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1 Overview

o A key goal of model theory is to understand the definable sets of a structure
M, the subsets of powers M"™ defined by formulas.

e Godel vs Tarski: Some structures have uncontrollably wild definable sets,
becoming ever more complicated as we allow more quantifiers; for exam-
ple, in (N; +, ), already with one unbounded existential quantifier we can
define arbitrary recursively enumerable sets.

However, it is a remarkable fact that many structures important to math-
ematics avoid these Gbédelian phenomena and are “tame”: their definable
sets are well-controlled (in particular, all definable by formulas with only
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a few quantiﬁersﬂ), they often have decidable theories, and sometimes the
models of the theory being classifiable up to isomorphism.

Examples include:
= (G +,), (58 +,-), (R;+,-), (Qps +,-);
— (@ <);
— Vector spaces;
= (N;+), (N3 +, <), (N; ) (but not (N;-, <)!);
— (R4, -,z — e%);
— (C;+,-, 2+ 2°) (for most ¢ € C);

Compact Lie groups e.g. (SO3(R);*);
— (Fp+;+,) for an “infinite” (pseudofinite) prime p*;

— Compact complex manifolds (complex tori, Calabi-Yau manifolds,
ete);

Differential and difference equations (in a certain sense);

We will examine only a fraction of this richness in this course, but we will
develop tools with wide applicability.

e We often study a structure by considering other models of its theory. In
particular, “tameness” of the class of models often corresponds to “tame-
ness” of the definable sets. We will examine in detail the following strong
form of this correspondence.

A theory T is k-categorical if it has a unique model of cardality . Let
M be an infinite structure in a countable language.

— Ryll-Nardzewski: Th(M) is Ry-categorical iff for each n € w there
are only finitely many £-definable subsets of M".

— Baldwin-Lachlan: for an uncountable cardinal x, Th(M) is k-categorical
iff M is prime and minimal over a strongly minimal set defined over
the prime model.

(We'll define these terms later; a strongly minimal set is a particu-
larly straightforward structure, and being prime and minimal over
it implies that the definable sets of M are “constructed” from its
definable sets in a certain sense.)

2 Preliminaries

We work in ZFC throughout the course. A set A is countable if |A| < No.

1We consider e.g. 3z, y. as one quantifier rather than two.
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2.1 Syntax and structure

e A (first-order) (1-sorted) language is a set L of relation symbols, function
symbols, and constants.

e An L-structure M = (M; (RM)g, (fM);, (c™).) is a non-empty set M
equipped with interpretations of the symbols of L:
— RM C M™ for R € £ an n-ary relation symbol;
— fM:M™ = M for f € £ an n-ary function symbol;
— M e M for ¢ € L a constant.

Often, we write M to refer to the underlying set M.

We sometimes consider constants as 0-ary functions.

e An L-term is a variable, a constant, or f(¢1,...,t,) where t; are L-terms
and f is an n-ary function symbol.

e An atomic L-formula is t; =ty or R(t1,...,t,) or T, where t; are
L-terms and R is an n-ary relation symbol. Here T is the always true
sentence; M E T for any structure M.

e An L-formula is an atomic £-formula or —¢ or (pA¢’) or Jz.¢ where
¢, ¢’ are L-formulas and x is a variable.

e An L-sentence is an L-formula with no free variables. For M an
L-structure and o an L-sentence, M F o is defined recursively.

e Abbreviations:

(@VY) = (=g A )
(¢ =) = (7o V)
(@ ¢) = (6= Y) AW — )
Ve. ¢ — —Jdz. —¢
THEYy = x=y
1 = =T

e We also define abbreviations for conjunctions and disjunctions of finite
sets of formulas :
/\ 0:=T

A@Uio}) = (A\enro)
\/(Z)::L
Veu{ey = (Veve).

o If £/ D L and M is an L'-structure, we write M [, for the corresponding
L-structure, and call M [, the reduct of M to £, and M an expansion
of M|, to L.
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e If M is an L-structure and A C M, the expansion by constants for A
is the expansion M4 of M to L(A) := LUA defined by a4 := a.

e We write a tuple (a1,as,...,a,) (n > 0) as @, and we write |a| for its
length, [@| = n. For A a set, we define A<“ := ], A", the set of tuples
from A

o We write an L-formula ¢ as ¢(T) if Z is a tuple of distinct variables and the
free variables of ¢ are among z1, ..., x|z . Then if M is an L-structure and

@ € MPP! we write ¢(a) for the £(M)-sentence obtained by substituting
a; for z; (for i =1,...,|Z|). Then M E ¢(a) means M E ¢(a).

Then the set defined by ¢(T) in M is
p(M) := {a e M : ME ¢(@)} € M7,

(Technically, this depends on the choice of tuple T and not just on ¢).
Similarly, if ¢(z,7) is an £-formula and @ € M?!, we write ¢(@,7) for the
L(M)-formula obtained by substituting a; for ;.

e A partial isomorphism of L-structures is a partial function 6 : M --+ A
such that for any atomic £-formula ¢(T) and any @ € dom 9@', M E ¢(a)
iff N'E ¢(6(@)). If this holds for any L-formula ¢, we call § a partial
elementary map.

e An embedding is a total partial isomorphism 6 : M — N.

e An elementary embedding is a total partial elementary map 6 : M =N

N.
e An isomorphism is a surjective embedding 6 : M SN

e A substructure (resp. elementary substructure), of an £-structure N’
is an L-structure M on a subset of A such that the inclusion ¢ : M — N
is an embedding (resp. an elementary embedding).

Convention: If £ has no constants, we also allow the “empty structure”
() as an L-substructure of any L-structure (even though @ is not an L-
structureﬂ).

e We write M < N for a substructureﬂ and M < N for an elementary
substructure.

e If A C M is a subset of an L-structure M, let
(A =B ACB<M}<M

be the L-substructure generated by A.
Note: when £ has no constant symbols, (@)2\4 = 0.

Lemma 2.1. | (A)%"| < max(|4], |£], Ro).

2In many ways it would be preferable to allow the empty structure to be a structure, and
some authors do this.
3Many authors write M C N for the substructure relation.
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Proof. Let Ag := A and, considering constants as 0-ary functions,

Aipr = A, U{fM@) : f € £ an n-ary function symbol, @ € A?, n > 0}.

Rl

Then (A)2" = U, Ai, and |Ai 1| < |A;|+]£]-max(|A], Ro) < max(|A4;], |£], Ro).
Hence |A;| < max(|A], |£],Ro) for all i. So ||J; 4| < max(|A],|L|,Ro). O

e We can always make an embedding into an inclusion by applying an iso-
morphism:

Lemma 2.2. Suppose 0 : A —— B is an embedding of L-structures. Then
there is an isomorphism o : B — B’ such that A < B’ and 006 =id4.

Proof. First, let 0 : B — B’ be a bijection with a set B’ D A such that

ool = id 4. Let B’ be the L-structure on B’ such that o is an isomorphism.

Then id4 = 0 0 0 an embedding, so A < B'. O
2.2 Theories

e An L-theory is a set of L-sentences.

e The theory of an L-structure M is

Th(M) := {0 : M E 0, 0 is an L-sentence}.

e An L-structure M is a model of an L-theory T,
MET,

HMEogforalloeT.

e T F o means: M F ¢ for any M FT. We also write T I o.
TET or THT means: TE o forallo € T'.
TEr: T or T o T' means: TUT" ET.

e T is consistent if it has a model.
Remark 2.3. T is consistent iff T & L.

e A consistent L-theory T is complete if for any L-sentence o

TEo or TF —o.

e L-structures M, are elementarily equivalent, M = N/, if Th(M) =
Th(N).

Remark 2.4. A consistent theory T is complete iff M = N whenever
M,NET.

Remark 2.5. If A is a common subset of L-structures M and N, then
idg : M --» N is partial elementary iff M4 = Ny.

In particular, if M C N, we have M <X N iff My = N
The L a-theory Th(M o) is called the elementary diagram of M.
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3 Ultraproducts

Let I be a set. A non-empty set B C P(I) is a filter base if
e X, YeB=3ZeB.XNY 2 Z
e ) ¢B.

A maximal filter base U is an ultrafilter; equivalently: U is a filter base,
and for any X C I we have

XeU or INX eld.

As an immediate consequence of Zorn’s Lemma, we have

Fact 3.1. Any filter base B C P(I) extends to an ultrafilter BCU C P(I) .
Remark 3.2. Fact[3.1]is not a theorem of ZF, and it is strictly weaker than the
axiom of choice modulo ZF.

Remark 3.3. Ultrafilters are upwards-closed: if X CY then X e =Y € U.
An upwards-closed filter base is a filter.

If U C P(I) is an ultrafilter and a; are elements of sets A; (i € I), the
ultralimit is lim; . a; the equivalence class (a;);/ ~Y of the sequence (a;);
under the equivalence relation

(a;i); ~M (ah); iff {i:a; = a} el.

i
If A; are sets, the ultraproduct is the set of all ultralimits,
H A; = Hf?GIAi/Nu = {lim a;:a; € Ai}.
i—U
i—U

We have limi_ﬂ,{(ai, bz) = (limi_ﬂ/{ a;, limi_ﬂ/[ bz)
For functions f; : A; — B; we define

lim f . .
lim fi: JT A= ] B:
i—U i—U
by
(g gy o) = Jg Jol)

If (M; :i € I) are L-structures, the ultraproduct M =[], ,,, M; is the
L-structure such that

e as sets, M :=[[._,, Ms;

e M F R(lim;,ya;) & {i: M; E R(a;)} € U (for R € L a relation
symbol);
o fM i=1lim;_ , fMi (for f € £ a function symbol);

o M :=1lim;_,y M (for ¢ € L a constant symbol).

Theorem 3.4 (Lo$). For L-structures M;, an L-formula ¢(T), and @; € M;,

I M o(lim @) iff {i: M;F ¢(a)} U.

i—U
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Proof. Exercise. O
An ultrafilter U is principal if there is ig € I such that Y = {X C I :4g €
X}, Then [], ,,, Mi = M,,.

Ezample 3.5. Let U C P(P) be a non-principal ultrafilter on the set P C N
of primes Then the ultraproduct of finite fields J[, ,;,(Fp;+,-) is a field of
characteristic 0 (a “pseudofinite field”).

If U C P(I) is an ultrafilter and M is an L-structure, the ultrapower is
defined as MY =[], ,;,, M.

Lemma 3.6. With respect to the diagonal embedding a — lim; ,;;a, M is
an elementary substructure, M < MY

Proof. Exercise. O

Ezample 3.7. Let U C P(w) be a non-principal ultrafilter. Let (R*;+,-) =
(R; +, )4 (a “non-standard real field” ). Let

€ R*.

€:= lim
n—-Un+1

Then 0 < e < r for all r € R C R*.

4 Compactness

Theorem 4.1 (Compactness). Suppose every finite subset of an L-theory T is
consistent. Then T is consistent.

Proof. Let P3(T) := {T" € P(T) : |T'| < Ry} be the set of finite subsets of T
Say Mq E T' for T" € Pin(T).

For T' € Pi(T), let [T'] = {T” € Pi(T) : T' C T"} C Pin(T). Let
B={[T:T e P®T)} C P(Pi(T)). Then B is a filter base, since [T'] N
[T"] = [T"UT"], and [T’] # @ since T" € [T'], and B # ) since [}] € B. By
Fact let U O B be an ultrafilter on P (7).

Let M = HT/—>ZA M.

Then for o € T,

{T'-Mp Ec} 2{T :0 €T} =[{o}] €U,

so by Los, M E ¢.
So M E T, so T is consistent. O

Lemma 4.2 (Separation). Let Ty and Ty be consistent L-theories, and ¥ a set
of L-sentences closed under A and V. Then TFAE:

(i) Given My E Th and My E Ty, there exists 0 € X with My F o and
MQ ’: 0.

(i) There ezists o € ¥ with Ty E o and Ty F —o.
We then say ¥ separates Ty from Ts.
Proof.
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(i) <= (ii): Clear.

(i) = (ii): Let My E Ty. For Mo F Ty there is by (i) onpm, € X with My E o,
and Ms F —op,. Then To U {opm, : Mo E To} is inconsistent, so by
compactness there is a finite conjunction o4, of the oay,, such that Th F
—om,- Then opq, € X by closedness of ¥ under A, and M E o, .

Now T1 U {-oar, : M1 E 11} is inconsistent, so by compactness and
closedness of ¥ under V, there is a finite disjunction o € ¥ of the o,
such that 77 E 0. Then T E —o.

O

5 Quantifier elimination

5.1 Definitions
Definition 5.1. A formula is quantifier free (gf) if it contains no quantifiers.

Definition 5.2. L-formulas ¢(Z) and (%) are equivalent modulo an L-
theory T', written ¢(T) <> ¥(T), if

T EVT. (¢(T) ¢ (7).

Similarly, ¢(z) =1 ¥(T) if T E VZ. (6(T) — ¥(T)).
(As always, we allow here the case |Z| = 0, i.e. the case that ¢ and v are
sentences. )

Definition 5.3. An L-theory T has quantifier elimination (QE) if any £-
formula ¢(Z) is equivalent modulo T' to a quantifier free formula ¥ ().
An L-structure M has QE if Th(M) has QE.

5.2 Discussion

Remark 5.4. An L-structure M has QE iff every L-definable set is defined by
a qf L-formula.

Ezample 5.5. (R;+,—,-,0,1) does not have QE: The order x < y is definable
by 3z. (2 20 A x4 2z - 2 = y) but not by any gf formula.

Remark 5.6. If £ has no constants, then the only qf sentences up to equivalence
are T and L. So any consistent £-theory with QE is complete.

Ezxample 5.7. Let Ly be the empty language Ly := (). We will see below that
if X is an infinite set, the Lyg-structure (X;) has QE. Moreover, we will see
that Too := {Iz1,..., 20, /\#j x; # x; 1 n € w} has QE, and so axiomatises
Th((X;)).

If M is an L-structure and @ is a set of L-formulas, the expansion by
relations for ® is the expansion of M to LU {Ry : ¢ € @}, where R, is
interpreted as ¢(M). It has the same definable sets as M.

If M does not have QE, we can try to expand by relations for non-qf formulas
until we obtain QE, e.g.:

Fact 5.8 (Tarski-Seidenberg). (R;+,—,-,0,1,<) has QE.
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We can always do this in a trivial way:

Remark 5.9. For any L-structure M, the expansion by relations for all L-
formulas (the “Morleyisation” of M) has QE.

For some particularly intractable structures, we can’t really do any better

than Morleyising:

Fact 5.10 (“The arithmetic hierarchy is strict.”). For any n € w, the expansion
of (N;+,) by relations for all formulas with at most n unbounded quantifiers
(equivalently, all formulas of the form 3%,. =3T5. ...—3T,. ¢, where ¢ has no
unbounded quantifier) does not have QFE.

5.3 Criterion for QE

Definition 5.11. e A basic formulaﬂ is an atomic formula or the negation
of an atomic formula.

e A formula ¢(7) is primitive existential if it is of the form Jy. A, ¥;(y, @),
where each 1); is basic.

Lemma 5.12. Let T be an L-theory. If any primitive existential L-formula
d(T) is equivalent modulo T to a quantifier free formula ¥ (T), then T has QF.

Proof. We show by induction on complexity that any ¢(T) is equivalent modulo
T to a quantifier free formula ¢ (Z). For atomic ¢ this is clear. For ¢ = ¢/ A ¢”
or ¢ = —¢’ it is immediate by induction.

