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1 Introduction

These are lecture notes from a course given in the Münster Model Theory Month
“spring school” of 2016.

The course covers some of the foundational results of geometric stability
theory. We focus on the geometry of minimal sets. The main aim is an account
of Hrushovski’s result that unimodular (in particular, locally finite or pseud-
ofinite) minimal sets are locally modular; along the way, we discuss the Zilber
Trichotomy and the Group and Field Configurations.

We assume the basics of stability theory (forking calculus, U-rank, canonical
bases, stable groups and homogeneous spaces), as can be found e.g. in [Pal17].

Thanks for improving the quality of these notes go to the participants of the
MMM course, to the anonymous reviewer, and to the participants of a reading
course in Jerusalem run by Itay Kaplan which went through these notes carefully
- and in particular to Javier de la Nuez Gonzáles, Daniel Palaćın, and especially
Yatir Halevi, participants in that course who caught a number of errors and
made some useful suggestions.

This version includes some corrections to the published text. Thanks to
Zhengqing He and Tomás Ibarlućıa for pointing out some errors, and to Itay
Kaplan for finding many more. Probably most egregious, the statement of the
type-definable case of Fact 6.5 was incorrect in the published version.

Your name too could appear here! If you find any errors or omissions, please
mail me at mbays@sdf.org.

1.1 References

The original results of Zilber are collected in [Zil93]. The results of Hrushovski
we discuss are mostly in [Hru86], [Hru87], and [Hru92]. Our presentation is
based in large part on Pillay’s book [Pil96].

∗These notes are licensed under the Creative Commons Attribution-Sharealike licence CC-
BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0/ by Martin Bays <mbays@

sdf.org> 2016-2020.
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2 Preliminaries

We work in a monster model M of a stable theory T , so M is κ-saturated and
strongly κ-homogeneous for some suitably large κ. “Small” means of cardinality
less than κ.

Notation.

• a, b, c, d, e, α, β, γ etc denote elements of Meq, a, b, c etc denote possibly
long tuples from Meq, and A,B,C denote small subsets of Meq.

• AB means A∪B; ab means (a, b) ∈ Meq; when appropriate, a means {a};
e.g. Ab is short for A ∪ {b}.

• A
∧
-definable set (over A) is a subset of Meq defined by a partial type

consisting of formulae whose parameters come from a small set (namely
A).

• If p is stationary and A := Cb(p), then p↾A has a unique global non-forking
extension p ∈ S(M). For A ⊆ B ⊆ Meq, we write p↾B for p↾B . So a ⊨ p↾B
iff a ⊨ p and a |⌣A

B.

• For α an ordinal, p(α) is the type of a Morley sequence in p of length α
(so ab ⊨ p(α

+) iff a ⊨ p(α) and b ⊨ p↾a).

• Define Cb(a/B) := Cb(stp(a/B)) and Cb(a/B) := acleq(Cb(a/B)). So
a |⌣C

B ⇔ Cb(a/BC) ⊆ acleq(C).

• We often disregard the distinction between an element of Meq and its
dcleq-closure. In particular, c = Cb(p) means dcleq(c) = Cb(p), and we
then allow ourselves to write Cb(p) ∈ Meq.

• We use exponential notation bσ for the action of an automorphism (so
automorphisms always act on the right).

Lemma 2.1. U-rank is additive for finite ranks: U(ab/C) = U(a/bC)+U(b/C)
whenever all terms are finite.

Proof. This is immediate from the Lascar inequalities [Pal17, Theorem 5.7] (and
in fact one only needs that one of the sides of the equality is finite). □

3 Minimal sets and the trichotomy

3.1 Minimal sets and pregeometries

Definition. A minimal set is a
∧
-definable set D, defined by a partial type

which has a unique unrealised global completion p ∈ S(M). Call p the global
generic type of D.

A strongly minimal set is a definable set which is minimal.

Let D be a minimal set, and p its global generic type. Adding parameters
to the language if necessary, we will assume D is defined over ∅.
Exercise.
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• If a ∈ D and C ⊆ Meq, then a ⊨ p↾C iff a /∈ acleq(C).

• A
∧
-definable set is minimal iff every relatively definable subset is finite

or cofinite.

• A complete type is minimal iff it is stationary and of U-rank 1.

Remark. Historically the focus was on strongly minimal formulae, due to their
role in uncountable categoricity (Baldwin-Lachlan), but minimality is the natu-
ral generality for the theory we develop here. Examples of minimal

∧
-definable

sets include the maximal perfect subfield Kp∞
=

⋂
n K

pn

of a separably closed
field, and the maximal divisible subgroup

⋂
n n(

∗Z) of ∗Z ⊨ Th(Z; +).
One can also work in the greater generality of (strongly) regular types, and

much of what we will cover in this course goes through for them. See in partic-
ular [Hru87].

Definition. A pregeometry is a set X with a map cl : P(X) → P(X) such that

• cl is a closure operator: A ⊆ cl(A), A ⊆ B ⇒ cl(A) ⊆ cl(B), and
cl(cl(A)) = cl(A);

• Exchange: b ∈ cl(Ac) \ cl(A) ⇒ c ∈ cl(Ab).

• Finite character: cl(A) =
⋃

A0⊆finA
cl(A0);

Often, it is more useful to think of a pregeometry in terms of its lattice of
closed sets. An equivalent definition of a pregeometry is as a set X with a set
of closed subsets C ⊆ P(X) such that

• C is closed under intersections: if B ⊆ C, then
⋂

B ∈ C.

• Exchange: If C ∈ C and a ∈ X \C, there is an immediate closed extension
C ′ of C containing a, i.e. there exists C ′ ∈ C such that C ′ ⊇ Ca and there
does not exist C ′′ ∈ C with C ⊊ C ′′ ⊊ C ′.

• Finite character: if B ⊆ C, then
∨

B =
⋃

B0⊆finB (
∨

B0), where
∨

B :=⋂
{C ∈ C |

⋃
B ⊆ C} is the smallest closed set containing all B ∈ B,

So setting
∧
B :=

⋂
B and A ≤ B ⇔ A ⊆ B, C forms a complete lattice.

We can pass between the two definitions as follows: given a closure operator
cl, define C := im(cl); conversely, given a set C of closed subsets, define cl(A) :=⋂
{C ∈ C | A ⊆ C}.
For A,B ⊆ X, dim(A/B) is the cardinality of a basis for A over B, a minimal

subset A′ ⊆ A for which cl(A′B) = cl(AB). When it is finite, dim(A/B) is
equivalently the length r of any chain of immediate extensions of closed sets
cl(B) = C0 ⪇ C1 ⪇ . . . ⪇ Cr = cl(AB).

The localisation of X at A is XA := (X, clA) where clA(B) = cl(AB); equiv-
alently, the closed sets of XA are the closed sets of X which contain A.

X is homogeneous if for any closed C ⊆ X and any a, b ∈ X \ C, there
is an automorphism over C of the pregeometry (a bijection preserving cl, or
equivalently C, and fixing C pointwise) which sends a to b.

A geometry is a pregeometry (X, cl) such that cl(∅) = ∅ and cl(a) = {a}
for any a ∈ X. For a pregeometry (X, cl), the associated geometry is the set

of dimension 1 closed sets of X with the obvious closure, cl′ defined by A ∈
cl′(B) ⇔ A ⊆ cl(

⋃
B).
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Remark. Finite pregeometries are also known as matroids.

Lemma 3.1. (D, aclD) is a homogeneous pregeometry, where aclD(A) := acleq(A)∩
D.

Proof. Everything is immediate from the definition of aclD except homogeneity
and exchange. Exchange corresponds to symmetry of forking: for b, c ∈ D and
A ⊆ D,

b ∈ aclD(Ac) \ aclD(A) ⇔ b ⊨ p↾A and b ̸⊨ p↾Ac

⇔ b ̸ |⌣
A

c

⇔ c ̸ |⌣
A

b

⇔ c ⊨ p↾A and c ̸⊨ p↾Ab

⇔ c ∈ aclD(Ab) \ aclD(A).

For homogeneity, if C ⊆ D is aclD-closed, and a0, b0 ∈ D \ C, then they
can be extended to aclD-bases (ai)i<λ, (bi)i<λ for D over C. Then by induc-
tively considering isolating algebraic formulae, ai 7→ bi can be extended to an
elementary map D ↠ D fixing C pointwise, which is in particular an automor-
phism of the pregeometry over C. (Note that this is not just a matter of strong
homogeneity of Meq, since C need not be small.) □

Remark. For a ∈ D<ω and B ⊆ D, U(a/B) = dim(a/B). Indeed, this is
immediate for singletons, and then follows for tuples by additivity.

Remark. Adding A ⊆ D to the language corresponds to localising the pregeom-
etry at A.

3.2 Triviality and modularity

Definition. A pregeometry is trivial (or degenerate) if cl(A) =
⋃

a∈A cl(a);
equivalently,

∨
=

⋃
in the lattice of closed sets.

Example.

• The theory of equality on an infinite set (i.e. with trivial language), is
strongly minimal with trivial pregeometry; all subsets are closed, aclD(B) =
B.

• An action of a group G on an infinite set D without fixed points, in
the language (D; ((g∗))g∈G), is strongly minimal with trivial pregeometry;
closed sets are unions of G-orbits; aclD(B) = GB.

