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1 Overview

• A key goal of model theory is to understand the definable sets of a structure
M, the subsets of powers Mn defined by formulas.

• Gödel vs Tarski: Some structures have uncontrollably wild definable sets,
becoming ever more complicated as we allow more quantifiers; for exam-
ple, in (N; +, ·), already with one unbounded existential quantifier we can
define arbitrary recursively enumerable sets.

However, it is a remarkable fact that many structures important to math-
ematics avoid these Gödelian phenomena and are “tame”: their definable
sets are well-controlled (in particular, all definable by formulas with only
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a few quantifiers1), they often have decidable theories, and sometimes the
models of the theory being classifiable up to isomorphism.

Examples include:

– (C; +, ·), (Falg
p ; +, ·), (R; +, ·), (Qp; +, ·);

– (Q;<);

– Vector spaces;

– (N; +), (N; +, <), (N; ·) (but not (N; ·, <)!);

– (R; +, ·, x 7→ ex);

– (C; +, ·, x 7→ xζ) (for most ζ ∈ C);

– Compact Lie groups e.g. (SO3(R); ∗);
– (Fp∗ ; +, ·) for an “infinite” (pseudofinite) prime p∗;

– Compact complex manifolds (complex tori, Calabi-Yau manifolds,
etc);

– Differential and difference equations (in a certain sense);

We will examine only a fraction of this richness in this course, but we will
develop tools with wide applicability.

• We often study a structure by considering other models of its theory. In
particular, “tameness” of the class of models often corresponds to “tame-
ness” of the definable sets. We will examine in detail the following strong
form of this correspondence.

A theory T is κ-categorical if it has a unique model of cardality κ. Let
M be an infinite structure in a countable language.

– Ryll-Nardzewski: Th(M) is ℵ0-categorical iff for each n ∈ ω there
are only finitely many L-definable subsets of Mn.

– Baldwin-Lachlan: for an uncountable cardinal κ, Th(M) is κ-categorical
iff M is prime and minimal over a strongly minimal set defined over
the prime model.

(We’ll define these terms later; a strongly minimal set is a particu-
larly straightforward structure, and being prime and minimal over
it implies that the definable sets of M are “constructed” from its
definable sets in a certain sense.)

2 Preliminaries

We work in ZFC throughout the course. A set A is countable if |A| ≤ ℵ0.

1We consider e.g. ∃x, y. as one quantifier rather than two.
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2.1 Syntax and structure

• A (first-order) (1-sorted) language is a set L of relation symbols, function
symbols, and constants.

• An L-structure M = (M ; (RM)R, (f
M)f , (c

M)c) is a non-empty set M
equipped with interpretations of the symbols of L:

– RM ⊆Mn for R ∈ L an n-ary relation symbol;

– fM :Mn →M for f ∈ L an n-ary function symbol;

– cM ∈M for c ∈ L a constant.

Often, we write M to refer to the underlying set M .

We sometimes consider constants as 0-ary functions.

• An L-term is a variable, a constant, or f(t1, . . . , tn) where ti are L-terms
and f is an n-ary function symbol.

• An atomic L-formula is t1
.
= t2 or R(t1, . . . , tn) or >, where ti are

L-terms and R is an n-ary relation symbol. Here > is the always true
sentence; M � > for any structure M.

• An L-formula is an atomic L-formula or ¬φ or (φ∧φ′) or ∃x.φ where
φ, φ′ are L-formulas and x is a variable.

• An L-sentence is an L-formula with no free variables. For M an
L-structure and σ an L-sentence, M � σ is defined recursively.

• Abbreviations:

(φ ∨ ψ) 7→ ¬(¬φ ∧ ¬ψ)

(φ→ ψ) 7→ (¬φ ∨ ψ)

(φ↔ ψ) 7→ ((φ→ ψ) ∧ (ψ → φ))

∀x. φ 7→ ¬∃x. ¬φ
x 6 .= y 7→ ¬x .

= y

⊥ 7→ ¬>

• We also define abbreviations for conjunctions and disjunctions of finite
sets of formulas : ∧

∅ := >∧
(Φ ∪ {φ}) :=

(∧
Φ ∧ φ

)
∨
∅ := ⊥∨

(Φ ∪ {φ}) :=
(∨

Φ ∨ φ
)
.

• If L′ ⊇ L and M is an L′-structure, we write M�L for the corresponding
L-structure, and callM�L the reduct ofM to L, andM an expansion
of M�L to L′.
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• IfM is an L-structure and A ⊆M, the expansion by constants for A
is the expansion MA of M to L(A) := L∪̇A defined by aMA := a.

• We write a tuple (a1, a2, . . . , an) (n ≥ 0) as a, and we write |a| for its
length, |a| = n. For A a set, we define A<ω :=

⋃
n∈ω A

n, the set of tuples
from A

• We write an L-formula φ as φ(x) if x is a tuple of distinct variables and the
free variables of φ are among x1, . . . , x|x|. Then ifM is an L-structure and

a ∈ M|x|, we write φ(a) for the L(M)-sentence obtained by substituting
ai for xi (for i = 1, . . . , |x|). Then M � φ(a) means MM � φ(a).

Then the set defined by φ(x) in M is

φ(M) := {a ∈M|x| :M � φ(a)} ⊆ M|x|.

(Technically, this depends on the choice of tuple x and not just on φ).

Similarly, if φ(x, y) is an L-formula and a ∈M|x|, we write φ(a, y) for the
L(M)-formula obtained by substituting ai for xi.

• A partial isomorphism of L-structures is a partial function θ :M 99K N
such that for any atomic L-formula φ(x) and any a ∈ dom θ|x|, M � φ(a)
iff N � φ(θ(a)). If this holds for any L-formula φ, we call θ a partial
elementary map.

• An embedding is a total partial isomorphism θ :M ↪−→ N .

• An elementary embedding is a total partial elementary map θ :M ↪−�−→
N .

• An isomorphism is a surjective embedding θ :M
∼=−→ N .

• A substructure (resp. elementary substructure), of an L-structure N
is an L-structureM on a subset of N such that the inclusion ι :M→N
is an embedding (resp. an elementary embedding).

Convention: If L has no constants, we also allow the “empty structure”
∅ as an L-substructure of any L-structure (even though ∅ is not an L-
structure!2).

• We write M ≤ N for a substructure3, and M � N for an elementary
substructure.

• If A ⊆M is a subset of an L-structure M, let

〈A〉ML :=
⋂
{B : A ⊆ B ≤M} ≤M

be the L-substructure generated by A.

Note: when L has no constant symbols, 〈∅〉ML = ∅.

Lemma 2.1. | 〈A〉ML | ≤ max(|A|, |L|,ℵ0).

2In many ways it would be preferable to allow the empty structure to be a structure, and
some authors do this.

3Many authors write M⊆ N for the substructure relation.
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Proof. Let A0 := A and, considering constants as 0-ary functions,

Ai+1 := Ai ∪ {fM(a) : f ∈ L an n-ary function symbol, a ∈ Ani , n ≥ 0}.

Then 〈A〉ML =
⋃
i∈ω Ai, and |Ai+1| ≤ |Ai|+|L|·max(|A|,ℵ0) ≤ max(|Ai|, |L|,ℵ0).

Hence |Ai| ≤ max(|A|, |L|,ℵ0) for all i. So |
⋃
iAi| ≤ max(|A|, |L|,ℵ0).

• We can always make an embedding into an inclusion by applying an iso-
morphism:

Lemma 2.2. Suppose θ : A ↪−→ B is an embedding of L-structures. Then
there is an isomorphism σ : B → B′ such that A ≤ B′ and σ ◦ θ = idA.

Proof. First, let σ : B → B′ be a bijection with a set B′ ⊇ A such that
σ◦θ = idA. Let B′ be the L-structure on B′ such that σ is an isomorphism.
Then idA = σ ◦ θ an embedding, so A ≤ B′.

2.2 Theories

• An L-theory is a set of L-sentences.

• The theory of an L-structure M is

Th(M) := {σ :M � σ, σ is an L-sentence}.

• An L-structure M is a model of an L-theory T ,

M � T,

if M � σ for all σ ∈ T .

• T � σ means: M � σ for any M � T . We also write T ` σ.

T � T ′ or T ` T ′ means: T � σ for all σ ∈ T ′.
T �T ′′ T ′ or T `T ′′ T ′ means: T ∪ T ′′ � T ′.

• T is consistent if it has a model.

Remark 2.3. T is consistent iff T 6� ⊥.

• A consistent L-theory T is complete if for any L-sentence σ

T � σ or T � ¬σ.

• L-structures M,N are elementarily equivalent, M≡ N , if Th(M) =
Th(N ).

Remark 2.4. A consistent theory T is complete iff M ≡ N whenever
M,N � T .

Remark 2.5. If A is a common subset of L-structures M and N , then
idA :M 99K N is partial elementary iff MA ≡ NA.

In particular, if M⊆ N , we have M� N iff MM ≡ NM.

The LM-theory Th(MM) is called the elementary diagram of M.
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3 Ultraproducts

Let I be a set. A non-empty set B ⊆ P(I) is a filter base if

• X,Y ∈ B ⇒ ∃Z ∈ B. X ∩ Y ⊇ Z;

• ∅ /∈ B.

A maximal filter base U is an ultrafilter; equivalently: U is a filter base,
and for any X ⊆ I we have

X ∈ U or I \X ∈ U .

As an immediate consequence of Zorn’s Lemma, we have

Fact 3.1. Any filter base B ⊆ P(I) extends to an ultrafilter B ⊆ U ⊆ P(I) .

Remark 3.2. Fact 3.1 is not a theorem of ZF, and it is strictly weaker than the
axiom of choice modulo ZF.

Remark 3.3. Ultrafilters are upwards-closed : if X ⊆ Y then X ∈ U ⇒ Y ∈ U .
An upwards-closed filter base is a filter.

If U ⊆ P(I) is an ultrafilter and ai are elements of sets Ai (i ∈ I), the
ultralimit is limi→U ai the equivalence class (ai)i/ ∼U of the sequence (ai)i
under the equivalence relation

(ai)i ∼U (a′i)i iff {i : ai = a′i} ∈ U .

If Ai are sets, the ultraproduct is the set of all ultralimits,∏
i→U

Ai :=
∏
i∈I Ai/∼U =

{
lim
i→U

ai : ai ∈ Ai
}
.

We have limi→U (ai, bi) = (limi→U ai, limi→U bi).
For functions fi : Ai → Bi we define

lim
i→U

fi :
∏
i→U

Ai →
∏
i→U

Bi

by
( lim
i→U

fi)( lim
i→U

ai) := lim
i→U

fi(ai).

If (Mi : i ∈ I) are L-structures, the ultraproduct M =
∏
i→UMi is the

L-structure such that

• as sets, M :=
∏
i→UMi;

• M � R(limi→U ai) ⇔ {i : Mi � R(ai)} ∈ U (for R ∈ L a relation
symbol);

• fM := limi→U f
Mi (for f ∈ L a function symbol);

• cM := limi→U c
Mi (for c ∈ L a constant symbol).

Theorem 3.4 ( Loś). For L-structures Mi, an L-formula φ(x), and ai ∈Mi,∏
i→U

Mi � φ( lim
i→U

ai) iff {i : Mi � φ(ai)} ∈ U .
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Proof. Exercise.

An ultrafilter U is principal if there is i0 ∈ I such that U = {X ⊆ I : i0 ∈
X}. Then

∏
i→UMi

∼=Mi0 .

Example 3.5. Let U ⊆ P(P ) be a non-principal ultrafilter on the set P ⊆ N
of primes Then the ultraproduct of finite fields

∏
p→U (Fp; +, ·) is a field of

characteristic 0 (a “pseudofinite field”).

If U ⊆ P(I) is an ultrafilter and M is an L-structure, the ultrapower is
defined as MU :=

∏
i→UM.

Lemma 3.6. With respect to the diagonal embedding a 7→ limi→U a, M is
an elementary substructure, M�MU .

Proof. Exercise.

Example 3.7. Let U ⊆ P(ω) be a non-principal ultrafilter. Let (R∗; +, ·) :=
(R; +, ·)U (a “non-standard real field” ). Let

ε := lim
n→U

1

n+ 1
∈ R∗.

Then 0 < ε < r for all r ∈ R ⊆ R∗.

4 Compactness

Theorem 4.1 (Compactness). Suppose every finite subset of an L-theory T is
consistent. Then T is consistent.

Proof. Let Pfin(T ) := {T ′ ∈ P(T ) : |T ′| < ℵ0} be the set of finite subsets of T .
Say MT ′ � T ′ for T ′ ∈ Pfin(T ).

For T ′ ∈ Pfin(T ), let [T ′] = {T ′′ ∈ Pfin(T ) : T ′ ⊆ T ′′} ⊆ Pfin(T ). Let
B = {[T ′] : T ′ ∈ Pfin(T )} ⊆ P(Pfin(T )). Then B is a filter base, since [T ′] ∩
[T ′′] = [T ′ ∪ T ′′], and [T ′] 6= ∅ since T ′ ∈ [T ′], and B 6= ∅ since [∅] ∈ B. By
Fact 3.1, let U ⊇ B be an ultrafilter on Pfin(T ).

Let M =
∏
T ′→UMT ′ .

Then for σ ∈ T ,

{T ′ :MT ′ � σ} ⊇ {T ′ : σ ∈ T ′} = [{σ}] ∈ U ,

so by  Loś, M � σ.
So M � T , so T is consistent.

Lemma 4.2 (Separation). Let T1 and T2 be consistent L-theories, and Σ a set
of L-sentences closed under ∧ and ∨. Then TFAE:

(i) Given M1 � T1 and M2 � T2, there exists σ ∈ Σ with M1 � σ and
M2 � ¬σ.

(ii) There exists σ ∈ Σ with T1 � σ and T2 � ¬σ.

We then say Σ separates T1 from T2.

Proof.
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(i) ⇐ (ii): Clear.

(i) ⇒ (ii): Let M1 � T1. For M2 � T2 there is by (i) σM2
∈ Σ with M1 � σM2

and M2 � ¬σM2 . Then T2 ∪ {σM2 : M2 � T2} is inconsistent, so by
compactness there is a finite conjunction σM1 of the σM2 , such that T2 �
¬σM1

. Then σM1
∈ Σ by closedness of Σ under ∧, and M1 � σM1

.

Now T1 ∪ {¬σM1
: M1 � T1} is inconsistent, so by compactness and

closedness of Σ under ∨, there is a finite disjunction σ ∈ Σ of the σM1
,

such that T1 � σ. Then T2 � ¬σ.

5 Quantifier elimination

5.1 Definitions

Definition 5.1. A formula is quantifier free (qf) if it contains no quantifiers.

Definition 5.2. L-formulas φ(x) and ψ(x) are equivalent modulo an L-
theory T , written φ(x)↔T ψ(x), if

T � ∀x. (φ(x)↔ ψ(x)).

Similarly, φ(x)→T ψ(x) if T � ∀x. (φ(x)→ ψ(x)).
(As always, we allow here the case |x| = 0, i.e. the case that φ and ψ are

sentences.)

Definition 5.3. An L-theory T has quantifier elimination (QE) if any L-
formula φ(x) is equivalent modulo T to a quantifier free formula ψ(x).

An L-structure M has QE if Th(M) has QE.

5.2 Discussion

Remark 5.4. An L-structure M has QE iff every L-definable set is defined by
a qf L-formula.

Example 5.5. (R; +,−, ·, 0, 1) does not have QE: The order x < y is definable
by ∃z. (z 6 .= 0 ∧ x+ z · z = y) but not by any qf formula.

Remark 5.6. If L has no constants, then the only qf sentences up to equivalence
are > and ⊥. So any consistent L-theory with QE is complete.

Example 5.7. Let L∅ be the empty language L∅ := ∅. We will see below that
if X is an infinite set, the L∅-structure (X; ) has QE. Moreover, we will see
that T∞ := {∃x1, . . . , xn.

∧
i 6=j xi 6= xj : n ∈ ω} has QE, and so axiomatises

Th((X; )).

If M is an L-structure and Φ is a set of L-formulas, the expansion by
relations for Φ is the expansion of M to L ∪ {Rφ : φ ∈ Φ}, where Rφ is
interpreted as φ(M). It has the same definable sets as M.

IfM does not have QE, we can try to expand by relations for non-qf formulas
until we obtain QE, e.g.:

Fact 5.8 (Tarski-Seidenberg). (R; +,−, ·, 0, 1, <) has QE.
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We can always do this in a trivial way:

Remark 5.9. For any L-structure M, the expansion by relations for all L-
formulas (the “Morleyisation” of M) has QE.

For some particularly intractable structures, we can’t really do any better
than Morleyising:

Fact 5.10 (“The arithmetic hierarchy is strict.”). For any n ∈ ω, the expansion
of (N ; +, ·) by relations for all formulas with at most n unbounded quantifiers
(equivalently, all formulas of the form ∃x1. ¬∃x2. . . .¬∃xn. φ, where φ has no
unbounded quantifier) does not have QE.

5.3 Criterion for QE

Definition 5.11. • A basic formula4 is an atomic formula or the negation
of an atomic formula.

• A formula φ(x) is primitive existential if it is of the form ∃y.
∧
i ψi(y, x),

where each ψi is basic.

Lemma 5.12. Let T be an L-theory. If any primitive existential L-formula
φ(x) is equivalent modulo T to a quantifier free formula ψ(x), then T has QE.

Proof. We show by induction on complexity that any φ(x) is equivalent modulo
T to a quantifier free formula ψ(x). For atomic φ this is clear. For φ = φ′ ∧ φ′′
or φ = ¬φ′ it is immediate by induction.

For φ = ∃y. φ′: by the inductive hypothesis φ′ ↔T ψ with ψ quantifier-free.
We may assume ψ is in disjunctive normal form : ψ =

∨
i

∧
j ψij , where each

ψij is basic. So φ ↔T

∨
i ∃y.

∧
j ψij . Each formula ∃y.

∧
j ψij is primitive

existential, and we conclude by the assumption.

Definition 5.13. The diagram of an L-substructure A of an L-structure is
the L(A)-theory

Diag(A) := qfTh(AA) := {σ : σ qf L(A)-sentence, AA � σ}.

Lemma 5.14 (Method of diagrams). Up to isomorphism, the models of Diag(A)
are precisely MA, where M is an L-structure and A ≤M.

