set of prime numbers p such that

Fp |=
m∧
i=0

∃t.fi(t)
.

= 0 ∧ ∀t.g(t) 6 .= 0.

is infinite.

Proof of Claim. Fix some arbitrary n ∈ N. Let

g(T ) :=
n∏
i=0

gn(T ).

There exist f ′0(T ), f ′1(T ), ..., f ′n(T ), g′(T ) ∈ Z[T ] such that

fi(t) = 0⇔ f ′i(t) = 0 for i ∈ {0, ..., n} and g(t) = 0⇔ g′(t) = 0,

and the Galois extension of Q obtained by adjoining all roots of the polynomials f ′i(T ),
i ∈ {1, ..., n}, and g′(T ) equals Ln. Since En |= θi for i ∈ {0, ..., n},

En |=
n∧
i=0

∃t.f ′i(t)
.

= 0 ∧ ∀t.g′(t) 6 .= 0.

We need the following result from Galois theory to show the group Gal(Ln/En) is cyclic.

Lemma 9 ([Cha09, Comment 3.6]). Let F be a perfect field with at most one extension
of every degree, and L an algebraic extension of F of degree m. Then

Gal(L/F ) ∼= Z/mZ.
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Since LnE is an algebraic extension of E, Lemma 9 implies Gal(LnE/E) is cyclic.
Thus Gal(LnEn/En) = Gal(Ln/En) is cyclic. Now the Claim follows by Corollary
8.

Since An−1 ⊆ An for n ∈ N− {0}, by Claim 3 the set

A := {An | n ∈ N}

is a filter base, and can be extended to a non-principal ultrafilter U on P. For each n
by  Loś’s theorem

F ∗ :=
∏
p∈P

Fp/U |=
n∧
i=0

θi.

By Claim 2: Abs(F ∗) ∼= E.

Recall the main result from last talk.

Theorem 10 ([Cha05, Theorem 6.14]). Let E and F be pseudo-finite fields. Then

E ≡ F ⇐⇒ Abs(E) ∼= Abs(F ).

Theorem 11 ([Cha05, Theorem 6.18]).

(i) The pseudo-finite fields are exactly the infinite models of Tf .

(ii) The pseudo-finite fields of characteristic 0 are exactly the infinite models of Tprime.

Proof. We show (i). By Lemma 4 and Lemma 5 it suffices to show if F is a pseudo-finite
field, then there exists an ultraproduct F ∗ of finite fields such that

F ∗ ≡ F.

But by Theorem 10 this is equivalent to showing the existence of an ultraproduct F ∗ of
finite fields such that

Abs(F ∗) ∼= Abs(F ).

Let k0 denote the prime field of F . Since F is a pseudo-finite field, it has at most one
extension of every degree. Thus Abs(F ) has at most one extension of every degree.

Since Abs(F ) ⊆ kalg0 , we are done by Lemma 7.

”This implies every pseudo-finite field elementarily embeds into an ultraproduct of
finite fields. Now, every finite field can be equipped with a measure (the counting
measure), and one would think that the ultraproduct of these measures might define
something interesting on a pseudo-finite field F . It turns out that this is the case”, and
we will see next talk how it works. In preparation we will further investigate Psf.
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Psf

We are interested in quantifier reduction and model completeness.

Theorem 12 ([Cha05, Theorem 6.15]). Modulo the theory Psf any formula ϕ(x) is
equivalent to a Boolean combination of formulas of the form

∃t.f(x, t)
.

= 0,

where f(X,T ) ∈ Z[X,T ].

The proof requires two results. Firstly a known result from model theory.

Lemma 13 ([Cha05, Corollary 1.4]). Let T be a theory, and ϕ(x) a formula such that
T ∪{∃x.ϕ(x)} is consistent. Let ∆ be a set of formulas in the variables x which is closed
under disjunctions. The following conditions are equivalent:

(i) There are formulas ψ1(x), ..., ψm(x) ∈ ∆ such that

T ` ∀x.[ϕ(x)↔ (ψ1(x) ∧ ... ∧ ψm(x))].

(ii) Whenever A and B are models of T , and a, b are tuples in A,B respectively, if
A |= ϕ(a) and every formula ψ(x) ∈ ∆ which is satisfied by a in A is also satisfied
by b in B, then B |= ϕ(b).

Secondly we can obtain a more general version of a result from the last talk. We
omit the proof by request.