Definition. A pregeometry (X, cl) is modular if for any finite-dimensional
closed A,B ≤ X,

dim(A ∨B) = dim(A) + dim(B)− dim(A ∧B), (1)

i.e. dim(A/B) = dim(A/A ∧B).

Remark. The pregeometry of a minimal set D is modular iff A |⌣A∩B
B for any

aclD-closed A,B ⊆ D.
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Lemma 3.2. Suppose (X, cl) is such that (1) holds when dim(A) = 2. Then
(X, cl) is modular.

Proof. Suppose (1) holds when dim(A) = 2.
We first show that (1) holds when dim(A/A ∧ B) = 2. Say a1, a2 is a basis

for A over A ∧B; then setting A0 := cl(a1, a2), A0 ∧B = A0 ∧ (A ∧B) = cl(∅),
and A0 ∨ B ⊇ A0 ∨ (A ∧ B) = A so A0 ∨ B = A ∨ B. So indeed, dim(A/B) =
dim(A∨B/B) = dim(A0∨B/B) = dim(A0/A0∧B) = dim(A0) = dim(A/A∧B).

Now let A and B be arbitrary, and say n = dim(A/B) = dim(A ∨ B) −
dim(B). Decompose B ≤ A ∨B as an immediate chain of closed subsets

B = B0 ⪇ B1 ⪇ . . . ⪇ Bn = A ∨B.

Let Ai := A ∧Bi. Clearly dim(A/A ∧B) ≥ dim(A/B) = n, so it suffices to see
that dim(Ai+1/Ai) ≤ 1. Else, we have Ai ≤ A′ ≤ Ai+1 with dim(A′/Ai) = 2
and A′ closed; but then A′ ∧ Bi = Ai and A′ ∨ Bi ⊆ Bi+1, contradicting the
modularity established above. □

Exercise. A lattice is called modular if for any A,B,C with A ≤ C,

A ∨ (B ∧ C) = (A ∨B) ∧ C.

Show that (X, cl) is modular iff the lattice of finite-dimensional closed subsets
is modular.

Example 3.3 (Projective Geometries). Let V be a vector space over a division
ring K with closed sets the vector subspaces. For V infinite dimensional, this
is the pregeometry of the strongly minimal structure (V ; +, (k∗)k∈K). It is a
standard result of linear algebra that this is modular.

The corresponding geometry is obtained by projectivising - deleting 0 and
quotienting by the action of multiplication by scalars.

Fact 3.4. Any non-trivial modular homogeneous geometry of dimension ≥ 4 is
isomorphic to a projective geometry over a division ring.

The proof of this fact goes as follows. By classical theorems of geometric
algebra [Sei62, Chapter V], given an incidence relation between a set of points
and a set of lines such that

(i) any pair of points a ̸= b lies on a unique common line (a, b),

(ii) any pair of lines intersect in at most one point,

(iii) any line has at least three points,

(iv) if (a, b) and (c, d) intersect then (a, c) and (b, d) intersect (this is the
Veblan-Young axiom, sometimes referred to as Pasch’s axiom),

(v) Not all points are on a common plane, where a plane consists of the points
on lines (a0, b) where a0 is a fixed point and b varies through the points
on a fixed line not containing a0,

one can find a Desarguesian projective plane, and from this construct a division
ring, and conclude that the original incidence relation is isomorphic to a pro-
jective space over the division ring. We obtain such an incidence relation from
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our geometry by taking the points resp. lines to be the closed sets of dimension
1 resp. 2. Axioms (i) and (ii) are immediate, (iv) follows easily from modu-
larity, and (v) from the dimension assumption. For (iii), non-triviality yields a
relation a1 ∈ cl(A, a2) for some finite A with ai /∈ cl(A); then by modularity,
there is e ∈ cl(a1a2) ∩ cl(A), so the line (a1, a2) has at least three points. By
homogeneity, so has every line.

In the model theoretic context, essentially this construction actually arises
definably. IfD is a non-trivial modular minimal type, it is non-orthogonal to (i.e.
in generically defined finite-to-finite relatively definable correspondence with) a
minimal abelian group; its ring of definable finite-to-finite quasi-endomorphisms
is a division ring, and the geometry of this, and hence of D, is then projective
geometry over that division ring. See [Pil96, Remark 5.1.9] for details.

3.3 1-basedness and local modularity

Remark. Localisations of modular pregeometries are also modular. However,
the converse is false, as the following example shows.

Example 3.5 (Affine Geometry). Let V be an infinite dimensional vector space
over a division ring K, with closed sets the affine spaces, i.e. cosets of subspaces.
For char(K) ̸= 2, this is the pregeometry of the strongly minimal structure

(V ; ({z = λx+ (1− λ)y} | λ ∈ K)).

Affine geometries are not quite modular: parallel lines within a common
plane are dependent but have trivial intersection.

Localising at 0 yields the projective geometry of Example 3.3.

In this subsection, we establish a dichotomy between minimal sets which
have modular localisations and those which don’t. This dichotomy becomes
clearest when we include imaginaries in our considerations.

Definition. Deq := dcleq(D) ⊆ Meq.

Definition. D is 1-based if for any a ∈ Deq and B ⊆ Deq, Cb(a/B) ⊆ acleq(a).

Remark. The correct definition of 1-basedness in more general situations allows
B to be an arbitrary subset of Meq. But in our case this is equivalent to the
above definition, since Cb(a/B) = Cb(a/a) where a ⊆ Deq is a Morley sequence
in tp(a/B).

Lemma 3.6. D is 1-based iff for any acleq-closed subsets A,B ⊆ Deq,

A |⌣
A∩B

B.

Proof. Immediate from finite character of forking and the properties of canonical
bases. □

Lemma 3.7. 1-basedness is invariant under adding parameters to the language.

Proof. That a 1-based set remains 1-based on adding parameters follows from
the definition and the remark after it.

For the converse, suppose D is 1-based after adding C. Let A,B ⊆ Deq be
acleq closed, and let I := A ∩B; we must show A |⌣I

B.
By taking a realisation of tp(AB) independent from C, we may assume

AB |⌣C.
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Claim 3.8. I ′ := acleq(AC) ∩ acleq(BC) = acleq(IC)

Proof. AC |⌣A
AB and BC |⌣B

AB, so by considering Cb(I ′/AB), we have
I ′ |⌣I

AB. So since I ⊆ IC ⊆ I ′, also I ′ |⌣IC
ABC. But I ′ ⊆ acleq(ABC), so

I ′ = acleq(IC). □

Applying Lemma 3.6 in the expanded language, we deduce A |⌣IC
B. Mean-

while AB |⌣C and I ⊆ AB, so AB |⌣I
IC, and so A |⌣I

IC. So by transitivity,
A |⌣I

B. □

Definition. A
∧
-definable set X has elimination of imaginaries ( EI ), resp.

geometric EI (gEI), resp. weak EI (wEI), if for any c ∈ Xeq, there exists b ∈
X<ω such that dcleq(b) = dcleq(c), resp. acleq(b) = acleq(c), resp. dcleq(c) ⊆
dcleq(b) ⊆ acleq(c).

Remark. EI ⇒ wEI ⇒ gEI.

Lemma 3.9. Suppose D has gEI. Then D is modular iff D is 1-based.

Proof. By gEI and finite character of acleq, for A = acleq(A) ⊆ Deq we have
A = acleq(A ∩D). So for A,B ⊆ Deq acleq-closed,

A |⌣
A∩B

B ⇔ (A ∩D) |⌣
A∩B∩D

(B ∩D).

We conclude on noting that for A ⊆ D, A = aclD(A) ⇒ A = acleq(A) ∩D. □

Lemma 3.10. Let a ⊨ p↾(ω)
∅ . Then after expanding the language by parameters

for a, D has wEI.

Proof. Working in the original language, we will prove wEI in the expanded
language by showing that if c ∈ dcleq(D, a) = Deq, then there exists b ∈ D<ω

such that c ∈ dcleq(ba) and b ∈ acleq(ca).
So say c = f(b′) with b′ ∈ Dn and f a partial function defined over ∅. It

suffices to show that f−1(c) ∩ acleq(ca) ̸= ∅. In fact we will prove by induction
on n the stronger statement that if ∅ ≠ X ⊆ Dn is

∧
-definable over c ∈ Deq,

then X ∩ acleq(ca) ̸= ∅.
First suppose n = 1. Then either X is finite, in which case any point is

algebraic over c, or else p↾c(x) ⊨ x ∈ X, in which case we are done as ai ⊨ p↾c
for some i, since c ∈ Deq.

(Indeed, say U(c) = k, and suppose U(ai/c) = 0 for i = 0, . . . , k. Then
U(c/a<iai) = U(cai/a<i)−U(ai/a<i) = U(ai/ca<i) +U(c/a<i)−U(ai/a<i) =
U(c/a<i)− 1, so we have a contradiction.)

If n > 1, consider a co-ordinate projection π : X → D. By compactness
and saturation, π(X) is also

∧
-definable over c. By the n = 1 case, say b ∈

π(X) ∩ acleq(c); then the fibre π−1(b), considered as a
∧
-definable subset of

Dn−1, is over bc, so by induction has a point algebraic over bc and hence over
c. □

It follows from Lemmas 3.7, 3.9, and 3.10 that D is 1-based iff some locali-
sation is modular. But we now prove a sharper result.