For ¢ = Jy. ¢': by the inductive hypothesis ¢’ <7 ¥ with 1 quantifier-free.
We may assume ¢ is in disjunctive normal form : ¢ = \/; A\ j 1;5, where each
1i; is basic. So ¢ <V, 3Jy. /\j ¥;j. Each formula Jy. /\j ;; is primitive
existential, and we conclude by the assumption. O

Definition 5.13. The diagram of an L-substructure A of an L-structure is
the £(A)-theory

Diag(A) := qfTh(A4) := {0 : o qf L(A)-sentence, A4 F c}.

Lemma 5.14 (Method of diagrams). Up to isomorphism, the models of Diag(A)
are precisely M 4, where M is an L-structure and A < M.

Theorem 5.15. For an L-theory T, TFAE:
(i) T has QF.
(i) If M,N E T have a common L-substructure A, then M4 = N4.

(') “T is substructure complete”: If M E T and A < M is an L-
substructure, then T U Diag(.A) is complete.

(111) If M N E T have a common L-substructure A, and a € A<“ and ¢(T) is
a primitive existential L-formula, then

ME 6@ < N E ¢(@).

4 Also known as a literal.
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(i3’

If MUN E T have a common finitely generated L-substructure A, and o
is a primitive existential L(A)-sentence, then

MaoaEo s NyEo.

Proof.

(i) = (ii):

(i) & (ii"):
(ii) = (iii):
(iii) & (iii"):

(iii) = (i):

Let ¢(a) be an L(A)-sentence. By (i), ¢(T) is equivalent to some qf ¢'(Z)
modulo 7. Then M4 E ¢'(a) & AE ¢'(a) & Mp E ¢'(@). So M4 E
¢(a) < Mg F ¢(a).

By Lemma the models of TUDiag(.A) are exactly M 4, where M E T
and A4 < M. So (ii) exactly says that T U Diag(.A) is complete.

Clear.
Clear.

Let ¢(T) be primitive existential. By Lemma it suffices to show that
¢ is equivalent modulo T to a qf formula .

Let ¢ be a tuple of new constants with [¢| = |Z|.

Let Ty :=TU{¢(@)} and Ty := T U {—¢(2)}.

If T is inconsistent, then T F VZ. =¢(T), and so ¢(T) <> L.

If T is inconsistent, then T F VZ. ¢(T), and so ¢(T) <> T.

So assume 17 and 75 are consistent.

Suppose X := {¢(¢) : ¥(T) qf L-formula} does not separate T from T.
Then by Lemma there are M1, Mo E T and @; € M; with M; E ¢(ay)
and Ms E —¢(az), but for ¢(z) qf, My E ¢(a1) & Ms E ¢(az).

But then the map a@; — @y extends to an isomorphism (EQZ\AI = (62)2\42
(namely tM1(a;) — tM2(a@y) for t an L-term), which itself extends to an
isomorphism M; — M/ > <62>£42 (by Lemma . Then M E ¢(ay)
and My F =¢(az2). But this contradicts (iii).

So there is 1(¢) € 3 such that T} F ¢(¢) and Ty F —(¢), i.e. ¢(T) =7
¥(@) and ~¢(Z) =1 7P(T). So ¢(T) <1 Y(T).

O

We can now generalise Remark to arbitrary languages:

Corollary 5.16. Let T be a consistent L-theory with QE. Then TFAE:

(i) T is complete.

(ii) For any M,N E T, we have <(Z)>j£/l = <@>£/
Proof.

(i) = (i):
(i) = (i):

The map t™ — tV for ¢t an L-term with no variables is an £-isomorphism.

Let M E T and A := (0)%' < M. Let N E T. By (ii) there is (by
Lemmal[2.2) N7 = N with A < N”. Then by Theorem [5.15(ii) M4 = N.
Hence M =N’ 2 N. So T is complete.

O
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5.4 Examples
5.4.1 T
Let T be the Ly-theory

Ty = {Hxl,...,xn./\mi#acj:nEw}.
i#]

Proposition 5.17. T, is complete and admits quantifier elimination.

Proof. Completeness follows from QE, since the language has no constants.
For QE, we show Theorem [5.15((iii’).
Let M, N E Ty and let A < M, N be a finite common subset
Let Jy.1(y) be a primitive existential £, (A)-sentence. Suppose there exists
b € M such that M 4 F ¥ (b). We must find b’ € N such that N4 F (V).
Ifbe A: set b/ :=0b. If b ¢ A: since N F T,,, N is infinite; set b’ € N\ A.
Then id4 U {b — ¥’} is a bijection, and hence an L, (A)-isomorphism. So
N E D). O

5.4.2 DLO

Let L. := {<} and let DLO be the L£.-theory of dense linear orderings without
endpoints:

DLO :={Vx,y,z. (- < z
ANz<yVz=yVy<z)
ANrz<yhy<z)—z<z)
ANr<y—Jw (z<wAw<y))
AJw.w <z
AJw.z <w)}.

Proposition 5.18. DLO is complete and admits quantifier elimination.
In particular, DLO aziomatises (Q; <). Hence Th((Q; <)) is decidable.

Proof. Completeness follows from quantifier elimination, since the language has
no constants.

Decidability follows from completeness, since DLO is a recursive set, and
hence Th((Q; <)) = {0 : DLO E ¢} and its complement {0 : DLO F —c} are
recursively enumerable, from which it follows that Th((Q; <)) is recursive.

Let M,N E DLO and let A = {ay,...,a,} < M, N be a common finite
substructure. Without loss of generality, we may assume a1 < as < ... < ay.

i—Let;— Jy. ¢ (y) be a primitive existential £ (A)-sentence. Suppose there
exists b € M with M 4 E ¢(b). We find & € N with N4 E (V).

There are four cases:

(i) be A: set v/ =b.
(ii) b < a;: let b € N be such that b’ < a1 (b’ exists, since N has no endpoint).

(i) b > an: let b’ € N be such that ¥’ > a,, (b’ exists, since N has no endpoint).
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(iv) a; < b < ajz1: let ¥ € N be such that a; < b < a;41 (V' exists, since N
is dense).

In all cases, AU {b} is isomorphic to AU {b’'} over A as ordered sets. Hence
N4 E (). O

5.4.3 (Z;5)

Let Lg := {S}, where S is a unary function.
Let T's be the Lg-theory of cycle-free bijections

Ts :={Vx,y.((S(x) = S(y) >z =y)AJz.5(2) = z)}U{Ve. S"(z) # z:n > 1}

(where S"T1(z) := S(S™(x)); St(z) := S(z)).
(Z;S) E Ts (where S%(n) :==n +1).

Proposition 5.19. Ts is complete and admits quantifier elimination.
In particular, (Z;S) is decidable and axiomatised by Ts.

Proof. Completeness follows from quantifier elimination, since the language has
no constants.

Let M, N E Ts and let A be a common finitely generated substructure.

We may assume that S(A) = A: Indeed, |, (S™) " (A) is isomorphic to
U,, (SM)="(A) over A, since M and N are cycle-free.

Then every atomic Lg(A)-formula ¢(z) is equivalent modulo Ts U Diag(.A)
to x = a for some a € A, or to T, or to L. Indeed:

T (n:m)'

Sn(x) = Sm(q;) T {J_ (TL 7& m) ;

S§"(x) = 8™ (a) <> 1rsubiaga) T = S " (a)(€ A).
Hence any primitive existential £g(A)-formula o is equivalent modulo Ts U
Diag(A) to T, or L, or
Jy. Ny=ain Ny#bs
i<k i<l
. Since M and N are infinite, we have M 4 F 0 & N4 F 0.
The result now follows by Theorem [5.15|(iii’). O
5.4.4 ACF
Let Lying := {+,—,-,0,1}. Let ACF be the L,ing-theory of algebraically closed
fields:
n .
ACF := [Korperaxiome] U {Vzo,...,z,. Jz. Zzixl =0:n2>1}.
i=0

Proposition 5.20. ACF admits quantifier elimination.
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Proof. Let K; F ACF and let R = (aq,...,a,) < K1, K3 be a finitely generated
common subring.

Let Jy. ¥(y) be a primitive existential Lying(R)-sentence. Suppose there is
b € K such that K E ¢(b). We show that Ky E Jy. ¥(y).

Let F; be the quotient field of R in K;. Then idg extends to an isomorphism
f:FliFQ (F19£*—>£€F2).

Now let G; be the algebraic closure of F; in K;, namely the set of all solutions
to polynomial equations with coefficients in Fj.

Since the algebraic closure of F; is uniquely determined up to Fj-isomorphism,
f extends to an isomorphism ¢ : G =N G- .

If b € Gy, we have Ky F ¢(g(b)).

Otherwise: b is transcendental over G;. Then G;(b) is isomorphic over G4
to the rational function field G1(X). Let K} be a proper elementary extension
of Ko. Then say b’ € K} \ G2. Then G3(V') is again isomorphic over Gz to the
rational function field G2(X). Hence g extends to an isomorphism h : G1(b) —
Go(b') with h(b) = b . Hence K3 E (V') and so K4 E Jy. ¢(y). Finally, we
conclude Ks E Jy. ¢¥(y). O

For p € N prime, let ACF,, := ACFU{p = 0}, where 7 is the term 1+1+...+1
(n times).
Let ACFy:= ACFU{n #0:n>1}.

Theorem 5.21. The completions of ACF are precisely ACF,, for p prime or 0.

Proof. The characteristic of a field is either prime or 0. For K a field of char-
acteristic p,

F 0
., = {Zp "

So quantifier elimination implies by Corollary completeness of each ACF),.
O

Theorem 5.22 (Ax). Any injective polynomial map F : C"* — C" (i.e. F(a) =
(Fi(a),..., Fy(a), where F; € C[X]) is surjective.

Proof.

Claim 5.23. Let p be prime. Any injective polynomial map F : (F;lg)" —
(Fal&)™ is surjective.

Proof. Recall: Fa's = J, F .

Let ko be such that the coefficients of F' are in Fx,.

Let k > ko. Dann F(F,) C FJ,, and so by injectivity and the pigeonhole
principle, F' (F;k) =F..

Hence F((Fa'8)") = (Fglg)”. O

Let n,d € w. Let 0,4 be an L,ing-sentence expressing that any injective
polynomial map F : K™ — K™ consisting of polynomials of degree < d is
surjective:

On,d ‘= VZLO, ey Znyd(VT,y((/\ sz—mg = Zzwyf) — /\l’Z = yl) — VyEIE /\ Zzi’j:ﬂg = yz)
L] J i v
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Suppose C i 0, q. Then by completeness of ACFy, ACF( F -0, 4. Then by
compactness, for some m € w,

ACFE N\ i#0— 0,4
0<i<m

So if p > m is prime, ACF,, F =0, 4. But this contradicts the Claim. O

5.4.5 Presburger Arithmetik

Beispiel 5.24. (ohne Beweis) In (Z;+,<) sind nZ C Z (n > 2) existentiell
definierbar aber nicht gf definierbar. Jedoch hat (Z;0,1, +, —, <,2Z,3Z,4Z, .. .)
QE.

6 Elementary extensions

Theorem 6.1 (Tarski-Test). Suppose M is an L-structure and A is a subset.
TFAE:

(i) A is the domain of an elementary substructure;

(ii) for every L(A)-formula in one free variable ¢(x) gilt: if M E Jz. ¢(z),
then M E ¢(a) for some a € A.

Proof.

(i) = (ii): Let A be the elementary substructure with domain A. Then if M E
Jz. ¢(x), then A F Jz. $(x) by elementarity; so say a € A and A F ¢(a);
but then M E ¢(a) by elementarity.

(ii) = (i): By (ii) with ¢(z) := = = f(@) we have that A is closed under (> 0-ary)
functions. So A is the domain of a substructure .A.

We show by induction on complexity that for any £(A)-sentence o,

AEFoc e MEo. (1)

holds for o atomic since A is a substructure, and if it holds for o and
o’ then clearly it holds for —o and (o A o’).

So suppose o = Jz. ¢(z), and holds for ¢(a) for any a € A.

If AE o, then A E ¢(a) for some a € A, so M E ¢(a) by the induction
hypothesis, so M E o. Conversely, if M F o, then M E ¢(b) for some
b e M, so, by (i), M E ¢(a) for some a € A, so AF ¢(a) by the induction
hypothesis, so A F o.

O

Definition 6.2. An L-theory T has built-in Skolem functions, if for every
L-formula ¢(x,7) there is f4(,7) € £ such that

Lemma 6.3. IfT is an L-theory with built-in Skolem functions, then substruc-
tures of models are elementary: if N < M ET then N < M.
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Proof. Let ¢(x,a) be an L(N)-formula, and suppose M E Jz. ¢(x,a). Then
Jo@m (@) € N, since N < M, and M E ¢(fyu5(@),a). So by Theorem [6.1
N M. O

Lemma 6.4. Let T be an L-theory. Then T has a skolemisation T* 2O T,
a theory in a language £* O L with |L*| = |L] + Vo, such that T* has built-in
Skolem functions, and any model of T expands to a model of T*.

Proof. Let Lo := L and Liy1 = L; U{fp@y : ¢(x,7) an Li-formula} and
Let T i= T U {¥5. (3z. (2, 7) = &(fote) (). 7)) | 6(z,7) an L*-formula}.
If M E T, recursively define the fy(, 7) to witness the existentials (using the
axiom of choice) to obtain an expansion to a model of T*. O

Theorem 6.5 (Léwenheim-Skolem). Let M be an infinite L-structure.

(i) “Downwards”: If A C M is a subset with |A| > |L]|+ Ro, then there exists
an elementary substructure N' < M containing A, with |N'| = |A|.

(i) “Upwards”: For any cardinal k > |L| + |[M| there exists an elementary
extension N = M with |N| = k.

In particular, for any k > |L] + N, there is N = M with |N| = k.
Proof. (i) First, assume T := Th(M) has built-in skolem functions.
Let N := (A1, By Lemma V| = |A|. By Lemma[6.3) N < M.
Now for the general case, let £* and T* be as in Lemma [6.4] and let
M* E T* be an expansion of M to £*. Since |L£*| = |L| + Ro, we have

|A] > |£*] + Np, so we obtain A C N* <X M* with [N*| = |A|. Then
N := N* | is as required.

(ii) Let £’ := L(M)U{c; : i € K}, where ¢; are new constants, and T’ :=
Th(Ma)U{ci #¢; 11 # j € k}. Then T” is consistent since M is infinite
Let M’ E T’ with M < M’ and let A := {¢™M :i € k} € M’. Then
by (i), there exists N' < M’ with [N| = |4] = k. Now N = M, since
N E Th(May).

O

Corollary 6.6 (“Skolem’s Paradox”). If ZFC is consistent, it has a countable
model. This is not a paradox!

Corollary 6.7. No infinite structure is determined uniquely up to isomorphism
by its theory.

Remark 6.8. In contrast, any finite structure is determined uniquely up to iso-
morphism by its theory.

Remark 6.9. (R;+,-,<) is the unique complete ordered field; but “complete”
(every bounded subset has a supremum) is not first-order expressible.

Definition 6.10. Let s be an infinite cardinal. A theory T is x-categorical if
T has a unique model of cardinality x up to isomorphism.

Theorem 6.11 (Cantor). DLO is Rg-categorical.
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Proof. (“Back-and-forth argument”)

Let M,N E DLO with M| = Xy = |[N]. Let M = (m;)ic, and N =
(n;)icw,- We recursively construct a chain of partial isomorphisms 6; : M --+ N
such that

|dom 6;] < Rg und for all j < i, we have m; € dom6; and n; € im#0;.  (¥*)

Let 90 = @
Given 6; satisfying @,
exactly as in the proof of QE for DLO, 6; extends to 6} : M --» N with
m; € dom6;’;
similarly, (6))~% : N --» M extends to 07 : N -~-» M with n; € dom6,”;
then 0,41 := (0/)~' : M --» N satisfies .