Theorem 5.15. For an L-theory T , TFAE:

(i) T has QE.

(ii) If M,N � T have a common L-substructure A, then MA ≡ NA.

(ii’) “T is substructure complete”: If M � T and A ≤ M is an L-
substructure, then T ∪Diag(A) is complete.

(iii) If M,N � T have a common L-substructure A, and a ∈ A<ω and φ(x) is
a primitive existential L-formula, then

M � φ(a)⇔ N � φ(a).

4Also known as a literal.
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(iii’) If M,N � T have a common finitely generated L-substructure A, and σ
is a primitive existential L(A)-sentence, then

MA � σ ⇔ NA � σ.

Proof.

(i) ⇒ (ii): Let φ(a) be an L(A)-sentence. By (i), φ(x) is equivalent to some qf φ′(x)
modulo T . Then MA � φ′(a) ⇔ A � φ′(a) ⇔ MB � φ′(a). So MA �
φ(a)⇔MB � φ(a).

(ii) ⇔ (ii’): By Lemma 5.14, the models of T ∪Diag(A) are exactlyMA, whereM � T
and A ≤M. So (ii) exactly says that T ∪Diag(A) is complete.

(ii) ⇒ (iii): Clear.

(iii) ⇔ (iii’): Clear.

(iii) ⇒ (i): Let φ(x) be primitive existential. By Lemma 5.12, it suffices to show that
φ is equivalent modulo T to a qf formula .

Let c be a tuple of new constants with |c| = |x|.
Let T1 := T ∪ {φ(c)} and T2 := T ∪ {¬φ(c)}.
If T1 is inconsistent, then T � ∀x. ¬φ(x), and so φ(x)↔T ⊥.
If T2 is inconsistent, then T � ∀x. φ(x), and so φ(x)↔T >.
So assume T1 and T2 are consistent.

Suppose Σ := {ψ(c) : ψ(x) qf L-formula} does not separate T1 from T2.
Then by Lemma 4.2, there areM1,M2 � T and ai ∈Mi withM1 � φ(a1)
and M2 � ¬φ(a2), but for ψ(x) qf, M1 � ψ(a1)⇔M2 � ψ(a2).

But then the map a1 7→ a2 extends to an isomorphism 〈a1〉M1

L
∼=−→ 〈a2〉M2

L
(namely tM1(a1) 7→ tM2(a2) for t an L-term), which itself extends to an

isomorphism M1

∼=−→ M′1 ≥ 〈a2〉M2

L (by Lemma 2.2). Then M′1 � φ(a2)
and M2 � ¬φ(a2). But this contradicts (iii).

So there is ψ(c) ∈ Σ such that T1 � ψ(c) and T2 � ¬ψ(c), i.e. φ(x) →T

ψ(x) and ¬φ(x)→T ¬ψ(x). So φ(x)↔T ψ(x).

We can now generalise Remark 5.6 to arbitrary languages:

Corollary 5.16. Let T be a consistent L-theory with QE. Then TFAE:

(i) T is complete.

(ii) For any M,N � T , we have 〈∅〉ML ∼= 〈∅〉
N
L .

Proof.

(i) ⇒ (ii): The map tM 7→ tN for t an L-term with no variables is an L-isomorphism.

(ii) ⇒ (i): Let M � T and A := 〈∅〉ML ≤ M. Let N � T . By (ii) there is (by
Lemma 2.2) N ′ ∼= N with A ≤ N ′. Then by Theorem 5.15(ii)MA ≡ N ′A.
Hence M≡ N ′ ∼= N . So T is complete.
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5.4 Examples

5.4.1 T∞

Let T∞ be the L∅-theory

T∞ := {∃x1, . . . , xn.
∧
i6=j

xi 6
.
= xj : n ∈ ω}.

Proposition 5.17. T∞ is complete and admits quantifier elimination.

Proof. Completeness follows from QE, since the language has no constants.
For QE, we show Theorem 5.15(iii’).
Let M,N � T∞ and let A ≤M,N be a finite common subset
Let ∃y.ψ(y) be a primitive existential L∞(A)-sentence. Suppose there exists

b ∈M such that MA � ψ(b). We must find b′ ∈ N such that NA � ψ(b′).
If b ∈ A: set b′ := b. If b /∈ A: since N � T∞, N is infinite; set b′ ∈ N \ A.
Then idA ∪ {b 7→ b′} is a bijection, and hence an L∞(A)-isomorphism. So

NA � ψ(b′).

5.4.2 DLO

Let L< := {<} and let DLO be the L<-theory of dense linear orderings without
endpoints:

DLO := {∀x, y, z. (¬x < x

∧ (x < y ∨ x = y ∨ y < x)

∧ ((x < y ∧ y < z)→ x < z)

∧ (x < y → ∃w. (x < w ∧ w < y))

∧ ∃w. w < x

∧ ∃w. x < w)}.

Proposition 5.18. DLO is complete and admits quantifier elimination.
In particular, DLO axiomatises (Q;<). Hence Th((Q;<)) is decidable.

Proof. Completeness follows from quantifier elimination, since the language has
no constants.

Decidability follows from completeness, since DLO is a recursive set, and
hence Th((Q;<)) = {σ : DLO � σ} and its complement {σ : DLO � ¬σ} are
recursively enumerable, from which it follows that Th((Q;<)) is recursive.

Let M,N � DLO and let A = {a1, . . . , an} ≤ M,N be a common finite
substructure. Without loss of generality, we may assume a1 < a2 < . . . < an.

¡—Let¿— ∃y.ψ(y) be a primitive existential L<(A)-sentence. Suppose there
exists b ∈M with MA � ψ(b). We find b′ ∈ N with NA � ψ(b′).

There are four cases:

(i) b ∈ A: set b′ = b.

(ii) b < a1: let b′ ∈ N be such that b′ < a1 (b′ exists, since N has no endpoint).

(iii) b > an: let b′ ∈ N be such that b′ > an (b′ exists, sinceN has no endpoint).
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(iv) ai < b < ai+1: let b′ ∈ N be such that ai < b′ < ai+1 (b′ exists, since N
is dense).

In all cases, A∪ {b} is isomorphic to A∪ {b′} over A as ordered sets. Hence
NA � ψ(b′).

5.4.3 (Z;S)

Let LS := {S}, where S is a unary function.
Let TS be the LS-theory of cycle-free bijections

TS := {∀x, y.((S(x) = S(y)→ x = y)∧∃z.S(z) = x)}∪{∀x.Sn(x) 6 .= x : n ≥ 1}

(where Sn+1(x) := S(Sn(x)); S1(x) := S(x)).
(Z;S) � TS (where SZ(n) := n+ 1).

Proposition 5.19. TS is complete and admits quantifier elimination.
In particular, (Z;S) is decidable and axiomatised by TS.

Proof. Completeness follows from quantifier elimination, since the language has
no constants.

Let M,N � TS and let A be a common finitely generated substructure.
We may assume that S(A) = A: Indeed,

⋃
n(SM)−n(A) is isomorphic to⋃

n(SN )−n(A) over A, since M and N are cycle-free.
Then every atomic LS(A)-formula φ(x) is equivalent modulo TS ∪Diag(A)

to x
.
= a for some a ∈ A, or to >, or to ⊥. Indeed:

Sn(x)
.
= Sm(x)↔TS

{
> (n = m)

⊥ (n 6= m)
;

Sn(x)
.
= Sm(a)↔TS∪Diag(A) x

.
= Sm−n(a)(∈ A).

Hence any primitive existential LS(A)-formula σ is equivalent modulo TS ∪
Diag(A) to >, or ⊥, or

∃y.
∧
i<k

y
.
= ai ∧

∧
i<l

y 6 .= bi

. Since M and N are infinite, we have MA � σ ⇔ NA � σ.
The result now follows by Theorem 5.15(iii’).

5.4.4 ACF

Let Lring := {+,−, ·, 0, 1}. Let ACF be the Lring-theory of algebraically closed
fields:

ACF := [Körperaxiome] ∪ {∀z0, . . . , zn. ∃x.
n∑
i=0

zix
i .= 0 : n ≥ 1}.

Proposition 5.20. ACF admits quantifier elimination.
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Proof. Let Ki � ACF and let R = 〈a1, . . . , an〉 ≤ K1,K2 be a finitely generated
common subring.

Let ∃y. ψ(y) be a primitive existential Lring(R)-sentence. Suppose there is
b ∈ K1 such that K1 � ψ(b). We show that K2 � ∃y. ψ(y).

Let Fi be the quotient field of R in Ki. Then idR extends to an isomorphism

f : F1

∼=−→ F2 (F1 3 r
s 7→

r
s ∈ F2).

Now let Gi be the algebraic closure of Fi in Ki, namely the set of all solutions
to polynomial equations with coefficients in Fi.

Since the algebraic closure of Fi is uniquely determined up to Fi-isomorphism,

f extends to an isomorphism g : G1

∼=−→ G2 .
If b ∈ G1, we have K2 � ψ(g(b)).
Otherwise: b is transcendental over G1. Then G1(b) is isomorphic over G1

to the rational function field G1(X). Let K ′2 be a proper elementary extension
of K2. Then say b′ ∈ K ′2 \G2. Then G2(b′) is again isomorphic over G2 to the
rational function field G2(X). Hence g extends to an isomorphism h : G1(b)→
G2(b′) with h(b) = b′ . Hence K ′2 � ψ(b′) and so K ′2 � ∃y. ψ(y). Finally, we
conclude K2 � ∃y. ψ(y).

For p ∈ N prime, let ACFp := ACF∪{p̄ .
= 0}, where n̄ is the term 1+1+. . .+1

(n times).
Let ACF0 := ACF ∪ {n̄ 6 .= 0 : n ≥ 1}.

Theorem 5.21. The completions of ACF are precisely ACFp for p prime or 0.

Proof. The characteristic of a field is either prime or 0. For K a field of char-
acteristic p,

〈∅〉KLring
=

{
Fp p 6= 0

Z p = 0
.

So quantifier elimination implies by Corollary 5.16 completeness of each ACFp.

Theorem 5.22 (Ax). Any injective polynomial map F : Cn → Cn (i.e. F (a) =
(F1(a), . . . , Fn(a), where Fi ∈ C[X]) is surjective.

Proof.

Claim 5.23. Let p be prime. Any injective polynomial map F : (Falg
p )n →

(Falg
p )n is surjective.

Proof. Recall: Falg
p =

⋃
k Fpk .

Let k0 be such that the coefficients of F are in Fpk0 .
Let k ≥ k0. Dann F (Fnpk) ⊆ Fnpk , and so by injectivity and the pigeonhole

principle, F (Fnpk) = Fnpk .

Hence F ((Falg
p )n) = (Falg

p )n.

Let n, d ∈ ω. Let σn,d be an Lring-sentence expressing that any injective
polynomial map F : Kn → Kn consisting of polynomials of degree ≤ d is
surjective:

σn,d := ∀z1,0, . . . , zn,d.(∀x, y.((
∧
i

∑
j

zi,jx
j
i
.
=
∑
j

zi,jy
j
i )→

∧
i

xi
.
= yi)→ ∀y.∃x.

∧
i

∑
j

zi,jx
j
i
.
= yi).



6 ELEMENTARY EXTENSIONS 15

Suppose C 6� σn,d. Then by completeness of ACF0, ACF0 � ¬σn,d. Then by
compactness, for some m ∈ ω,

ACF �
∧

0<i<m

ī 6 .= 0→ ¬σn,d.

So if p > m is prime, ACFp � ¬σn,d. But this contradicts the Claim.

5.4.5 Presburger Arithmetik

Beispiel 5.24. (ohne Beweis) In (Z; +, <) sind nZ ⊆ Z (n ≥ 2) existentiell
definierbar aber nicht qf definierbar. Jedoch hat (Z; 0, 1,+,−, <, 2Z, 3Z, 4Z, . . .)
QE.

6 Elementary extensions

Theorem 6.1 (Tarski-Test). Suppose M is an L-structure and A is a subset.
TFAE:

(i) A is the domain of an elementary substructure;

(ii) for every L(A)-formula in one free variable φ(x) gilt: if M � ∃x. φ(x),
then M � φ(a) for some a ∈ A.

Proof.

(i) ⇒ (ii): Let A be the elementary substructure with domain A. Then if M �
∃x. φ(x), then A � ∃x. φ(x) by elementarity; so say a ∈ A and A � φ(a);
but then M � φ(a) by elementarity.

(ii) ⇒ (i): By (ii) with φ(x) := x
.
= f(a) we have that A is closed under (≥ 0-ary)

functions. So A is the domain of a substructure A.

We show by induction on complexity that for any L(A)-sentence σ,

A � σ ⇔M � σ. (1)

(1) holds for σ atomic since A is a substructure, and if it holds for σ and
σ′ then clearly it holds for ¬σ and (σ ∧ σ′).
So suppose σ = ∃x. φ(x), and (1) holds for φ(a) for any a ∈ A.

If A � σ, then A � φ(a) for some a ∈ A, so M � φ(a) by the induction
hypothesis, so M � σ. Conversely, if M � σ, then M � φ(b) for some
b ∈M, so, by (i),M � φ(a) for some a ∈ A, so A � φ(a) by the induction
hypothesis, so A � σ.

Definition 6.2. An L-theory T has built-in Skolem functions, if for every
L-formula φ(x, y) there is fφ(x,y) ∈ L such that

T � ∀y. (∃x. φ(x, y)→ φ(fφ(x,y)(y), y)).

Lemma 6.3. If T is an L-theory with built-in Skolem functions, then substruc-
tures of models are elementary: if N ≤M � T then N �M.
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Proof. Let φ(x, a) be an L(N )-formula, and suppose M � ∃x. φ(x, a). Then
fφ(x,y)(a) ∈ N , since N ≤ M, and M � φ(fφ(x,y)(a), a). So by Theorem 6.1
N �M.

Lemma 6.4. Let T be an L-theory. Then T has a skolemisation T ∗ ⊇ T ,
a theory in a language L∗ ⊇ L with |L∗| = |L| + ℵ0, such that T ∗ has built-in
Skolem functions, and any model of T expands to a model of T ∗.

Proof. Let L0 := L and Li+1 := Li ∪ {fφ(x,y) : φ(x, y) an Li-formula} and
L∗ :=

⋃
i Li.

Let T ∗ := T ∪ {∀y. (∃x. φ(x, y)→ φ(fφ(x,y)(y), y)) | φ(x, y) an L∗-formula}.
IfM � T , recursively define the fφ(x,y) to witness the existentials (using the

axiom of choice) to obtain an expansion to a model of T ∗.

Theorem 6.5 (Löwenheim-Skolem). Let M be an infinite L-structure.

(i) “Downwards”: If A ⊆M is a subset with |A| ≥ |L|+ℵ0, then there exists
an elementary substructure N �M containing A, with |N | = |A|.

(ii) “Upwards”: For any cardinal κ ≥ |L| + |M| there exists an elementary
extension N �M with |N | = κ.

In particular, for any κ ≥ |L|+ ℵ0, there is N ≡M with |N | = κ.

Proof. (i) First, assume T := Th(M) has built-in skolem functions.

Let N := 〈A〉ML∗ . By Lemma 2.1, |N | = |A|. By Lemma 6.3, N �M.

Now for the general case, let L∗ and T ∗ be as in Lemma 6.4, and let
M∗ � T ∗ be an expansion of M to L∗. Since |L∗| = |L| + ℵ0, we have
|A| ≥ |L∗| + ℵ0, so we obtain A ⊆ N ∗ � M∗ with |N ∗| = |A|. Then
N := N ∗�L is as required.

(ii) Let L′ := L(M)∪̇{ci : i ∈ κ}, where ci are new constants, and T ′ :=
Th(MM)∪{ci 6

.
= cj : i 6= j ∈ κ}. Then T ′ is consistent sinceM is infinite

Let M′ � T ′ with M ≤ M′ and let A := {cM′i : i ∈ κ} ⊆ M′. Then
by (i), there exists N � M′ with |N | = |A| = κ. Now N � M, since
N � Th(MM).

Corollary 6.6 (“Skolem’s Paradox”). If ZFC is consistent, it has a countable
model. This is not a paradox!

Corollary 6.7. No infinite structure is determined uniquely up to isomorphism
by its theory.

Remark 6.8. In contrast, any finite structure is determined uniquely up to iso-
morphism by its theory.

Remark 6.9. (R; +, ·, <) is the unique complete ordered field; but “complete”
(every bounded subset has a supremum) is not first-order expressible.

Definition 6.10. Let κ be an infinite cardinal. A theory T is κ-categorical if
T has a unique model of cardinality κ up to isomorphism.

Theorem 6.11 (Cantor). DLO is ℵ0-categorical.
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Proof. (“Back-and-forth argument”)
Let M,N � DLO with |M| = ℵ0 = |N |. Let M = (mi)i∈ω and N =

(ni)i∈ω. We recursively construct a chain of partial isomorphisms θi :M 99K N
such that

|dom θi| < ℵ0 und for all j < i, we have mj ∈ dom θi and nj ∈ im θi. (*)

Let θ0 := ∅.
Given θi satisfying (*),
exactly as in the proof of QE for DLO, θi extends to θ′i : M 99K N with
mi ∈ dom θi

′;
similarly, (θ′i)

−1 : N 99KM extends to θ′′i : N 99KM with ni ∈ dom θi
′′;

then θi+1 := (θ′′i )−1 :M 99K N satisfies (*).

Then θ :=
⋃
i θi :M

∼=−→ N is an isomorphism.

Theorem 6.12 (Vaughts Criterion). If an L-theory T has no finite models and
is κ-categorical for some κ ≥ |L|+ ℵ0, then T is complete.

Proof. Let M,N � T . Both M and N are infinite. By Theorem 6.5, there are
M′ ≡ M and N ′ ≡ N with |M′| = κ = |N ′|. By κ-categoricity M′ ∼= N ′.
Hence M≡ N .

Notation 6.13. For T a complete L-theory, we set

|T | := |L|+ ℵ0,

being the cardinality of the set of all L-sentences.

7 Types

Definition 7.1. Let n ∈ ω, and let x1, . . . , xn be a tuple of distinct variables.

• Let M be an L-structure. The type (in variables x) of a tuple b ∈ Mn

in M is

tpM(b) := {φ(x) :M � φ(b); φ(x) an L-formula}.

• A type is the type of some tuple in some structure

• A partial type is a subset of type.