Definition. D is linear if whenever a, b ∈ D and C ⊆ Deq and U(ab/C) = 1,
then U(Cb(ab/C)) ≤ 1.

(We can think of this asD having “no 2-dimensional family of plane curves”.)
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Example 3.11. An algebraically closed field is not linear, since e.g. there is a two-
dimensional family of straight lines in the plane. We can see this in terms of the
definition of linearity as follows. Let a, b, c, d be generic such that b = ca+d. So
(a, b) is a generic point of the algebraic variety Vcd = {(x, y) | y = cx+d}, whose
field of definition is generated by c, d. Then U(ab/cd) = 1, but Cb(ab/cd) =
dcleq(cd) and U(cd) = 2.

Definition. A pregeometry (X, cl) is locally modular if the localisation at any
e ∈ X \ cl(∅) is modular.

Theorem 3.12. The following are equivalent:

(i) D is 1-based;

(ii) D is linear;

(iii) D is locally modular.

Proof.

(i) ⇒ (ii) : Let a, b, C be as in the definition of linearity. By 1-basedness, d :=
Cb(ab/C) ⊆ acleq(ab). So U(d) = U(abd)− U(ab/d) ≤ 2− 1 = 1.

(ii) ⇒ (iii) : Let e ∈ D \ aclD(∅). We prove modularity of the localisation to e via

Lemma 3.2. So suppose (a, b) ⊨ p↾(2)e and e ∈ C = aclD(C) ⊆ D, and let
I := aclD(abe) ∩ C; we must show ab |⌣I

C. This is clear if U(ab/C) = 0
or U(ab/C) = 2, so suppose U(ab/C) = 1. So we must show

aclD(e) ⪇ I.

Let d := Cb(ab/C). By linearity, U(d) ≤ 1. Since ab ̸ |⌣C, we must have
U(d) = 1. Note U(d/ab) = U(dab)− U(ab) = U(ab/d) + U(d)− U(ab) =
1+1−2 = 0, so d ∈ acleq(ab). So acleq(ed)∩D ⊆ I. So it suffices to show

aclD(e) ⪇ acleq(ed) ∩D. (*)

If a ̸ |⌣ d then a witnesses (*). Else, tp(a/d) = tp(e/d) = p↾d, since e |⌣ d
as d ∈ acleq(ab). So say ab ≡d ef . Then f witnesses (*).

(iii) ⇒ (i) : Add parameters for an infinite Morley sequence in p↾∅. Then D has wEI
by Lemma 3.10, and D is modular, so D is 1-based by Lemma 3.9. But
then D was 1-based in the original language, by Lemma 3.7.

□

3.4 Trichotomy

Combining the two dividing lines of Fact 3.4 and Theorem 3.12, we obtain the
following form of Zilber’s Weak Trichotomy Theorem:

Theorem 3.13. If D is a minimal set in a stable theory, then precisely one of
the following holds:

• The pregeometry of D is trivial.
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• The pregeometry of D is locally modular but non-trivial; equivalently, af-
ter localising at a non-algebraic point, the geometry of D is (“definably”)
projective geometry over a division ring.

• The pregeometry of D is not locally modular; equivalently, D defines a 2-
dimensional family of plane curves (and in fact interprets a pseudoplane
- see below).

Historical Remark. In our Example 3.11 of a 2-dimensional family of plane
curves, the same classical results of geometry which we referred to in Fact 3.4
apply to allow one to definably reconstruct the field from the incidence rela-
tion. Meanwhile, with a little extra work, one can extract from nonlinearity
a particularly canonical kind of 2-dimensional family of “plane curves“ known
as a pseudoplane, which dimension-theoretically looks just like Example 3.11
(or rather its projective counterpart) - namely, each curve has infinitely many
points, each point lies on infinitely many curves, a pair of curves has finite in-
tersection, and a pair of points lie on finitely many common curves1. Given also
Macintyre’s theorem that any ω-stable division ring is an algebraically closed
field, one might reasonably hope that Example 3.11 is characteristic of strongly
minimal sets which are not locally modular, and hence that any such is bi-
interpretable with an algebraically closed field in this way, and so in particular
that the geometry of a minimal set which is not locally modular is that of an
algebraically closed field. This is known as Zilber’s Trichotomy Conjecture.

Reality is more complicated. Hrushovski found a counterexample to this
conjecture in the early 90s, with a combinatorial construction of a strongly
minimal set which is not locally modular but which doesn’t even interpret an
infinite group. He also produced a variety of ”pathological” strongly minimal
sets, such as two algebraically closed field structures of different characteristics
on the same set. At the time of writing, there is no clear path to a classification
of strongly minimal sets, or even of their geometries; certainly we know it must
be much more involved than a trichotomy.

However, there are situations where the Trichotomy Conjecture does go
through. Most notably, this is the case for Zariski Geometries [HZ96]. We
will not discuss Zariski Geometries in this course, but instead another earlier
incarnation of the same principle - unimodular minimal sets, which we will see
are locally modular by proving that the Trichotomy Conjecture is valid for them
and then seeing that the field case is impossible.

Fact 3.14. If D is locally modular but not modular, its geometry is affine ge-
ometry over a division ring ([Pil96, Proposition 5.2.4]).

1Generically, this means that (possibly after adding parameters) we have b1, b2 such that
for {i, j} = {1, 2}, we have U(bi) = 2, U(bi/bj) = 1, and Cb(bi/bj) = bj . In particular, r :=
tp(b1b2) satisfies that r(a,D) and r(D, b) are infinite when non-empty, and r(a,D)∩ r(a′, D)
and r(D, b)∩r(D, b′) are finite for a ̸= a′ and b ̸= b′. If D is strongly minimal, by compactness
and elimination of ∃∞ one can find a formula I(x, y) ∈ r with the same properties; by
definition, I is then the incidence relation of an intepretable pseudoplane.

Nonlinearity gives b1, b2 with all the above properties except that we only have U(b2) ≥ 2
and don’t necessarily have Cb(b2/b1) = b1. We can reduce to U(b2) = 2 by working over a
Morley sequence in tp(b1/b2) of length U(b2)−2 independent from b1 over b2, and by finiteness
of canonical bases (Lemma 3.15 below) we can then replace b1 with Cb(b2/b1) (which is
interalgebraic with b1). Note that unlike the family of plane curves given by nonlinearity, the
points of the pseudoplane we obtain this way are not necessarily in D2.
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3.5 Finiteness of canonical bases in Deq

If D is strongly minimal, it is totally transcendental, and so types of elements
of Deq have finite canonical bases. In this technical subsection, we prove that
this conclusion holds for arbitrary minimal D. We will make repeated use of
this lemma in later sections, but a reader who is happy to restrict attention to
strongly minimal D may omit it.

Lemma 3.15. Let C ⊆ Meq and a ∈ Deq, and let q := tp(a/C).

(a) If q is stationary, then Cb(q) is (dcleq of) an element of Deq.

(b) q has finitely many global non-forking extensions.

Proof. We first prove (a) and (b) under the assumption that a ∈ Dn.

(a) If a = (a1, . . . , an), after an appropriate co-ordinate permutation say a :=

(a1, . . . , ak) ⊨ p↾(k)C and b := (ak+1, . . . , an) ∈ acleq(C, a).

Say ϕc(a, y) ∈ tp(b/Ca) with c ∈ dcleq(C) and |ϕc(a,M)| minimal, so

ϕc(a, y) isolates tp(b/Ca). Then clearly q(x, y) is equivalent to p↾(k)C (x) ∪
{ϕc(x, y)}, and the global non-forking extension q of q is equivalent to
p(k)(x) ∪ {ϕc(x, y)}. So q is invariant over c, and so Cb(q) ∈ dcleq(c).
Since also Cb(q) is in dcleq of a Morley sequence in q (by [Pal17, Proposi-
tion 4.19]), we conclude Cb(q) ∈ Deq, as required2.

(b) If q is a global non-forking extension, then Cb(q) ∈ acleq(C), and the global
non-forking extensions of q are the conjugates of q over C, which are in
bijective correspondence with the finitely many conjugates of Cb(q) over C.

Now for arbitrary a ∈ Deq, say a = f(b) where b ∈ Dn and f is ∅-definable,
(b) holds since it holds for tp(b/C).

It remains to deduce (a). So suppose q is stationary.

Claim 3.16 ([Pil96, Lemma 1.3.19, first part]). Let q be a stationary type in a
stable theory with U(q↾∅) < ∞. Then there is e ∈ Cb(q) with Cb(q) ⊆ acleq(e).

Proof. Suppose there is no e ∈ Cb(q) over which q does not fork. We build an
infinite sequence ∅ = e0, e1, . . . ∈ Cb(q) such that dcleq(ei) ⊆ dcleq(ei+1) and
q↾ei+1

forks over ei, contradicting U-rankedness of q↾∅. Indeed, given ei ∈ Cb(q),
q↾Cb(q) forks over ei; then since forking is witnessed by a formula, already q↾ei+1

forks over ei for some ei+1 ∈ Cb(q), and we may assume ei ∈ dcleq(ei+1). □

Now U(q↾∅) = U(a) ≤ U(b) ≤ n, so let e be as in the Claim for q = tp(a/C);
then by (b) applied to tp(a/e), Cb(q) has only finitely many conjugates over e,
and hence Cb(q) = dcleq(ee′) for some finite part e′ of acleq(e), as required. □

2Thanks to the anonymous reviewer for a suggestion which led to an optimisation of this
part of the proof.
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4 Unimodularity

4.1 Preliminaries

Throughout this section, D is a minimal set over ∅.