Then 6 :=J; 0; : M = Nis an isomorphism. O
Theorem 6.12 (Vaughts Criterion). If an L-theory T has no finite models and
is k-categorical for some k > |L| 4+ Vg, then T is complete.

Proof. Let M,N E T. Both M and N are infinite. By Theorem [6.5] there are
M =M and NV = N with |M’'| = k = |[N'|. By k-categoricity M’ = N,
Hence M = N. O
Notation 6.13. For T a complete L-theory, we set

7| == |£] + Ro,

being the cardinality of the set of all L-sentences.

7 Types
Definition 7.1. Let n € w, and let x1,...,x, be a tuple of distinct variables.

e Let M be an L-structure. The type (in variables Z) of a tuple b € M"
in M is

tp™M(b) := {$(T) : M E ¢(b); ¢(T) an L-formula}.

A type is the type of some tuple in some structure

A partial type is a subset of type.

Let T be a consistent L£-theory. The set of n-types in T is
S, (T) :== {tpM(b) : MET; b e M"}.

(Technically, this should be written as Sz(T) as it depends on the choice
of variables T and not just on n. But “S,” is traditional. )

If A is a subset of a structure M and b € M<%, the type of b over A is

tp™M(5/4) i= tp™2 (B) € S, (Th(M.4)).

e Let SM(A) := S, (Th(M.a)).
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o We write S(T) for the set of all types (in arbitrary free variables) in T,
and S™M(A) for the set of all types over A C M.

Lemma 7.2. A set of L-formulas ®(T) is a partial type iff it is finitely satisfi-
able, i.e. for every finite subset &y C ® there exist an L-structure M such that
METZ. N\yes, V(@)

A partial type O(T) is a type iff for every L-formula ¥ (T), either ¥ (T) € O(T)
or ~(T) € ®(T).

So types in T are precisely maximal consistent (= finitely satisfiable in mod-
els of T ) sets of formulas in a given tuple of variables.

Proof. Compactness. O

Definition 7.3. S, (T) is a topological space with basis of open sets {[¢] :
¢(T) an L-formula}, where [¢] := {p € Sp(T) : ¢ € p} C S, (T).

Fact 7.4. S, (T) is a Stone space, i.e. it is compact Hausdorff and totally
disconnected.

Proof. Exercise 4. O

Ezample 7.5 (Types in DLO). DLO has QE, so if M F DLO and b e M=<v,
tpM(b/A) is determined by the basic £ (A)-formulas satisfied by b.

e S51(DLO): the only consistent basic formula in one variable x is z = z, so

|S1(DLO)| = 1.
e S55(DLO) consists of the three types implied (modulo DLO) respectively
by r<y,z=vy,and y < z.
o S%(Z) consists of the types implied by
— z =n (some n € Z);
—n<z<n+1 (somen € Z);
—{z<n:neZ}
- {z>n:neZ}.
e More generally, consider p(z) = S1(A), where A C M E DLO.
If v = a € p(z) for some a € A, then x = a implies p.

Else,let L:={a € A:a<zeptand R:={a€ A:a>x € p}. Then
(L,R) is a cut in A, i.e. LUR = A and for all [ € L and r € R, we have
I <r. Then p(x) is implied by {i <z :l € L}U{z <r:r € R}.

Conversely, if (L,R)isacut, {{ <z:l€ L} U{x <r:r € R} is finitely
satisfiable, so implies a type in Sy(A).

e cg. S?(Q) is in bijection with R U {—o00, 400} (but the topology is cer-
tainly not the Euclidean topology!).

Definition 7.6. For ®(7) a set of L-formulas and ¢ an |Z|-tuple of constants,
0(@) :={¢(0) : ¢(7) € (7)}.

If 7 is a |Z|-tuple of variables, we define ®(7) similarly.
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Remark 7.7. Let T be a consistent L-theory.

e So(T) consists of the completions of T'.

e The map S,,(T) — So(T”); p(T) — p(¢) is a homeomorphism, where ¢ is
an n-tuple of new constants and and 7" is the £(¢)-theory consisting of
the same sentences as 7.

Remark 7.8. Let A C M be a subset of an L-structure M.

If N is another L-structure containing A and Na = M4 (e.g. if N = M)
then SV (A) = SM(A).

We often just write S, (A) for SM(A).

Definition 7.9. Let ®(T) a set of formulas.

o If @ € M, we write
akF®

to mean

Mgz E O(a).
Then @ is called a realisation of the partial type ®.

e We write
®(7) br @' (T)

to mean that
() b D' (),

where € is a |Z]-tuple of new variables. Equivalently for any M E T and
ae M7l
aF ®(T) = ak P (7).

We write e.g. ¢ Fr ® to mean {¢} Fr .

Definition 7.10. M E T realises a set of formulas ® in 7, if some b € M" is
a realisation of ®.
If M does not realise &, M omits .

Definition 7.11. A type p(%) € S, (T) is isolated if there is ¢(Z) € p(T) such
that ¢(Z) Fr p(Z). We say then that ¢ isolates p. .

Lemma 7.12. Let T be a complete theory. Let p € S,(T) be isolated and
MET. Then M realises.

Proof. Let ¢(T) € p(T) with ¢(T) Fr p(T). Since p is finitely satisfiable (by
Lemma and T' is complete, we have T'F 37. ¢(T). So say b € M7 with
M E ¢(b). Then bE p. O

Ezample 7.13. Let K E ACF and F C K a subfield. Let p(z) € S1(F). Since
ACF has QE, p is determined by the polynomial equations over A it implies,

i.e. by
I, = {f(X) € FIX]: f(z) =0 € p}.

This is an ideal: I, < F[X]. Moreover it is a prime ideal, i.e. f-g€ I, = (f €
I, or g € I,,). Indeed, take a realisation a € K’ = K; then if (f - g)(a) = 0 then
f(a)-g(a) =0,s0 f(a) =0 or g(a) =0 (since K’ is an integral domain).
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Now F[X] is a principal ideal domain, so I, = m,, - F[X] for some prime
my, € F[X]. If m, = 0, p is the type of a transcendental element over F, and
p might not be realised in K (K could be F2#). Else, p is an algebraic type,
and it is isolated by m,(z) = 0, and is realised in every algebraically closed field
extension of F.

Now consider p € S, (F), where n > 1. As above,

Iy = {f(X) € FIX]: f(z) =0 € p}
is a prime ideal in F[X].

Conversely, if I < F[X] is a prime ideal, then R := F[X]|/I is an integral
domain. Let K’ O F be an algebraic closure of the fraction field of R, and let
a; := X;/I € K'. Let p := tp (@/F). Then I,=1

So p — I, is a bijection S,,(F) — Spec(F[X]), where Spec(F[X]) is the set
of prime ideals of F[X]. (This map is continuous if Spec(F[X]) is equipped with
its usual Zariski topology, but is not a homeomorphism.)

We can also think about this in terms of naive algebraic geometry. If F'is a
subfield of an algebraically closed field K, a closed algebraic subset of K™ over F'
is the common zero set V = V(I) C K™ of an ideal I < F[X]. V is irreducible
if it is not the union of two proper closed algebraic subsets over F'; equivalently,
if T is a prime ideal. A point @ € V is generic (over F') if it is contained in
no proper closed algebraic subset over F'. Then tp(a/F) = pr,, and conversely
any p € S, (F) is of this form for some @ € K™ for some K (e.g. by considering
F[X]/I, as above). In other words: the types in ACF are precisely the types of
generics of irreducible closed algebraic sets.

Finally, consider an arbitrary subset A C K. Let F' < K be the subfield
generated by A. Then a type over A determines a type over F. In other words,

the restriction map S, (F) — S, (A) is a bijection.

7.1 Saturation

Lemma 7.14 (“Joint Consistency for Constants”). Let T be a complete L-
theory. Fori € I let C; be a set of constants, and suppose C;NC; =0 =C;NL
fori#j. Let T; O T be a consistent LU Cy-theory. Then | J,.; T; is consistent.
Remark 7.15. In fact this holds if we add new relations and functions too. This
is known as “Robinson’s Joint Consistency Theorem” (a proof can be found in
Chang&Keisler).

Proof. 1f |J,c; T; is inconsistent then by compactness T'U {¢;(¢;) : i € Io} is
inconsistent where Iy C I is finite and T; F ¢;(¢;) and ¢; € C~. WLOG
IO = {1,2,...,’)1}.

But then T'EVZy,...,ZTn. 7 A\ i<, ¢i(Ti) with the T; disjoint tuples.

Then T EVZ1,....Tn. Vicicp, 70i(Ti)-

Then T F V,c;c, VZi- 7¢;(T;). So T U {¢;(c;)} is inconsistent for some i.
This contradicts consistency of T;. O

Lemma 7.16. Given M an infinite L-structure and A C M, there exists N =
M which realises every p € S(A),.
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Proof. For each n > 1 and each n-type p € S(A), let ¢, be a new tuple of
constants with [¢,| = n.
We must show 7" := Th(M) U Upes(a) P(Cp) is consistent.
By definition of S(A), each Th(M4)Up(cp) is consistent. Also Th(Maq) 2
Th(M_4) is consistent. So 7" is consistent by Lemma
O

Definition 7.17. Let x be an infinite cardinal. An L-structure M is k-
saturated if for any A C M with |4| < k every p € S1(A) is realised in
M.

M is saturated, if it is |M|-saturated.

Ezample 7.18. (Q; <) is Rg-saturated.
Q& E ACF is not Ng-saturated (since it omits the transcendental type in

S1(0)).

Lemma 7.19. If M is k-saturated, for any A C M with |A| < k and every
n>1, every p € Sp(A) is realised in M.

Proof. By induction on n.

Sei p(x1,...,Zn,y) € Sny1(A4). Setze q(x1,...,2n) = {d(x1,...,2n) : ¢ €
p} € Sp(A). Inductively, ¢ is realised in M . Say @ € M™ with @ E q.

Now p(@,y) = {¢(@,y) : ¢ € p} € S (AU{ay,...,a,}); Indeed, If ®o(T,y) Chn
p(Z,y) is a finite subset, Since tp™(a/A) = ¢(T) > Jy. Noca, (T, y), we have

ME Jy. /\¢Eq>0 o(@,y).
Hence (since |[A| 4+ n < k) some b € M with b F p(a,y) and then (a,b) F

p(Z,y). O

Lemma 7.20. Suppose 0 : M --+ N is partial elementary and A C dom 6 and
p(T) € SM(A).

(i) The conjugate of p by 0
(@) = (6(F.60@) : $(7.7) € p(®): & a Lformula}
is a type p’ € SN (A(A)).

(ii) For b € M, an extension 0' of 0 with dom®' = dom® U {b} is partial
elementary iff 6'(b) E tp(b/dom ).

Proof. (i) For a finite subset ®4(Z) Cgy p(T), write A\ @ as ¥ (T, a), where
is an L-formula and @ € A<“. Then M E 37.¢(Z,a). So by elementarity,
N E 3z 9¢(z,0(a)).

(ii) Immediate.
O

Lemma 7.21. If M = N and |[M| = [N| > Xy and M and N are both
saturated, then M = N

Proof. Back-and-forth.
Let M = (mg)aex and N = (ng)aecr. We recursively construct a chain of
partial isomorphisms 6, : M --» N for « € A such that

dom 8,| < 2-|a| und for all B < a, we have mg € dom 8, and ng € im6,. (*
B B
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Let 0o := (). For n a limit ordinal, let 6, :={J,., 0a. We have [dom ;| <
nl=2-In|.

Given 6, satisfying @,

By saturation, tp(mq/dom 6,)% € S;(im6,,) is realised in N.

Hence 0, extends to ¢/, : M --+ N with m,, € dom¥§,;
symmetrically, (6/,)7! : N --» M extends to ¢/ : N --» M with n,, € dom8,";
then 0,11 := (02)71 : M --» N satisfies .

Then 6 :=J, 0o : M =, N is an isomorphism. O

Definition 7.22. An L-structure M is k-universal if any N' = M with |[N| < &
elementarily embeds in M.

Lemma 7.23. Let M be an k-saturated L-structure. Then M kT -universal.

Proof. Suppose N'= M with X := [N] < k*. Say N' = {a, : @ € A\}. We build
a chain of partial elementary maps 6, : N --» M with dom#6, = A, = {ag :
B < a}.

Set 0y := (0. For n a limit ordinal, set 6, := Ua<17 0,.

Since |As| = |a| < A < K, by k-saturation, tp(aq/Aqs)% is realised in M.
Set Oo+1(aq) to be a realisation. O

8 Countable models of countable theories

8.1 Countable saturated models

Lemma 8.1 (Tarski’s Chain Lemma). If (I;<) is a linear order and (M;);cr
is an elementary chain, meaning M; < M for i < j, then M; = U,c; M; for
all i.

Proof. Exercise 1.1(b). O
Definition 8.2. A theory T is small if |S,,(T)| < X, for all n € w.
Ezample 8.3. (Q; <) ist schmal. (Q; <)g ist nicht schmal.

Theorem 8.4. Let T be a countable (i.e. |L| < Vo) complete L-theory with
infinite models.
Then T has a countable saturated model iff T is small.

Proof. =: Let n € w. Every type in S,,(T) is realised in the countable satu-
rated model, so |S,,(T)| < No.

< If A Cay M E T, then [S1(A)] < [S|a+1(T)| < Ro; indeed, if A =
{a1,...,a,} then p(x,@) — p(z,7) is an injection S1(A) — Sp41(T).
We build an elementary chain (M;);c. of countable models. Let Mo E T
with |[Mg| = Ng, which exists by Lowenheim-Skolem. Given, let X :=
Uacgm, S1(A). Then [X| < Ro. So by Lemma and Lowenheim-
Skolem, there is a countable model M1 = M; which realises all p € X.

Now let M := |J,c, Mi E T. Then [M| < Xy and if A Cg, M, then
A Cgn M, for some i € w. Hence every p € S1(A) is realised in M; ;1 and
hence in M = M.

O



8 COUNTABLE MODELS OF COUNTABLE THEORIES 23

8.2 Omitting types
Definition 8.5. Let T be a consistent £-theory.
o A L-formula ¢(T) is consistent (with T'), if T' ¥ —=3z. (7).

o A set of formulas ®(Z) in T is isolated if there exists a consistent ¢(Z)
s.t. o(T) br ®(T).

Theorem 8.6 (Omitting Types Theorem). Let T be a countable consistent
theory.

Let (P (Tk))rew be non-isolated sets of formulas. Then there exists a count-
able model M E T which omits every ®y,.

Proof. Let C' = {c¢; : i < w} be a set of new constants.
Enumerate the £(C)-formulas in z as (¢;(z) : i < w).
Let ¢ : {(k,C) : k € w; ¢ € C™*I} — w be a bijection.
We construct an increasing chain (X;);¢. of sets of £(C')-sentences such that

(1) %] < No;

(ii) T; := T UY; is consistent;
(iii) if j < 4, there is ¢ € C such that T; F 3z. ¥;(z) — ¢;(c);
(iv) if &(k,¢) < 1, there is ¢(Ty) € Pk (Tk) such that T; F —=¢(c).

Let ¥¢ := 0. Suppose ¥; satisfies (i)-(iv).

Say ¢ € C does not appear in ¥; nor in 1, and let 3, | := 3; U{3z.¢;(x) —
i(c)}. Note that TU X} | is consistent.