• Let T be a consistent L-theory. The set of n-types in T is

Sn(T ) := {tpM(b) :M � T ; b ∈Mn}.

(Technically, this should be written as Sx(T ) as it depends on the choice
of variables x and not just on n. But “Sn” is traditional. )

• If A is a subset of a structure M and b ∈M<ω, the type of b over A is

tpM(b/A) := tpMA(b) ∈ Sn(Th(MA)).

• Let SMn (A) := Sn(Th(MA)).
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• We write S(T ) for the set of all types (in arbitrary free variables) in T ,
and SM(A) for the set of all types over A ⊆M.

Lemma 7.2. A set of L-formulas Φ(x) is a partial type iff it is finitely satisfi-
able, i.e. for every finite subset Φ0 ⊆ Φ there exist an L-structure M such that
M � ∃x.

∧
ψ∈Φ0

ψ(x).
A partial type Φ(x) is a type iff for every L-formula ψ(x), either ψ(x) ∈ Φ(x)

or ¬ψ(x) ∈ Φ(x).
So types in T are precisely maximal consistent (= finitely satisfiable in mod-

els of T ) sets of formulas in a given tuple of variables.

Proof. Compactness.

Definition 7.3. Sn(T ) is a topological space with basis of open sets {[φ] :
φ(x) an L-formula}, where [φ] := {p ∈ Sn(T ) : φ ∈ p} ⊆ Sn(T ).

Fact 7.4. Sn(T ) is a Stone space, i.e. it is compact Hausdorff and totally
disconnected.

Proof. Exercise 4.

Example 7.5 (Types in DLO). DLO has QE, so if M � DLO and b ∈ M<ω,
tpM(b/A) is determined by the basic L<(A)-formulas satisfied by b.

• S1(DLO): the only consistent basic formula in one variable x is x = x, so
|S1(DLO)| = 1.

• S2(DLO) consists of the three types implied (modulo DLO) respectively
by x < y, x = y, and y < x.

• |Sn(DLO)| < ℵ0.

• SQ
1 (Z) consists of the types implied by

– x = n (some n ∈ Z);

– n < x < n+ 1 (some n ∈ Z);

– {x < n : n ∈ Z};
– {x > n : n ∈ Z}.

• More generally, consider p(x) = S1(A), where A ⊆M � DLO.

If x = a ∈ p(x) for some a ∈ A, then x = a implies p.

Else, let L := {a ∈ A : a < x ∈ p} and R := {a ∈ A : a > x ∈ p}. Then
(L,R) is a cut in A, i.e. L∪̇R = A and for all l ∈ L and r ∈ R, we have
l < r. Then p(x) is implied by {l < x : l ∈ L} ∪ {x < r : r ∈ R}.
Conversely, if (L,R) is a cut, {l < x : l ∈ L} ∪ {x < r : r ∈ R} is finitely
satisfiable, so implies a type in S1(A).

• e.g. SQ
1 (Q) is in bijection with R ∪ {−∞,+∞} (but the topology is cer-

tainly not the Euclidean topology!).

Definition 7.6. For Φ(x) a set of L-formulas and c an |x|-tuple of constants,

Φ(c) := {φ(c) : φ(x) ∈ Φ(x)}.

If y is a |x|-tuple of variables, we define Φ(y) similarly.
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Remark 7.7. Let T be a consistent L-theory.

• S0(T ) consists of the completions of T .

• The map Sn(T ) → S0(T ′); p(x) 7→ p(c) is a homeomorphism, where c is
an n-tuple of new constants and and T ′ is the L(c)-theory consisting of
the same sentences as T .

Remark 7.8. Let A ⊆M be a subset of an L-structure M.
If N is another L-structure containing A and NA ≡ MA (e.g. if N � M)

then SNn (A) = SMn (A).
We often just write Sn(A) for SMn (A).

Definition 7.9. Let Φ(x) a set of formulas.

• If a ∈M, we write
a � Φ

to mean
Ma � Φ(a).

Then a is called a realisation of the partial type Φ.

• We write
Φ(x) `T Φ′(x)

to mean that
Φ(c) `T Φ′(c),

where c is a |x|-tuple of new variables. Equivalently for any M � T and
a ∈M|x|

a � Φ(x) ⇒ a � Φ′(x).

We write e.g. φ `T Φ to mean {φ} `T Φ.

Definition 7.10. M � T realises a set of formulas Φ in T , if some b ∈Mn is
a realisation of Φ.

If M does not realise Φ, M omits Φ.

Definition 7.11. A type p(x) ∈ Sn(T ) is isolated if there is φ(x) ∈ p(x) such
that φ(x) `T p(x). We say then that φ isolates p. .

Lemma 7.12. Let T be a complete theory. Let p ∈ Sn(T ) be isolated and
M � T . Then M realises.

Proof. Let φ(x) ∈ p(x) with φ(x) `T p(x). Since p is finitely satisfiable (by
Lemma 7.2) and T is complete, we have T � ∃x. φ(x). So say b ∈ M|x| with
M � φ(b). Then b � p.

Example 7.13. Let K � ACF and F ⊆ K a subfield. Let p(x) ∈ S1(F ). Since
ACF has QE, p is determined by the polynomial equations over A it implies,
i.e. by

Ip := {f(X) ∈ F [X] : f(x)
.
= 0 ∈ p}.

This is an ideal: Ip E F [X]. Moreover it is a prime ideal, i.e. f · g ∈ Ip ⇒ (f ∈
Ip or g ∈ Ip). Indeed, take a realisation a ∈ K ′ � K; then if (f · g)(a) = 0 then
f(a) · g(a) = 0, so f(a) = 0 or g(a) = 0 (since K ′ is an integral domain).
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Now F [X] is a principal ideal domain, so Ip = mp · F [X] for some prime
mp ∈ F [X]. If mp = 0, p is the type of a transcendental element over F , and
p might not be realised in K (K could be F alg). Else, p is an algebraic type,
and it is isolated by mp(x)

.
= 0, and is realised in every algebraically closed field

extension of F .
Now consider p ∈ Sn(F ), where n ≥ 1. As above,

Ip := {f(X) ∈ F [X] : f(x)
.
= 0 ∈ p}

is a prime ideal in F [X].
Conversely, if I E F [X] is a prime ideal, then R := F [X]/I is an integral

domain. Let K ′ ⊇ F be an algebraic closure of the fraction field of R, and let
ai := Xi/I ∈ K ′. Let p := tpK

′
(a/F ). Then Ip = I.

So p 7→ Ip is a bijection Sn(F ) → Spec(F [X]), where Spec(F [X]) is the set
of prime ideals of F [X]. (This map is continuous if Spec(F [X]) is equipped with
its usual Zariski topology, but is not a homeomorphism.)

We can also think about this in terms of naive algebraic geometry. If F is a
subfield of an algebraically closed field K, a closed algebraic subset of Kn over F
is the common zero set V = V (I) ⊆ Kn of an ideal I E F [X]. V is irreducible
if it is not the union of two proper closed algebraic subsets over F ; equivalently,
if I is a prime ideal. A point a ∈ V is generic (over F ) if it is contained in
no proper closed algebraic subset over F . Then tp(a/F ) = pIp , and conversely
any p ∈ Sn(F ) is of this form for some a ∈ Kn for some K (e.g. by considering
F [X]/Ip as above). In other words: the types in ACF are precisely the types of
generics of irreducible closed algebraic sets.

Finally, consider an arbitrary subset A ⊆ K. Let F ≤ K be the subfield
generated by A. Then a type over A determines a type over F . In other words,
the restriction map Sn(F )→ Sn(A) is a bijection.

7.1 Saturation

Lemma 7.14 (“Joint Consistency for Constants”). Let T be a complete L-
theory. For i ∈ I let Ci be a set of constants, and suppose Ci ∩Cj = ∅ = Ci ∩L
for i 6= j. Let Ti ⊇ T be a consistent L∪Ci-theory. Then

⋃
i∈I Ti is consistent.

Remark 7.15. In fact this holds if we add new relations and functions too. This
is known as “Robinson’s Joint Consistency Theorem” (a proof can be found in
Chang&Keisler).

Proof. If
⋃
i∈I Ti is inconsistent then by compactness T ∪ {φi(ci) : i ∈ I0} is

inconsistent where I0 ⊆ I is finite and Ti � φi(ci) and ci ∈ C<ωi . WLOG
I0 = {1, 2, . . . , n}.

But then T � ∀x1, . . . , xn. ¬
∧

1≤i≤n φi(xi) with the xi disjoint tuples.
Then T � ∀x1, . . . , xn.

∨
1≤i≤n ¬φi(xi).

Then T �
∨

1≤i≤n ∀xi. ¬φi(xi). So T ∪ {φi(ci)} is inconsistent for some i.
This contradicts consistency of Ti.

Lemma 7.16. Given M an infinite L-structure and A ⊆M, there exists N �
M which realises every p ∈ S(A),.
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Proof. For each n ≥ 1 and each n-type p ∈ S(A), let cp be a new tuple of
constants with |cp| = n.

We must show T ′ := Th(MM) ∪
⋃
p∈S(A) p(cp) is consistent.

By definition of S(A), each Th(MA)∪ p(cp) is consistent. Also Th(MM) ⊇
Th(MA) is consistent. So T ′ is consistent by Lemma 7.14.

Definition 7.17. Let κ be an infinite cardinal. An L-structure M is κ-
saturated if for any A ⊆ M with |A| < κ every p ∈ S1(A) is realised in
M.
M is saturated, if it is |M|-saturated.

Example 7.18. (Q;<) is ℵ0-saturated.
Qalg � ACF is not ℵ0-saturated (since it omits the transcendental type in

S1(∅)).

Lemma 7.19. If M is κ-saturated, for any A ⊆ M with |A| < κ and every
n ≥ 1, every p ∈ Sn(A) is realised in M.

Proof. By induction on n.
Sei p(x1, . . . , xn, y) ∈ Sn+1(A). Setze q(x1, . . . , xn) := {φ(x1, . . . , xn) : φ ∈

p} ∈ Sn(A). Inductively, q is realised in M . Say a ∈Mn with a � q.
Now p(a, y) = {φ(a, y) : φ ∈ p} ∈ SM1 (A∪{a1, . . . , an}); Indeed, If Φ0(x, y) ⊆fin

p(x, y) is a finite subset, Since tpM(a/A) = q(x) 3 ∃y.
∧
φ∈Φ0

φ(x, y), we have
M � ∃y.

∧
φ∈Φ0

φ(a, y).
Hence (since |A| + n < κ) some b ∈ M with b � p(a, y) and then (a, b) �

p(x, y).

Lemma 7.20. Suppose θ :M 99K N is partial elementary and A ⊆ dom θ and
p(x) ∈ SM(A).

(i) The conjugate of p by θ

pθ(x) := {φ(x, θ(a)) : φ(x, a) ∈ p(x); φ a L-formula}

is a type pθ ∈ SN (θ(A)).

(ii) For b ∈ M, an extension θ′ of θ with dom θ′ = dom θ ∪ {b} is partial
elementary iff θ′(b) � tp(b/dom θ)θ.

Proof. (i) For a finite subset Φ0(x) ⊆fin p(x), write
∧

Φ0 as ψ(x, a), where ψ
is an L-formula and a ∈ A<ω. Then M � ∃x. ψ(x, a). So by elementarity,
N � ∃x. ψ(x, θ(a)).

(ii) Immediate.

Lemma 7.21. If M ≡ N and |M| = |N | ≥ ℵ0 and M and N are both
saturated, then M∼= N .

Proof. Back-and-forth.
Let M = (mα)α∈λ and N = (nα)α∈λ. We recursively construct a chain of

partial isomorphisms θα :M 99K N for α ∈ λ such that

|dom θα| ≤ 2·|α| und for all β < α, we have mβ ∈ dom θα and nβ ∈ im θα. (*)
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Let θ0 := ∅. For η a limit ordinal, let θη :=
⋃
α<η θα. We have |dom θη| ≤

|η| = 2 · |η|.
Given θα satisfying (*),
By saturation, tp(mα/dom θα)θα ∈ S1(im θα) is realised in N .
Hence θα extends to θ′α :M 99K N with mα ∈ dom θα

′;
symmetrically, (θ′α)−1 : N 99KM extends to θ′′α : N 99KM with nα ∈ dom θα

′′;
then θα+1 := (θ′′α)−1 :M 99K N satisfies (*).

Then θ :=
⋃
α θα :M

∼=−→ N is an isomorphism.

Definition 7.22. An L-structureM is κ-universal if any N ≡M with |N | < κ
elementarily embeds in M.

Lemma 7.23. Let M be an κ-saturated L-structure. Then M κ+-universal.

Proof. Suppose N ≡M with λ := |N | < κ+. Say N = {aα : α ∈ λ}. We build
a chain of partial elementary maps θα : N 99KM with dom θα = Aα := {aβ :
β < α}.

Set θ0 := ∅. For η a limit ordinal, set θη :=
⋃
α<η θα.

Since |Aα| = |α| < λ ≤ κ, by κ-saturation, tp(aα/Aα)θα is realised in M.
Set θα+1(aα) to be a realisation.

8 Countable models of countable theories

8.1 Countable saturated models

Lemma 8.1 (Tarski’s Chain Lemma). If (I;<) is a linear order and (Mi)i∈I
is an elementary chain, meaning Mi �Mj for i < j, then Mi �

⋃
i∈IMi for

all i.

Proof. Exercise 1.1(b).

Definition 8.2. A theory T is small if |Sn(T )| ≤ ℵ0 for all n ∈ ω.

Example 8.3. (Q;<) ist schmal. (Q;<)Q ist nicht schmal.

Theorem 8.4. Let T be a countable (i.e. |L| ≤ ℵ0) complete L-theory with
infinite models.

Then T has a countable saturated model iff T is small.

Proof. ⇒: Let n ∈ ω. Every type in Sn(T ) is realised in the countable satu-
rated model, so |Sn(T )| ≤ ℵ0.

⇐: If A ⊆fin M � T , then |S1(A)| ≤ |S|A|+1(T )| ≤ ℵ0; indeed, if A =
{a1, . . . , an} then p(x, a) 7→ p(x, y) is an injection S1(A) ↪−→ Sn+1(T ).

We build an elementary chain (Mi)i∈ω of countable models. LetM0 � T
with |M0| = ℵ0, which exists by Löwenheim-Skolem. Given, let X :=⋃
A⊆finMi

S1(A). Then |X| ≤ ℵ0. So by Lemma 7.16 and Löwenheim-
Skolem, there is a countable model Mi+1 �Mi which realises all p ∈ X.

Now let M :=
⋃
i∈ωMi � T . Then |M| ≤ ℵ0 and if A ⊆fin M, then

A ⊆fin Mi for some i ∈ ω. Hence every p ∈ S1(A) is realised inMi+1 and
hence in M�Mi+1.
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8.2 Omitting types

Definition 8.5. Let T be a consistent L-theory.

• A L-formula φ(x) is consistent (with T ), if T 6� ¬∃x. ψ(x).

• A set of formulas Φ(x) in T is isolated if there exists a consistent φ(x)
s.t. φ(x) `T Φ(x).

Theorem 8.6 (Omitting Types Theorem). Let T be a countable consistent
theory.

Let (Φk(xk))k∈ω be non-isolated sets of formulas. Then there exists a count-
able model M � T which omits every Φk.

Proof. Let C = {ci : i < ω} be a set of new constants.
Enumerate the L(C)-formulas in x as (ψi(x) : i < ω).
Let ξ : {(k, c) : k ∈ ω; c ∈ C |xk|} → ω be a bijection.
We construct an increasing chain (Σi)i∈ω of sets of L(C)-sentences such that

(i) |Σi| < ℵ0;

(ii) Ti := T ∪ Σi is consistent;

(iii) if j < i, there is c ∈ C such that Ti � ∃x. ψj(x)→ ψj(c);

(iv) if ξ(k, c) < i, there is φ(xk) ∈ Φk(xk) such that Ti � ¬φ(c).

Let Σ0 := ∅. Suppose Σi satisfies (i)-(iv).
Say c ∈ C does not appear in Σi nor in ψi, and let Σ′i+1 := Σi∪{∃x.ψi(x)→

ψi(c)}. Note that T ∪ Σ′i+1 is consistent.
Say ξ(k, c) = i, and let x := xk. Let δ(x, y) be such that

∧
Σ′i+1 = δ(c, c′),

where c′ ∈ (C \ {c1, . . . , c|x|})<ω. Now T 6� ¬∃x. ∃y. δ(x, y), so by non-isolation
of Φk there is φi(x) ∈ Φk(x) such that

∃y. δ(x, y) 6`T φi(x)). (*)

Let Σi+1 := Σ′i+1 ∪ {¬φi(c)}. Then T ∪ Σi+1 is consistent by (*).
Now let Tω := T ∪

⋃
i∈ω Σi. This is consistent by (ii) (since (Σi)i is an

increasing chain), so letM � Tω. By (iii) and Tarski’s test, {cM : c ∈ C} is the
domain of a countable elementary substructure N �M. By (iv), N omits each
Φk.

8.3 Prime models

Definition 8.7. M � T is a prime model of a theory T if it elementarily
embeds in any model of T .

Example 8.8. (Z;S) is a prime model of its theory.
(Q;<) is a prime model of DLO.

Definition 8.9. An L-structure M is atomic if tp(a) is isolated for every
a ∈M<ω.

Definition 8.10. A formula φ(x) is an atom modulo T if it is consistent with
T and isolates a type in T ; equivalently, for no ψ(x) are both φ∧ψ and φ∧¬ψ
consistent with T .
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Notation 8.11. ab := (a1, . . . , a|a|, b1, . . . , b|b|).

Lemma 8.12 (“Monotonicity and transitivity of isolation”). Let a, b ∈ M<ω.
Then tp(ab) is isolated iff tp(a/b) and tp(b) are isolated.

Proof. ⇒: Say, φ(x, y) isolates tp(ab). Then

• φ(x, b) isolates tp(a/b); indeed, if a � ψ(x, b) then ab � ψ(x, y), and so
φ(x, y) `T ψ(x, y), and so φ(x, b) `Tb ψ(x, b).

• ∃x. φ(x, y) isolates tp(b); indeed, if b � ψ(y) then φ(x, y) `T ψ(y), and so
∃x. φ(x, y) `T ψ(y).