Definition. If a ∈ acleq(B), then mult(a/B) = |{a′ ∈ Meq | a′ ≡B a}|.

Remark. Multiplicity is multiplicative: mult(ab/C) = mult(a/bC)mult(b/C).

Lemma 4.1. If tp(a/c) is stationary and b ∈ acleq(c), then

mult(b/ac) = mult(b/c).

Proof. Suppose σ ∈ Aut(Meq/c). By stationarity, tp(a/c) ⊨ tp(a/cb). So ab ≡c

aσ
−1

b ≡c ab
σ, so b ≡ac b

σ. □

4.2 Unimodularity

Definition. D is unimodular if whenever ai ⊨ p↾(n)∅ , i = 1, 2, and aclD(a1) =
aclD(a2), then mult(a1/a2) = mult(a2/a1).

Example. An algebraically closed field is not unimodular: consider a and a2

where a is generic.

In Section 7, we will show

Theorem 4.2 (Hrushovski). If D is unimodular, then D is 1-based.

ω-categorical theories provide the motivating example of unimodular mini-
mal sets:

Lemma 4.3. If D is a minimal set in an ω-categorical theory, then D is uni-
modular.

Proof. By Ryll-Nardzewski, aclD is locally finite, i.e. aclD(A) is finite for A

finite. Let ai ⊨ p↾(n)∅ , i = 1, 2, be interalgebraic, and let X := aclD(ai).

For c ∈ Xk, let multX(c) := |{c′ ∈ X | c′ ≡ c}|.
Then

mult(a1/a2)multX(a2) = multX(a1a2) = mult(a2/a1)multX(a1)

and multX(a1) = multX(a2) since a1 ≡ a2. So mult(a1/a2) = mult(a2/a1). □

So by Theorem 4.2, minimal sets in ω-categorical theories are locally mod-
ular. This result is due originally to Zilber, and forms a key part of his study
of totally categorical theories (uncountably categorical theories which are also
ω-categorical); Hrushovski defined unimodularity as a way of understanding
Zilber’s proof (specifically, what Hrushovski terms “a series of computations of
puzzling success”).

It is also worth mentioning that this yields the purely combinatorial con-
sequence that any homogeneous locally finite pregeometry is locally modular,
by considering it as an ω-categorical strongly minimal structure in the language
with a predicate for x ∈ cl(y1, . . . , yn) for each n (see [Pil96, Proposition 2.4.22]).

Pseudofinite strongly minimal sets provide another example of unimodular-
ity, via the pigeonhole principle. This was observed by Pillay in [Pil14]; we give
a proof following the lines of his argument.
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Lemma 4.4. If D is a strongly minimal set definable in a pseudofinite theory
T , then D is unimodular.

Proof. T is pseudofinite so has a model which is an ultraproduct of finite struc-
tures, say M = ΠUMi ⊨ T with Mi finite. For X ∅-definable, let |X| :=
ΠU | XMi | ∈ NU .

Claim 4.5. Let X ⊆ Dn be ∅-definable. Then there exists a unique polynomial
pX(q) ∈ Z[q] of degree RM(X) such that

|X| = pX(|D|)

Proof. It is clear that if such a polynomial exists, it is unique. We show exis-
tence.

If X = ∅, then pX(q) := 0 is as required.
Else, say RM(X) = d ≥ 0. We can find k ∈ N and ∅-definable X ′ ⊆ X with

RM(X ′) = d, and a co-ordinate projection map π : X ′ → Dd with all fibres of
size k and RM(π(X ′)) = d.

By induction on Morley rank and degree, we have polynomials as in the
statement for the cardinalities of X \X ′ and Dd \ π(X ′). Then

pX(q) := pX\X′(q) + k(qd − pDd\π(X′)(q))

is as required. □

Now let ai ∈ Dn, i = 1, 2, be interalgebraic generics. Let X have minimal
Morley degree among ∅-definable sets with (a1, a2) ∈ X and RM(X) = n.

Let ki := mult(a1a2/ai). Then for i = 1, 2, there exists ∅-definable X ′
i ⊆ X

with RM(X ′
i) = n and a projection πi : X ′

i → Dn with fibres of size ki and
RM(πi(X

′)) = n. Then RM(X \ X ′
i) < n by the minimality assumption on

dM(X), and RM(Dn \ π(X ′
i)) < n, so the corresponding polynomials have

degree < n. So by the construction in the proof of the claim, the leading term
of pX(q) is kiq

n. But pX(q) is well-defined, so k1 = k2. □

So by Theorem 4.2, strongly minimal pseudofinite sets are locally modular.
In fact, the theorem of Zilber and Hrushovski that ω-categorical strongly

minimal sets are quasifinitely, but not finitely, axiomatisable implies that they
are pseudofinite, so in the end this second example is a generalisation of the
first.

Using two further results which we won’t have time to develop in this course
- that 1-basedness of a finite U-rank theory is equivalent to 1-basedness of its
minimal types, and Buechler’s dichotomy which says that any minimal type in
a superstable theory which is not locally modular is actually strongly minimal,
Pillay [Pil14] deduces:

Corollary 4.6. Any pseudofinite stable theory of finite U-rank is 1-based.

5 Germs of definable functions, and Hrushovski-
Weil

Notation. Due to alphabetic exhaustion, in this section and the next we will
often use x, y, z as elements of Meq rather than variables.
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5.1 Germs of definable functions

Definition. Let p, q ∈ S(M). If f1, f2 are definable partial functions defined
at p, meaning p(x) ⊨ x ∈ dom(fi), then say they have the same germ at p if
p(x) ⊨ f1(x) = f2(x).

The germ of f at p is the equivalence class f̃ under this equivalence relation.

Write f̃ : p → q if p(x) ⊨ q(f(x)) for some (any) representative f (i.e.
f∗(p) = q).

Given f̃ : p → q and σ ∈ Aut(M), we obtain a well-defined germ f̃σ : pσ →
qσ. Say a (possibly long) tuple b in Meq is a code for f̃ if ∀σ ∈ Aut(M).(b =

b
σ ⇔ f̃ = f̃σ), and then define ⌜f̃ ⌝ := dcleq(b). Here, f̃ = f̃σ should be

understood as implying p = pσ. We will see that in a stable theory, f̃ has a
code b ∈ Meq if Cb(p) ∈ Meq.

If p and q are stationary types and p, q their global non-forking extensions,
a germ at p is defined as a germ at p, and f̃ : p → q means f̃ : p → q.

Remark. Composition of germs on global types is well-defined, hence composi-
tion of germs on stationary types is well-defined. So we have a category with
objects the stationary types, and morphisms the germs. Write f̃ : p

∼−→ q if f̃ is
invertible in this category. This is equivalent to f̃ being injective on p: indeed,
this is clearly required, and if it holds then by compactness f is already injective
on some ϕ ∈ p, and so f has a well-defined definable inverse.

Note that ⌜f̃ ◦ g̃ ⌝ ⊆ dcleq(⌜f̃ ⌝, ⌜g̃ ⌝), and ⌜f̃−1 ⌝ = ⌜f̃ ⌝.

Remark. Since we work in a stable theory, p and q are definable. Suppose p is
∅-definable. Then given a ∅-definable family fz of partial functions, equality of
germs at p is definable by the equivalence relation E(b, c) defined as

dpx.(x ∈ dom(fb) ∩ dom(fc) ∧ fb(x) = fc(x)),

i.e. E(b, c) ⇔ f̃b = f̃c, and then since f̃σ
b = f̃bσ , we have

⌜f̃b ⌝ = dcleq(b/E).

Definition. If p, q ∈ S(∅) are stationary, and a germ f̃ : p → q has a repre-

sentative f defined over b, and a ⊨ p↾b, we define f̃(a) := f(a) ⊨ q↾b. This
is well-defined: if g = gc is another representative defined over some c such
that also a ⊨ p↾c, then let e := ⌜f̃ ⌝ ⊆ dcleq(b) ∩ dcleq(c) and let c′ ≡e c with
c′ |⌣e

abc. Then a ⊨ p↾bc′ and a ⊨ pcc′ , so f(a) = gc′(a) = gc(a).

Definition. If p, q, s ∈ S(∅) are stationary, a family f̃s of germs p → q is the

family f̃s := (f̃b)b⊨s of germs at p of a ∅-definable family fz of partial functions,

which is such that f̃b : p → q whenever b ⊨ s.
The family is canonical if b is a code for f̃b, for all b ⊨ s.
The family is generically transitive if f̃b(x) |⌣ x for some (any) b and x such

that b ⊨ s and x ⊨ p↾b.

Remark. f̃s is generically transitive iff when x ⊨ p and y ⊨ q↾x, there exists

b ⊨ s such that f̃b(x) = y.
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Remark. Suppose p, q, s ∈ S(∅) are stationary, and f̃s is a family of germs p → q.

Let b ⊨ s and x ⊨ p↾b, and let y = f̃b(x). Then

x |⌣ b; y |⌣ b; y ∈ dcleq(bx). (2)

Conversely, if (b, x, y) satisfy (2), and s := tp(b), p := tp(x), and q := tp(y)

are stationary, let fb(x) = y be a formula witnessing y ∈ dcleq(bx). Then f̃s is
a family of germs p → q.