Say &(k,¢) = i, and let T := T,. Let §(Z,7) be such that A Xj, | = 0(c,T),
where ¢ € (C'\ {c1,...,¢z})<¥. Now T ¥ =37. 3. §(T,7), so by non-isolation
of @, there is ¢;(T) € ®1(T) such that

Y. 0(7, ) Vo ¢:(T))- ()

Let X1 := i, U{=¢;(¢)}. Then T'U X, is consistent by (¥).

Now let T, := T'U J,¢,, X This is consistent by (ii) (since (¥;); is an
increasing chain), so let M F T,,. By (iii) and Tarski’s test, {c™ : ¢ € C} is the
domain of a countable elementary substructure A" < M. By (iv), N omits each
Dy, O

8.3 Prime models

Definition 8.7. M E T is a prime model of a theory T if it elementarily
embeds in any model of T.

Ezample 8.8. (Z;S) is a prime model of its theory.
(Q; <) is a prime model of DLO.

Definition 8.9. An L-structure M is atomic if tp(a) is isolated for every
aec M<v.

Definition 8.10. A formula ¢(Z) is an atom modulo 7T if it is consistent with
T and isolates a type in T'; equivalently, for no ¥ (Z) are both ¢ A and ¢ A =)
consistent with 7.
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Notation 8.11. @b := (aq,... s Qg by ’blg\)‘

Lemma 8.12 (“Monotonicity and transitivity of isolation”). Let a,b € M=,
Then tp(ab) is isolated iff tp(a/b) and tp(b) are isolated.

Proof. = Say, ¢(,%) isolates tp(ab). Then

e ¢(,b) isolates tp(a/b); indeed, if @ F ¢(z,b) then ab & ¢(z,7), and so
¢(f7 y) Fr 11[}(5’ y)v and so d)(fa b) I_Tj w(f’ b)

e J7. ¢(%,7) isolates tp(b); indeed, if b F (%) then ¢(Z,7) Fr ¥ (7), and so
3z ¢(z,y) br Y(¥).
<: Say, ¢(¥) isolates tp(b) and &(7, b) isolates tp(@/b) (where £(Z,7) is an
L-formula).
Then &(T,7) A ¢(y) isolates tp(ab). Indeed, if @b ¢(Z,7) then a F (T, b),
hence &(T, b) T, V(T ,b), hence b F VZ.(£(%, y) — ¥(%, 7)), hence T E Vy.(o(y) —
VZ. (§(T,y) = ¢(T,7))), hence T EVZ, Y. ((§(Z,7) A 6(y)) = »(T,7))).

Lemma 8.13. Let M be an infinite L-structure, where |L£| < Ng.
Then M is a prime model of Th(M) iff M is countable and atomic.

Proof. Suppose M E T is prime. Then M is countable since it embeds in a
countable model, by Lowenheim-Skolem. Let @ € M<%. Then tp(a) is realised
in any M’ E T (namely by 6(a), where 6 : M =N M’). So by the omitting
types theorem, tp(a) is isolated. Hence M is atomic.

Conversely, suppose M = (a;);e, is countable atomic, and let M’ E T. We
build a chain of partial elementary maps 6; : M — M’ with dom6; = {a; : j <

Set 90 = @

Given 6;, p; := tp(a;/ag, . ..,a;—1) is isolated by atomicity (and Lemma7
and hence pfi is isolated and hence realised by some b, € M’. Let 0,11(a;) := b;.
Then ;41 is partial elementary (by Lemma [7.20{(ii))

Then J,

1<w

0; : M <2 M isan elementary embedding. So M is prime. [

Lemma 8.14. Let M = N be countable atomic elementarily equivalent struc-
tures. Then M is isomorphic to N.

Proof. Exercise. O

Proposition 8.15. Let T be a countable theory. Then T has at most one prime
model up to isomorphism.

Proof. Exercise (it follows from Lemma and Lemma [8.13)). O

Definition 8.16. We say the isolated types are dense in S(T) if for each
formula ¢(Z) consistent with 7', there is some isolated p(%) € S(T') with ¢ € p.

Theorem 8.17. A countable complete theory T has a prime model iff isolated
types are dense in S(T').
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Proof. =: Say (by Lemma M E T is countable atomic. Then any consis-
tent ¢(T) has a realisation in M (since T is complete), which by atomicity has
isolated type.

<: Let n € wand U, (21,...,2,) := {~9¥(T) : ¥(T) an atom}. Suppose a
formula ¢(T) isolates ¥, (T). By density of isolated types, ¥(T) b1 ¢(T) for some
atom v (T), but then ¢(Z) Fr —9(Z), contradicting consistency of ¢ (). So each
VU, (Z) is not isolated, so by the omitting types theorem, there is a countable
M E T which omits each ¥,,. Then M is atomic: if @ € M<¥, there is an atom
(), such that @ & = (%), hence @ F 1 (T), hence (T) isolates tp(a). O

Notation 8.18. We write elements of 2<% or 2“ as binary strings, with () for
the empty string.
s < t means that s is a prefix of ¢, i.e. t = st’ for some t'.

Definition 8.19. A binary tree of formulas for a theory T is a family of
formulas (¢s(T))sca<w such that for each s € 2<%:

e ¢s(T) is consistent with T,

i %0(5) }_T ¢s(f) and ¢sl (E> Fr (bs (E)v

* ¢:0(T) Fr = (T).
Lemma 8.20. If a countable theory T has a binary tree of formulas, then
S(T) = 2%,
Proof. Say (¢s(T))sec2<w is a binary tree and |Z| = n. For ¢t € 2¥, {Ps(T) : s<t}
is consistent, so extends to a type ps(T) € S, (T). Then if t # ¢/, there is s € 2<%
such that sO <t and sl <t or the other way round, so p.(Z) # py (T).

So [S(T)| > [Sn(T)] > [2°] = 2%.

Since the language £ of T is countable, |S(T)| < |P({L-formulas})| = 2%0.

O

FEzample 8.21. Consider 2 as a structure in the language {P; : s € 2<“}, where
Py(2¥) :={t: s <t}, and let T be its theory.

Then {Ps(z) : s € 2<“} is a binary tree of formulas in Txr.

Exercise: Tgr has QE. It follows that 2¥ > ¢ — tp(t) € Si(TsT) is a
bijection, and none of these types are isolated.

So T is not small, and isolated types are not dense, and there is no prime
model.

Bonus exercise: explicitly describe a countable model.

Lemma 8.22. Let T be a consistent theory.

(i) If the isolated types are not dense in S(T), then T has a binary tree of
formulas.

(ii) If T is small, the isolated types are dense in S(T).

Proof. (i) Say ¢g(T) is consistent and in no isolated type.
Given ¢4(T) which is consistent and in no isolated type (s € 2<%), ¢,(T)
is not an atom, so there is 1(Z) such that ¢so := ¢(T) A —(T) and ¢4 =
o(T) AN(T) are consistent, and each is in no isolated type since ¢ has this
property.
So we may recursively construct a binary tree of formulas (¢s(T))sea<e.
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(ii) Follows from (i) and Lemma
O

Proposition 8.23. Any countable complete small theory has a prime model.
Proof. Immediate from Lemma [8.22{ii) and Theorem [8.17 O

Remark 8.24. The converse fails; consider (Q; <)g (Exercise).

Ezxample 8.25. Let k be a countable field. The theory of infinite k-vector spaces
is complete, countable, and small. The countable models are the vector spaces
Vg4 of dimensions d € (w\ 0) U {Ro}. Vj is the prime model, and Vg, is the
countable saturated model.

Proposition 8.26. For a countable theory T, TFAE:
(i) T is not small, i.e. |S(T)| > No;
(ii) T has a binary tree of formulas;
(i3i) |S(T)| = 2%o.
Furthermore, if T is not small, then
(iv) T has 2% countable models up to isomorphism.
Proof. Exercise. O

Remark 8.27. There do exist small theories with 280 countable models, e.g.
Th((w X w; (P;)i)wxw), Where Pi(w x w) = {i} X w.

Corollary 8.28. If a countable theory T has countably many countable models,
then T is small, and hence T has a prime countable model and a saturated
countable model.

Conjecture 8.29 (Vaught). If T is a countable theory with uncountably many
countable models, it has 28° countable models.

(Note: it’s easy to see that a countable theory has at most 2% countable
models, so this is immediate if we assume CH.)

8.4 Ryll-Nardzewski

Theorem 8.30 (Ryll-Nardzewski). Let T be a complete countable L-theory with
infinite models. TFAE:

(A) T is Rg-categorical.
- (B1) For alln € w and M E T, there are only finitely many definable

subsets of M™.

(B1’) For all n € w, we have |®, 7| < Vo, where &, 1 := {@wn)l/
is the set of (<>1)-equivalence classes of L-formulas ¢(x1,...,%y).

(B2) Every type in T is isolated.
(B3) For all n € w, we have |S,(T)| < No.

(C) Every countable model of T is saturated.
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(D) Every countable model of T is prime.
(E) T has a countable model which is saturated and prime.

(The equivalence (A) < (B1) is the key result here, and is what is most
often referred to as the Ryll-Nardzewski Theorem.)

Proof.
(B1) & (B1’) If M E T, then ¢(T) <37 (T) iff p(M) = p(M).
(B1’) = (B2) Given p(z) € S(T), p(ZT) contains by (B1’) only finitely many formulas
$1(T), ..., ¢x(T) up to equivalence. Then A, ¢; € p isolates p.
(B2) = (B3) Suppose each p(Z) € S(T) is isolated, say by (/ﬁp(*) Let n € w.

Suppose |S,,(T)| is infinite. Then {—¢,(Z) : p € S, (T)} is finitely satisfi-
able and so can be completed to some p € S,,(T), but then ¢, -7 p 3 —¢p,
contradicting consistency of ¢,.

(B3) = (B1’) The map ¢(z1,...,2n) — {p € Sp(T) : ¢(T) € p(T)} induces an injection
O, 7 — P(S,(T)); indeed, if ¢(Z) 51 ¥(T), then T F 3T. =(6(T)
¥(T)), so for some p € S,,(T), we have ¢ € p ¢ 1 € p. So @, 7 is finite if
Sp(T) is.

For the remaining equivalences, note first that since T' is complete and has
infinite models, it has no finite models, so countable models have cardinality Ng.

(A) = (D) By Lowenheim-Skolem, every model of T has a countable elementary sub-
model. So if M is the unique countable model, it elementarily embeds in
every model, so is prime.

(D) = (B2) Every type is (by Lowenheim-Skolem) realised in a countable model, which
by (D) and Lemma is atomic.

(B2) = (C) Let M E T be countable, and let A Cg, M. Then every p € S(A) is
isolated by (B2) (and Lemma [8.12)), and hence realised in M. So M is
saturated.

(C) = (A) Lemma |7.2]]
((C) A (D)) = (E) A countable model exists by Lowenheim-Skolem, so this is immediate.

(E) = (D) If M E T is a countable saturated prime model and N F T is countable,
then N <=5 M by Lemma Then N is prime since M is. .

O
Remark 8.31. We can also give direct proofs of some of the other implications:

(A) = (B) If some type is not isolated, by the omitting types theorem we have a
countable model which omits it, but we also have a countable model which
realises it.

(B2) = (D) Lemma
(D) = (A) Proposition [8.17]
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((A) A (B)) = (E) By (B), T is small, so saturated and prime countable models exist; by (A)
they are isomorphic.

(E) = (B2) By (E), an atomic model realises every type.

8.5 Fraissé constructions

Let £ be finite and relational, i.e. containing only relation symbols. In this
section, we consider the empty L-structure to be an L-structure.
Our aim is to find Ry-categorical theories.

Remark 8.32. Let n € w. There are up to isomorphism only finitely many
L-structures of cardinality n.

Definition 8.33. The age of an L-structure M is the class of finite L-structures
which embed in M,

age(M) = {A: A <Vg; If : A— M} ={A: A2 A" <4, M}.
Lemma 8.34. Any age K satisfies:
(HP) If A€ K, then age(A) C K;
(JEP) If B1,By € K, then there exist C € K and embeddings f; : B; — C.

T

fi : R i)

o )
31 82

Proof. (HP) Clear.

(JEP) Say f; : Bi — M. Let C := (f1(B1) U f2(B2)) < M. Then f; : B; —
cek.
O]

Conversely:

Lemma 8.35. Any non-empty class K of finite L-structures satisfying (HP)
and (JEP) is the age of a countable L-structure.

Proof. By Remark we can find A; € K for i € w such that any A € K is
isomorphic to some A;.

We construct a countable chain Dy < Dy < ... with D; € K, such that each
A; for j < i embeds in D;.

Let Dy := @ (which is in K by (HP) and K # ). Suppose D; has been
constructed. By (JEP) there is Dj , € K, such that D; and A; embed in D; ;.
Let (by Lemma [2.2) D;y1 = Dj,; with D; < D;;1. Then also A; embeds in
Diya1-

Let M := | J;c,, Di, which is countable since each D; is finite. Then each A;
embeds in M, so K C age(M). Conversely, if A < M, then A < D; for some i,
so A € age(K) by (HP). O

Lemma 8.36. Any consistent L-theory with QF and with infinite models is
Ng-categorical.
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Proof. For any n € w there are only finitely many atomic L-formulas in free
variables z1,...,x,, and hence only finitely many qf L-formulas in T up to
equivalence. So we conclude by Ryll-Nardzewski. O

Definition 8.37. A Fraissé class is a class K of finite £-structures which
contains unboundedly large structures and satisfies (HP) and

(AP) If A,By,B2 € K and g; : A —— B; are embeddings, then there exist C € K
and embeddings f; : B; — C, such that f; 0 g1 = fa 0 gs.

C
=R
fi f2
C )
Bl B2
A

Remark 8.38. (AP) implies (JEP): take A := 0.
Theorem 8.39 (Fraissé).

(i) Let K be a Fraissé class. Then there is a unique L-theory Ty, such that
Tx has QF and infinite models and IC is the age of any model of Tk .

The unique countable model of Ti is called the Fraissé limit of K.

(ii) Conversely, if M is an infinite L-structure with QF, then age(M) is a
Fraissé class.

Ezxample 8.40.
e The class of finite linear orders is a Fralssé class with Fraissé limit.

e The class of finite graphs is a Fraissé class with Fraissé limit the countable
random graph.

Proof. For A a finite L-structure: say A = {a1,...,a,}, let
4a(®) = \(#(@) : 6(T) basic; AF $(@)}.

So for M an L-structure and @ € M™, we have M E ¢4 z(a’) iff @’ — @ defines
an isomorphism (@)™ =5 A.
(ii) Suppose M is an infinite L-structure with QE. Set K := age(M).

Claim. Suppose g : A — B € K and A = {a1,...,a,} and B =
{9(a1),...,g9(an),b1,...,b;m}. Then

ME O, g 405 =T ($4a(T) = 7. 05 4@5(T:9))-
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Proof. B € K = age(M), so let ed € M<¥ with M E ¢B,g(a)E(Ev d). Then
METY. o5 @5(CY). Now M E ¢43(C), and by QE Jy. ¢  25(T,7) is
equivalent to a gf formula, so it is implied by ¢4 5(T). O

We show that I is a Fraissé class.

(HP) holds by Lemma [8.34]

Let g; : A — B; be as in (AP). Composing with an isomorphism, we
may assume A < M.

Say A ={a1,...,a,} and B; = {gi(a1),...,gi(an),b},... b}, }.