⇐: Say, φ(y) isolates tp(b) and ξ(x, b) isolates tp(a/b) (where ξ(x, y) is an
L-formula).

Then ξ(x, y) ∧ φ(y) isolates tp(ab). Indeed, if ab � ψ(x, y) then a � ψ(x, b),
hence ξ(x, b) `Tb ψ(x, b), hence b � ∀x.(ξ(x, y)→ ψ(x, y)), hence T � ∀y.(φ(y)→
∀x. (ξ(x, y)→ ψ(x, y))), hence T � ∀x, y. ((ξ(x, y) ∧ φ(y))→ ψ(x, y))).

Lemma 8.13. Let M be an infinite L-structure, where |L| ≤ ℵ0.
Then M is a prime model of Th(M) iff M is countable and atomic.

Proof. Suppose M � T is prime. Then M is countable since it embeds in a
countable model, by Löwenheim-Skolem. Let a ∈ M<ω. Then tp(a) is realised

in any M′ � T (namely by θ(a), where θ : M ↪−�−→ M′). So by the omitting
types theorem, tp(a) is isolated. Hence M is atomic.

Conversely, suppose M = (ai)i∈ω is countable atomic, and let M′ � T . We
build a chain of partial elementary maps θi :M→M′ with dom θi = {aj : j <
i}.

Set θ0 := ∅.
Given θi, pi := tp(ai/a0, . . . , ai−1) is isolated by atomicity (and Lemma 8.12),

and hence pθii is isolated and hence realised by some bi ∈M′. Let θi+1(ai) := bi.
Then θi+1 is partial elementary (by Lemma 7.20(ii)).

Then
⋃
i<ω θi :M ↪−�−→M′ is an elementary embedding. SoM is prime.

Lemma 8.14. Let M ≡ N be countable atomic elementarily equivalent struc-
tures. Then M is isomorphic to N .

Proof. Exercise.

Proposition 8.15. Let T be a countable theory. Then T has at most one prime
model up to isomorphism.

Proof. Exercise (it follows from Lemma 8.14 and Lemma 8.13).

Definition 8.16. We say the isolated types are dense in S(T ) if for each
formula φ(x) consistent with T , there is some isolated p(x) ∈ S(T ) with φ ∈ p.

Theorem 8.17. A countable complete theory T has a prime model iff isolated
types are dense in S(T ).
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Proof. ⇒: Say (by Lemma 8.13) M � T is countable atomic. Then any consis-
tent φ(x) has a realisation in M (since T is complete), which by atomicity has
isolated type.
⇐: Let n ∈ ω and Ψn(x1, . . . , xn) := {¬ψ(x) : ψ(x) an atom}. Suppose a

formula φ(x) isolates Ψn(x). By density of isolated types, ψ(x) `T φ(x) for some
atom ψ(x), but then ψ(x) `T ¬ψ(x), contradicting consistency of ψ(x). So each
Ψn(x) is not isolated, so by the omitting types theorem, there is a countable
M � T which omits each Ψn. ThenM is atomic: if a ∈M<ω, there is an atom
ψ(x), such that a 6� ¬ψ(x), hence a � ψ(x), hence ψ(x) isolates tp(a).

Notation 8.18. We write elements of 2<ω or 2ω as binary strings, with ∅ for
the empty string.

sl t means that s is a prefix of t, i.e. t = st′ for some t′.

Definition 8.19. A binary tree of formulas for a theory T is a family of
formulas (φs(x))s∈2<ω such that for each s ∈ 2<ω:

• φs(x) is consistent with T ;

• φs0(x) `T φs(x) and φs1(x) `T φs(x);

• φs0(x) `T ¬φs1(x).

Lemma 8.20. If a countable theory T has a binary tree of formulas, then
S(T ) = 2ℵ0 .

Proof. Say (φs(x))s∈2<ω is a binary tree and |x| = n. For t ∈ 2ω, {Ps(x) : sl t}
is consistent, so extends to a type pt(x) ∈ Sn(T ). Then if t 6= t′, there is s ∈ 2<ω

such that s0 l t and s1 l t′ or the other way round, so pt(x) 6= pt′(x).
So |S(T )| ≥ |Sn(T )| ≥ |2ω| = 2ℵ0 .
Since the language L of T is countable, |S(T )| ≤ |P({L-formulas})| = 2ℵ0 .

Example 8.21. Consider 2ω as a structure in the language {Ps : s ∈ 2<ω}, where
Ps(2

ω) := {t : sl t}, and let TBT be its theory.
Then {Ps(x) : s ∈ 2<ω} is a binary tree of formulas in TBT.
Exercise: TBT has QE. It follows that 2ω 3 t 7→ tp(t) ∈ S1(TBT) is a

bijection, and none of these types are isolated.
So TBT is not small, and isolated types are not dense, and there is no prime

model.
Bonus exercise: explicitly describe a countable model.

Lemma 8.22. Let T be a consistent theory.

(i) If the isolated types are not dense in S(T ), then T has a binary tree of
formulas.

(ii) If T is small, the isolated types are dense in S(T ).

Proof. (i) Say φ∅(x) is consistent and in no isolated type.

Given φs(x) which is consistent and in no isolated type (s ∈ 2<ω), φs(x)
is not an atom, so there is ψ(x) such that φs0 := φ(x)∧¬ψ(x) and φs1 :=
φ(x)∧ψ(x) are consistent, and each is in no isolated type since φ has this
property.

So we may recursively construct a binary tree of formulas (φs(x))s∈2<ω .
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(ii) Follows from (i) and Lemma 8.20.

Proposition 8.23. Any countable complete small theory has a prime model.

Proof. Immediate from Lemma 8.22(ii) and Theorem 8.17.

Remark 8.24. The converse fails; consider (Q;<)Q (Exercise).

Example 8.25. Let k be a countable field. The theory of infinite k-vector spaces
is complete, countable, and small. The countable models are the vector spaces
Vd of dimensions d ∈ (ω \ 0) ∪ {ℵ0}. V1 is the prime model, and Vℵ0 is the
countable saturated model.

Proposition 8.26. For a countable theory T , TFAE:

(i) T is not small, i.e. |S(T )| > ℵ0;

(ii) T has a binary tree of formulas;

(iii) |S(T )| = 2ℵ0 .

Furthermore, if T is not small, then

(iv) T has 2ℵ0 countable models up to isomorphism.

Proof. Exercise.

Remark 8.27. There do exist small theories with 2ℵ0 countable models, e.g.
Th((ω × ω; (Pi)i)ω×ω), where Pi(ω × ω) = {i} × ω.

Corollary 8.28. If a countable theory T has countably many countable models,
then T is small, and hence T has a prime countable model and a saturated
countable model.

Conjecture 8.29 (Vaught). If T is a countable theory with uncountably many
countable models, it has 2ℵ0 countable models.

(Note: it’s easy to see that a countable theory has at most 2ℵ0 countable
models, so this is immediate if we assume CH.)

8.4 Ryll-Nardzewski

Theorem 8.30 (Ryll-Nardzewski). Let T be a complete countable L-theory with
infinite models. TFAE:

(A) T is ℵ0-categorical.

- (B1) For all n ∈ ω and M � T , there are only finitely many definable
subsets of Mn.

(B1’) For all n ∈ ω, we have |Φn,T | < ℵ0, where Φn,T := {φ(x1,...,xn)}/↔T

is the set of (↔T )-equivalence classes of L-formulas φ(x1, . . . , xn).

(B2) Every type in T is isolated.

(B3) For all n ∈ ω, we have |Sn(T )| < ℵ0.

(C) Every countable model of T is saturated.
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(D) Every countable model of T is prime.

(E) T has a countable model which is saturated and prime.

(The equivalence (A) ⇔ (B1) is the key result here, and is what is most
often referred to as the Ryll-Nardzewski Theorem.)

Proof.

(B1) ⇔ (B1’) If M � T , then φ(x)↔T ψ(x) iff φ(M) = ψ(M).

(B1’) ⇒ (B2) Given p(x) ∈ S(T ), p(x) contains by (B1’) only finitely many formulas
φ1(x), . . . , φk(x) up to equivalence. Then

∧
i φi ∈ p isolates p.

(B2) ⇒ (B3) Suppose each p(x) ∈ S(T ) is isolated, say by φp(x). Let n ∈ ω.

Suppose |Sn(T )| is infinite. Then {¬φp(x) : p ∈ Sn(T )} is finitely satisfi-
able and so can be completed to some p ∈ Sn(T ), but then φp `T p 3 ¬φp,
contradicting consistency of φp.

(B3) ⇒ (B1’) The map φ(x1, . . . , xn) 7→ {p ∈ Sn(T ) : φ(x) ∈ p(x)} induces an injection
Φn,T ↪−→ P(Sn(T )); indeed, if φ(x) 6↔T ψ(x), then T � ∃x. ¬(φ(x) ↔
ψ(x)), so for some p ∈ Sn(T ), we have φ ∈ p 6⇔ ψ ∈ p. So Φn,T is finite if
Sn(T ) is.

For the remaining equivalences, note first that since T is complete and has
infinite models, it has no finite models, so countable models have cardinality ℵ0.

(A) ⇒ (D) By Löwenheim-Skolem, every model of T has a countable elementary sub-
model. So if M is the unique countable model, it elementarily embeds in
every model, so is prime.

(D) ⇒ (B2) Every type is (by Löwenheim-Skolem) realised in a countable model, which
by (D) and Lemma 8.13 is atomic.

(B2) ⇒ (C) Let M � T be countable, and let A ⊆fin M. Then every p ∈ S(A) is
isolated by (B2) (and Lemma 8.12), and hence realised in M. So M is
saturated.

(C) ⇒ (A) Lemma 7.21.

((C) ∧ (D)) ⇒ (E) A countable model exists by Löwenheim-Skolem, so this is immediate.

(E) ⇒ (D) If M � T is a countable saturated prime model and N � T is countable,

then N ↪−�−→M by Lemma 7.23. Then N is prime since M is. .

Remark 8.31. We can also give direct proofs of some of the other implications:

(A) ⇒ (B) If some type is not isolated, by the omitting types theorem we have a
countable model which omits it, but we also have a countable model which
realises it.

(B2) ⇒ (D) Lemma 8.13.

(D) ⇒ (A) Proposition 8.15.
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((A) ∧ (B)) ⇒ (E) By (B), T is small, so saturated and prime countable models exist; by (A)
they are isomorphic.

(E) ⇒ (B2) By (E), an atomic model realises every type.

8.5 Fräıssé constructions

Let L be finite and relational, i.e. containing only relation symbols. In this
section, we consider the empty L-structure to be an L-structure.

Our aim is to find ℵ0-categorical theories.

Remark 8.32. Let n ∈ ω. There are up to isomorphism only finitely many
L-structures of cardinality n.

Definition 8.33. The age of an L-structureM is the class of finite L-structures
which embed in M,

age(M) := {A : |A| < ℵ0; ∃f : A ↪−→M} = {A : A ∼= A′ ≤fin M}.

Lemma 8.34. Any age K satisfies:

(HP) If A ∈ K, then age(A) ⊆ K;

(JEP) If B1,B2 ∈ K, then there exist C ∈ K and embeddings fi : Bi ↪−→ C.

C

B1

. �

f1

>>

B2

/ O

f2

__ .

Proof. (HP) Clear.

(JEP) Say fi : Bi ↪−→M. Let C := 〈f1(B1) ∪ f2(B2)〉M ≤M. Then fi : Bi ↪−→
C ∈ K.

Conversely:

Lemma 8.35. Any non-empty class K of finite L-structures satisfying (HP)
and (JEP) is the age of a countable L-structure.

Proof. By Remark 8.32 we can find Ai ∈ K for i ∈ ω such that any A ∈ K is
isomorphic to some Ai.

We construct a countable chain D0 ≤ D1 ≤ . . . with Di ∈ K, such that each
Aj for j < i embeds in Di.

Let D0 := ∅ (which is in K by (HP) and K 6= ∅). Suppose Di has been
constructed. By (JEP) there is D′i+1 ∈ K, such that Di and Ai embed in D′i+1.
Let (by Lemma 2.2) Di+1

∼= D′i+1 with Di ≤ Di+1. Then also Ai embeds in
Di+1.

LetM :=
⋃
i∈ω Di, which is countable since each Di is finite. Then each Ai

embeds inM, so K ⊆ age(M). Conversely, if A ≤M, then A ≤ Di for some i,
so A ∈ age(K) by (HP).

Lemma 8.36. Any consistent L-theory with QE and with infinite models is
ℵ0-categorical.
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Proof. For any n ∈ ω there are only finitely many atomic L-formulas in free
variables x1, . . . , xn, and hence only finitely many qf L-formulas in x up to
equivalence. So we conclude by Ryll-Nardzewski.

Definition 8.37. A Fräıssé class is a class K of finite L-structures which
contains unboundedly large structures and satisfies (HP) and

(AP) If A,B1,B2 ∈ K and gi : A ↪−→ Bi are embeddings, then there exist C ∈ K
and embeddings fi : Bi ↪−→ C, such that f1 ◦ g1 = f2 ◦ g2.

C

B1

. �

f1

>>

B2

0 P

f2

``

A
0 P

g1

``BBBBBBBB . �
g2

>>}}}}}}}

Remark 8.38. (AP) implies (JEP): take A := ∅.

Theorem 8.39 (Fräıssé).

(i) Let K be a Fräıssé class. Then there is a unique L-theory TK, such that
TK has QE and infinite models and K is the age of any model of TK.

The unique countable model of TK is called the Fräıssé limit of K.

(ii) Conversely, if M is an infinite L-structure with QE, then age(M) is a
Fräıssé class.

Example 8.40.

• The class of finite linear orders is a Fräıssé class with Fräıssé limit.

• The class of finite graphs is a Fräıssé class with Fräıssé limit the countable
random graph.

Proof. For A a finite L-structure: say A = {a1, . . . , an}, let

φA,a(x) :=
∧
{φ(x) : φ(x) basic; A � φ(a)}.

So forM an L-structure and a′ ∈Mn, we haveM � φA,a(a′) iff a′ 7→ a defines

an isomorphism 〈a′〉M
∼=−→ A.

(ii) Suppose M is an infinite L-structure with QE. Set K := age(M).

Claim. Suppose g : A ↪−→ B ∈ K and A = {a1, . . . , an} and B =
{g(a1), . . . , g(an), b1, . . . , bm}. Then

M � θA,B,g,a,b := ∀x. (φA,a(x)→ ∃y. φB,g(a)b(x, y)).
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Proof. B ∈ K = age(M), so let cd ∈ M<ω with M � φB,g(a)b(c, d). Then

M � ∃y. φB,g(a)b(c, y). Now M � φA,a(c), and by QE ∃y. φB,g(a)b(x, y) is

equivalent to a qf formula, so it is implied by φA,a(x).

We show that K is a Fräıssé class.
(HP) holds by Lemma 8.34.
Let gi : A ↪−→ Bi be as in (AP). Composing with an isomorphism, we
may assume A ≤M.
Say A = {a1, . . . , an} and Bi = {gi(a1), . . . , gi(an), bi1, . . . , b

i
mi}.

Then by the Claim, M � θA,Bi,gi,a,bi ,
so M �

∧
i=1,2 ∃y. φBi,gi(a)b

i(a, y)).

Let c1 and c2 be witnesses; then

fi(gi(a)) := a; fi(b
i
) := ci

defines embeddings fi : Bi ↪−→M with f1 ◦ g1 = f2 ◦ g2.
So we obtain (AP) by setting C := 〈f1(B1) ∪ f2(B2)〉M.

(i) Suppose K is a Fräıssé class.

For n ∈ ω, let Kn ⊆fin K be such that any A ∈ K with |A| ≤ n is
isomorphic to some A′ ∈ Kn, and let

χn(x1, . . . , xn) := ∀x.
∨
{φA,a(x) : A ∈ Kn; A = {a1, . . . , an}}).

Let ΘK be the class of triples (A,B, a, b) such that A ≤ B ∈ K and
A = {a1, . . . , an} and B = {a1, . . . , an, b1, . . . , bm}.
Let θA,B,a,b := θA,B,idA,a,b.

Let
TK := {θA,B,a,b : (A,B, a, b) ∈ ΘK} ∪ {χn : n ∈ ω}.

Any model of TK has age K, since it satisfies the and θ∅,B,∅,b. By the above
Claim, if M has QE and age(M) = K, then M � TK.

It remains to see that TK has QE and infinite models; indeed, it is then
complete (by Corollary 5.16), and the claimed uniqueness follows.

We verify QE via Theorem 5.15(iii).
Suppose A ≤M1,M2 � TK is a finite common substructure of models of
TK.
Say A = {a1, . . . , an}.
Suppose ∃y. ψ(x, y) is a primitive existential L-formula
and M1 � ψ(a, b) for some b ∈M1.

Let B = 〈ab〉M1 .
Since M1 � χn+1, we have A,B ∈ K.
Then ψ(x, y) is implied by φB,ab(x, y).
So since M2 � θA,B,a,b and M2 � φA,a(a),
also M2 � ∃y. ψ(a, y), as required.

Finally, we construct an infinite model of TK.
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Claim. Let (A,B, a, b) ∈ Θ, and suppose A ≤ D ∈ K. Then there exists
D′ ∈ K such that D ≤ D′, and there is an embedding f : B ↪−→ D′ such
that f �A= id�A.

Proof. Immediate consequence of (AP) (and Lemma 2.2).

Let ξ : ω × ω → ω be a bijection such that ξ(i, j) ≥ i.
We construct a countable chain D0 ≤ D1 ≤ . . . with Dk ∈ K.
We simultaneously construct a sequence (Ai, ai)i∈ω,
and for k ∈ ω some mk > k,
such that if a is a tuple of distinct elements of Dk,
then a = ai for some i < mk

and for all i < mk, we have Ai = 〈ai〉Dk ≤ Dk.

For each i ∈ ω we take (using Remark 8.32) a sequence (Bij , b
i

j)j∈ω with

(Ai,Bij , aib
i

j) ∈ Θ,

such that if (Ai,B, aib) ∈ Θ, then

b 7→ b
i

j ; ai 7→ ai

defines an isomorphism B
∼=−→ Bij .

Let D0 := ∅ (and A0 := ∅ and m0 := 1).
Given Dk, say k = ξ(i, j),
we have i ≤ ξ(i, j) = k < mk, so Ai ≤ Dk.
By the Claim we find Dk ≤ Dk+1 ∈ K,
such that Bij embeds in Dk+1 over Ai;
i.e. Dk+1 � ∃y. φBij ,aib(ai, y).