Lemma 5.1. In the correspondence of the previous remark,

(i) f̃b can be taken to be invertible iff also x ∈ dcleq(by);

(ii) the family f̃s is generically transitive iff x |⌣ y;

(iii) ⌜f̃b ⌝ = Cb(xy/b) (so f̃s is canonical iff Cb(xy/b) = b).

Proof.

(i) Exercise.

(ii) Immediate from the definition.

(iii) Let σ ∈ Aut(M). Let p be the global nonforking extension of p, so pσ = p.
Let r be the global nonforking extension of stp(xy/b). Then r is equivalent
to p(x) ∪ {y = fb(x)}.

Cb(xy/b)σ = Cb(xy/b) ⇔ Cb(r)σ = Cb(r)

⇔ rσ = r

⇔ p(x) ∪ {y = fbσ (x)} ≡ p(x) ∪ {y = fb(x)}
⇔ p(x) ⊨ fbσ (x) = fb(x)

⇔ f̃σ
b = f̃b.

□

Remark. Replacing b with Cb(xy/b) preserves the conditions of (2). By Lemma canon-
FamCB(iii), this shows that any germ is part of a canonical family. This is
sometimes known as the existence of strong codes for germs in stable theories.

5.2 Hrushovski-Weil

Recall that a
∧
-definable homogeneous space (G,S) consists of a

∧
-definable

group G and a
∧
-definable set S, and a relatively definable transitive action of

G on S. We say G is connected if it has no relatively definable proper subgroup
of finite index, and we say (G,S) is connected if G is connected. We say (G,S)
is faithful if the action is faithful, i.e. only the identity element of G acts trivially
on S. Recall also the notion of a generic type of a homogeneous space [Pal17,
Definition 6.1].

Lemma 5.2 (Hrushovski-Weil). Let p, s ∈ S(∅) be stationary, and suppose f̃s
is a generically transitive canonical family of invertible germs p → p. Suppose
that f̃s is closed under inverse and generic composition, meaning that for b ⊨ s
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there exists b′ ⊨ s such that f̃−1
b = f̃b′ , and for b1b2 ⊨ s(2), there exists b3 such

that
f̃b1 ◦ f̃b2 = f̃b3

and bib3 ⊨ s(2) for i = 1, 2.
Then there exists a connected faithful

∧
-definable/∅ homogeneous space (G,S),

a definable embedding of s into G as its unique generic type, and a definable
embedding of p into S as its unique generic type, such that the generic action
of s on p agrees with that of G on S, i.e. f̃b(a) = b ∗ a for b ⊨ s and a ⊨ p↾b.

Remark. This is essentially the Hrushovski-Weil “group chunk” theorem. There,
one starts with a generically associative binary operation ∗, and applies the
lemma to the germs of x 7→ a ∗ x to obtain a group structure extending ∗.

Proof. Let G be the group of germs generated by f̃s.

Claim 5.3. Any element of G is a composition of two generators.

Proof. Since the family is closed under inverses, the identity is the composition
of two generators. Since s is a complete type, it follows from generic compos-
ability that any generator is the composition of two generators. So it suffices to
see that any composition of three generators

f̃b1 ◦ f̃b2 ◦ f̃b3

is the composition of two.
Let b′ ⊨ s↾b1b2b3 . Then

f̃b1 ◦ f̃b2 ◦ f̃b3 = f̃b1 ◦ f̃b′ ◦ f̃−1
b′ ◦ f̃b2 ◦ f̃b3

Now b′ |⌣ b2, so say f̃−1
b′ ◦ f̃b2 = f̃b′′ with b′′ ⊨ s independent from b′ and from

b2. Now b′ |⌣b2
b3, so b′′ |⌣b2

b3, since b
′′ ∈ dcleq(b′b2), so since b′′ |⌣ b2, we have

b′′ |⌣ b3. Also b′ |⌣ b1. So the germs f̃b1 ◦ f̃b′ and f̃−1
b′ ◦ f̃b2 ◦ f̃b3 appear in the

family f̃s. □

Now G is
∧
-definable as pairs of realisations of s, modulo equality of the

corresponding composition of germs, and the group operation is defined by
composition of germs. We identify s with its image in G under the embedding
b 7→ f̃b, which is a completion of G as a

∧
-definable group.

We show that G is connected with generic type s by showing that if g ∈ G,
then for some (and hence any) b ⊨ s↾g, we have g ∗ b ⊨ s↾g. This holds for g ⊨ s,
by assumption. Let g ∈ G, say g = g1 ∗ g2 with g1, g2 ⊨ s. Let b ⊨ s↾g1,g2 . Then
g2 ∗ b ⊨ s↾g1,g2 , and so g1 ∗ g2 ∗ b ⊨ s↾g1,g2 . Now g = g1 ∗ g2 ∈ dcleq(g1, g2), so
b ⊨ s↾g and g ∗ b ⊨ s↾g, as required.

G acts generically on p by application of germs, i.e. g ∗ a := g(a) if a ⊨ p↾g.
Now define S := (G× p)/E where (g, a)E(g′, a′) iff (h ∗ g) ∗ a = (h ∗ g′) ∗ a′

for h ⊨ s↾aa′gg′ , which is definable by definability of s. Define the action of G
by h ∗ ((g, a)/E) := (h ∗ g, a)/E. This is well-defined, since if (g, a)E(g′, a′) and
h ∈ G, then if h′ ⊨ s↾g,g′,a,a′,h, then also h′ ∗ h ⊨ sg,g′,a,a′,h by genericity, and
we have h′ ∗ h ∗ g ∗ a = h′ ∗ h ∗ g′ ∗ a′, so (h ∗ g, a)E(h ∗ g′, a′). p embeds via
a 7→ (1, a)/E.
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We show transitivity. Let a, a′ ⊨ p, and we show (1, a′)/E ∈ G ∗ (1, a)/E;
this suffices for transitivity, since clearly (G, a′)/E ⊆ G∗(1, a′)/E. Let c ⊨ p↾aa′ .

Then by generic transitivity of f̃s, there exist g, g′ ⊨ s such that g ∗ a = c and
g′ ∗ c = a′. Then (h ∗ g) ∗ a = h ∗ c for h ⊨ s↾acg, so (g, a)E(1, c). Similarly
(g′, c)E(1, a′). So (g′ ∗ g) ∗ (1, a)/E = g′ ∗ (g, a)/E = g′ ∗ (1, c)/E = (1, a′)/E.

For faithfulness of the action: suppose g acts trivially, and let a ⊨ p↾g. Then
(g, a)E(1, a), so let h ⊨ s↾ag; then (h∗g)∗a = h∗a. But h |⌣g

a, so h, h∗g |⌣g
a,

so h, h ∗ g |⌣ a since g |⌣ a. So h ∗ g = h as germs, so g = 1.
Finally, we claim that p is the unique generic type. If g ∈ G and a ⊨ p↾g,

then g ∗ a ⊨ p↾g as this is the action of a germ. But G acts transitively on the
generic types [Pal17, Proposition 6.13(2)]. So p is the unique generic type. □

In the context of the group configuration, we work with definable families of
bijections between two types, rather than from a type to itself. The following
key lemma gives a condition for this to give rise to a

∧
-definable group.

Lemma 5.4 (”Hrushovski-Weil for bijections”). Suppose acleq(∅) = dcleq(∅),
let p, q, r ∈ S(∅), and suppose f̃r is a generically transitive canonical family of
invertible germs p → q. Let b1 and b2 be independent realisations of r and say

f̃−1
b1

◦ f̃b2 = g̃c

with g̃s a canonical family of invertible germs p → p, where s = tp(c), and
suppose

c |⌣ bi for i = 1, 2. (3)

Then g̃s satisfies the assumptions, and hence the conclusions, of Lemma 5.2.

Proof. Let c′ ⊨ s↾c. Let b ⊨ r↾c,c′ . Then by (3), bc ≡ b2c, so say b′1bc ≡ b1b2c;
similarly, bc′ ≡ b1c, so say bb′2c

′ ≡ b1b2c. Then

g̃c ◦ g̃c′ = f̃−1
b′1

◦ f̃b ◦ f̃−1
b ◦ f̃b′2 = f̃−1

b′1
◦ f̃b′2 .
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Now b′i |⌣ b by choice of b′i, since b1 |⌣ b2. Also b′1 |⌣b
b′2, since c |⌣b

c′, since
c |⌣ c′ and b |⌣ cc′. Hence b′1 |⌣ bb′2, so b′1 |⌣ b′2 and b |⌣ b′1b

′
2.

So (b′1, b
′
2) ⊨ r(2), so say f̃−1

b′1
◦ f̃b′2 = g̃c′′ with c′′ ⊨ s↾b′i .

Then since b |⌣ b′1b
′
2, we have b |⌣ c′′b′1, hence c

′′ |⌣ b′1b, and so c′′ |⌣ c. Sim-
ilarly c′′ |⌣ c′.