Then by the Claim, M E GA’Bi’gi@Ei,

so M E /\i=1,2 Jg. ¢B¢,gi(ﬁ)y (@,7))-

Let ¢ and @ be witnesses; then

filgi@) =a fi(0):=7¢
defines embeddings f; : B; — M with f1 0¢g1 = f2 0 ¢o.
So we obtain (AP) by setting C := (f1(B1) U fa(B2 M.

Suppose K is a Fraissé class.

For n € w, let K, Cgan K be such that any A € K with |A4] < n is
isomorphic to some A’ € K,,, and let

Xn(@1, .. 7n) = VE \[{paa(@) : A€ Kn; A={a1,...,an}}).

Let Ok be the class of triples (A,B,a@,b) such that A < B € K and
A={a1,...,a,} and B={ay,...,an,b1,...,bn}.
Let 6

Let

aBas = OaBidah
Tic ={045a5: (A B,a,b) € Ok} U{xn:n € w}.

Any model of Ty has age IC, since it satisfies the and 90)78,@75. By the above
Claim, if M has QE and age(M) = K, then M F T.

It remains to see that T has QE and infinite models; indeed, it is then
complete (by Corollary , and the claimed uniqueness follows.

We verify QE via Theorem iii).

Suppose A < M1, My E Tk is a finite common substructure of models of
Ti.

Say A= {a1,...,an}

Suppose Jy. (T, y) is a primitive existential £L-formula
and M F (a,b) for some b € M.

Let B = (ab)™"".

Since M1 E xpnt1, we have A4, B € K.

Then ¢ (%, y) is implied by ¢z (T, y).

So since Mg E 04 556 and Ma E ¢47(a),

also Ms E Jy. ¢(a,y), as required.

Finally, we construct an infinite model of Ti.
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Claim. Let (A,B,a,b) € O, and suppose A <D € K. Then there exists
D' € K such that D < D', and there is an embedding f : B — D’ such

that fla=id /4.
Proof. Immediate consequence of (AP) (and Lemma [2.2)). O

Let £ : w X w — w be a bijection such that £(i,7) > i.

We construct a countable chain Dy < D; < ... with Dy, € K.
We simultaneously construct a sequence (A;, @;)icw,

and for k € w some my > k,

such that if @ is a tuple of distinct elements of Dy,

then @ = @; for some i < my,

and for all i < my, we have A; = (61>D"‘ < Dy.

For each ¢ € w we take (using Remark D a sequence (B;-,B;)jEw with
(A, BL,a@;b;) € ©,
such that if (A;, B,@;b) € ©, then

b*—)bj; a; — a;

defines an isomorphism B — B;

Let Dy :=0 (and Ay := 0 and mg :=1).

Given Dy, say k = £(4,7),

we have i < £(i,5) = k < my, so A; < Dy.

By the Claim we find Dy < D41 € K,

such that B; embeds in Dy over Aj;

i.e. Dk+1 = E'y rj)B;ﬁig(Ei,y).

We may extend ('Ai,ai)i to include the substructures of Dy41, and set
Mmp+1 > my correspondingly.

So then My := Uy, Dk F 04 5575 for all (A, B,a, b) € ©.
Also M E x4, since Dy, € K. So M E Tx.

Finally, M is infinite, since K contains unboundedly large finite structures.

O

Remark 8.41. Analogues of Theorem [8.39] exist for arbitrary countable lan-
guages, with finitely generated substructures in place of finite substructures.

In non-relational languages, one must assume (JEP) as well as (AP), or
equivalently assume (AP) and: (0)" = (0)® for all A,B € K.

In general Ng-categoricity and QE are weakened to ultrahomogeneity of the
Fraissé limit: any partial automorphism with f.g. domain extends to an auto-
morphism. The proof is essentially the same.

There are further generalisations, including “Hrushovski-Fraissé construc-
tions”, in which (HP) is relaxed.
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9 Cofinality and regularity

Definition 9.1. Let X be a linearly ordered set.
o A subset AC X iscofinalifVbe X.Ja € A.a > b.

e The cofinality of X, written cof(X), is the minimal cardinality of a cofinal
subset.

e An infinite cardinal X is regular if cof(\) = A, otherwise it is singular.

Lemma 9.2. Suppose A is a regular cardinal and (Aq)aecr @S an increasing
chain of sets. Suppose B C |, ¢y Aa with |B| < X. Then there exists an ordinal
«a € X\ such that B C A,.

Proof. Otherwise, {inf{a : b € A,} : b € B} is cofinal, so cof(\) < |B| < A,
contradicting regularity. O
Proposition 9.3. Infinite successor cardinals are reqular.

Proof. Let k be an infinite cardinal. Suppose A C s+ with |A| < xT. Then
|A| < k and every a € A has cardinality |a| < &, so |U,eq @ < K-k = k. But
then sup,e 4 @ = U,eq @ < £, 50 A is not cofinal in £7.

So cof (k1) = k™. O

10 Saturation

10.1 Existence
Definition 10.1. For A C B C M, define
[a: S(B) — S(A); tp(a/B) > tp(a/A)
(for a € M' = M).
Proposition 10.2. Let T be a theory with infinite models.
Let k < X\ > |T| be infinite cardinals such that for any M E T with |M| < ),
there exists a subset Zpq C S1(M) with [Eap| < A such that for any A C M

with |A| < k we havela (Em) = S1(4).
Then T has a k1 -saturated model of cardinality A + x+.

Corollary 10.3. Let T be a theory with infinite models.

For any infinite cardinal k > |T|, T has a k*-saturated model of cardinality
25,

In particular, T has a p-saturated model for any infinite cardinal p.
Proof. If M E T with |[M| < XA und A C M with |4] < &, then |S1(4)] <
21Tal = 2ITI+IAl < 95 Meanwhile

|[AC M :|A| < k| < M7 < (27)F =277 =27,
Then

U Si@))<2v28=28=
ACM; |A|<k

So we can find |Z 0| < A as required.
Finally, 2~ 4+ T = 2%, O
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Bemerkung 10.4. Tt follows that if AT = 2%, e.g. if we assume GCH, then T has
a saturated model of cardinality A™. But (under a “reasonable” large cardinal
assumption) it is consistent with ZFC that no infinite A exists with 2 = A*.

Proof of Proposition[10.9 We build an elementary chain (Mg)ae.+ of models
of cardinality A.

Let (by Lowenheim-Skolem) Mg F T with [My| = X\. For n € k* a limit
ordinal, set M, = U,, Ma. By Lemma M, = M, for o < 7. Since
In| <k < A, we have [M,| = A.

Given M, By Lemma [7.16 and Lowenheim-Skolem there is Mq41 = M,
with |[Ma+1| = A which realises every type in Zxq,, and hence every type in
S1(A) for A C M, with |[A| < k.

Now let M :=J, e+ Ma. Then A < [ M| < X- kT =X+ 5T,

If A C M with |A] < T, then since kT is a successor cardinal and hence
is regular, already A C M, for some o € k7. So any p € S(A) is realised in
M1 2 M and hence in M. Hence M is kT -saturated.

It follows that |[M| >k, so M| =X+ k™. O

10.2  Stability

Definition 10.5. Let k be an infinite cardinal.
A structure M is k-stable if |S1(A4)| < & for all A C M with |4| < &.
A theory T is k-stable if it has infinite models and every M E T is k-stable.
A model or theory is stable if it is x-stable for some infinite cardinal .
We often write w-stable for Ry-stable.

Ezample 10.6. To, and T{qg;1) are w-stable.
DLO is not stable.

Corollary 10.7 (of Proposition[10.2). Let T be A-stable, where A > |T|.
(i) T has a saturated model of cardinality \T.
(i1) Let k < X\. Then T has a k*-saturated model of cardinality \.
Proof. Let k < A. By Proposition with Epq = S1(M), there is a x7T-
saturated model of cardinality A + x™T.
Then (i) follows by taking x := A, and (ii) with x < A. O
10.3 QE and saturation
Notation 10.8.
e Let M an L-structure. For b € M<¥,

aftp™(b/A) := {¢(Z) : ¢ of L(A)-formula; M E ¢(b)}.

e Let My, My be L-structures. For b; € MY we write

when tpM1(by) = tpM2(by), and we write
51 qu BQ

when qftp™ (b)) = qftp™2(by).
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o If A C Mj, M5 is a common subset, we write
by =4 by
when tpM1 (b /A) = tp™M2(by/A); dhnlich fiir b E;l‘f bo.
Remark 10.9.
o b = by iff by — by defines a partial elementary map M; --» M.
o by =4 by iff by > by defines a partial isomorphism M --» Ma.
Proposition 10.10. Let T be a theory. Let k be an infinite cardinal. TFAE:
(i) T has QE;
(ii) Let My, Ms E T be r-saturated models, a; € M3 with a; =4 Gy, and

b, € M.
Then there exists by € Moy with @ by =9 Gybs.

Proof.

(i) = (ii) Let 6 : @; +— Go. This is a partial isomorphism, so by QE it is partial
elementary. Hence (by Lemma [7.20) tp(b;/@;)? a type in SM2(a@y). So
by Ng-saturation of Moy, it is realised in My, say by by € Ms. Then
a1by = asbs.

(ii) = (i) We verify QE via Theorem iii).
Let A= (a) < My, My E T be a common finitely generated substructure
of two models of T, and Jy. ¢¥(T,y) a primitive existential formula, and
by € My with M; E ’(/)(6, bl)
By Corollary we can find k-saturated elementary extensions M/ =
M;. By (ii), there is by € M/, with @by = @by, hence My F Jy. (@, y),
as required.

O

Ezample 10.11. An ordered Q-vector space is a Q-vector space with a linear
ordering < such that

Va,y,z. (e <y —x+z<y+2).

Let Tog—vs be the {0, +, (¢-)qeq, <}-theory consisting of this axiom along with
axioms for non-trivial Q-vector spaces.

Claim. T,g—vs has QF and is complete.

Proof. Completeness follows from QE via Corollary since (9)™ = {0} for
any ./\/l = ToQ—VS'

Let My, Ms E T,g_vs be Rj-saturated. Let a; € M~ with @; =4t @,. Let
by € M.

A gf-type qftp(b/a) is determined by the formulas of form x = > ¢; - a; or
x <Y gi-a;or x>y q-a;.
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Let A; := <62->Mi Then @; — az generates an order isomorphism 6 : A; —
As. Note that the reduct M; [ of M; to an order is a model of DLO. So by QE
for DLO, # is a partial elementary map of linear orders 6 : My [o--» My |,

o (tpMi<(by/A1))? is a type in SM?<(A4y). By Ry-saturation of My, say
ba € M realises this type.

Then Elbl qu 62[)2. O]

One can deduce that the {0, 4+, <}-theory DOAG of linearly ordered divisible
abelian groups (e.g. (Q;0,+, <)) is complete and has QE.

10.4 Bonus: Monsters

Definition 10.12. A structure M is strongly xk-homogeneous, if any partial
elementary map 6 : M --» M with |dom 6| < & extends to an automorphism of
M.

M is strongly k-saturated if it is k-saturated and strongly x-homogeneous.
Proposition 10.13. If a structure M is saturated, it is strongly | M|-saturated.

Proof. As in Exercise 7.2(a).

Briefly: If 6 : M --» M is partial elementary and |dom 6| < | M|, then 6 in-
duces an elementary equivalence between the expansions by constants Mqomg =
Min 9; but these structures are also saturated, so by Lemma they are iso-
morphic. An isomorphism between these structures is an automorphism of M
extending 6. O

Theorem 10.14. Let T be a theory with infinite models. Let A be an infinite
cardinal. Then T has a strongly \-saturated model.

Proof. Increasing A, we may assume A > |T'| and A is regular.

Let Mg E T with |[My| > A. By Corollary we may extend to an
elementary chain (M, )aex such that each M1 is |[M4|T-saturated, and for
1 a limit ordinal M, = Ua<nMa~

Let M :=J,cr Ma- Then M is A-saturated since each M1 is and A is
regular.

Now let 6 : M --» M be partial elementary with |[dom#| < A. Since A is
regular, for some o € A\ we have 6§ : M, --+ M, i.e. domfUim6b C M,. Let
0, := 0.

Now M1 is M, |-saturated, so as in the proof of Lemma[7.23] 6, extends
to a partial elementary map 0o41 @ Maq1 —-» My41 with M, C domf,41 and
also M, Cimf,1.

We obtain in this way, taking unions at limit ordinals, an increasing chain
(08)a<pexr of partial elementary maps 0z : Mg --» Mg with each Mg C
dom 954_1 N im (9,3_,_1.

Then o := Jg 05 € Aut(M) as required. O

11 w-stability

Let T be a complete L-theory with infinite models.
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Lemma 11.1. T is k-stable iff for all A C M E T with |A] < k, we have
[S(A)] < k.

In particular, T is w-stable iff Th(My) is small for all A C M E T with
|A] = .

Proof. We show by induction that |S,(A)| < & for all n. For n = 1, this is the
definition of k-stability.
Suppose |S, (A4)] < k.
Let NV > M be kT -saturated.
Let (b; € N™);c,. be such that {tp(b;/A) :i € k} = S,,(A).
Let bc € N,
Then be =4 b for some i € k and ¢ € N.
For each i € k there are at most |S1(A U b;)| < k possibilities for tp(¢’/b;).
So |Sn41(A)| < k- Kk = k. O

Definition 11.2. T is totally transcendental if for any M F T, there is no
binary tree (¢s)sea<w of formulas for Th(M ).

Theorem 11.3.

(a) If T is w-stable then T is totally transcendental.

(b) If T is totally transcendental then T is k-stable for all k > |T).
Corollary 11.4. Suppose |T| =Ny. TFAE:
(i) T is w-stable;
(i) T is totally transcendental.
(iii) T is k-stable for all kK > Ng.
Proof of Theorem [11.3,

(a) Suppose M E T and Th(M ) has a binary tree of formulas (¢s)sea<w.
Since |2<¥| = Ny, there exists A C M with |A| <X, such that each ¢, is a
L(A)-formula, and so (¢s)s is also a binary tree of formulas for Th(M4).
Then by Lemma [8.20} |SM(A)| = [S(Th(M4))| = 2% > R, so T is not
w-stable.

(b) (ct. Exercise 6.1(a))
Let A C M E T with |A| < k. For ¢(x) an L(A)-formula, define [¢p(x)] :=
{p € 51(4) : ¢(x) € p(x)}.
Claim. If |[¢(z)]| > &, then there is an L(A)-formula ¥(z), such that
[p(x) A (@)]| > 5 < [[p(2) A ()]

Proof. Say p € S1(A4) is small if 3 € p. |[¢]] < k. There are at most
|ITh(M4)|- & < k-k = k small types in S7(A). Hence there are distinct non-

small types p1,pa € [¢(2)]. Let ¥(x) € p1(x)\p2(x); then ¢(z)Ap(z) € p1(x)
and ¢(x) A —)(x) € pa(x), so ¢ is as required. O

Now if |[x = z]| = |S1(A4)| > &, we build a binary tree with |[¢;]| > & for all
s € 2<¥: get ¢p 1= x = x; given ¢, let dg0 1= s A and ¢ 1= Ps A Y,
where 1) is as in the claim.

O
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11.1 Constructibility

Notation 11.5. If AC M E T and N F T, we call a map 0 : A — N partial
elementary (p.e.) and write § : A = N, if the corresponding partial map
0: M --s Nisp.e.

Remark 11.6. 0 : A — N E T is p.e. iff Nap = Ma, where Nyyg is the
L(A)-structure defined by a™V¢(4) := g(a).

Definition 11.7. Let A C M E T. Then M is prime over A if every p.e.
map A — N E T extends to an elementary embedding M < N

Remark 11.8. Let A C M E T. Applying Remark[11.6] we find that M is prime
over A iff M4 is a prime model of Th(M 4).