We may extend (Ai, ai)i to include the substructures of Dk+1, and set
mk+1 > mk correspondingly.

So then MK :=
⋃
k∈ω Dk � θA,B,a,b for all (A,B, a, b) ∈ Θ.

Also M � χn, since Dk ∈ K. So M � TK.

Finally,M is infinite, since K contains unboundedly large finite structures.

Remark 8.41. Analogues of Theorem 8.39 exist for arbitrary countable lan-
guages, with finitely generated substructures in place of finite substructures.

In non-relational languages, one must assume (JEP) as well as (AP), or

equivalently assume (AP) and: 〈∅〉A ∼= 〈∅〉B for all A,B ∈ K.
In general ℵ0-categoricity and QE are weakened to ultrahomogeneity of the

Fräıssé limit: any partial automorphism with f.g. domain extends to an auto-
morphism. The proof is essentially the same.

There are further generalisations, including “Hrushovski-Fräıssé construc-
tions”, in which (HP) is relaxed.
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9 Cofinality and regularity

Definition 9.1. Let X be a linearly ordered set.

• A subset A ⊆ X is cofinal if ∀b ∈ X. ∃a ∈ A. a ≥ b.

• The cofinality ofX, written cof(X), is the minimal cardinality of a cofinal
subset.

• An infinite cardinal λ is regular if cof(λ) = λ, otherwise it is singular.

Lemma 9.2. Suppose λ is a regular cardinal and (Aα)α∈λ is an increasing
chain of sets. Suppose B ⊆

⋃
α∈λAα with |B| < λ. Then there exists an ordinal

α ∈ λ such that B ⊆ Aα.

Proof. Otherwise, {inf{α : b ∈ Aα} : b ∈ B} is cofinal, so cof(λ) ≤ |B| < λ,
contradicting regularity.

Proposition 9.3. Infinite successor cardinals are regular.

Proof. Let κ be an infinite cardinal. Suppose A ⊆ κ+ with |A| < κ+. Then
|A| ≤ κ and every α ∈ A has cardinality |α| ≤ κ, so |

⋃
α∈A α| ≤ κ · κ = κ. But

then supα∈A α =
⋃
α∈A α < κ+, so A is not cofinal in κ+.

So cof(κ+) = κ+.

10 Saturation

10.1 Existence

Definition 10.1. For A ⊆ B ⊆M, define

�A: S(B)� S(A); tp(a/B) 7→ tp(a/A)

(for a ∈M′ �M).

Proposition 10.2. Let T be a theory with infinite models.
Let κ ≤ λ ≥ |T | be infinite cardinals such that for anyM � T with |M| ≤ λ,

there exists a subset ΞM ⊆ S1(M) with |ΞM| ≤ λ such that for any A ⊆ M
with |A| ≤ κ we have �A (ΞM) = S1(A).

Then T has a κ+-saturated model of cardinality λ+ κ+.

Corollary 10.3. Let T be a theory with infinite models.
For any infinite cardinal κ ≥ |T |, T has a κ+-saturated model of cardinality

2κ.
In particular, T has a µ-saturated model for any infinite cardinal µ.

Proof. If M � T with |M| ≤ λ und A ⊆ M with |A| ≤ κ, then |S1(A)| ≤
2|TA| = 2|T |+|A| ≤ 2κ. Meanwhile

|A ⊆M : |A| ≤ κ| ≤ |M|κ ≤ (2κ)κ = 2κ·κ = 2κ.

Then ∣∣∣∣∣∣
⋃

A⊆M; |A|≤κ

S1(A)

∣∣∣∣∣∣ ≤ 2κ · 2κ = 2κ = λ.

So we can find |ΞM| ≤ λ as required.
Finally, 2κ + κ+ = 2κ.
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Bemerkung 10.4. It follows that if λ+ = 2λ, e.g. if we assume GCH, then T has
a saturated model of cardinality λ+. But (under a “reasonable” large cardinal
assumption) it is consistent with ZFC that no infinite λ exists with 2λ = λ+.

Proof of Proposition 10.2. We build an elementary chain (Mα)α∈κ+ of models
of cardinality λ.

Let (by Löwenheim-Skolem) M0 � T with |M0| = λ. For η ∈ κ+ a limit
ordinal, set Mη :=

⋃
α<ηMα. By Lemma 8.1, Mη � Mα for α < η. Since

|η| ≤ κ ≤ λ, we have |Mη| = λ.
Given Mα, By Lemma 7.16 and Löwenheim-Skolem there is Mα+1 � Mα

with |Mα+1| = λ which realises every type in ΞMα , and hence every type in
S1(A) for A ⊆Mα with |A| ≤ κ.

Now let M :=
⋃
α∈κ+Mα. Then λ ≤ |M| ≤ λ · κ+ = λ+ κ+.

If A ⊆ M with |A| < κ+, then since κ+ is a successor cardinal and hence
is regular, already A ⊆ Mα for some α ∈ κ+. So any p ∈ S(A) is realised in
Mα+1 �M and hence in M. Hence M is κ+-saturated.

It follows that |M| ≥ κ+, so |M| = λ+ κ+.

10.2 Stability

Definition 10.5. Let κ be an infinite cardinal.
A structure M is κ-stable if |S1(A)| ≤ κ for all A ⊆M with |A| ≤ κ.
A theory T is κ-stable if it has infinite models and everyM � T is κ-stable.
A model or theory is stable if it is κ-stable for some infinite cardinal κ.
We often write ω-stable for ℵ0-stable.

Example 10.6. T∞ and T(Q;+) are ω-stable.
DLO is not stable.

Corollary 10.7 (of Proposition 10.2). Let T be λ-stable, where λ ≥ |T |.

(i) T has a saturated model of cardinality λ+.

(ii) Let κ < λ. Then T has a κ+-saturated model of cardinality λ.

Proof. Let κ ≤ λ. By Proposition 10.2, with ΞM := S1(M), there is a κ+-
saturated model of cardinality λ+ κ+.

Then (i) follows by taking κ := λ, and (ii) with κ < λ.

10.3 QE and saturation

Notation 10.8.

• Let M an L-structure. For b ∈M<ω,

qftpM(b/A) := {φ(x) : φ qf L(A)-formula; M � φ(b)}.

• Let M1,M2 be L-structures. For bi ∈M<ω
i we write

b1 ≡ b2

when tpM1(b1) = tpM2(b2), and we write

b1 ≡qf b2

when qftpM1(b1) = qftpM2(b2).
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• If A ⊆M1,M2 is a common subset, we write

b1 ≡A b2

when tpM1(b1/A) = tpM2(b2/A); ähnlich für b1 ≡qf
A b2.

Remark 10.9.

• b1 ≡ b2 iff b1 7→ b2 defines a partial elementary map M1 99KM2.

• b1 ≡qf b2 iff b1 7→ b2 defines a partial isomorphism M1 99KM2.

Proposition 10.10. Let T be a theory. Let κ be an infinite cardinal. TFAE:

(i) T has QE;

(ii) Let M1,M2 � T be κ-saturated models, ai ∈ M<ω
i with a1 ≡qf a2, and

b1 ∈M1.

Then there exists b2 ∈M2 with a1b1 ≡qf a2b2.

Proof.

(i) ⇒ (ii) Let θ : a1 7→ a2. This is a partial isomorphism, so by QE it is partial
elementary. Hence (by Lemma 7.20) tp(b1/a1)θ a type in SM2(a2). So
by ℵ0-saturation of M2, it is realised in M2, say by b2 ∈ M2. Then
a1b1 ≡ a2b2.

(ii) ⇒ (i) We verify QE via Theorem 5.15(iii).

Let A = 〈a〉 ≤ M1,M2 � T be a common finitely generated substructure
of two models of T , and ∃y. ψ(x, y) a primitive existential formula, and
b1 ∈M1 with M1 � ψ(a, b1).

By Corollary 10.3, we can find κ-saturated elementary extensions M′i �
Mi. By (ii), there is b2 ∈ M′2 with ab1 ≡qf ab2, hence M2 � ∃y. ψ(a, y),
as required.

Example 10.11. An ordered Q-vector space is a Q-vector space with a linear
ordering < such that

∀x, y, z. (x < y → x+ z < y + z).

Let ToQ−VS be the {0,+, (q·)q∈Q, <}-theory consisting of this axiom along with
axioms for non-trivial Q-vector spaces.

Claim. ToQ−VS has QE and is complete.

Proof. Completeness follows from QE via Corollary 5.16, since 〈∅〉M = {0} for
any M � ToQ−VS.

Let M1,M2 � ToQ−VS be ℵ1-saturated. Let ai ∈M<ω
i with a1 ≡qf a2. Let

b1 ∈M1.
A qf-type qftp(b/a) is determined by the formulas of form x =

∑
qi · ai or

x <
∑
qi · ai or x >

∑
qi · ai.
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Let Ai := 〈ai〉Mi Then a1 7→ a2 generates an order isomorphism θ : A1 →
A2. Note that the reductMi �< ofMi to an order is a model of DLO. So by QE
for DLO, θ is a partial elementary map of linear orders θ : M1 �<99K M2 �<,
so (tpM1�<(b1/A1))θ is a type in SM2�<

1 (A2). By ℵ1-saturation of M2, say
b2 ∈M2 realises this type.

Then a1b1 ≡qf a2b2.

One can deduce that the {0,+, <}-theory DOAG of linearly ordered divisible
abelian groups (e.g. (Q; 0,+, <)) is complete and has QE.

10.4 Bonus: Monsters

Definition 10.12. A structureM is strongly κ-homogeneous, if any partial
elementary map θ :M 99KM with |dom θ| < κ extends to an automorphism of
M.
M is strongly κ-saturated if it is κ-saturated and strongly κ-homogeneous.

Proposition 10.13. If a structureM is saturated, it is strongly |M|-saturated.

Proof. As in Exercise 7.2(a).
Briefly: If θ :M 99KM is partial elementary and |dom θ| < |M|, then θ in-

duces an elementary equivalence between the expansions by constantsMdom θ ≡
Mim θ; but these structures are also saturated, so by Lemma 7.21 they are iso-
morphic. An isomorphism between these structures is an automorphism of M
extending θ.

Theorem 10.14. Let T be a theory with infinite models. Let λ be an infinite
cardinal. Then T has a strongly λ-saturated model.

Proof. Increasing λ, we may assume λ ≥ |T | and λ is regular.
Let M0 � T with |M0| > λ. By Corollary 10.3 we may extend to an

elementary chain (Mα)α∈λ such that each Mα+1 is |Mα|+-saturated, and for
η a limit ordinal Mη =

⋃
α<ηMα.

Let M :=
⋃
α∈λMα. Then M is λ-saturated since each Mα+1 is and λ is

regular.
Now let θ : M 99K M be partial elementary with |dom θ| < λ. Since λ is

regular, for some α ∈ λ we have θ :Mα 99KMα, i.e. dom θ ∪ im θ ⊆ Mα. Let
θα := θ.

NowMα+1 is |Mα|-saturated, so as in the proof of Lemma 7.23, θα extends
to a partial elementary map θα+1 : Mα+1 99K Mα+1 with Mα ⊆ dom θα+1 and
also Mα ⊆ im θα+1.

We obtain in this way, taking unions at limit ordinals, an increasing chain
(θβ)α≤β∈λ of partial elementary maps θβ : Mβ 99K Mβ with each Mβ ⊆
dom θβ+1 ∩ im θβ+1.

Then σ :=
⋃
β θβ ∈ Aut(M) as required.

11 ω-stability

Let T be a complete L-theory with infinite models.
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Lemma 11.1. T is κ-stable iff for all A ⊆ M � T with |A| ≤ κ, we have
|S(A)| ≤ κ.

In particular, T is ω-stable iff Th(MA) is small for all A ⊆ M � T with
|A| = ℵ0.

Proof. We show by induction that |Sn(A)| ≤ κ for all n. For n = 1, this is the
definition of κ-stability.

Suppose |Sn(A)| ≤ κ.
Let N �M be κ+-saturated.
Let (bi ∈ Nn)i∈κ be such that {tp(bi/A) : i ∈ κ} = Sn(A).
Let bc ∈ Nn+1.
Then bc ≡A bic′ for some i ∈ κ and c′ ∈ N .
For each i ∈ κ there are at most |S1(A ∪ bi)| ≤ κ possibilities for tp(c′/bi).
So |Sn+1(A)| ≤ κ · κ = κ.

Definition 11.2. T is totally transcendental if for any M � T , there is no
binary tree (φs)s∈2<ω of formulas for Th(MM).

Theorem 11.3.

(a) If T is ω-stable then T is totally transcendental.

(b) If T is totally transcendental then T is κ-stable for all κ ≥ |T |.

Corollary 11.4. Suppose |T | = ℵ0. TFAE:

(i) T is ω-stable;

(ii) T is totally transcendental.

(iii) T is κ-stable for all κ ≥ ℵ0.

Proof of Theorem 11.3.

(a) Suppose M � T and Th(MM) has a binary tree of formulas (φs)s∈2<ω .
Since |2<ω| = ℵ0, there exists A ⊆M with |A| ≤ ℵ0 such that each φs is a
L(A)-formula, and so (φs)s is also a binary tree of formulas for Th(MA).
Then by Lemma 8.20, |SM(A)| = |S(Th(MA))| = 2ℵ0 > ℵ0, so T is not
ω-stable.

(b) (cf. Exercise 6.1(a))

Let A ⊆ M � T with |A| ≤ κ. For φ(x) an L(A)-formula, define [φ(x)] :=
{p ∈ S1(A) : φ(x) ∈ p(x)}.

Claim. If |[φ(x)]| > κ, then there is an L(A)-formula ψ(x), such that
|[φ(x) ∧ ψ(x)]| > κ < |[φ(x) ∧ ¬ψ(x)]|.

Proof. Say p ∈ S1(A) is small if ∃ψ ∈ p. |[ψ]| ≤ κ. There are at most
|Th(MA)| ·κ ≤ κ ·κ = κ small types in S1(A). Hence there are distinct non-
small types p1, p2 ∈ [φ(x)]. Let ψ(x) ∈ p1(x)\p2(x); then φ(x)∧ψ(x) ∈ p1(x)
and φ(x) ∧ ¬ψ(x) ∈ p2(x), so ψ is as required.

Now if |[x .
= x]| = |S1(A)| > κ, we build a binary tree with |[φs]| > κ for all

s ∈ 2<ω: set φ∅ := x
.
= x; given φs, let φs0 := φs ∧ ψ and φs1 := φs ∧ ¬ψ,

where ψ is as in the claim.
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11.1 Constructibility

Notation 11.5. If A ⊆ M � T and N � T , we call a map θ : A → N partial

elementary (p.e.) and write θ : A
≡−→ N , if the corresponding partial map

θ :M 99K N is p.e..

Remark 11.6. θ : A → N � T is p.e. iff NA,θ ≡ MA, where NA,θ is the
L(A)-structure defined by aNθ(A) := θ(a).

Definition 11.7. Let A ⊆ M � T . Then M is prime over A if every p.e.

map A
≡−→ N � T extends to an elementary embedding M ↪−�−→ N .

Remark 11.8. Let A ⊆M � T . Applying Remark 11.6, we find thatM is prime
over A iff MA is a prime model of Th(MA).

Remark 11.9. By Proposition 8.23 and Proposition 8.15, a countable ω-stable
theory has a unique prime model over any countable set A ⊆M � T .

In fact this holds also for uncountable A. We prove existence in this section.
Uniqueness requires further work.

Definition 11.10. If A ⊆ B ⊆ M � T , then B is constructible over A if B
can be enumerated as (bα)α<γ for some ordinal γ, such that for all α < γ the
type tp(bα/A ∪ b<α) is isolated, where b<α := {bβ : β < α}.

Lemma 11.11. If M � T is constructible over A ⊆M, then M is prime over
A.

Proof. Suppose θ0 : A
≡−→ N � T . We construct a chain of p.e. maps θα :

A∪b<α
≡−→ N � T for α ≤ γ. Then θγ :M ↪−�−→ N is an elementary embedding.

For η ∈ γ a limit ordinal, θη :=
⋃
α∈η θα.

Given α < γ and θα, let θα+1(bα) be a realisation in N of the isolated type
tp(bα/A ∪ b<α)θα .

Lemma 11.12. If T is totally transcendental and A ⊆M � T , then the isolated
types are dense in S(A).

Proof. Immediate consequence of Lemma 8.22(i).

Theorem 11.13. If T is totally transcendental and A ⊆ N � T , then T has a
constructible prime model A ⊆M � N over A.

Proof. A construction sequence over A is a sequence (bα)α<γwith each tp(bα/A∪
b<α) isolated.

By Zorn, there is a maximal construction sequence (bα)α<γ in N . Let M :=
b≤γ ⊆ N . We show by the Tarski Test that M is the domain of an elementary
substructureM� N , which is constructible over A and hence by Lemma 11.11
prime over A, as required.

So let φ(x) be an L(B)-formula such that N � ∃y.φ(x). By Lemma 11.12,
let p(x) ∈ S(B) be isolated with p(x) ` φ(x). Let c ∈ N realise p. If c /∈ B then
we could extend the construction sequence by setting bγ := c, contradicting
maximality. So c ∈ B, and N � φ(c), as required.

Lemma 11.14. Let A ⊆ B ⊆ C ⊆M � T . Suppose C is constructible over B
and B is constructible over A. Then C is constructible over A.
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Proof. Exercise.

Definition. If A ⊆ B ⊆M � T , then B atomic over A if tp(b/A) is isolated
for all b ∈ B<ω.

Lemma 11.15. IfM � T is constructible over A ⊆M, thenM is atomic over
A.

Proof. SayM = (bα)α<γ with tp(bα/A∪ b<α) isolated. Let b ∈M<ω. Permut-

ing, we may assume b = bαb
′
, where b

′ ∈ b<ω<α. Inductively, we may assume that
b<α is atomic over A.

Now tp(bα/A∪b<α) isolated by some L(A∪c)-formula, where c ∈ b<ω<α. Then

tp(bα/A ∪ bc) isolated. By atomicity, tp(b
′
c/A) is isolated. So by Lemma 8.12

(for MA) tp(bαb
′
c/A) and hence tp(bαb

′
/A) are isolated.