Finally, we must check that g̃s is generically transitive. So let x ⊨ p, let
b′2 ⊨ r↾x, and let b′1 ⊨ r↾xb′2 . Let y := f̃b′2(x) and z := f̃−1

b′1
(y). Then y |⌣ x by

generic transitivity, and b′1 |⌣ yx, so y |⌣ xb′1, i.e. y ⊨ q↾xb′1 , and so z ⊨ p↾xb′1 ,
and in particular x |⌣ z. Since b′1b

′
2 ≡ b1b2, this proves generic transitivity of

g̃s. □

Exercise. Assuming finite U-rank, (3) holds iff U(s) = U(r).
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6 The Group Configuration Theorem

We continue to work in a monster model Meq of an arbitrary stable theory T .

Definition.

c
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(a, b, c, x, y, z) forms a group configuration if

• any non-collinear triple in the above diagram is independent,

• acleq(ab) = acleq(bc) = acleq(ac),

• acleq(ax) = acleq(ay) and acleq(a) = Cb(xy/a); similarly for bzy and czx.

Remark. Suppose (G,S) is a connected faithful
∧
-definable/∅ homogeneous

space. Let (a, b, x) be an independent triple with a, b generics of G and x a
generic of S, and define b := c ∗ a, x := a ∗ y, z := b ∗ y (so z = c ∗ a ∗ y = c ∗ x).
Then (a, b, c, x, y, z) forms a group configuration. (It follows from faithfulness
that e.g. Cb(xy/a) = a; see [Pil96, Remark 4.1] for a proof.)

Call such an (a, b, c, x, y, z) a group configuration of (G,S).

Theorem 6.1 (Group Configuration Theorem). Suppose (a, b, c, x, y, z) forms a
group configuration. Then, after possibly expanding the language by parameters
B with B |⌣ abcxyz, there is a connected faithful

∧
-definable/∅ homogeneous

space (G,S), and a group configuration (a′, b′, c′, x′, y′, z′) of (G,S), such that
each unprimed element is interalgebraic with the corresponding primed element.

Example. In ACF, we can restate as follows: (b, z, y) extends to a group config-
uration (a, b, c, x, y, z) iff it is a generic point of a ”pseudo-action”, i.e. iff there
is an algebraic group G acting birationally on a variety S, and there are gener-
ically finite-to-finite algebraic correspondences f : G′ ↔ G, g1 : S′

1 ↔ S and
g2 : S′

2 ↔ S, such that (b, z, y) is a generic point of the image under (f, g1, g2)
of the graph Γ∗ ⊆ G× S × S of the action. (c.f. [HZ96, 6.2].)

Remark. The above diagram is the traditional one, but the following alternative
diagram is also suggestive (think of it as a commuting triangle)
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Proof. We prove this by repeatedly applying the following two operations to
transform (a, b, c, x, y, z) into the group configuration of a homogeneous space:

• add independent parameters to the language - we refer to this as “base-
changing” to the parameters;

• replace any point of the configuration with an interalgebraic point of Meq

- we refer to this as e.g. “interalgebraically replacing” b with b′, implicitly
claiming that acleq(b) = acleq(b′).

Note that these operations transform a group configuration into a group
configuration.

By base-changing whenever necessary, we will assume throughout that acleq(∅) =
dcleq(∅), so types over ∅ are stationary.

The proof will comprise three steps:

(I) “reduce acleq to dcleq” to show we may assume (b, z, y) to define a gener-
ically transitive canonical family of invertible germs via Lemma 5.1;

(II) prove this family satisfies the independence assumption of Lemma 5.4;

(III) connect the resulting homogeneous space to the group configuration.

And so it begins.

(I) First, a claim.

Claim 6.2. If (a, b, c, x, y, z) is a group configuration and if we let z̃ ∈
Meq be the set z̃ = {z1, . . . , zd} of conjugates zi of z over ybxc, then z̃ is
interalgebraic with z.

(Here, {z1, . . . , zd} := (z1, . . . , zd)/Sd is the quotient of (z1, . . . , zd) under
the action by permutations of the symmetric group Sd.)

Proof. It suffices that the conjugates be interalgebraic, acleq(zi) = acleq(zj).
Indeed, then acleq(z̃) ⊆ acleq(z1, . . . , zn) = acleq(z); and z ∈ acleq(z̃),
since it satisfies the algebraic formula z ∈ z̃.

But indeed: c |⌣z
b, so cx |⌣z

by, so setting B := acleq(cx) ∩ acleq(by),
we have B |⌣z

B so B ⊆ acleq(z). But z ∈ B. So acleq(z) = B, and so
acleq(zi) = B for each zi. So acleq(zi) = acleq(z). □

Now let a′ ⊨ tp(a)↾abcxyz. Say a′x′c′ ≡ybz axc. So (a′, b, c′, x′, y, z) is also
a group configuration. So by the Claim, the set z̃′ of conjugates of z over
ybx′c′ is interalgebraic with z. Note that z̃′ ∈ dcleq(ybx′c′).
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So base-change to a′, and interalgebraically replace y with yx′, b with bc′,
and z with z̃′. The group configuration now satisfies

z ∈ dcleq(by).

Repeating this procedure by base-changing to an independent copy of b
and enlarging a and y and interalgebraically replacing x with an x̃, we
can also ensure that

x ∈ dcleq(ay).

Repeat once more: base-change to an independent copy c′ of c, let a′x′c′ ≡ybz

axc, let ỹ be the set of conjugates of y over ba′zx′.

Now since x′ ∈ dcleq(a′y) and z ∈ dcleq(by), we have zx′ ∈ dcleq(ba′y)
and so (e.g. by considering automorphisms) zx′ ∈ dcleq(ba′ỹ). So after
interalgebraically replacing b with ba′, z with zx′, and y with ỹ, as in the
previous two cases y ∈ dcleq(bz), and now also z ∈ dcleq(by).

Finally, interalgebraically replace b with Cb(yz/b), noting that Cb(yz/b)
is an element of Meq by Lemma 5.1(iii), and is interalgebraic with b by
definition of a group configuration.

(II) Setting p := tp(y), q := tp(z), r := tp(b), (b, y, z) now corresponds via

Lemma 5.1 to a generically transitive canonical family f̃r of invertible
germs p → q.

We aim to apply Lemma 5.4 to obtain a group, so we must show that for
b′ ⊨ r↾b, if dcl

eq(d) = ⌜f̃−1
b′ ◦ f̃b ⌝, we have d |⌣ b and d |⌣ b′.

This holds for all b′ ⊨ r↾b or none, so we may assume b′ |⌣ abcxyz. Then
b′ ≡xcz b, so say b′y′a′ ≡xcz bya.

Claim 6.3. y′ |⌣ bb′.

Proof. b′ |⌣ bz and so b′ |⌣z
b, and b |⌣ z, so b |⌣ b′z, hence z |⌣b′

b. Now
y′ ∈ acleq(zb′), so y′ |⌣b′

b. But y′ |⌣ b′, so y′ |⌣ bb′. □

We also have y |⌣ bb′ and f ′−1
b (fb(y)) = y′, so by Lemma 5.1, dcleq(d) =

⌜f̃ ′−1
b ◦ f̃b ⌝ = Cb(yy′/bb′).

Now y |⌣ abc, and b′ |⌣ yabc, so y |⌣ abcb′, and since a′ ∈ acleq(cb′), we
have y |⌣ aa′bb′. Since also y′ ∈ acleq(yaa′), we have

yy′ |⌣
aa′

bb′.

Similarly,
yy′ |⌣

bb′
aa′.

So Cb(yy′/bb′) = Cb(yy′/aa′bb′) = Cb(yy′/aa′), so d ∈ acleq(aa′).

Claim 6.4. b |⌣ aa′ and b′ |⌣ aa′.
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Proof. b |⌣c
b′, and then since a ∈ acleq(cb) and a′ ∈ acleq(cb′), we have

ab |⌣c
a′b′,

So a′ |⌣c
ab; but a′ |⌣ c, so a′ |⌣ ab, so b |⌣a

a′, and then since b |⌣ a, we
have b |⌣ aa′. Similarly, it follows from a |⌣c

a′b′ that b′ |⌣ aa′. □

So b |⌣ d and b′ |⌣ d, as required.

(III) Let (G,S) be the connected faithful
∧
-definable connected homogeneous

space obtained by Lemma 5.4 from (II). So p is the generic type of S. Let
sG be the generic type of G.

Finally, we must show that the original group configuration is interal-
gebraic with a group configuration of (G,S). This will involve further
base-change.

First, let b′ ⊨ tp(b)↾abcxyz. Say y′b′ ≡z yb. Say dcleq(g) = ⌜f̃−1
b′ ◦ f̃b ⌝. By

the construction of (G,S), we have g ⊨ sG, and y, y′ ⊨ p, and y′ = g ∗ y.
Base-change to b′, and interalgebraically replace b with g ⊨ sG and z
with g ∗ y ⊨ p, the latter interalgebraicity holding as g ∗ y = f̃−1

b′ (f̃b(y)) =

f̃−1
b′ (z).

Now let c′′ ⊨ tp(c)↾abcxyz, and say b′′z′′c′′ ≡axy bzc. Base-change to c′′,
and interalgebraically replace a by b′′ ⊨ sG and x by z′′ = b′′ ∗ y ⊨ p.

Let h := b ∗ a−1. Then x = a ∗ y and z = b ∗ y, so z = h ∗ x. By
definition of G, (h, x, z) is as in Lemma 5.1, so Cb(xz/ab) = h. But also
x and z are interalgebraic over c, so Cb(xz/ab) = Cb(xz/c) = acleq(c).
So interalgebraically replace c with h.