Remark 11.9. By Proposition [8:23] and Proposition [8:I5] a countable w-stable
theory has a unique prime model over any countable set A C M ET.

In fact this holds also for uncountable A. We prove existence in this section.
Uniqueness requires further work.

Definition 11.10. If A C B C M E T, then B is constructible over A if B
can be enumerated as (by)a<~ for some ordinal v, such that for all o < ~y the
type tp(ba/A U by ) is isolated, where b, := {bg : 8 < a}.

Lemma 11.11. If M E T is constructible over A C M, then M is prime over
A.

Proof. Suppose 6y : A = N E T. We construct a chain of p.e. maps 6, :

AUboy = N ET for a < 5. Then 0y: M =N N is an elementary embedding.
For € v a limit ordinal, 0, := ¢, 0a-

Given a < v and 6, let 0,.1(b,) be a realisation in A of the isolated type
tp(ba/AUb<a)00‘. O

Lemma 11.12. IfT is totally transcendental and A C M E T, then the isolated
types are dense in S(A).

Proof. Immediate consequence of Lemma i). O

Theorem 11.13. If T is totally transcendental and A CN E T, then T has a
constructible prime model A C M <N over A.

Proof. A construction sequence over A is a sequence (ba)a<~with each tp(ba /AU
b<q) isolated.

By Zorn, there is a maximal construction sequence (by)a<~y in N. Let M :=
b<, C N. We show by the Tarski Test that M is the domain of an elementary
substructure M < N, which is constructible over A and hence by Lemma [11.11
prime over A, as required.

So let ¢(x) be an L(B)-formula such that A" F Jy.¢(x). By Lemma [11.12]
let p(z) € S(B) be isolated with p(z) F ¢(x). Let ¢ € N realise p. If ¢ ¢ B then
we could extend the construction sequence by setting b, := ¢, contradicting
maximality. So ¢ € B, and N F ¢(c), as required. O

Lemma 11.14. Let AC BC C CMET. Suppose C is constructible over B
and B is constructible over A. Then C is constructible over A.
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Proof. Exercise. O

Definition. If A C B C M E T, then B atomic over A if tp(b/A) is isolated
for all b € B<¥.

Lemma 11.15. If M E T is constructible over A C M, then M is atomic over
A.

Proof. Say M = (ba)a<~ With tp(ba/AUb.,) isolated. Let b € M<“. Permut-

ing, we may assume b = bag/, where b € b<¥. Inductively, we may assume that
b<q is atomic over A.
Now tp(b, /AUb.,) isolated by some £(AUe)-formula, where ¢ € bS¥. Then

tp(ba/A U bc) isolated. By atomicity, tp(B/E/A) is isolated. So by Lemma
(for M4) tp(EQEIE/A) and hence tp(goﬁ//A) are isolated. O

Fact. The converse holds for countable M: If A C M ET and M is countable,
then as in Lemma[8.13 if M is atomic over A then it is constructible and hence
prime over A.

But for uncountable M, atomicity over A does not imply primeness over A,
even if T is w-stable and |A| = | M].

12 Strong minimality

Let T be a complete L-theory with infinite models.

12.1 Algebraicity

Notation 12.1. Some abbreviations:
z=y:=N\w=u
i

37T (@) = 3a, . T (\S@) A N\ Ti £ T5)
i i<j
35T ¢(F) = ~F7" T G(T)
7% ¢(T) 1= (I2"T. (T) A I="T. ¢(T)).
Definition 12.2. Let M ET.
e An L(M)-formula ¢(T) is algebraic if |p(M)] < No.

e A tuple b € M<¥ is algebraic over a subset A C M, and tp(b/A) is an
algebraic type, if tp(b/A) contains an algebraic formula.

e The algebraic closure of a subset A C M in M is
acl™(A) := {b € M : tp(b/A) is algebraic}.
Lemma 12.3. (i) Let ¢(Z,7) be an L-formula. Let M ET. Fora € M,
whether ¢(T, @) is algebraic depends only on tp™(a@).

(ii) Let AC M <N ET. Then acl™(A) = aclN(A), We usually write just
acl(4).
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Proof. (i) ¢(Z,a) is algebraic iff for some n € w

ME 3I™"T. ¢(7,a).

(ii) Let ¢(z) be an algebraic £(A)-formula. Let n := |[¢(N)|. Then M E
F7"x. ¢(x), so p(M) = ¢(N).
Then aCIN(A) = Ud; alg. L(A)-formula d)('/\/,) = U¢ alg. L(A)-formula (b(M) =
acl™(A).
O

Ezamples 12.4. In a k-vector space, acl(4) = (A),.
In an algebraically closed field, acl is field theoretic algebraic closure: for
AC K E ACF, let k = Q(A) < K be the subfield generated by A; then

acl(A) = {be K : 3f € k[X]. f(b) = 0}.
Lemma 12.5. (i) Any algebraic type is isolated by an algebraic formula.
(i) Let AC M ET. Then acl(A) is constructible over A.

Proof. (i) (Exercise 5.3) If ¢(z) € tp(b/A) is algebraic with |¢(M)| minimal,
then ¢(z) is isolated.

(ii) Enumerate acl(A) as (ba)aey- Then tp(bs/Ab<,) is algebraic since tp (b, /A)
is, so is isolated by (i).
O

Lemma 12.6. Let AC M ET. Then acl(acl(4)) = acl(A).

Proof. Let ¢ € acl(acl(A)). Say M E ¢(c,b), where b € acl(4)<“ and ¢(z,7)
is an algebraic £-formula. Then b is algebraic over A since each b; is. So say
¥(7) € tp(b/A) is an algebraic £(A)-formula isolating tp(b/A) .

Then 0(z) := Jg. (V(Y) A ¢(z,7)) € tp(c/A) is algebraic; indeed, §(M) =
Ur ew(m) $(M,D) is finite, since for each of the finitely many b € (M) we

have b = b and hence qb(/\/l,gl) is finite. O

12.2 Minimal and strongly minimal formulas
Definition 12.7. Let M E T.

o An L(M)-formula ¢(Z) is minimal in M if ¢(Z) is not algebraic but for
every L(M)-formula ¢ (T), either ¢(T) A)(Z) or ¢(T) A —(T) is algebraic.

e An L(M)-formula ¢(Z) is strongly minimal if it is minimal in every

N = M.

Ezample 12.8. Let M := ({(4,J) : ¢ < j <w}; E), where (i, §)E(',§') iff j = 5.
Then x = z is minimal in M. (To see this, note Th(M) has QE once we add
for each n € w a predicate for {(i,5) : j > n} .)

But x = z isn’t strongly minimal. Indeed, let b € N’ = M realise the partial
type {32"y. yEx : n € w}; then neither 2 Eb nor —zEb is algebraic.
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Lemma 12.9. Let $(Z,7) be an L-formula. Let M= T. Forac M, ¢(z,a)
is strongly minimal iff it is non-algebraic and for every L-formula (T, 7) there
is Ny € w such that

M E VG 35T (¢(T, @) A(T,9)) V V. 5T (6(T,3) A (T, 7))
In particular, strong minimality of ¢(T,@) depends only on tp™ (a@).
Proof. <« Immediate.

= Suppose no such ny, exists. Then

() = {37 (6(Z,@) A B(E. 7)) A FF. ($(7,3) A ~(F.T)) i n € w)

is a partial type, so say b € N = M realises 7(y). Then neither ¢(z,a) A
(T, b) nor ¢(T,a) A (T, b) is algebraic, so ¢(T,a) is not minimal in N,
contradicting strong minimality.

O

Definition 12.10. e T is strongly minimal if x = z is strongly minimal,
i.e. any definable subset of any M E T is finite or cofinite. (X C Y is
cofinite if Y\ X is finite.)

e A structure M is strongly minimal if M is infinite and Th(M) is
strongly minimal.

Ezample. Tso, Th((Z; S)), Tp—vs and the completions of ACF are all strongly
minimal.

12.3 Existence of (strongly) minimal formulas in w-stable
theories

Lemma 12.11. Suppose T is totally transcendental. Let M E T. Let || > 0.
Then there exists an L(M)-formula ¢(T) which is minimal in M.

Proof. Suppose not. Then if ¢4(T) is a non-algebraic L£(M)-formula, there
is ¢¥(T) such that ¢s0 = ¢s(T) A Y(T) and ¢s1 = ¢5(T) A ~(T) are non-
algebraic L(M)-formulas. We obtain a binary tree (¢s)sca<w, contradicting
total transcendence. O

Lemma 12.12. Let M E T be Ng-saturated. Let ¢(T) be an L(M)-formula
which is minimal in M. Then ¢(T) is strongly minimal.

Proof. Otherwise, the type in the proof of Lemma [12.9 is realised in M by
Ny-saturation, contradicting minimality. O

Definition 12.13. T eliminates 3° if for every L-formula ¢(Z,%) there is
ng € w such that for all M F T and b € M7 we have

[¢(M, b)| < Rg = [¢(M, b)| < ny.
(So “3°Z. ¢(T,7)” is expressed by I T. H(T,7).)

Lemma 12.14. If T eliminates 3°° then any minimal ¢ is strongly minimal.
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Proof. Lemma [12.9 O

Corollary 12.15. Let |Z| > 0. If T is totally transcendental, then for every
Ro-saturated M E T there is a strongly minimal L(M)-formula ¢(T).

If furthermore T eliminates 3°°, then for every M E T there is a strongly
minimal L(M)-formula ¢(T).

12.4 Strong minimality and stability

Let ¢(T) be a strongly minimal £-formula. By Lemma|12.9} this precisely means
that ¢(Z) is minimal in every M E T.

Lemma 12.16. Let AC MET.

(i) There is a unique non-algebraic type pa(T) € S(A) with ¢(T) € pa(T).
This type pa(T) is the generic type of ¢ over A.

(ii) For any n € w, there is a unique type p%)(fl,...,fn) of a sequence
A1y... 0y, € G(M) with a; ¢ acl(AUa<;)<¥ for 1 < i < n. Such a
sequence is also called generic over A.

Proof. (i) A non-algebraic type exists, since
{6(T) A (T) : ¢(T) an algebraic L(A)-formula}

is finitely consistent, since ¢ is not algebraic.

If two distinct such types exist, some £L(A)-formula 1 separates them, and
then neither ¢ A ¥ nor ¢ A =) is algebraic, contradicting minimality of ¢
in M.

(ii) Suppose inductively this holds for n € w, and consider two such sequences

61, . ,an+1 and bl, .. .,bn+1. Then

(@1, yan) = (by,...,by),

so there is ¢ € ¢(N) for some N = M such that

(@1, ., Gn,Gnt1) =4 (b1,...,bp, )
(namely, a realisation of tp(@n41/Gen1 )94 =0y,

Then ¢, b,4+1 F PAUD- a0 SO

(61,...,En+1) =A (bl,...,bn,f) =A (517...,bn+1).

Lemma 12.17. Countable strongly minimal theories are w-stable.

Proof. Let A C M E T with |A] < 8;. By Lemma for the strongly
minimal formula z = z, if N = M and b € N\ acl(A4) then b F pa(z). So
1S1(A)] < Jacl(A)] + 1 < [T + [A] = Ro. O

Remark 12.18. In fact, any strongly minimal theory is totally transcendental.
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Lemma 12.19. Let AC M ET. If (@,b) F p') then (b,a) F p?.

Proof. Tt suffices to show that for some (a,b) F pff) we have (b,a) F pff).

Let @; = p4 for i € w be distinct realisations, and let b E PALy, @, all realised
in some N = M.

Then (@;,b) F pf) for all i € w, so @; =400} O for all i,j € w. It follows

that @g ¢ acl(AU {b})<%, so (b,ap) F pf)' =

12.5 Pregeometries

Definition 12.20. A pair (5,cl), where S is a set and cl : P(S) — P(S), is a
pregeometry if for A, B C S and b,c € S:

(PGl) ACB= ACcl(A) Ccl(B)

)
(PG2) cl(cl(4)) = cl(A)

(PG3) el(A) = U e a €l(4o)

(PG4) “Exchange”: If b € cl(AU{c}) \ cl(A) then ¢ € cl(AU {b}).
Remark. A finite pregeometry is also known as a matroid.

Let ¢(T) be a strongly minimal £-formula.

Lemma 12.21. Let M E T. Define acl™ [401): P(6(M)) — P(¢(M)) by
aclM lom) (A) = acl™(A) N p(M). Then (p(M), acl™ [6(M)) @5 a pregeome-
try.

When no ambiguity can result, we write just acl or acl™ for acl™ [ o(M) -

Proof.
(PG1) Clear.
(PG2) Lemma
(PG3) An algebraic formula uses only finitely many parameters.
(PG4) Lemmal12.19
O

Definition 12.22. Let (5, cl) be a pregeometry. A subset A C S is cl-independent
if a ¢ cl(A\ {a}) for all @ € A. A cl-basis for S is a maximal cl-independent
subset.

Lemma 12.23. Let (S,cl) be a pregeometry.
(i) S has a basis.
(i) If B C S is a basis, then cl(B) = S.

Proof. (i) By (PG3), the union of a chain of independent sets is independent.
We conclude by Zorn. .
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(ii) Suppose ¢ € S\ cl(B). For any b € B, we have b ¢ cl(B\ {b}), so by
(PG4), b ¢ cl(B\{b})U{c}. But then BU{c} is independent, contradicting
maximality.

O

Proposition 12.24. Let (S, cl) be a pregeometry. Then all bases have the same
cardinality. This cardinality is the dimension dim((S,cl)) of the pregeometry.

Proof. Let X, Y C S with cl(X) =S and Y independent. We show |Y| < |X].

First we prove this for X finite. Suppose n = | X| > 0, and assume the result
for | X| =n — 1. Enumerate X as {z1,...,2,}. I Y =0, we are done. Else, let
y € Y. Then y ¢ cl() by independence, and y € cl(X). So there is i > 1 be
such that y € cl(x<;) \ cl(x<;). Then by (PG4), z; € cl({z1,...,zi—1,y}).

Now consider the pregeometry (.5, cl,), where cl,(A) := cl(A U {y}). Then
cly({z1,...,zi—1, ig1,...,2n}) =5, and Y \ {y} is cly-independent, so by the
inductive hypothesis,

YI=1=\{g} <[X\{z:}| = [X] -1,

so |Y| < |X]|, as required.

Now suppose |X| > Ng. For Xy Cg, X, by the finite case above (applied to
(CI(X()),CI rcl(Xg)))v |YﬁC1(X0)| < |XQ| < No. Now by (PGB), Y = UXogﬁr,X(Ym
cl(Xp)), so since |{Xp : Xo Can X} = |X|, we have |Y] < |X]. O
Definition 12.25. For M k T, define dim?(M) := dim((¢(M), acl)).

If T is strongly minimal, dim(M) := dim*~%(M).

Remark 12.26. The acl-dimension of an algebraically closed field is also known
as its “transcendence degree”.

Lemma 12.27. (i) The independent sets of size n in (¢p(M),acl) are pre-
cisely the realisations of pé").

(ii) More generally, A C ¢(M) is independent iff for every n € w every tuple
of n distinct elements of A realises pé)n).
In particular, if My, Ms E T and A; C ¢(M;) are independent sets with
|A1| = |A2|, then any bijection 6 : Ay — Ay is partial elementary.
Proof. (i) Let M F T be Ny-saturated and take an acl-basis B for ¢(M).
Then B is infinite. Take a subset {b1,...,b,} C B of size n. Then
(by,...,b,) F p((n") and {by,...,b,} is independent, so this holds of any

realisation of pé") )

(ii) This follows from (i).