Fact. The converse holds for countableM: If A ⊆M � T andM is countable,
then as in Lemma 8.13 if M is atomic over A then it is constructible and hence
prime over A.

But for uncountable M, atomicity over A does not imply primeness over A,
even if T is ω-stable and |A| = |M|.

12 Strong minimality

Let T be a complete L-theory with infinite models.

12.1 Algebraicity

Notation 12.1. Some abbreviations:

x
.
= y :=

∧
i

xi
.
= yi

∃≥nx. φ(x) := ∃x1, . . . , xn. (
∧
i

φ(xi) ∧
∧
i<j

xi 6
.
= xj)

∃≤nx. φ(x) := ¬∃≥n+1x. φ(x)

∃=nx. φ(x) := (∃≥nx. φ(x) ∧ ∃≤nx. φ(x)).

Definition 12.2. Let M � T .

• An L(M)-formula φ(x) is algebraic if |φ(M)| < ℵ0.

• A tuple b ∈ M<ω is algebraic over a subset A ⊆M, and tp(b/A) is an
algebraic type, if tp(b/A) contains an algebraic formula.

• The algebraic closure of a subset A ⊆M in M is

aclM(A) := {b ∈M : tp(b/A) is algebraic}.

Lemma 12.3. (i) Let φ(x, y) be an L-formula. Let M � T . For a ∈ M|y|,
whether φ(x, a) is algebraic depends only on tpM(a).

(ii) Let A ⊆ M � N � T . Then aclM(A) = aclN (A). We usually write just
acl(A).
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Proof. (i) φ(x, a) is algebraic iff for some n ∈ ω

M � ∃=nx. φ(x, a).

(ii) Let φ(x) be an algebraic L(A)-formula. Let n := |φ(N )|. Then M �
∃=nx. φ(x), so φ(M) = φ(N ).

Then aclN (A) =
⋃
φ alg. L(A)-formula φ(N ) =

⋃
φ alg. L(A)-formula φ(M) =

aclM(A).

Examples 12.4. In a k-vector space, acl(A) = 〈A〉k.
In an algebraically closed field, acl is field theoretic algebraic closure: for

A ⊆ K � ACF, let k = Q(A) ≤ K be the subfield generated by A; then

acl(A) = {b ∈ K : ∃f ∈ k[X]. f(b) = 0}.

Lemma 12.5. (i) Any algebraic type is isolated by an algebraic formula.

(ii) Let A ⊆M � T . Then acl(A) is constructible over A.

Proof. (i) (Exercise 5.3) If φ(x) ∈ tp(b/A) is algebraic with |φ(M)| minimal,
then φ(x) is isolated.

(ii) Enumerate acl(A) as (bα)α∈γ . Then tp(bα/Ab<α) is algebraic since tp(bα/A)
is, so is isolated by (i).

Lemma 12.6. Let A ⊆M � T . Then acl(acl(A)) = acl(A).

Proof. Let c ∈ acl(acl(A)). Say M � φ(c, b), where b ∈ acl(A)<ω and φ(x, y)
is an algebraic L-formula. Then b is algebraic over A since each bi is. So say
ψ(y) ∈ tp(b/A) is an algebraic L(A)-formula isolating tp(b/A) .

Then θ(x) := ∃y. (ψ(y) ∧ φ(x, y)) ∈ tp(c/A) is algebraic; indeed, θ(M) =⋃
b
′∈ψ(M) φ(M, b

′
) is finite, since for each of the finitely many b

′ ∈ ψ(M) we

have b
′ ≡ b and hence φ(M, b

′
) is finite.

12.2 Minimal and strongly minimal formulas

Definition 12.7. Let M � T .

• An L(M)-formula φ(x) is minimal in M if φ(x) is not algebraic but for
every L(M)-formula ψ(x), either φ(x)∧ψ(x) or φ(x)∧¬ψ(x) is algebraic.

• An L(M)-formula φ(x) is strongly minimal if it is minimal in every
N �M.

Example 12.8. LetM := ({(i, j) : i < j < ω};E), where (i, j)E(i′, j′) iff j = j′.
Then x

.
= x is minimal in M. (To see this, note Th(M) has QE once we add

for each n ∈ ω a predicate for {(i, j) : j > n} .)
But x

.
= x isn’t strongly minimal. Indeed, let b ∈ N �M realise the partial

type {∃≥ny. yEx : n ∈ ω}; then neither xEb nor ¬xEb is algebraic.
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Lemma 12.9. Let φ(x, y) be an L-formula. Let M � T . For a ∈M|y|, φ(x, a)
is strongly minimal iff it is non-algebraic and for every L-formula ψ(x, y) there
is nψ ∈ ω such that

M � ∀y. ∃≤nψx. (φ(x, a) ∧ ψ(x, y)) ∨ ∀y. ∃≤nψx. (φ(x, a) ∧ ¬ψ(x, y)).

In particular, strong minimality of φ(x, a) depends only on tpM(a).

Proof. ⇐ Immediate.

⇒ Suppose no such nψ exists. Then

π(y) := {∃≥nx. (φ(x, a) ∧ ψ(x, y)) ∧ ∃≥nx. (φ(x, a) ∧ ¬ψ(x, y)) : n ∈ ω}

is a partial type, so say b ∈ N �M realises π(y). Then neither φ(x, a) ∧
ψ(x, b) nor φ(x, a) ∧ ¬ψ(x, b) is algebraic, so φ(x, a) is not minimal in N ,
contradicting strong minimality.

Definition 12.10. • T is strongly minimal if x
.
= x is strongly minimal,

i.e. any definable subset of any M � T is finite or cofinite. (X ⊆ Y is
cofinite if Y \X is finite.)

• A structure M is strongly minimal if M is infinite and Th(M) is
strongly minimal.

Example. T∞, Th((Z;S)), Tk−VS and the completions of ACF are all strongly
minimal.

12.3 Existence of (strongly) minimal formulas in ω-stable
theories

Lemma 12.11. Suppose T is totally transcendental. Let M � T . Let |x| > 0.
Then there exists an L(M)-formula φ(x) which is minimal in M.

Proof. Suppose not. Then if φs(x) is a non-algebraic L(M)-formula, there
is ψ(x) such that φs0 := φs(x) ∧ ψ(x) and φs1 := φs(x) ∧ ¬ψ(x) are non-
algebraic L(M)-formulas. We obtain a binary tree (φs)s∈2<ω , contradicting
total transcendence.

Lemma 12.12. Let M � T be ℵ0-saturated. Let φ(x) be an L(M)-formula
which is minimal in M. Then φ(x) is strongly minimal.

Proof. Otherwise, the type in the proof of Lemma 12.9 is realised in M by
ℵ0-saturation, contradicting minimality.

Definition 12.13. T eliminates ∃∞ if for every L-formula φ(x, y) there is
nφ ∈ ω such that for all M � T and b ∈M|y| we have

|φ(M, b)| < ℵ0 ⇒ |φ(M, b)| ≤ nφ.

(So “∃∞x. φ(x, y)” is expressed by ∃>nφx. φ(x, y).)

Lemma 12.14. If T eliminates ∃∞ then any minimal φ is strongly minimal.
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Proof. Lemma 12.9.

Corollary 12.15. Let |x| > 0. If T is totally transcendental, then for every
ℵ0-saturated M � T there is a strongly minimal L(M)-formula φ(x).

If furthermore T eliminates ∃∞, then for every M � T there is a strongly
minimal L(M)-formula φ(x).

12.4 Strong minimality and stability

Let φ(x) be a strongly minimal L-formula. By Lemma 12.9, this precisely means
that φ(x) is minimal in every M � T .

Lemma 12.16. Let A ⊆M � T .

(i) There is a unique non-algebraic type pA(x) ∈ S(A) with φ(x) ∈ pA(x).
This type pA(x) is the generic type of φ over A.

(ii) For any n ∈ ω, there is a unique type p
(n)
A (x1, . . . , xn) of a sequence

a1, . . . , an ∈ φ(M) with ai /∈ acl(A ∪ a<i)<ω for 1 ≤ i ≤ n. Such a
sequence is also called generic over A.

Proof. (i) A non-algebraic type exists, since

{φ(x) ∧ ¬ψ(x) : ψ(x) an algebraic L(A)-formula}

is finitely consistent, since φ is not algebraic.

If two distinct such types exist, some L(A)-formula ψ separates them, and
then neither φ ∧ ψ nor φ ∧ ¬ψ is algebraic, contradicting minimality of φ
in M.

(ii) Suppose inductively this holds for n ∈ ω, and consider two such sequences
a1, . . . , an+1 and b1, . . . , bn+1. Then

(a1, . . . , an) ≡ (b1, . . . , bn),

so there is c ∈ φ(N ) for some N �M such that

(a1, . . . , an, an+1) ≡A (b1, . . . , bn, c)

(namely, a realisation of tp(an+1/a<n+1)idA∪
⋃
i ai 7→bi).

Then c, bn+1 � pA∪b<n+1
, so

(a1, . . . , an+1) ≡A (b1, . . . , bn, c) ≡A (b1, . . . , bn+1).

Lemma 12.17. Countable strongly minimal theories are ω-stable.

Proof. Let A ⊆ M � T with |A| ≤ ℵ0. By Lemma 12.16 for the strongly
minimal formula x

.
= x, if N � M and b ∈ N \ acl(A) then b � pA(x). So

|S1(A)| ≤ |acl(A)|+ 1 ≤ |T |+ |A| = ℵ0.

Remark 12.18. In fact, any strongly minimal theory is totally transcendental.



12 STRONG MINIMALITY 42

Lemma 12.19. Let A ⊆M � T . If (a, b) � p
(2)
A then (b, a) � p

(2)
A .

Proof. It suffices to show that for some (a, b) � p
(2)
A we have (b, a) � p

(2)
A .

Let ai � pA for i ∈ ω be distinct realisations, and let b � pA∪
⋃
i ai

, all realised
in some N �M.

Then (ai, b) � p
(2)
A for all i ∈ ω, so ai ≡A∪{b} aj for all i, j ∈ ω. It follows

that a0 /∈ acl(A ∪ {b})<ω, so (b, a0) � p
(2)
A .

12.5 Pregeometries

Definition 12.20. A pair (S, cl), where S is a set and cl : P(S) → P(S), is a
pregeometry if for A,B ⊆ S and b, c ∈ S:

(PG1) A ⊆ B ⇒ A ⊆ cl(A) ⊆ cl(B)

(PG2) cl(cl(A)) = cl(A)

(PG3) cl(A) =
⋃
A0⊆finA

cl(A0)

(PG4) “Exchange”: If b ∈ cl(A ∪ {c}) \ cl(A) then c ∈ cl(A ∪ {b}).

Remark. A finite pregeometry is also known as a matroid.

Let φ(x) be a strongly minimal L-formula.

Lemma 12.21. Let M � T . Define aclM �φ(M): P(φ(M)) → P(φ(M)) by

aclM �φ(M) (A) := aclM(A) ∩ φ(M). Then (φ(M), aclM �φ(M)) is a pregeome-
try.

When no ambiguity can result, we write just acl or aclM for aclM�φ(M).

Proof.

(PG1) Clear.

(PG2) Lemma 12.6.

(PG3) An algebraic formula uses only finitely many parameters.

(PG4) Lemma 12.19.

Definition 12.22. Let (S, cl) be a pregeometry. A subsetA ⊆ S is cl-independent
if a /∈ cl(A \ {a}) for all a ∈ A. A cl-basis for S is a maximal cl-independent
subset.

Lemma 12.23. Let (S, cl) be a pregeometry.

(i) S has a basis.

(ii) If B ⊆ S is a basis, then cl(B) = S.

Proof. (i) By (PG3), the union of a chain of independent sets is independent.
We conclude by Zorn. .
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(ii) Suppose c ∈ S \ cl(B). For any b ∈ B, we have b /∈ cl(B \ {b}), so by
(PG4), b /∈ cl(B\{b})∪{c}. But then B∪{c} is independent, contradicting
maximality.

Proposition 12.24. Let (S, cl) be a pregeometry. Then all bases have the same
cardinality. This cardinality is the dimension dim((S, cl)) of the pregeometry.

Proof. Let X,Y ⊆ S with cl(X) = S and Y independent. We show |Y | ≤ |X|.
First we prove this for X finite. Suppose n = |X| ≥ 0, and assume the result

for |X| = n− 1. Enumerate X as {x1, . . . , xn}. If Y = ∅, we are done. Else, let
y ∈ Y . Then y /∈ cl(∅) by independence, and y ∈ cl(X). So there is i ≥ 1 be
such that y ∈ cl(x≤i) \ cl(x<i). Then by (PG4), xi ∈ cl({x1, . . . , xi−1, y}).

Now consider the pregeometry (S, cly), where cly(A) := cl(A ∪ {y}). Then
cly({x1, . . . , xi−1, xi+1, . . . , xn}) = S, and Y \ {y} is cly-independent, so by the
inductive hypothesis,

|Y | − 1 = |Y \ {y}| ≤ |X \ {xi}| = |X| − 1,

so |Y | ≤ |X|, as required.
Now suppose |X| ≥ ℵ0. For X0 ⊆fin X, by the finite case above (applied to

(cl(X0), cl �cl(X0))), |Y ∩cl(X0)| ≤ |X0| < ℵ0. Now by (PG3), Y =
⋃
X0⊆finX

(Y ∩
cl(X0)), so since |{X0 : X0 ⊆fin X}| = |X|, we have |Y | ≤ |X|.

Definition 12.25. For M � T , define dimφ(M) := dim((φ(M), acl)).

If T is strongly minimal, dim(M) := dimx
.
=x(M).

Remark 12.26. The acl-dimension of an algebraically closed field is also known
as its “transcendence degree”.

Lemma 12.27. (i) The independent sets of size n in (φ(M), acl) are pre-

cisely the realisations of p
(n)
∅ .

(ii) More generally, A ⊆ φ(M) is independent iff for every n ∈ ω every tuple

of n distinct elements of A realises p
(n)
∅ .

In particular, if M1,M2 � T and Ai ⊆ φ(Mi) are independent sets with
|A1| = |A2|, then any bijection θ : A1 → A2 is partial elementary.

Proof. (i) Let M � T be ℵ0-saturated and take an acl-basis B for φ(M).
Then B is infinite. Take a subset {b1, . . . , bn} ⊆ B of size n. Then

(b1, . . . , bn) � p
(n)
∅ and {b1, . . . , bn} is independent, so this holds of any

realisation of p
(n)
∅ .

(ii) This follows from (i).

12.6 Minimal subsets

The following notion of minimality of a subset is entirely separate from the
notion of a formula being minimal.

Definition 12.28. Let A ⊆ B ⊆M � T . Then B is minimal over A (in M)
if for any N �M with A ⊆ N , also B ⊆ N .
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Lemma 12.29. Let A ⊆ B ⊆ aclM(A) ⊆M � T . Then B is constructible and
minimal over A in M.

Proof. Constructibility follows as in Lemma 12.5. For minimality: If A ⊆ N �
M, then B ⊆ aclM(A) = aclN (A) ⊆ N (by Lemma 12.3(ii)).

Lemma 12.30. Let A ⊆M � T and A′ ⊆M′ � T . SupposeM is constructible

over A and M′ is minimal over A′. Suppose θ : A
≡−→ A′ is a p.e. bijection.

Then θ extends to an isomorphism M
∼=−→M′.

Proof. By Lemma 11.11, M is prime over A, so θ extends to an elementary

embedding θ′ : M ↪−�−→ M′. Then A′ ⊆ im(θ′) ⊆ M′, so by minimality
im(θ′) =M′.

12.7 Classifying the models of a strongly minimal theory

Suppose T is strongly minimal.

Theorem 12.31. Let M1,M2 � T . Then

M1
∼=M2 ⇔ dim(M1) = dim(M2).

In particular, T is κ-categorical for all κ > |T |.

Proof. Suppose dim(M1) = dim(M2). Let Bi be an acl-basis of Mi. By
Lemma 12.27(ii), any bijection θ : B1 → B2 is partial elementary. By Lemma 12.23(ii)
aclMi(Bi) =Mi. By Lemma 12.29 and Lemma 12.30, θ extends to an isomor-

phism M1

∼=−→M2.
The converse implication is clear.
For the “in particular” clause: it suffices to observe that dim(M) ≤ |M| ≤

|T |+ dim(M) (for all M � T ).

Lemma 12.32. (i) Let A ⊆ M � T . Suppose A = aclM(A) and |A| ≥ ℵ0.
Then A is the domain of an elementary substructure of M.

(ii) For some cardinal 0 ≤ λ ≤ ℵ0,

{dim(M) :M � T} = [λ,∞) = {κ ∈ Card : λ ≤ κ}.

In particular, a countable strongly minimal theory is ℵ0-categorical iff it
has no finite-dimensional models.

Proof. Exercise; (i) is an easy application of the Tarski Test, and (ii) follows.

Example 12.33. • TFq−VS is κ-categorical for all infinite κ.

• For k an infinite field, Tk−VS has models in dimensions [1,∞).

• ACFp (p = 0 or p prime) has models in dimensions [0,∞).
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12.8 Building uncountably categorical theories

Definition 12.34. A countable theory is uncountably categorical if it is
κ-categorical for some κ > ℵ0.

By Theorem 12.31, countable strongly minimal theories are uncountably
categorical.

We now begin to address the following questions:

• In which uncountable cardinals are uncountably categorical theories cate-
gorical? e.g. can a countable T be ℵ2 categorical but not ℵ1-categorical,
or vice-versa?

• Which theories are uncountably categorical? Do they have to be strongly
minimal, or somehow associated to a strongly minimal theory?

Example 12.35. LetX be an infinite set. Let Cartn(X) := (Xn∪̇X;P, π1, . . . , πn),
where P (Cartn(X)) := X and πi : (x1, . . . , xn) 7→ xi (and πi�X := id�X).

Let T := Th(Cartn(X)). It is not hard to see that the models of T are
precisely {Cartn(Y ) : |Y | ≥ ℵ0}, so T is κ-categorical for all κ ≥ ℵ0.

Now T is not strongly minimal, but P (x) is strongly minimal. Let N � T .
Then N ⊆ acl(P (N )), so by Lemma 12.29, N is constructible and minimal over
P (N ), and the categoricity follows (since any bijection P (M1) → P (M2) is
elementary).