Theorem 14 ([Cha05, Theorem 6.13’]). Let E and F be pseudo-finite fields, and K1 a
subfield of E and K2 a subfield of F . Assume we have an isomorphism ψ between K1

and K2. Then

(E, a)a∈K1 ≡ (F,ψ(a))a∈K1 ⇐⇒ there is ψ′ ⊇ ψ such that ψ′(E ∩Kalg
1 ) = F ∩Kalg

2 .

Proof of Theorem 12. Fix some arbitrary formula ϕ(x). If Psf ∪ {∃x.ϕ(x)} is incon-
sistent, then ϕ(x) is equivalent modulo Psf to ∃t.1 .

= 0. So assume Psf ∪ {∃x.ϕ(x)} is
consistent.
Let E,F be pseudo-finite fields, and ∆ the set of Boolean combinations of formulas of
the form ∃t.f(x, t)

.
= 0, where f(X,T ) ∈ Z[X,T ]. Then ∆ is closed under disjunctions.

Claim. If E |= ϕ(a) for a ∈ E, and if for some b ∈ F every formula ψ(x) ∈ ∆ which
is satisfied by a in E is also satisfied by b in F , then F |= ϕ(b).

Proof of Claim. Since ∃t.p .
= 0 ∈ ∆, E and F have the same characteristic. Thus E

and F have isomorphic prime subfields kE and kF respectively. Since a and b satisfy
the same equations over Z, there exists an isomorphism ψ between (the subrings) kE [a]
and kF [b], and we can extend ψ to an isomorphism ψ′ between (the subfields) kE(a)
and kF (b). But for any f(a, T ) ∈ kE [a][T ]

E |= ∃t.f(a, t)
.

= 0⇐⇒ F |= ∃t.f(b, t)
.

= 0.

Thus we can extend ψ′ to an isomorphism

ψ′′ : E ∩ kE(a)alg → F ∩ kE(b)alg.

Now the claim follows by Theorem 14.
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Since ϕ(x) was arbitrary, by the Claim and Lemma 13 we are done.

Definition 15 (Model completeness). We call a theory T model complete if for all
models M1 and M2 of T

M1 ⊆M2 =⇒ M1 ≺M2.

Definition 16 (Psfc). We set

Lc := L ∪ {ci,n | 2 ≤ n ∈ N, 1 ≤ i ≤ n}.

The Lc-theory Psfc is obtained by adding to the theory Psf for each n an axiom stating
the irreducibility of the polynomial

Xn +
n∑
i=1

ci,nX
n−i.

Lemma 17 ([Cha09, Theorem 5.3]). Every pseudo-finite field expands to a model of
Psfc.

Proof. Let F be a pseudo-finite field. For each n ∈ N let αn be a generator of the unique
extension of degree n, and fn(T ) be its (monic!) minimal polynomial

Tn +
n∑
i=1

yi,nT
n−i.

Then set ci,n := yi,n.

Recall the following result from last talk.

Corollary 18 ([Cha05, Corollary 6.12]). Let E ⊆ F be pseudo-finite fields. Then

E ≺ F ⇐⇒ Ealg ∩ F = E.

Theorem 19 ([Cha05, Theorem 6.16]). The theory Psfc is model complete.

Proof. Let E ⊆ F be models of Psfc, and fix an arbitrary algebraic extension L of E of
degree n. Then L is generated over E by a solution of the equation

Xn +

n∑
i=1

ci,nX
n−i .

= 0.

But since F |= Psfc, this polynomial is irreducible over F , i.e. L ∩ F = E. Since L was
chosen arbitrarily,

Ealg ∩ F = E

By Corollary 18 model completeness of Psfc follows.
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We will see the following result being used for the definition of a measure on pseudo-
finite fields. It is not necessary for said definition, but it does shine in its application.

Theorem 20 ([Cha05, Theorem 6.17]). Let F be a pseudo-finite field, and S ⊆ Fn be
definable. Then there is an algebraic set W ⊆ Fn+m such that, if π : Fn+m → Fn is the
natural projection, then π(W ) = S, and for each y ∈ S the fiber π−1(y) ∩W is finite.

Proof. Let S be ∅-definable by an L-formula ϕ(x). By Lemma 17 we can expand F to a
model of Psfc. By model completeness there exists an existential Lc-formula ψ(x) such
that ϕ(x) is equivalent to ψ(x) modulo Psfc. Since any inequation x 6 .= 0 is equivalent
to ∃y.xy .