Then (a, b, c, x, y, z) is a group configuration of (G,S), as required.

□

Example. Suppose D is minimal and locally modular but non-trivial. Fact 3.4
claimed the existence of a definable group. This group can be found by apply-
ing the group configuration theorem. Expand by parameters to make D mod-
ular. By non-triviality, after possibly expanding by further parameters there
are a, b, c ∈ D such that U(ab) = U(bc) = U(ca) = U(abc) = 2. Let b′c′ ⊨
stp(bc/a)↾abc. Then U(bcb′c′) = 3, so by modularity U(acl(bc′) ∩ acl(b′c)) = 1,
say d ∈ acl(bc′)∩ acl(b′c) \ acl(∅). Then (a, b, c, b′, c′, d) is a group configuration.

Fact 6.5. If S is strongly minimal, any connected faithful ∅-definable homoge-
neous space (G,S) is of one of the following forms:

• U(G) = 1, G is commutative, and the action is regular;

• U(G) = 2, S = K is the universe of a ∅-definable algebraically closed field,
and G is the affine group K+ ⋊K∗ acting as (a, b) ∗ x = a+ bx.

• U(G) = 3, S = P1(K) is the projective line of a ∅-definable algebraically
closed field, and G is the group PSL2(K) of Möbius transformations.

See [Poi01, Theorem 3.27] for a proof.



7 UNIMODULAR MINIMAL SETS ARE LOCALLY MODULAR 21

Corollary 6.6 (Field Configuration Theorem). Suppose (a, b, c, x, y, z) forms a
field configuration, that is, a group configuration with U(x) = U(y) = U(z) = 1
and U(a) = U(b) = U(c) = k where k > 1. Then we obtain a rank k group
acting on a minimal type. So k = 2 or 3, and tp(x) is interalgebraic with the
generic type of a

∧
-definable algebraically closed field.

Proof. In the ω-stable case, or more generally whenever the
∧
-definable homo-

geneous space obtained from Theorem 6.1 is actually definable, this follows from
Fact 6.5. The general result is stated in [Hru92, p395]; it should follow from the∧
-definable version of Fact 6.5 in [Hru89], but proving this would go beyond

the scope of this note, and I have not personally verified all the details. □

Definition. D is k-pseudolinear if whenever p is a complete minimal type with

p(x) ⊨ x ∈ D2, we have U(Cb(p)) ≤ k.

Remark. 1-pseudolinear ⇔ linear.

Theorem 6.7. Let k > 1. Suppose D is minimal and k-pseudolinear. Then D
is locally modular.

Proof. We may assume dcleq(∅) = acleq(∅).
Suppose D is k-pseudolinear. We show D is (k − 1)-pseudolinear.
Suppose not. So (using Lemma 3.15(a)) say (a2, a3) ∈ D2, tp(a2a3/b1) is

minimal, b1 = Cb(a2a3/b1), U(b1) = k. Now a2 |⌣ b1, since else a2 ∈ acleq(b1),
and then a2a3 |⌣a2

b1 and so b1 ∈ acleq(a2), contradicting k > 1. Similarly,

a3 |⌣ b1.
Let b2 ⊨ stp(b1)↾b1a2a3

. Then b2a3 ≡ b1a3, so say a1 is such that b2a1a3 ≡
b1a2a3. Let b3 := Cb(a1a2/b1b2).

U(a1a2/b1b2) = 1 since a2 ∈ acleq(a3b1) and a3 ∈ acleq(a1b2). So by k-
pseudolinearity, U(b3) ≤ k.

Similarly, U(a2a3/b2b3) = 1. Since a2 |⌣ b1 and b2 |⌣ b1a2 and b3 ∈ acleq(b1b2),
we have a2 |⌣ b1b2b3, so U(a2a3/b1b2b3) = 1. So U(a2a3/b2b3) = U(a2a3/b1b2b3) =
U(a2a3/b1) = 1, so a2a3 |⌣b2b3

b1 and a2a3 |⌣b1
b2b3, so since b1 = Cb(a2a3/b1) =

Cb(a2a3/b1b2b3), b1 ∈ acleq(b2b3). Similarly, b2 ∈ acleq(b1b3).
So U(b2b3) = U(b1b2b3) = U(b1b2) = 2k, so U(b3) = k, and similarly

U(b1b3) = 2k.
Then (b1, b2, b3, a2, a3, a1) is a field configuration, so by the Field Configu-

ration Theorem (Corollary 6.6), there is a
∧
-definable algebraically closed field

with generic type interalgebraic with p. But e.g. y = 1 + b1x + b2x
2 + . . . +

bk+1x
k+1 is a (k + 1)-dimensional family of plane curves in the field, which

contradicts k-pseudolinearity (as in Example 3.11). □

7 Unimodular minimal sets are locally modular

In this section, we prove Theorem 4.2. So assume D is a unimodular minimal
type; we will show that D is 1-based. Let p be the unrealised global completion
of D.

Lemma 7.1. D remains unimodular on adding to the language a Morley se-
quence in p↾∅.
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Proof. Say b is such a Morley sequence. Work in the unexpanded language.
Suppose a, a′ are as in the definition of unimodularity in the expanded lan-

guage, so a, a′ ⊨ p↾(n)
b

, and a ∈ acleq(a′b) and a′ ∈ acleq(ab).

Let b
′
be a finite subtuple such that mult(a/a′b) = mult(a/a′b

′
) and mult(a′/ab) =

mult(a′/ab
′
). Now ab

′
and a′b

′
are interalgebraic finite Morley sequences in p↾∅,

so by unimodularity in the original language, mult(ab
′
/a′b

′
) = mult(a′b

′
/ab

′
).

So mult(a/a′b) = mult(a′/ab) as required. □

So since 1-basedness is invariant under adding parameters, for the purposes
of proving Theorem 4.2, we may add such a Morley sequence.

So by Lemma 3.10, we may and will assume that D has wEI, and hence gEI.

Definition. For b ∈ Deq, define the Zilber degree by

Z(b) :=
mult(b/c)

mult(c/b)
,

where c ⊨ p↾(<ω)
∅ is interalgebraic with b; equivalently, using gEI, c is an aclD-

basis for acleq(b) ∩D.
Then define Z(a/b) := Z(ab)/Z(b).

Lemma 7.2. Z(b) is well-defined.

Proof. This follows from unimodularity. Indeed, if c′ ⊨ p↾(<ω)
∅ is another aclD-

basis for acleq(b) ∩D, then

mult(b/c)

mult(c/b)
=

mult(b/c)mult(c′/bc)

mult(c/b)mult(c′/bc)

=
mult(bc′/c)

mult(cc′/b)

=
mult(c′/c)mult(b/cc′)

mult(cc′/b)

=
mult(c/c′)mult(b/c′c)

mult(c′c/b)

= [reversing above steps]

=
mult(b/c′)

mult(c′/b)
.

□

Remark. For b ∈ Dn, Z(b) ∈ N, since we may take c to be a subtuple of b. In
the pseudofinite strongly minimal case, Z(b) is the leading coefficient (not the
degree!) of the polynomial pX of Lemma 4.4, for X a definable set of minimal
rank and degree in tp(b).

Remark. Analogous polynomials, called Zilber polynomials, can also be defined
in the locally finite case, and again Z(b) is then the leading coefficient. The
Zilber polynomial pX of a definable set X has the defining property that for all

sufficiently large n, if a ⊨ p↾(n)∅ then |X ∩ aclD(a)| = p(|D ∩ aclD(a)|).

Lemma 7.3.
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(i) Z is Aut(Meq)-invariant.

(ii) Z(ab/c) = Z(a/bc)Z(b/c).

(iii) a ∈ acleq(b) ⇒ Z(a/b) = mult(a/b).

(iv) a ∈ D \ acleq(b) ⇒ Z(a/b) = 1.

Proof.

(i) Clear.

(ii)

Z(a/bc)Z(b/c) =
Z(abc)

Z(bc)

Z(bc)

Z(c)
=

Z(abc)

Z(c)
= Z(ab/c)

(iii) Let c be a basis for acleq(b) ∩D = acleq(ab) ∩D. Then

Z(a/b) = Z(ab)/Z(b)

=
mult(ab/c)mult(c/b)

mult(c/ab)mult(b/c)

=
mult(a/bc)mult(c/b)

mult(c/ab)

=
mult(ac/b)

mult(c/ab)

= mult(a/b).

(iv) Let c be a basis for acleq(b) ∩D. Then ac is a basis for acleq(ab) ∩D, so
by stationarity of tp(a/b) = p↾b and of tp(a/c) = p↾c and by Lemma 4.1,

Z(ab) =
mult(ab/ac)

mult(ac/ab)

=
mult(b/ac)

mult(c/ab)

=
mult(b/c)

mult(c/b)

= Z(b).

□

Remark. In fact, the function Z(x/y) is uniquely determined by (i)-(iv) (see
[Hru92] for a proof).

Definition. For p = tp(a/B) a stationary type, let Z(p) := Z(a/Cb(p)).

Lemma 7.4. Suppose a, b, c ∈ Deq.

(I) If tp(a/c) is stationary and a |⌣c
b, then Z(a/bc) = Z(a/c).

In particular, if tp(a/c) is stationary then Z(tp(a/c)) = Z(a/c).