Example 12.36. Let n ∈ ω. Let V be an n-dimensional C-vector space. Let
VSn(C) := (V ∪̇C;P,+, ·, ∗), where P (VSn(C)) := C, +, · are the ring operations
on C, and ∗ is scalar multiplication C×V → V (making these into total functions
on V ∪̇C by setting the value to 0 ∈ C when it would otherwise be undefined).

Let T := Th(VSn(C)). It is not hard to see that the models of T are precisely
{VSn(K) : K � ACF0}, and so T is κ-categorical for all κ > ℵ0.

Now P (x) is strongly minimal, but VSn(K) 6⊆ acl(K). However, if we pick
a K-basis B = {b1, . . . , bn} for the vector space, then VSn(K) ⊆ acl(B ∪ K).
This suffices to explain categoricity, by the following Proposition.

Proposition 12.37. Let T be a complete countable theory.
Let M0 � T be prime. Let φ(x) be a strongly minimal L(M0)-formula.

Suppose that any M�M0 is constructible and minimal over M0 ∪ φ(M).
Then T is κ-categorical for all κ > ℵ0, and T has ≤ ℵ0 countable models up

to isomorphism.

Proof.

Claim. Suppose M0 � M � T . Let B be an aclMM0 -basis for φ(M). Then
MM0 is constructible and minimal over B.

Proof. We have B ⊆ φ(M) ⊆ MM0 . By Lemma 12.29, φ(M) is constructible
and minimal over B in MM0

. Since M is constructible and minimal over
M0∪φ(M), alsoMM0

is constructible and minimal over φ(M). Now the claim
follows from Lemma 11.14 and its (easily verified) analogue for minimality.

Let M1,M2 � T with |Mi| = κ > ℵ0; we show M1
∼= M2. WLOG

M0 �Mi.
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Mi is constructible and hence prime over φ(Mi)∪M0, hence nach Löwenheim-
Skolem, Mi embeds in a model of cardinality ℵ0 + |φ(Mi)|, and it follows that
|φ(Mi)| = κ.

Now by the Claim and Lemma 12.30, a bijection of bases extends to an
isomorphism (M1)M0

∼= (M2)M0 ; in particular M1
∼=M2.

For the case κ = ℵ0: by the same argument countable models Mi are
isomorphic if dimφ(M1) = dimφ(M2). and dimφ(Mi) ≤ ℵ0.

In all the examples of uncountably categorical theories we have seen so
far, the hypotheses of Proposition 12.37 hold with “constructible and minimal”
strengthened to ”algebraic”. Such a theory is called almost strongly minimal.
The following is a natural example of an uncountably categorical theory which
is not almost strongly minimal.

Example 12.38. T := Th((Z/4Z)ω; 0,+).
Exercise: T has QE and is axiomatised by

[axioms for infinite abelian groups] ∪ {∀x.(2x = 0↔ ∃y.2y = x)}.

Let G � T . Let λ := |G|.

Claim. G ∼=
⊕

i<λ Z/4Z.

Proof. Let [2] : G → G; x 7→ 2x. Then ker([2]) = im([2]) = 2G. So 2G is an
F2-vector space, and |2G| = |G| = λ.

Let (bi)λ be an F2-basis for 2G. Let ei ∈ G such that 2ei = bi. So ord(ei) =
4.

Now if g ∈ G then 2g = bi1 + . . . + bim say; let g′ := ei1 + . . . + eim , then
2(g − g′) = 0 so g − g′ ∈ 2G. Hence G is generated by (ei)i.

Suppose
∑k
i=1 njieji = 0 with nji ∈ Z. Then

∑k
i=1 njibji = 2 · 0 = 0, so

2|nji . Then
∑k
i=1

nji
2 bji = 0, so 2|nji2 . Hence 4|nji .

So we conclude that G =
⊕

i<λ(Z/4Z)ei.

It follows that T is κ-categorical for all κ ≥ ℵ0.
Let φ(x) := ∃y. x = y+ y, so φ(G) = 2G. By the QE, φ is strongly minimal.

Claim. G is constructible and minimal over 2G.

Proof.

Minimality: If 2G ⊆ G′ � G and g ∈ G \ 2G, then 2g′ = 2g for some g′ ∈ G′, but then
g′ − g ∈ 2G ⊆ G′, so also g ∈ G′. So G′ = G.

Constructibility: Let (ei)i∈λ be as above. It follows from the QE (or by considering auto-
morphisms and the proof of the previous claim) that for j ∈ λ, tp(ej/2G∪⊕

i<j(Z/4Z)ei) is isolated by x+ x = bj , and then 2G∪
⊕

i≤j(Z/4Z)ei is
algebraic and hence constructible over 2G ∪

⊕
i<j(Z/4Z)ei ∪ {ej}.

So we obtain a construction sequence for G over 2G in this way.
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13 Indiscernible sequences

13.1 Ramsey theory

If A is a set and n ∈ ω, we write [A]n for the set of n-element subsets of A:

[A]n := {A0 ⊆ A : |A0| = n} ⊆ P(A).

Theorem 13.1 (Infinite Ramsey Theorem). Let A be an infinite set. Let n ∈ ω,
and let C be a finite set. Let f : [A]n → C be a function (a “colouring” of the
n-element subsets). Then there exists an infinite subset B ⊆ A which is “f -
monochromatic”, i.e. such that f is constant on [B]n.

Remark. With n = 2 = |C|, this gives that any infinite graph has an infinite
clique or an infinite anticlique.

Proof. The case n = 0 is clear. Suppose n > 0 and the result holds for n− 1.
For a ∈ A, define fa : [A \ {a}]n−1 → C; fa(A′) := f(A′ ∪ {a}). Recursively

construct a sequence of infinite sets A =: B0 ⊇ B1 ⊇ . . . and elements ai ∈
Bi \Bi+1 and ci ∈ C as follows: given Bi, let ai ∈ Bi, and let Bi+1 ⊆ Bi \ ai be
an infinite fai-monochromatic subset, which exists by the induction hypothesis
since Bi is infinite, and let ci be such that fai([Bi+1]n−1) = {ci}. By the
pigeonhole principle, let c ∈ C be such that ci = c for infinitely many i ∈ ω,
and let B := {ai : ci = c}.

Then B is f -monochromatic. Indeed, if {ai1 , . . . , ain} ⊆ B is a subset with
i1 < . . . < in, then ai2 , . . . , ain ∈ Bi1+1, so

f({ai1 , . . . , ain}) = fai1 ({ai2 , . . . , ain}) = ci1 = c.

13.2 Indiscernible sequences

Notation 13.2. If I is a linear order and n ∈ ω, we write I
−→n for the set of

I-ordered n-tuples of I,

I
−→n := {(i1, . . . , in) ∈ In : i1 < . . . < in}.

If (ai)i∈I is a sequence and i ∈ I−→n , let ai := (ai1 , . . . , ain).

Definition 13.3. Let I be a linear order. A sequence (ai)i∈I of elements of a
structure M is indiscernible if for any n ∈ ω and any i, j ∈ I−→n ,

ai ≡ aj .

In other words, for any L-formula φ(x1, . . . , xn), for any i1 < . . . < in ∈ I
and j1 < . . . < jn ∈ I,

M � φ(ai1 , . . . , ain)↔ φ(aj1 , . . . , ajn).

Examples 13.4. • Any constant sequence, (ai)i∈I with ai = a ∈ M for all
i, is indiscernable.
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• If φ(x) is strongly minimal in Th(M) and A ⊆ φ(M) is acl-independent,
then Lemma 12.27(ii) shows that for any linear order I and any injection
I → A; i 7→ ai, the sequence (ai)i∈I is indiscernible.

• LetM � DLO. Then by QE, any strictly increasing sequence of elements
(ai)i∈I is indiscernible.

Definition 13.5. Let (ai)i∈I be a sequence of elements of an L-structure M,
where I is a linear order.

The Ehrenfeucht-Mostowski type (EM-type) of (ai)i∈I in M is

EM((ai)i) = {φ(x) : φ(x) an L-formula; ∀i ∈ I
−→
|x|.M � φ(ai)}.

Remark 13.6. (ai)i∈I is indiscernible if and only if EM((ai)i) is complete in the
sense that for every L-formula φ either φ or ¬φ is in the EM-type.

Lemma 13.7. Let I and J be infinite linear orders. Let (ai)i∈I be a sequence
of elements of a structure M.

Then there existsM′ ≡M and an indiscernible sequence (bj)j∈J of elements
of M′ such that EM((ai)i∈I) ⊆ EM((bj)j∈J).

Proof. Let (cj)j∈J be new constants. It suffices to show consistency of

T := Th(M)∪{ψ(cj) : ψ(x) ∈ EM((ai)i); j ∈ J
−→
|x|}

∪{φ(cj)↔ φ(cj′) : φ(x) an L-formula; j, j
′ ∈ J

−→
|x|}.

Let T0 ⊆fin T be finite. By compactness, it suffices to show consistency of
T0. Let n be the maximum number of free variables in the formulas φ such that
(φ(cj) ↔ φ(cj′)) appears in T0, so we can write each such φ as φ(x1, . . . , xn).

Let ∆ be the finite set of these φ(x1, . . . , xn).
Define f : I

−→n → 2∆ by

f(i) :=

(
φ 7→

{
1 M � φ(ai)

0 M � ¬φ(ai)

)
.

By Ramsey (applied via the obvious bijection I
−→n ≡−→ [I]n, namely i 7→ {i1, . . . , in}),

let I ′ ⊆ I be an infinite f -monochromatic subset. Let j ∈ J−→m be such that cj
is the tuple of those constants which appear in T0. Let i ∈ (I ′)

−→m . Then
(M; ai) � T0.

Lemma 13.8. Let T be a theory with infinite models. Let J be an infinite linear
order. Then T has a model with a non-constant indiscernible sequence (bj)j∈J .

Proof. Let M be an infinite model, and let (ai)i∈ω be a sequence of distinct
elements ofM. Now apply Lemma 13.7 to obtain (bj)j∈J , and note bj 6= bj′ for
j 6= j′, since x1 6

.
= x2 ∈ EM((ai)i) ⊆ EM((bj)J).

13.3 Uncountable categoricity ⇒ ω-stability

Let T be a countable complete theory with infinite models.
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Lemma 13.9. Let κ be an infinite cardinal. Then there is M � T such that
|M| = κ and if B ⊆M with |B| ≤ ℵ0 then

|{tp(a/B) : a ∈M}| ≤ ℵ0.

Proof. By Lemma 6.4, we may assume T has built-in Skolem functions.
By Lemma 13.8, we may find N � T with a non-constant indiscernible

sequence of elements (ai)i∈κ.

Let M := 〈{ai}i〉N . By Lemma 6.3, M � N . Since |T | ≤ ℵ0, we have
|M| = κ.

Let B ⊆ M be countable; we conclude by showing that M realises only
countably many types over B. Say B = {fk(aik) : k ∈ ω}, where fk is a term

and ik ∈ κ
−→nk ; let IB ⊆ κ be the indices appearing. Let c ∈ M. Say c = g(aj),

where g is a term and j ∈ κ
−→n . Then by indiscernability, tp(c/B) depends

only on the term g (for which there are countably many possibilities) and the

quantifier-free 1-types qftp(κ;<)(ji/IB) for 1 ≤ i ≤ |j|. So we conclude by the
following Claim and the countability of IB .

Claim. Let J ⊆ κ infinite. Then |{qftp(κ;<)(α/J) : α ∈ κ}| = |J |.

Proof. Let α ∈ κ \ J . Then qftp(α/J) is determined by the cut α makes in
J , i.e. by J>α := {γ ∈ J : γ > α}. If J>α is non-empty, it is determined by
min J>α ∈ J , which exists by well-orderedness.

So there are ≤ |J | possibilities for qftp(α/J) with α ∈ κ \ J , and clearly
there are |J | possibilities for qftp(α/J) with α ∈ J .

Proposition 13.10. If T is an uncountably categorical theory then T totally
transcendental.

Proof. Say T is categorical in λ > ℵ0 but not totally transcendental. By Theo-
rem 11.3, T is not ω-stable. So say A ⊆M � T with |A| ≤ ℵ0 but |S1(A)| > ℵ0.
Let P ⊆ S1(A) with |P | = ℵ1. By Lemma 7.16 we find M′ � M and bp ∈ M′
for p ∈ P with tp(bp/A) = p. By Löwenheim-Skolem we find an elementary ex-
tension or substructureM′′ ofM′ containing A∪ {bp : p ∈ P}, with |M′′| = λ.

But by Lemma 13.9, there is a model of cardinality λ which realises only
countably many types over countable sets, which therefore is not isomorphic to
M′′, contradicting categoricity.

Corollary 13.11. Let λ > ℵ0. Then T is λ-categorical iff every model of
cardinality λ is saturated.

Proof. ⇐ Lemma 7.21.

⇒ By Proposition 13.10 and Corollary 11.4, T is λ-stable. For each κ < λ
by Corollary 10.7(ii) T has a κ+-saturated model of cardinality λ. So by
λ-categoricity, every model of cardinality λ is κ+-saturated for all κ < λ,
and hence λ-saturated.



14 VAUGHTIAN PAIRS 50

14 Vaughtian pairs

Let T be a countable complete L-theory with infinite models.

Definition 14.1.

• A Vaughtian triple (in T ) is a triple (N ,M, φ), where

– M � T ;

– N �M is a proper elementary extension;

– φ(x) is an non-algebraic L(M)-formula;

– φ(N ) = φ(M).

(N ,M) is then called a Vaughtian pair.

• T has a Vaughtian pair if there is some Vaughtian pair, i.e. if there is
some Vaughtian triple.

Examples 14.2.

• (({0, 1} × Q;<), ({0} × Q;<), x < (0, 0)) is a Vaughtian triple in DLO,
where the order is the lexicographic order.

• ((ω+ω;ω), ((ω+ω)\{0};ω\{0}),¬P ) is a Vaughtian triple in the language
{P}, where P is a unary predicate.

Lemma 14.3. If T has no Vaughtian pairs then T eliminates ∃∞.

Proof. It suffices to consider the one variable case, since ∃∞x. φ(x, y) can be
expressed by

∨
i ∃∞xi. ∃x1, . . . , xi−1, xi+1, . . . , x|x|. φ(x, y).

So suppose for a contradiction that φ(x, y) is an L-formula and bi ∈Mi � T
are such that i 7→ |φ(Mi, bi)| is a strictly increasing function ω → ω. Realising
each tp(bi) in an ω-saturated modelM, we may assumeMi =M for all i ∈ ω.

Let N � M be a proper elementary extension. Let U be a non-principal
ultrafilter on ω. Then NU �MU is also a proper elementary extension (indeed,
if c ∈ N \ M, then (via the diagonal embedding) c ∈ NU \ MU ). Let b =
limi→U bi ∈ MU . Then φ(MU , b) is infinite, but φ(NU , b) = φ(MU , b), since
φ(N , bi) = φ(M, bi) for all i. So (NU ,MU , φ(x, b)) is Vaughtian.

Lemma 14.4. If T has no Vaughtian pairs and A ⊆ N � T and φ(x) is a
non-algebraic L(A)-formula, then N is minimal over A ∪ φ(N ).

Proof. Otherwise, there is M � N with A ∪ φ(N ) ⊆ M ( N . Then φ(M) =
φ(N ) and φ is an L(M)-formula. So (N ,M, φ) is Vaughtian.

Lemma 14.5. Suppose T is ω-stable and (N0,M0, φ) is a Vaughtian triple.
Let κ > ℵ0. Then there exists a Vaughtian triple (N κ,M, φ) with |N κ| = κ and
|M| = ℵ0.

Proof. φ is an L(A)-formula for some finite A ⊆ M0. Replacing T with
Th((M0)A), which is also ω-stable, we may assume φ is an L-formula.

Claim. There is a Vaughtian triple (N ,M, φ) with N and M countable satu-
rated models.



14 VAUGHTIAN PAIRS 51

Proof. Let LP := L∪̇{P}, where P is a unary predicate symbol. Let

TP := T

∪ {∀x. (
∧
i

P (xi)→ (∃y. ψ(x, y)→ ∃y. (P (y) ∧ ψ(x, y)))) : ψ(x, y) an L-formula}

∪ {∀x. (φ(x)→ P (x))}
∪ {∃x. ¬P (x)}.

For N an L-structure and A ⊆ N , let (N ;A) be the LP -structure expanding N
with P ((N ;A)) = A. Then (using the Tarski Test) (N ;M) � TP if and only if
N � T and (N ,M, φ) is Vaughtian.

TP is consistent, since (N0;M0) � TP . By Löwenheim-Skolem, let (N ′0;M′0)
be a countable model of TP . We now proceed as in Theorem 8.4: Build an
elementary chain of countable models (N ′0;M′0) � (N ′1;M′1) � . . . by taking
(N ′i+1;M′i+1) such that N ′i+1 realises all L-types over finite subsets of N ′i and
M′i+1 realises all L-types over finite subsets of M′i; this is possible since T is
small since ω-stable, and any L-type p(x) over a subset of M′i is consistent
modulo TP with P (x).

Then (N ;M) :=
⋃
i∈ω(N ′i ;M′i) � TP is countable, and both N and M are

saturated as models of T .

Claim. There is N ′ � M with |N ′| = ℵ1 such that (N ′,M, φ) is Vaughtian.
In particular, |φ(N ′)| = ℵ0.

Proof. We build an elementary chain (Mα)α∈ℵ1 of countable saturated models
with φ(Mα) = φ(M).

Let M0 :=M. Given Mα, let Mα+1 � Mα be such that (Mα+1,Mα) ∼=
(N ,M), which exists since Mα ∼= M (by saturation and Lemma 7.21). Then
φ(Mα+1) = φ(Mα) = φ(M), andMα+1 is countable and saturated. For η ∈ ℵ1

a limit ordinal, let Mη :=
⋃
α<ηMα. Then φ(Mη) =

⋃
α<η φ(Mα) = φ(M),

and Mη is countable and saturated.
Finally, let N ′ :=

⋃
α∈ℵ1M

α. Then φ(N ′) = φ(M), and |N ′| = ℵ1 since

Mα+1 )Mα.

Claim. Suppose A � T and |A| > ℵ0 but |φ(A)| = ℵ0. Then there is B such
that (B,A, φ) is Vaughtian and |B| = |A|.