12.6 Minimal subsets

The following notion of minimality of a subset is entirely separate from the
notion of a formula being minimal.

Definition 12.28. Let A C B C M ET. Then B is minimal over A (in M)
if for any N < M with A C N, also B C .
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Lemma 12.29. Let A C B C acl™ (A) CMET. Then B is constructible and
minimal over A in M.

Proof. Constructibility follows as in Lemma For minimality: If A C N =<
M, then B C acl™(4) = aclV' (4) C N (by Lemma ii)). O

Lemma 12.30. Let ACMET and A C M ET. Sgppose M is constructible
over A and M’ is minimal over A’. Suppose 6 : A = A’ is a p.e. bijection.
Then 0 extends to an isomorphism M — M’.

Proof. By Lemma [11.11] M is prime over A, so 6 extends to an elementary
embedding 6" : M <= M’'. Then A’ C im(¢’) € M’, so by minimality
im(0") = M’. O
12.7 Classifying the models of a strongly minimal theory

Suppose T is strongly minimal.

Theorem 12.31. Let M, Mo ET. Then
./\/l1 = Mg = dim(./\/ll) = dim(./\/lg).

In particular, T is k-categorical for all k > |T)|.

Proof. Suppose dim(M;) = dim(Mj). Let B; be an acl-basis of M;. By

Lemmal12.27(ii), any bijection 6 : By — Bs is partial elementary. By Lemma/|12.23((ii)
acl™i(B;) = M;. By Lemma [12.29| and Lemma [12.30, 6 extends to an isomor-

phism M, =N M.

The converse implication is clear.

For the “in particular” clause: it suffices to observe that dim(M) < |[M| <
IT| + dim(M) (for all M E T). O

Lemma 12.32. (i) Let A C M E T. Suppose A = acl™(A) and |A| > Ry.
Then A is the domain of an elementary substructure of M.

(i) For some cardinal 0 < A < Ny,
{dim(M) : MET} = [X\,00) = {k € Card : A < K}.
In particular, a countable strongly minimal theory is Ng-categorical iff it
has no finite-dimensional models.
Proof. Exercise; (i) is an easy application of the Tarski Test, and (ii) follows. [
Ezample 12.33. e Tk, _vs is k-categorical for all infinite .
e For k an infinite field, T;_vs has models in dimensions [1, c0).

e ACF, (p =0 or p prime) has models in dimensions [0, c0).
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12.8 Building uncountably categorical theories

Definition 12.34. A countable theory is uncountably categorical if it is
k-categorical for some k > Ng.

By Theorem countable strongly minimal theories are uncountably
categorical.
We now begin to address the following questions:

e In which uncountable cardinals are uncountably categorical theories cate-
gorical? e.g. can a countable T be Ny categorical but not N;-categorical,
or vice-versa?

e Which theories are uncountably categorical? Do they have to be strongly
minimal, or somehow associated to a strongly minimal theory?

Example 12.35. Let X be an infinite set. Let Cart”"(X) := (X"UX; P, 7y, ..., m,),
where P(Cart™ (X)) := X and 7; : (z1,...,2,) — x; (and 7; [ x:= id[x).

Let T := Th(Cart™(X)). It is not hard to see that the models of T are
precisely {Cart"(Y) : |[Y| > No}, so T is k-categorical for all k > Ny.

Now T is not strongly minimal, but P(z) is strongly minimal. Let N F T.
Then N C acl(P(N)), so by Lemma[12.29] A is constructible and minimal over
P(N), and the categoricity follows (since any bijection P(M1) — P(Ms) is
elementary).

Ezxample 12.36. Let n € w. Let V be an n-dimensional C-vector space. Let
VS™(C) := (VUC; P, +, -, %), where P(VS™(C)) := C, +, - are the ring operations
on C, and * is scalar multiplication CxV — V (making these into total functions
on VUC by setting the value to 0 € C when it would otherwise be undefined).

Let T':= Th(VS™(C)). It is not hard to see that the models of T" are precisely
{VS™(K) : K £ ACFy}, and so T is k-categorical for all kK > Ny.

Now P(z) is strongly minimal, but VS™(K) € acl(K). However, if we pick
a K-basis B = {by,...,b,} for the vector space, then VS"(K) C acl(B U K).
This suffices to explain categoricity, by the following Proposition.

Proposition 12.37. Let T be a complete countable theory.
Let My E T be prime. Let ¢(x) be a strongly minimal L(My)-formula.
Suppose that any M = My is constructible and minimal over Moy U ¢(M).
Then T is k-categorical for all k > Ry, and T has < Vg countable models up
to isomorphism.

Proof.

Claim. Suppose Mg < M £ T. Let B be an acl™'™o -basis for ¢(M). Then
M, is constructible and minimal over B.

Proof. We have B C ¢(M) C Mpy,. By Lemma ¢(M) is constructible
and minimal over B in Mq,. Since M is constructible and minimal over
MoUp(M), also M py, is constructible and minimal over ¢(M). Now the claim
follows from Lemma and its (easily verified) analogue for minimality. [

Let My, My E T with |M;| = k > RNp; we show M; & My, WLOG
Mo = M,.
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M, is constructible and hence prime over ¢(M;)UM,, hence nach Lowenheim-
Skolem, M, embeds in a model of cardinality Rg + |#(M;)|, and it follows that
|p(M;)| = k.

Now by the Claim and Lemma a bijection of bases extends to an
isomorphism (Mi) g, = (Ma2)am,; in particular My = M.

For the case k = Ny: by the same argument countable models M; are
isomorphic if dim?(M;) = dim?(M,). and dim?(M;) < R. O

In all the examples of uncountably categorical theories we have seen so
far, the hypotheses of Proposition hold with “constructible and minimal”
strengthened to ”algebraic”. Such a theory is called almost strongly minimal.
The following is a natural example of an uncountably categorical theory which
is not almost strongly minimal.

Ezample 12.38. T := Th((Z/4Z)%;0,+).

Exercise: T has QE and is axiomatised by

[axioms for infinite abelian groups| U {Vz.(2z = 0 < 3y.2y = z)}.
Let GET. Let A :=|G|.
Claim. G =@, Z/AZL.

Proof. Let 2] : G — G; z +— 2x. Then ker([2]) = im([2]) = 2G. So 2G is an
Fy-vector space, and |2G| = |G| = .

Let (b;)x be an Fy-basis for 2G. Let e; € G such that 2e; = b;. So ord(e;) =
4.

Now if g € G then 29 = b;; + ...+ b;,, say; let ¢’ :==e;; + ...+ ¢;,,, then
2(g—¢')=0s0 g—g € 2G. Hence G is generated by (e;);.

Suppose Zle nj.e;, = 0 with nj;, € Z. Then Zle n;b;, =2-0=0, so
2[n;,. Then YF | ™ib; =0, so 2|2+ Hence 4|n;,.

i=1 72
So we conclude that G = @,_,(Z/4Z)e;. O

<A
It follows that T is k-categorical for all K > Ng.
Let ¢(x) := Jy.z = y+y, so ¢(G) = 2G. By the QE, ¢ is strongly minimal.
Claim. G is constructible and minimal over 2G.

Proof.

Minimality: If 2G C G’ <X G and g € G\ 2G, then 2¢' = 2g for some ¢’ € G’, but then
g —g€2G C G soalsogeG. SoG'=G.

Constructibility: Let (e;);ex be as above. It follows from the QE (or by considering auto-
morphisms and the proof of the previous claim) that for j € X, tp(e;/2G U
@D, ;(Z/AZ)e;) is isolated by z +x = bj, and then 2G U D, ;(Z/4Z)e; is
algebraic and hence constructible over 2G U, _,(Z/4Z)e; U {e;}.

So we obtain a construction sequence for G over 2G in this way.
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13 Indiscernible sequences

13.1 Ramsey theory

If Ais aset and n € w, we write [A]™ for the set of n-element subsets of A:
[A]" := {4y C A:|Ag| =n} CP(A).

Theorem 13.1 (Infinite Ramsey Theorem). Let A be an infinite set. Letn € w,
and let C be a finite set. Let f: [A]" — C be a function (a “colouring” of the
n-element subsets). Then there exists an infinite subset B C A which is “f-
monochromatic”, i.e. such that f is constant on [B]™.

Remark. With n = 2 = |C|, this gives that any infinite graph has an infinite
clique or an infinite anticlique.

Proof. The case n =0 is clear. Suppose n > 0 and the result holds for n — 1.

For a € A, define f, : [A\ {a}]""! — C; fu(A") := f(A"U{a}). Recursively
construct a sequence of infinite sets A =: By DO B; D ... and elements a; €
B;\ Bi+1 and ¢; € C as follows: given B;, let a; € B;, and let B;y; C B; \ a; be
an infinite f,,-monochromatic subset, which exists by the induction hypothesis
since B; is infinite, and let ¢; be such that f, ([Bix1]""!) = {c;}. By the
pigeonhole principle, let ¢ € C' be such that ¢; = ¢ for infinitely many i € w,
and let B := {a; : ¢; = c}.

Then B is f-monochromatic. Indeed, if {a;,,...,a;, } C B is a subset with
11 < ... <1, then a;,,...,a; € B +1, S0

fHai, - ai,}) = fa,, {aiy, - 00, }) = ciy = c.

13.2 Indiscernible sequences

Notation 13.2. If [ is a linear order and n € w, we write I for the set of
I-ordered n-tuples of I,

I = (i1, in) €17 iy < ... < in).

If (a;)ier is a sequence and i € 17 let a; = (i, ..., a,).
Definition 13.3. Let I be a linear order. A sequence (a;);cs of elements of a
structure M is indiscernible if for any n € w and any i,j € I,
a; = CLJ*-.
In other words, for any L-formula ¢(z1,...,x,), for any 44 < ... < i, € I

and j; < ... < jn, €1,
M E qb(ail,...,ain) < ¢(aj1,...,ajn).

Examples 13.4. e Any constant sequence, (a;);c; with a; = a € M for all
i, is indiscernable.
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o If ¢(z) is strongly minimal in Th(M) and A C ¢(M) is acl-independent,
then Lemma [12.27|(ii) shows that for any linear order I and any injection
I — A;i— a4, the sequence (a;);ecr is indiscernible.

e Let M E DLO. Then by QE, any strictly increasing sequence of elements
(a;)ier is indiscernible.

Definition 13.5. Let (a;);esr be a sequence of elements of an L-structure M,
where [ is a linear order.
The Ehrenfeucht-Mostowski type (EM-type) of (a;)ier in M is

—

EM((a;);) = {6(T) : ¢() an L-formula; Vi € Tl M E ¢(a7)}.

Remark 13.6. (a;)ier is indiscernible if and only if EM((a;);) is complete in the
sense that for every L-formula ¢ either ¢ or —¢ is in the EM-type.

Lemma 13.7. Let I and J be infinite linear orders. Let (a;)icsr be a sequence
of elements of a structure M.

Then there exists M’ = M and an indiscernible sequence (bj) e of elements
Of M/ such that EM((ai)ig) Q EM((bJ)jGJ)

Proof. Let (cj)jes be new constants. It suffices to show consistency of

T = Th(M)U{th(c5) : () € EM((a;)); T € J71}
U{d(cy) < d(cy) : ¢(7) an L-formula; j, 7 e Jﬁ}

Let Ty Cgn T be finite. By compactness, it suffices to show consistency of
Ty. Let n be the maximum number of free variables in the formulas ¢ such that
(¢(c5) <+ &(cj)) appears in Ty, so we can write each such ¢ as ¢(z1,...,2y).
Let A be the finite set of these ¢(x1,...,x,).

Define f : 7 98 by

S 1 ME ¢(a3)
)

By Ramsey (applied via the obvious bijection =N [I]™, namely i — {i1,...,%n

let I’ C I be an infinite f-monochromatic subset. Let j € J™ be such that o5

is the tuple of those constants which appear in Ty. Let i € (I )m Then
(M;az) E Tp. O

Lemma 13.8. Let T be a theory with infinite models. Let J be an infinite linear
order. Then T has a model with a non-constant indiscernible sequence (bj);e.-

Proof. Let M be an infinite model, and let (a;);e,, be a sequence of distinct
elements of M. Now apply Lemmato obtain (b;) e, and note b; # b; for
Jj # 7', since z1 # xo € EM((a;);) € EM((b;) ). O
13.3 Uncountable categoricity = w-stability

Let T be a countable complete theory with infinite models.
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Lemma 13.9. Let k be an infinite cardinal. Then there is M E T such that
IM| =k and if B C M with |B| < Xq then

[{tp(a/B) : a € M}| < Ng.

Proof. By Lemma [6.4] we may assume 7" has built-in Skolem functions.

By Lemma [[3.8] we may find N/ F T with a non-constant indiscernible
sequence of elements (a;);ex-

Let M := <{ai}i>N. By Lemma M =< N. Since |T| < Ry, we have
M| = k.

Let B C M be countable; we conclude by showing that M realises only
countably many types over B. Say B = {fi(a;, ) : k € w}, where f; is a term
and i), € I{TT’z; let Ig C k be the indices appearing. Let ¢ € M. Say ¢ = g(a;),
where g is a term and j € k™. Then by indiscernability, tp(c/B) depends
only on the term g (for which there are countably many possibilities) and the
quantifier-free 1-types qftp(”;<)(ji/IB) for 1 < i < [j|. So we conclude by the
following Claim and the countability of I5.

Claim. Let J C k infinite. Then |{qftp"<)(a/J) : a € K}| = |J|.

Proof. Let a € k\ J. Then gftp(a/J) is determined by the cut o makes in
J, ie. by Joq :i={y € J:v>a} IfJs, is non-empty, it is determined by
min Js, € J, which exists by well-orderedness.

So there are < |J| possibilities for gftp(a/J) with a € &\ J, and clearly
there are |J| possibilities for qftp(a/J) with a € J. O

O

Proposition 13.10. If T is an uncountably categorical theory then T totally
transcendental.

Proof. Say T is categorical in A > ¥y but not totally transcendental. By Theo-
rem[I1.3] 7" is not w-stable. So say A C M E T with |A] < Rq but |S1(A4)[ > No.
Let P C S1(A) with |P| = ®;. By Lemma [7.16| we find M’ = M and b, € M’
for p € P with tp(b,/A) = p. By Léwenheim-Skolem we find an elementary ex-
tension or substructure M" of M’ containing AU{b, : p € P}, with |[M"| = A.

But by Lemma there is a model of cardinality A which realises only
countably many types over countable sets, which therefore is not isomorphic to
M" | contradicting categoricity. O

Corollary 13.11. Let A > Ng. Then T is A-categorical iff every model of
cardinality X is saturated.

Proof. <« Lemma

= By Proposition and Corollary T is M-stable. For each x < A
by Corollary (ii) T has a kT -saturated model of cardinality A. So by
A-categoricity, every model of cardinality \ is kxT-saturated for all kK < X,
and hence A-saturated.

O
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14 Vaughtian pairs

Let T be a countable complete L-theory with infinite models.
Definition 14.1.
e A Vaughtian triple (in 7)) is a triple (N, M, ¢), where
- MET;
— N = M is a proper elementary extension;
— ¢(x) is an non-algebraic £(M)-formula;
— oN) = p(M).
(N, M) is then called a Vaughtian pair.

e T has a Vaughtian pair if there is some Vaughtian pair, i.e. if there is
some Vaughtian triple.

Ezamples 14.2.

e ({0,1} x @;<), ({0} x @;<),z < (0,0)) is a Vaughtian triple in DLO,
where the order is the lexicographic order.