= 1 modulo the theory of fields, we may assume ψ(x) to be positive. Hence
by Boolean logic some algebraic set W ∈ Fn+m such that π(W ) = S exists. We need
to show W can be chosen such that the second statement is met.

Claim. The formula ϕ(x) is equivalent modulo Psfc to a conjunction of disjunctions
of positive existential formulas ∃y.ψi(x, y) where for any parameters a ∈ F the set of
elements satisfying ψi(x, a)

.
= 0 is finite.

Proof of Claim. By Theorem 12 the set S is definable by a Boolean combination of
formulas

∃t.f(x, t)
.

= 0,

where f(X,T ) ∈ Z[X,T ]. By Boolean logic S is definable by a conjunction of disjunctions
of L-formulas ϕi.

Case 1 (ϕi(x) = ∃t.f(x, t)
.

= 0). For some x ∈ Fn the polynomial f(x, T ) might be
constantly 0. Write f(X,T ) =

∑
j fj(X)T j . Then ϕi(x) is equivalent to

∧
j

fj(x)
.

= 0 ∨ ∃t, u.

f(x, t)
.

= 0 ∧
∏
j

(fj(x) · u)− 1
.

= 0

 .

Case 2 (ϕi(x) = ∀t.f(x, t) 6 .= 0). As in Case 1 we have to catch the case where f(x, T )
is constant for some x ∈ Fn, i.e. its constant coefficient is invertible and every other
coefficient equals 0. So assume f(x, T ) is not constant, and let k be the degree of f(x, T )
in T . Then F does not contain a root of this polynomial if and only if adding a root of
this polynomial defines a proper extension of F if and only if the Galois extension L of
F of degree k! the polynomial f(x, T ) can be written

k∏
l=1

(T − al),

where al 6∈ F . But we have already seen the existence of an existential formula ρ(x)
expressing this in the second talk utilising the interpretation of L in F . If we interprete
L in F using the constants (ci,n)n≤k!, then we are done.

By Boolean logic the Claim follows.

We note for two formulas

∃y.f0(x, y)
.

= ...
.

= fk(x, y)
.

= 0 and ∃z.g0(x, z)
.

= ...
.

= gl(x, z)
.

= 0
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their conjunction is logically equivalent to

∃y, z.f0(x, y)
.

= ...
.

= fk(x, y)
.

= g0(x, z)
.

= ...
.

= gl(x, z)
.

= 0,

and their disjunction is equivalent modulo the theory of fields to

∃y, z.
∧
i,j

fi(x, y)gj(x, z)
.

= 0.

Then we are done by the Claim.

For the general case let the set S be definable by some ϕ(x, a), where |x| = n, |a| = l
for some constants a ∈ F , and ϕ(x, y) is without parameters. Let S′ denote the set
defined by ϕ(x, y). By the ∅-definable case there exists an algebraic set W ⊆ Fn+l+m

such that, if π : Fn+l+m → Fn+l is the natural projection, then π(W ) = S′, and for
each y ∈ S′ the fiber π−1(y) ∩W is finite. Then the fibre Wa of W over a fullfills the
requirements of the algebraic set.
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On decidability

Corollary 21.
Psf ⊆ Psf0 ⊆ Tprime and Psf ⊆ Tf ⊆ Tprime.

Proof. Immediate by Theorem 11.

Theorem 22. The following theories are decidable.

(i) Psf0.

(ii) Psf.

(iii) Tf .

(iv) Tprime.

Sketch of proof. We have to show there is an algorithm which decides, given a sentence
θ, whether it is true in all pseudo-finite fields or not. Recall this result introduced in
the second talk.

Theorem 23 (Hermann, [Cha05, Theorem 5.2]).

(1) There is a constant A = A(n, d) such that for every field F , polynomials f1, ..., fm, g ∈
F [X]≤d, if g belongs to the ideal of F [X] generated by f1, ..., fm, then there are
h1, ..., hm ∈ F [X]≤A such that g = Σm

i=1fihi.

(2) There is a constant D = D(n, d) such that for every field F and ideal I of F [X]
generated by elements of F [X]≤d, if I is not prime, then there are g, h ∈ F [X]≤D
such that gh ∈ I but g, h 6∈ I.

The algorithm introduced to axiomatise Psf in the second talk relied on these
constants, and while those are effectively computable, and thus each axiom in the
scheme, we can make it more efficient utilising the following.