Proof. Say an L(A)-formula θ(x) is countable resp. uncountable if θ(A) is. Since
x
.
= x is uncountable and there is no binary tree of L(A)-formulas, there exists

an uncountable ψ(x) such that for every L(A)-formula θ(x) either ψ(x) ∧ θ(x)
or ψ(x)∧¬θ(x) is countable5. Then p(x) := {θ(x) : ψ(x)∧ θ(x) is uncountable}
is a type.

Let b � p(x) be a realisation in some elementary extension, b ∈ A′ � A. By
Theorem 11.13, we can find A∪{b} ⊆ B � A′ with B constructible over A∪{b}.
By Löwenheim-Skolem and primeness, |B| = |A ∪ {b}| = |A|. By Lemma 11.15
(Exercise 10.2), B is atomic over A ∪ {b}.

Suppose φ(B) 6= φ(A), say c ∈ φ(B) \ φ(A). Say ξ(x, b) is an L(A)-formula
isolating tp(c/A ∪ {b}). Then

b � Θ(y) := {∃x. ξ(x, y)} ∪ {∀x. (ξ(x, y)→ (φ(x) ∧ x 6 .= a)) : a ∈ φ(A)}.
5Such a formula ψ is called quasiminimal, by analogy with a minimal formula.
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Now Θ(y) ⊆ p(y) consists of countably many formulas, so by the definition of p,
ψ(A)∩

⋂
{θ(A) : θ(y) ∈ Θ(y)} is an intersection of countably many cocountable

subsets of the uncountable set ψ(A), so is non-empty. So there is b′ ∈ A such
that b′ � Θ(y). Then there is c′ such that A � ξ(c′, b′), and then A � φ(c′), but
for each a ∈ φ(A) we have c′ 6= a, which is a contradiction.

Using this last claim at successor stages and taking unions at limit stages
and setting N 0 := N ′, we build an elementary chain (Nα)α∈κ such that for all
α ∈ κ:

• φ(Nα) = φ(M);

• Nα+1 is a proper extension of Nα;

• |Nα| = |α|+ ℵ1.

Set N κ :=
⋃
α∈κNα. Then |N κ| = κ, and (N κ,M, φ) is Vaughtian.

Proposition 14.6. Suppose T is uncountably categorical. Then T has no
Vaughtian pairs.

Proof. By Proposition 13.10, T is ω-stable. Say κ > ℵ0 is such that T is κ-
categorical, and letM be the model of cardinality κ. Suppose T has a Vaughtian
pair. Then by Lemma 14.5, there is an L(M)-formula φ(x) such that |φ(M)| =
ℵ0. But then M is not saturated, since it omits {φ(x)} ∪ {x 6 .= a : a ∈ φ(M)}.
This contradicts Corollary 13.11.

15 Baldwin-Lachlan

Lemma 15.1. Let T be a totally transcendental theory. If A ⊆M � T and M
is minimal over A, then M is constructible over A.

Proof. By Theorem 11.13, there is A ⊆ N � M with N constructible over A.
By the minimality, N =M.

Theorem 15.2 (Baldwin-Lachlan). Let T be a countable complete theory with
infinite models. TFAE:

(i) T is κ-categorical for some κ > ℵ0;

(ii) T is ω-stable and has no Vaughtian pairs;

(iii) T has a prime model M0 and a strongly minimal L(M0)-formula φ(x)
such that any M�M0 is constructible and minimal over M0 ∪ φ(M);

(iv) T is κ-categorical for all κ > ℵ0 and has ≤ ℵ0 countable models up to
isomorphism.

Proof.

(i) ⇒ (ii) Proposition 13.10 and Proposition 14.6.
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(ii) ⇒ (iii) By Theorem 11.13 (or Proposition 8.23), T has a prime model M0.

By Lemma 14.3 and Corollary 12.15, there is a strongly minimal L(M0)-
formula φ(x).

Let M � M0. By Lemma 14.4, M is minimal over M0 ∪ φ(M). By
Lemma 15.1, M is also constructible over M0 ∪ φ(M).

(iii) ⇒ (iv) Proposition 12.37.

(iv) ⇒ (i) Immediate.

Corollary 15.3 (Morley’s Theorem). A countable complete theory is categorical
in some uncountable cardinal if and only if it is categorical in all uncountable
cardinals.

Fact 15.4 (Baldwin-Lachlan). (iv) can be improved to say “either 1 or ℵ0

countable models”.

16 Morley rank

Definition 16.1. Let On±∞ := {−∞}∪On∪{+∞} be the well-order extending
On, where ∀α ∈ On. −∞ < α < +∞.

Let M be an L-structure.

• The Morley rank in M of an L(M)-formula φ(x) is

MRM(φ) := inf{α ∈ On±∞ : MRM(φ) ≤ α} ∈ On±∞,

where we recursively define MRM(φ) ≤ α ∈ On±∞ by:

– MRM(φ) ≤ −∞, if φ(M) = ∅;
– MRM(φ) ≤ α ∈ On, if for any L(M)-formulas (ψi(x))i∈ω defining

disjoint subsets of φ(M) (i.e. for all i 6= j ∈ ω we have ψi(M) ⊆
φ(M) and ψi(M) ∩ ψj(M) = ∅), there are i ∈ ω and β ∈ On±∞

with β < α, such that MRM(ψi) ≤ β.

– MRM(φ) ≤ +∞ for any φ;

• Define the Morley rank of an L(M)-formula by MR(φ) := MRN (φ),
where N � M is any ℵ0-saturated elementary extension of M. (We
prove in Lemma 16.3(ii) that this is well-defined.)

Remark 16.2.

• MRM(φ(x)) = 0⇔ 0 < |φ(M)| ∈ ω ⇔ MR(φ(x)) = 0.

• If φ(x) is minimal in M, then MRM(φ) = 1.

• If φ(x) is strongly minimal in M, then MR(φ) = 1.

Lemma 16.3. (i) LetM,M′ be ℵ0-saturated L-structures. Let φ(x, y) be an
L-formula. Let a ∈M|y| and a′ ∈ (M′)|y| with tpM(a) = tpM

′
(a′). Then

MRM(φ(x, a)) = MRM
′
(φ(x, a′)).
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(ii) Let M be an L-structure. Let N ,N ′ � M be ℵ0-saturated elementary

extensions. Let φ be an L(M)-formula. Then MRN (φ) = MRN
′
(φ).

Hence MR(φ) is well-defined.

Proof. (i) By the definition of MRM, it suffices to show:

Claim. Let α ∈ On±∞. Suppose MRM(φ(x, a)) ≤ α. Then MRM
′
(φ(x, a′) ≤

α.

Proof. By induction on α. If α = −∞, then M′ � ¬∃x.φ(x, a′) since
M � ¬∃x.φ(x, a) and a ≡ a′.
Let α ∈ On. Suppose there are ψi(x, c

′
i) for i ∈ ω with ψi(x, yi) an L-

formula and c′i ∈ (M′)|yi|, such that ψi(M′, c′i) are disjoint subsets of
φ(M′, a′). By ℵ0-saturation and a ≡ a′, we can recursively find ci ∈M|yi|
such that a, c0, . . . , cn ≡ a′, c′0, . . . , c

′
n (for all n ∈ ω). Then ψi(M, ci)

are disjoint subsets of φ(M, a), so for some i ∈ ω and β < α we have
MRM(ψi(M, ci)) ≤ β. But ci ≡ c′i, so by the inductive hypothesis we

have MRM
′
(ψi(M, c′i)) ≤ β. So MRM

′
(φ(x, a′) ≤ α.

For α = +∞ the claim is clear.

(ii) Say φ = φ(x, a), where φ(x, y) is an L-formula and a ∈ M|y|. Then
tpN (a) = tpM(a) = tpN

′
(a), so we conclude by (i).

Lemma 16.4. Let M be an L-structure. Let φ, φ′ be L(M)-formulas.

(i) φ(M) ⊆ φ′(M)⇒ MR(φ) ≤ MR(φ′).

(ii) MR(φ ∨ φ′) = max{MR(φ),MR(φ′)}.

Proof. (i) This follows directly from the definitions.

(ii) By (i), it suffices to see ≤. We show this by induction on α.

So suppose MR(φ),MR(φ′) ≤ α ∈ On, and we show MR(φ ∨ φ′) ≤ α. So
let N �M be ℵ0-saturated, and say (ψi)i∈ω are L(N )-formulas such that
(ψi(N ))i are disjoint subsets of φ(N ) ∪ φ′(N ). Then {i ∈ ω : MR(φ ∧
ψi) ≥ MR(φ)} is finite, and similarly for φ′. So there is i ∈ ω such that
MR(φ ∧ ψi) < MR(φ) ≤ α and MR(φ′ ∧ ψi) < MR(φ′) ≤ α, so by the
inductive hypothesis,

MR(ψi) = MR((φ ∧ ψi) ∨ (φ′ ∧ ψi)) < α.

16.1 Morley degree

Let M be an ℵ0-saturated L-structure, and let T := Th(M).

Lemma 16.5. Let φ be an L(M) formula. If MR(φ) ≥ (2|T |)+, then MR(φ) =
+∞.
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Proof. Let α ∈ On be minimal such that no L(M)-formula has rank α. Then by
transfinite induction, no formula has ordinal rank ≥ α. So |α| is the number of
ordinal ranks attained by L(M)-formulas. Now by Lemma 16.3(i), MR(φ(x, a))
depends only on the L-formula φ(x, y) and tp(a). So |α| ≤ |T |·|S(∅)| ≤ 2|T |.

Definition 16.6. For α ∈ On, say L(M)-formulas φ and φ′ are α-equivalent,
φ ≈α φ′, if MR(φ∆φ′) < α.

Lemma 16.7. ≈α is an equivalence relation.

Proof. Reflexivity and symmetry are clear. Transitivity follows from Lemma 16.4(ii)
and the logical tautology

(φ∆φ′′)→ ((φ∆φ′) ∨ (φ′∆φ′′)).

Definition 16.8. An L(M)-formula φ is α-strongly-minimal if MR(φ) = α ∈
On and for every L(M)-formula ψ, either MR(φ∧ ψ) < α or MR(φ∧¬ψ) < α.

Lemma 16.9. Let φ be an L(M)-formula. If MR(φ) = α ∈ On, there are
d ∈ ω and α-strongly-minimal L(M)-formulas ψ1, . . . , ψd such that φ↔T

∨
i ψi

and ψi `T ¬ψj for i 6= j.
This number d is uniquely determined. The ψi are unique up to ≈α.

Proof. Suppose φ admits no such decomposition. In particular φ is not α-
strongly-minimal, so say MR(φ ∧ ψ) = α = MR(φ ∧ ¬ψ). If both φ ∧ ψ and
φ ∧ ¬ψ admitted such a decomposition, then so would φ; so at least one does
not. Continuing in this way, we obtain an infinite family of disjoint MR = α
subsets of φ(M), contradicting MR(φ) = α.

For the uniqueness: if ψ′ is α-strongly-minimal and ψ′ `T φ, then by
Lemma 16.4(ii) MR(ψ′∧ψi) = α for some i, and then ψ′ ≈α (ψ′∧ψi) ≈α ψi. So
up to ≈α, the ψi are precisely the α-strongly-minimal formulas implying φ.

Definition 16.10. Let φ be an L(M)-formula.
If MR(φ) ∈ On, the Morley degree MD(φ) is the number d in Lemma 16.9.

If MR(φ) ∈ {−∞,+∞}, set MD(φ) := 0.
By Lemma 16.3(i), MD(φ(x, a)) depends only on tp(a), and in particular

not on the choice of ℵ0-saturated model M.
Set MRD(φ) := (MR(φ),MD(φ)) ∈ On±∞ × ω. We consider On±∞ × ω as

a well-ordered set with the lexicographic order .

Remark 16.11. φ is strongly minimal iff MRD(φ) = (1, 1).

Lemma 16.12. Let φ, φ′ be L(M)-formulas with φ(M) ∩ φ′(M) = ∅. Then

MRD(φ ∨ φ′) =

{
max(MRD(φ),MRD(φ′)) (MR(φ) 6= MR(φ′))

(MR(φ),MD(φ) + MD(φ′)) (MR(φ) = MR(φ′))
.

Proof. Exercise.

Proposition 16.13. T is totally transcendental iff MR(φ) < +∞ for all L(M)-
formulas φ.
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Proof. ⇒ : Suppose MR(φ) = +∞. Then MR(φ) > (2|T |)+, so φ splits into
φ ∧ ψ and φ ∧ ¬ψ each of rank ≥ (2|T |)+, and hence by Lemma 16.5 of
rank +∞. So we obtain a binary tree contradicting total transcendence.

⇐ : Suppose (φs)s∈2<ω is a binary tree of L(M)-formulas. Say MRD(φs) =
infs MRD(φs). By assumption, MR(φs) ∈ On. But then MRD(φs) ≥
MRD(φs0 ∨ φs1), and Lemma 16.12 yields a contradiction.

Definition 16.14. If X is a M-definable set, i.e. X = φ(M) for some L(M)-
formula φ, we set MRD(X) := MRD(φ).

Lemma 16.15. Let f : X → Y be an M-definable bijection of M-definable
sets. Then MRD(X) = MRD(Y ).

Proof. By induction on MRD. Exercise.

Proposition 16.16 (Baldwin-Saxl, tt case). Let (G; ·) be a totally transcenden-
tal group. Then there is no infinite descending chain of G-definable subgroups
G = G0 > G1 > . . ..

Proof. Suppose (Gi)i is such. Each Gi contains Gi+1 and a distinct (hence
disjoint) coset giGi+1, and MRD(giGi+1) = MRD(Gi+1) since x 7→ gix is a de-
finable bijection. Now MR(Gi) <∞ by Proposition 16.13, so by Lemma 16.12,
MRD(Gi) > MRD(Gi+1). So we contradict well-orderedness of On±∞ × ω.

Fact 16.17 (Macintyre). Any totally transcendental field (K; +, ·) is algebraically
closed.

Conjecture 16.18 (Cherlin-Zilber Algebraicity Conjecture). If (G; ·) is an in-

finite simple group with MR(G;·)(G) < ω, then G is an algebraic group over an
algebraically closed field.

Definition 16.19. Let A ⊆M.

• For p ∈ S(A), MRD(p) := infφ∈p MRD(φ).

• For a ∈M, MRD(a/A) := MRD(tp(a/A)).

Lemma 16.20. Let φ be a consistent L(M)-formula.

(i) MR(φ) = max{MR(p) : φ ∈ p ∈ S(M)}.

(ii) If MR(φ) ∈ On, then there are precisely MD(φ) types φ ∈ pi ∈ S(M) with
MR(pi) = MR(φ).

Proof. (i) It suffices to find p ∈ S(M) with MR(p) = MR(φ). If MR(φ) =
+∞, any p 3 φ has MR(p) = +∞. Otherwise, let φ′ ` φ with MRD(φ′) =
(MR(φ), 1). Then pφ′ := {ψ : MR(φ′ ∧ ψ) = MR(φ′)} is complete and
MR(p) = MR(φ′) = MR(φ).

(ii) By Lemma 16.9, any such type pi contains some φ′ as in (i), and then
pi = pφ′ .

Lemma 16.21. Let A ⊆M � T . If b ∈ acl(A∪a), then MR(b/A) ≤ MR(a/A).
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Proof. By induction on α := MR(a/A). The result is immediate if α = +∞, so
suppose α ∈ On.

Say ψ(x, y) ∈ tp(a, b/A) with � ∀x. ∃≤dy. ψ(x, y) and MR(∃y. ψ(x, y)) = α.
Suppose (δi(y))i∈ω are L(M)-formulas defining disjoint subsets of ∃x.ψ(x, y).
Let εi(x) := ∃y. (ψ(x, y) ∧ δi(y)). The conjunction of any d + 1 of the εi

is inconsistent, and it follows that MR(εi0) < α for some i0; indeed, otherwise
each εi is in at least one of the finitely many MR = α types on ∃y. ψ(x, y)
given by Lemma 16.20(ii), so one contains infinitely many εi, contradicting the
inconsistency of any d+ 1 of them.

Now say A′ ⊆fin M is such that ψ and δi0 are both L(A′)-formulas. By

Lemma 16.20(i) and ℵ0-saturation, let b
′ ∈ δi0(M) be such that MR(b

′
/A′) =

MR(δi0). Then there is a′ ∈ εi0(M) such thatM � ψ(a′, b
′
). So by the inductive

assumption, MR(δi0) = MR(b
′
/A′) ≤ MR(a′/A′) < α. Hence MR(b/A) ≤

MR(∃x. ψ(x, y)) ≤ α, as required.

16.2 Morley rank in a strongly minimal theory

Let T be a strongly minimal theory. Let M � T be ℵ0-saturated.

Definition 16.22. Let A ⊆M and a ∈M<ω. Then dim(a/A) is the maximal

n such that a′ � p
(n)
A for some subtuple a′ of a.

Theorem 16.23. Let A ⊆M and a ∈M<ω. Then MR(a/A) = dim(a/A).

Proof. Let n := dim(a/A), and let a′ be a subtuple with a′ � p
(n)
A . Then by

the maximality, ai ∈ acl(A ∪ a′) for all i. So acl(A ∪ a′) = acl(A ∪ a), and so

by Lemma 16.21 MR(a/A) = MR(a′/A). So we may assume a = a′ � p
(n)
A and

n > 0. We may inductively assume that MR(a/Aa1) = dim(a/Aa1) = n− 1.

Let ψ(x) ∈ p
(n)
A . Set ψ′(x, y) := (ψ(x) ∧ x1

.
= y). Then a � ψ′(x, a1), so

MR(ψ′(x, a1)) ≥ n − 1. By Lemma 16.3(i), MR(ψ′(x, a′1)) ≥ n − 1 for any
a′1 � pA; these formulas are pairwise inconsistent, and so MR(ψ) ≥ n.

By the result for m < n, we have inductively that for every B ⊆ M′ � T ,

every type p ∈ Sn(B) with p 6= p
(n)
B has rank MR(p) < n.

Let θ(x) be an L(M)-formula with θ ` ψ and MR(θ) = n. By Lemma 16.20(i)

applied to θ and the previous paragraph, we have MR(p
(n)
M ) = n. Then again by

Lemma 16.20(i) and the previous paragraph, MR(x
.
= x) = n. So MR(ψ) = n.

Hence MR(p
(n)
A ) = n.
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