(II) Z(a/c) =
∑

i∈I Z(qi) where (qi)i∈I enumerates the global non-forking
extensions of tp(a/c).
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(III) Z(a/c) =
∑

i Z(ai/bc) where (tp(ai/bc))i enumerates the nonforking ex-
tensions of tp(a/c) to bc.

Proof.

(I) We first consider two special cases.

Claim 7.5. If tp(a/c) is stationary, then Z(a/bc) = Z(a/c)

(a) when b ∈ D \ acleq(ac), and
(b) when b ∈ acleq(c).

Proof. Since Z(a/bc) = Z(ab/c)
Z(b/c) = Z(b/ac)

Z(b/c) Z(a/c), it suffices to see that

Z(b/ac) = Z(b/c).

In case (a), by Lemma 7.3(iv) we have Z(b/ac) = 1 = Z(b/c).

In case (b), by Lemma 7.3(iii) and Lemma 4.1 we have Z(b/ac) = mult(b/ac) =
mult(b/c) = Z(b/c). □

Now let b be such that a |⌣c
b and let b′ be a basis for acleq(b) ∩ D

over acleq(c) ∩ D. Using that a |⌣c
b′ and applying case (a) iteratively,

Z(a/b′c) = Z(a/c). Then since bc and b′c are interalgebraic, and tp(a/bc)
and tp(a/b′c) are both stationary, by case (b) twice we have Z(a/bc) =
Z(a/bb′c) = Z(a/b′c) = Z(a/c).

(II) Using Lemma 3.15(a), let b := Cb(a/c) ∈ Deq, so (Cb(qi))i∈I enumerates
the conjugates of b over c (and so |I| = mult(b/c) is finite). Then a |⌣b

bc,
so by (I) we have

∑
i Z(qi) = mult(b/c)Z(a/bc) = Z(b/c)Z(a/bc) =

Z(ab/c) = Z(a/c)Z(b/ac) = Z(a/c), using that b = Cb(a/c) ∈ dcleq(ac)
(as one sees by considering automorphisms).

(III) This follows from (II), since the set of global non-forking extensions of
tp(a/c) is the union of the sets of global non-forking extensions of its
non-forking extensions to bc.

□

Lemma 7.6 (”Relaxation”). Suppose a, b1, b2 are such that U(a) = 2, U(a/bi) =
1, bi = Cb(a/bi), U(b1) ≥ 1, and U(b2) ≥ 2.

Then b1 |⌣ b2 iff b1 |⌣a
b2.

(In words: the pairs of curves which are independent and happen to both
pass through a are precisely the pairs of curves which are independent given
that they both pass through a.)

Proof. First we see that this equivalence holds if a ̸ |⌣b1
b2. Indeed, then a ∈

acleq(b1b2), and so

U(b1/b2a)− U(b1/a) = U(b1b2a)− U(b2a)− U(b1a) + U(a)

= U(b1b2)− U(a/b2)− U(b2)− U(a/b1)− U(b1) + U(a)

= U(b1b2)− U(b2)− U(b1)− 1− 1 + 2

= U(b1/b2)− U(b1);
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in particular one side is zero iff the other is, as required.
Similarly, we are done if a ̸ |⌣b2

b1.

If neither dependence holds, then dcleq(b1) = Cb(a/b1) = Cb(a/b1b2) =
Cb(a/b2) = dcleq(b2). Then b1 |⌣a

b2 implies b2 ∈ acleq(a), so 1 = U(a/b2) =
U(a) − U(b2) ≤ 2 − 2, which is a contradiction, so b1 ̸ |⌣a

b2, and similarly we
find b1 ̸ |⌣ b2. □

Lemma 7.7 (”Bézout”). Suppose p1 ∈ S(b1c) and p2 ∈ S(b2c) are minimal
types, pi(x) ⊨ x ∈ D2, bi = Cb(pi), c ∈ Deq. Suppose U(b1/c) ≥ 1 and
U(b2/c) ≥ 2, and b1 |⌣c

b2. Then |p1 ∪ p2| := |{a | a ⊨ p1 ∪ p2}| = Z(p1)Z(p2).

Remark. Thinking of pi as plane curves, p1∪p2 is the intersection, so the lemma
can be read as saying that for curves in ”generic position” within sufficiently
large families, the size of the intersection is the product of the degrees. Bézout’s
theorem in algebraic geometry makes an analogous claim. However, that the-
orem concerns complete curves rather than complete types, so all points are
counted rather than only those generic on both curves. We will see that this
difference is crucial.

Remark. It will turn out that this lemma can never actually be applied: using
the lemma, we will show that D is linear, so no such p2 exists.

Proof. First note that we may assume that each tp(bi/c) is stationary, by re-
placing c with c′ := cCb(b1/c) Cb(b2/c) ∈ acleq(c) ∩ Deq. Indeed, each pi is
stationary so has a unique extension p′i to c′bi, so |p′1 ∪ p′2| = |p1 ∪ p2| and
Z(p′i) = Z(pi).

In the interests of notational sanity, we will assume c = ∅. It is straightfor-
ward to check that the arguments below go through without this assumption,
by working everywhere over c. (Note that p1↾c = p↾(2)c = p2↾c.)

In this proof, to emphasise the distinction between them, we use capital
letters for variables and lower case for realisations.

Let p′i(X,Y ) := tp(ai, bi) where ai ⊨ pi, and let q(Y1, Y2) := tp(b1, b2). Let
Q(X,Y1, Y2) be the incomplete type p′1(X,Y1) ∪ p′2(X,Y2) ∪ q(Y1, Y2).

Claim 7.8. If a ⊨ p2, then the completions of Q(a, Y1, b2) in S(ab2) are precisely
the non-forking extensions of p′1(a, Y1). In particular, Q is consistent.

Proof. It suffices to show that if ⊨ p′1(a, b
′
1) then b′1 |⌣a

b2 iff b′1 |⌣ b2. This is
immediate from Lemma 7.6. □

So let a ⊨ Q(X, b1, b2). Let (tp(ai/b1b2))i∈I enumerate the completions of
Q(X, b1, b2) = p1(X) ∪ p2(X). By completeness of q, (tp(aib1/b2))i∈I enumer-
ates the completions of Q(X,Y1, b2). Say aib1 ≡b2 abi1, so (tp(abi1/b2))i∈I also
enumerates the completions of Q(X,Y1, b2), so (tp(bi1/ab2))i∈I enumerates the
completions of Q(a, Y1, b2), and hence by Claim 7.8 enumerates the non-forking
extensions of p′1(a, Y1) = tp(b1/a); in particular, by Lemma 3.15(b), I is finite.

Claim 7.9.

(a) Z(a) = 1

(b)
∑

i Z(bi1/ab2) = Z(b1/a) = Z(ab1)

(c) Z(bi1b2) = Z(b1)Z(b2)
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Proof.

(a) By Lemma 7.3(iv) twice.

(b) By Claim 7.8 and Lemma 7.4(III), and (a).

(c) By bi1 ≡b2 b1 and Lemma 7.4(I), we have Z(bi1/b2) = Z(b1/b2) = Z(b1).

□

Now we calculate

| p1 ∪ p2 | =
∑
i

mult(ai/b1b2)

=
∑
i

mult(a/bi1b2)

=
∑
i

Z(a/bi1b2)

=
∑
i

Z(abi1b2)

Z(bi1b2)

=
∑
i

Z(bi1/ab2)Z(ab2)

Z(bi1b2)

=
Z(ab1)Z(ab2)

Z(b1)Z(b2)

= Z(a/b1)Z(a/b2).

□

Lemma 7.10. D is 2-pseudolinear.

Proof. Suppose p is minimal complete, p(x) ⊨ x ∈ D2, b := Cb(p), U(b) ≥ 3.
Let b′ ⊨ stp(b)↾acleq(b). Say bσ = b′, σ ∈ Aut(M), and let p′ := pσ. So p′ is
minimal and Cb(p′) = b′. Let a ⊨ p ∪ p′ (which is consistent by Lemma 7.7).
We have U(a) = 2 since U(Cb(p)) = U(b) > 0 and a ∈ D2. By Lemma 7.6,
b |⌣a

b′. Note also that U(b/a) ≥ 2 ≤ U(b′/a). Let q := p↾ba and q′ := p′↾b′a.
Then by Lemma 7.7,

| q ∪ q′ | = Z(q)Z(q′) = Z(p)Z(p′) = | p ∪ p′ | ,

which contradicts the fact that a ⊨ p ∪ p′ but a ̸⊨ q ∪ q′. □

Applying Theorem 6.7, this concludes the proof of Theorem 4.2.

References

[Hru86] Ehud Hrushovski. Contributions to stable model theory. 1986. Thesis
(Ph.D.)–University of California, Berkeley.

[Hru87] Ehud Hrushovski. Locally modular regular types. In Classification
theory (Chicago, IL, 1985), volume 1292 of Lecture Notes in Math.,
pages 132–164. Springer, Berlin, 1987.



REFERENCES 27

[Hru89] Ehud Hrushovski. Almost orthogonal regular types. Ann. Pure Appl.
Logic, 45(2):139–155, 1989.

[Hru92] Ehud Hrushovski. Unimodular minimal structures. J. London Math.
Soc. (2), 46(3):385–396, 1992.

[HZ96] Ehud Hrushovski and Boris Zilber. Zariski geometries. J. Amer. Math.
Soc., 9(1):1–56, 1996.
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