Theorem 24 ([FJ08, Theorem 11.2.3]). Let L be an algebraic extension of an infinite
field K. Suppose every plane curve defined over K has an L-rational point. Then L is
PAC.

A consequence is the axiom stating PAC for a field K becomes the following.

Axiom 25. Every polynomial in K[x, y] which is irreducible in Kalg[x, y] has a zero in
K2.

If f is not irreducible, then f = gh with g and h having smaller total degree than
f . The bound for polynomials we have to check is hence bounded by the degree of f .

Either way, we have an enumeration of a set Γ consisting of axioms for the theory
Psf, and we can produce an enumeration of the set of all proofs made using axioms
of Γ. As a direct consequence of the completeness theorem, we can thus produce an
enumeration of Psf. Similarly we have an enumeration for axioms of the theory Psf0
Γ0 = Γ ∪ {p 6 .= 0 | p prime}, and of Psf0.
Fix some arbitrary L-sentence θ. If θ is in Psf or Psf0, then we will find it in these
respective enumerations. Since our algorithm needs to terminate, we have to show
θ 6∈ Psf and θ 6∈ Psf0 is effectively computable.
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Let (ψn)n∈N be an enumeration of all L-sentences which are Boolean combinations of
the form

∃t.f(t)
.

= 0,

where f(T ) ∈ Z[T ]. Then Γ ` θ ↔ ψn for some n by Theorem 12. Thus θ ↔ ψn ∈ Psf,
and we can effectively find it.

It suffices to decide if ψn holds or does not hold in arbitrary pseudo-finite fields. But
since every witness to ψn is algebraic over the prime field, the truth of ψn only depends
on Abs(F ). Hence it suffices to show for any prime field k, and any E ⊆ kalg with at
most one algebraic extension of any degree

E |= ψn.

Now recall the following.

Theorem 26 (Lang-Weil). For every positive integers n, d there is a positive, effectively
computable constant C (= C(n, d)) such that for every finite field Fq and variety V
defined by polynomials in Fq[X1, ..., Xn]≤d∣∣∣|V (Fq)| − qdim(V )

∣∣∣ ≤ Cqdim(V )−1/2.

In particular, if q > C2, then any variety V as above will have a rational point in Fq.

(i). By Boolean logic and Theorem 12 the L-sentence ψn is equivalent to a disjunction
of sentences of the form ∧

i

∃t.fi(t)
.

= 0 ∧ ∀t.g(t) 6 .= 0,

where fi(T ), g(T ) ∈ Z[T ] for all i. Let L be the extension of Q generated by all roots of
polynomials in ψn. Then the computation of Gal(L/Q) and the subfields E of L such
that Gal(L/E) is cyclic is effective. Thus we can decide whether or not ψn is true in
all subfields E of L such that Gal(L/E) is cyclic.
Since by Galois theory ψn holds in some E ⊆ L such that Gal(L/E) is cyclic if and only
if it holds in some E′ ⊆ Qalg such that Gal(Qalg/E′) is cyclic, we have decided whether
ψn ∈ Psf0 or not.

(ii). We can procede as in (i). If ψn 6∈ Psf0, then ψn 6∈ Psf by Corollary 21. So let
ψn ∈ Psf0. Then ψn is provable from Γ0, and its proof uses finitely many axioms stating
the characteristic is not p. Thus there exists a constant C2 such that ψn holds in all
pseudo-finite fields of characteristic p′ > C2. Fix such a p.
Let Fpm be the extension generated by all roots of polynomials appearing in ψn. In a
similar argument to (i) it suffices to check whether Fpl |= ψn for all l dividing m.

(iii). We can procede as in (ii). If ψn 6∈ Psf, then ψn 6∈ Tf by Corollary 21. So let
ψn ∈ Psf. Then θ can be proven from Γ by finitely many axioms stating PAC. Thus by
Lang-Weil we can effectively compute a constant C3 such that

Tf ∪ {there are at least C3 elements}

proves θ. Checking whether θ holds in the (finitely many) fields of size < C3 is decidable.
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(iv). We can procede as in (i). If ψn 6∈ Psf0, then ψn 6∈ Tprime by Corollary 21. So
let θ ∈ Psf0. Then θ can be proven from Γ0 by a finite amount of axioms stating the
characteristic is not p, and PAC. Hence by Lang-Weil we can effectively compute a
constant C4 such that

Tprime ∪ {p 6
.

= 0 | p < C4}

proves θ. Checking whether θ holds in the finitely many prime fields of size < C4 is
decidable.
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