¢ (wHw;w), (w+w)\{0};w\{0}),~P) is a Vaughtian triple in the language
{P}, where P is a unary predicate.

Lemma 14.3. If T has no Vaughtian pairs then T eliminates 3°°.

Proof. Tt suffices to consider the one variable case, since 3°Z. ¢(T,y) can be
expressed by \/, 3%z;. Iz, ..., 2 1, g1, ..., 25 (T, 7).

So suppose for a contradiction that ¢(z,7) is an L-formula and b; € M; E T
are such that i — |¢(M;, b;)| is a strictly increasing function w — w. Realising
each tp(b;) in an w-saturated model M, we may assume M; = M for all i € w.

Let NV = M be a proper elementary extension. Let I/ be a non-principal
ultrafilter on w. Then N¥ = MY is also a proper elementary extension (indeed,
if c € N\ M, then (via the diagonal embedding) ¢ € NY \ MY). Let b =
lim; ;0 b; € MY. Then ¢(MY,b) is infinite, but ¢(NY,b) = ¢(MY,b), since
AN, b;) = ¢(M, b;) for all i. So (NY, MY, ¢(z,b)) is Vaughtian. O

Lemma 14.4. If T has no Vaughtian pairs and A C N E T and ¢(z) is a
non-algebraic L(A)-formula, then N is minimal over AU ¢(N).

Proof. Otherwise, there is M < N with AU@¢N) C M C N. Then ¢(M) =
d(N) and ¢ is an L(M)-formula. So (N, M, ¢) is Vaughtian. O

Lemma 14.5. Suppose T is w-stable and (Ny, Mo, @) is a Vaughtian triple.
Let k > Rg. Then there exists a Vaughtian triple (N®, M, ¢) with |IN*| = x and
M| = No.

Proof. ¢ is an L(A)-formula for some finite A C M. Replacing T with
Th((Mop)a), which is also w-stable, we may assume ¢ is an L-formula.

Claim. There is a Vaughtian triple (N, M, ¢) with N' and M countable satu-
rated models.
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Proof. Let Lp := LU{P}, where P is a unary predicate symbol. Let
Tp =T
U{VE. (/\ P(z:) = Gy 4@, y) = Jy. (P(y) A (T, y)))) : (T, y) an L-formula}

U{Vz. (¢(x) = P(z))}
U{3z. -P(x)}.

For A/ an L-structure and A C N, let (NV; A) be the £ p-structure expanding A
with P((N; A)) = A. Then (using the Tarski Test) (N; M) E Tp if and only if
N ET and (N, M, ¢) is Vaughtian.

Tp is consistent, since (No; My) E Tp. By Lowenheim-Skolem, let (A; M)
be a countable model of Tp. We now proceed as in Theorem Build an
elementary chain of countable models (Nj; M) =< (N{; M}) < ... by taking
(N/ 13 M) such that N, realises all L-types over finite subsets of N and
M| realises all L-types over finite subsets of Mj; this is possible since 7" is
small since w-stable, and any L-type p(x) over a subset of M, is consistent
modulo Tp with P(z).

Then (N3 M) := U, (Vs M) E Tp is countable, and both A" and M are
saturated as models of T'. O

Claim. There is N = M with |[N”| = Xy such that (N, M, ¢) is Vaughtian.
In particular, |¢(N")| = Ro.

Proof. We build an elementary chain (M%),en, of countable saturated models
with ¢(M®) = (M),

Let M° := M. Given M, let M*T! = M be such that (M**!, M*) =
(N, M), which exists since M* = M (by saturation and Lemma [7.2I). Then
(ML) = (M) = p(M), and M is countable and saturated. For n € ¥;
a limit ordinal, let M" :=J,,, M®. Then ¢(M") = |J,., #(M?*) = ¢(M),
and M7 is countable and saturated.

Finally, let N := (J,en, M®. Then ¢(N') = ¢(M), and |[N'| = Xy since
Mot D Mme. O

Claim. Suppose AE T and |A| > Rg but |$(A)| = Rg. Then there is B such
that (B, A, ¢) is Vaughtian and |B| = |A|.

Proof. Say an L(A)-formula 6(x) is countable resp. uncountable if (A) is. Since
x = x is uncountable and there is no binary tree of £(A)-formulas, there exists
an uncountable 1 (x) such that for every L£(A)-formula 6(z) either ¢(x) A 6(x)
or Y(x) A—0(x) is countableﬂ Then p(z) := {0(x) : ¥(x) AO(z) is uncountable}
is a type.

Let b F p(z) be a realisation in some elementary extension, b € A’ = A. By
Theorem [I1.13] we can find AU{b} C B < A’ with B constructible over AU{b}.
By Loéwenheim-Skolem and primeness, |B| = [ AU {b}| = | A|]. By Lemma
(Exercise 10.2), B is atomic over AU {b}.

Suppose ¢(B) # ¢(A), say ¢ € ¢(B) \ ¢(A). Say &(x,b) is an L(A)-formula
isolating tp(c/A U {b}). Then

bEO(y) = {3z. {(z,y)} U{Va. (§(x,y) = (d(x) Az F# a)) - a € §(A)}.

5Such a formula v is called quasiminimal, by analogy with a minimal formula.
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Now ©(y) C p(y) consists of countably many formulas, so by the definition of p,
PY(A)NN{0(A) : (y) € O(y)} is an intersection of countably many cocountable
subsets of the uncountable set ¥(.A), so is non-empty. So there is b’ € A such
that ' E O(y). Then there is ¢ such that AFE £(¢, '), and then A E ¢(¢’), but
for each a € ¢(A) we have @ # a, which is a contradiction. O

Using this last claim at successor stages and taking unions at limit stages
and setting NV := A", we build an elementary chain (N*),e, such that for all
o € K:

o HN®) = p(M);
e N+l is a proper extension of N'%;
o N9 = |af +N;.
Set N* := J,e, N Then |[N*| = k, and (N, M, ¢) is Vaughtian. O

Proposition 14.6. Suppose T is uncountably categorical. Then T has no
Vaughtian pairs.

Proof. By Proposition T is w-stable. Say x > ¥y is such that T is k-
categorical, and let M be the model of cardinality x. Suppose T  has a Vaughtian
pair. Then by Lemmal[l4.5] there is an £(M)-formula ¢(z) such that |¢p(M)] =
Rg. But then M is not saturated, since it omits {¢(x)} U{z # a:a € p(M)}.
This contradicts Corollary O

15 Baldwin-Lachlan

Lemma 15.1. Let T be a totally transcendental theory. If AC M ET and M
is minimal over A, then M is constructible over A.

Proof. By Theorem [11.13] there is A C N < M with N constructible over A.
By the minimality, N' = M. O

Theorem 15.2 (Baldwin-Lachlan). Let T' be a countable complete theory with
infinite models. TFAE:

(i) T is k-categorical for some Kk > No;
(i) T is w-stable and has no Vaughtian pairs;

(11i) T has a prime model My and a strongly minimal L(My)-formula ¢(z)
such that any M = My is constructible and minimal over Mo U ¢(M);

(iv) T is k-categorical for all k > Rg and has < Vg countable models up to
isomorphism.

Proof.
(i) = (ii) Proposition [[3.10] and Proposition [14.6]
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(ii) = (iii) By Theorem [11.13| (or Proposition |8.23)), 7" has a prime model M.
By Lemma and Corollary [12.15] there is a strongly minimal £(M,)-
formula ¢(z).

Let M = M. By Lemma [14.4] M is minimal over My U ¢(M). By
Lemma M is also constructible over Mg U ¢(M).

(iii) = (iv) Proposition
(iv) = (i) Immediate.
O

Corollary 15.3 (Morley’s Theorem). A countable complete theory is categorical
in some uncountable cardinal if and only if it is categorical in all uncountable
cardinals.

Fact 15.4 (Baldwin-Lachlan). (i) can be improved to say “either 1 or Rg
countable models”.

16 Morley rank

Definition 16.1. Let On™> := { —c0}UOnU{+0c0} be the well-order extending
On, where Vo € On. — o0 < a@ < 400.
Let M be an L-structure.

e The Morley rank in M of an £L(M)-formula ¢(Z) is
MRM(¢) := inf{a € OnT> : MRM(¢) < a} € On*™,
where we recursively define MR (¢) < av € On™> by:

— MR™(¢) < —o0, if ¢(M) = 0;

— MRM(¢) < a € On, if for any L£(M)-formulas (1;(%))ic. defining
disjoint subsets of ¢(M) (i.e. for all i # j € w we have p;(M) C
d(M) and ;(M) N1h;(M) = 0), there are i € w and S € On*>
with 8 < a, such that MR™M (¢;) < 3.

— MRM(QS) < +o0 for any ¢;

e Define the Morley rank of an £(M)-formula by MR(¢) := MRV (¢),
where N/ = M is any Rg-saturated elementary extension of M. (We
prove in Lemma ii) that this is well-defined.)

Remark 16.2.
e MRM(¢(Z)) =0 < 0 < |p(M)] € w = MR(6(Z)) = 0.
e If ¢(Z) is minimal in M, then MR™(¢) = 1.
o If ¢(T) is strongly minimal in M, then MR(¢) = 1.

Lemma 16.3. (i) Let M, M’ be Rg-saturated L-structures. Let qﬁ/(f, 7) be an
L-formula. Leta € MY and @ € (M")¥ with tpM(a) = tp™ (@’). Then
MRM(¢(,a)) = MRM (¢(z,)).
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(ii) Let M be an L-structure. Let N N’ = M be Ng-saturated elementary
extensions. Let ¢ be an L(M)-formula. Then MRV (¢) = MRN/(qb).

Hence MR(¢) is well-defined.

Proof. (i) By the definition of MR™, it suffices to show:

Claim. Leta € On*>. Suppose MRM(¢(Z,a)) < a. Then MRM/((;S(T, a) <
.

Proof. By induction on a. If @« = —oo, then M’ F —37.¢(7,@’) since
ME -37.¢(7,a) and a =a'.

Let @ € On. Suppose there are ¥;(Z,c;) for i € w with ¢;(Z,7,;) an L-
formula and @ € (M’)I¥%! such that v;(M’,c) are disjoint subsets of
H(M’,@). By Ry-saturation and @ = @, we can recursively find ¢; € M¥:l
such that @,%c,...,¢, = @,¢,...,¢, (for all n € w). Then ;(M,5)
are disjoint subsets of ¢(M,a), so for some i € w and 8 < « we have
MR™M (4;(M,;)) < B. But & = @, so by the inductive hypothesis we
have MR™' (14;(M, ) < B. So MR (¢(z, @) < ov.

For a = 400 the claim is clear. O
(ii) Say ¢ = ¢(T,a), where ¢(Z,7) is an L-formula and @ € M. Then

tpV (a) = tpM(a) = tp' (@), so we conclude by (i).
O

Lemma 16.4. Let M be an L-structure. Let ¢, ¢" be L(M)-formulas.
(i) B(M) C ¢/(M) = MR() < MR(¢).
(ii) MR(6V ¢/) = max{MR(6), MR(¢/)}

Proof. (i) This follows directly from the definitions.

(ii) By (i), it suffices to see <. We show this by induction on a.

So suppose MR(¢), MR(¢') < a € On, and we show MR (¢ V ¢’') < a. So
let N = M be Ng-saturated, and say (1;);c. are L(N)-formulas such that
(i(N)); are disjoint subsets of ¢(N) U ¢'(N). Then {i € w : MR(¢ A
;) > MR(¢)} is finite, and similarly for ¢’. So there is i € w such that
MR(¢ A ;) < MR(¢) < a and MR(¢' A 1) < MR(¢') < «, so by the
inductive hypothesis,

MR(1;) = MR((¢ A1) V (¢ A1) < a.

16.1 Morley degree
Let M be an Ng-saturated L-structure, and let T := Th(M).

Lemma 16.5. Let ¢ be an L(M) formula. If MR(¢) > (21T, then MR(¢) =
—+00.
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Proof. Let o € On be minimal such that no £(M)-formula has rank «. Then by
transfinite induction, no formula has ordinal rank > a. So |a/ is the number of
ordinal ranks attained by £(M)-formulas. Now by Lemma [16.3{i), MR(¢(Z,a))
depends only on the £-formula ¢(%,7) and tp(a). So |a| < |T]-[S(9)| < 2/7!. O

Definition 16.6. For a € On, say £(M)-formulas ¢ and ¢’ are a-equivalent,
O =, ¢, if MR(0AQ) < a.

Lemma 16.7. =~ is an equivalence relation.

Proof. Reflexivity and symmetry are clear. Transitivity follows from Lemma ii)
and the logical tautology

(¢A¢") = ((¢A¢) V (¢’ Ag")).
O

Definition 16.8. An £(M)-formula ¢ is a-strongly-minimal if MR(¢) = o €
On and for every £(M)-formula 1, either MR (¢ A ¢)) < o or MR(¢p A ) < av.

Lemma 16.9. Let ¢ be an L(M)-formula. If MR(¢) = a € On, there are
d € w and a-strongly-minimal L(M)-formulas 1y, ..., 1pq such that ¢ <7 \/,; ¢;
and ;b for i # 7.

This number d is uniquely determined. The 1; are unique up to ).

Proof. Suppose ¢ admits no such decomposition. In particular ¢ is not a-
strongly-minimal, so say MR(¢ A ) = a = MR(¢ A —¢). If both ¢ A ¢ and
¢ N\ ™) admitted such a decomposition, then so would ¢; so at least one does
not. Continuing in this way, we obtain an infinite family of disjoint MR = «
subsets of ¢(M), contradicting MR(¢) = a.

For the uniqueness: if v’ is a-strongly-minimal and v’ 1 ¢, then by
Lemma i) MRy’ A;) = a for some 4, and then ¢ =, (' A;) ~q4 ;. So
up to &, the 1; are precisely the a-strongly-minimal formulas implying ¢. [

Definition 16.10. Let ¢ be an £(M)-formula.

If MR(¢) € On, the Morley degree MD(¢) is the number d in Lemma[16.9]
If MR(¢) € {—o0, +00}, set MD(¢) := 0.

By Lemma i), MD(¢(z,a)) depends only on tp(a), and in particular
not on the choice of Ng-saturated model M.

Set MRD(¢) := (MR(¢), MD(¢)) € OnE™ x w. We consider On=> x w as
a well-ordered set with the lexicographic order .

Remark 16.11. ¢ is strongly minimal iff MRD(¢) = (1,1).
Lemma 16.12. Let ¢, ¢’ be L(M)-formulas with (M) N ¢' (M) = 0. Then

max(MRD(¢), MRD(¢"))  (MR(¢) # MR(¢"))

MRD($V #) = {(MR<¢>>, MD(¢) + MD(#)) (MR(6) = MR(¢'))
Proof. Exercise. O

Proposition 16.13. T is totally transcendental iff MR($) < +oo for all L(M)-
formulas ¢.
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Proof. = : Suppose MR(¢) = +oo. Then MR(¢) > (2I7)*, so ¢ splits into
¢ A and ¢ A ) each of rank > (2!T1)*, and hence by Lemma of
rank +00. So we obtain a binary tree contradicting total transcendence.

< : Suppose (¢s)sca<w is a binary tree of L£L(M)-formulas. Say MRD(¢s) =

inf MRD(¢s). By assumption, MR(¢s) € On. But then MRD(¢,) >
MRD(¢so V ¢s1), and Lemma [16.12] yields a contradiction.

O

Definition 16.14. If X is a M-definable set, i.e. X = ¢(M) for some L(M)-
formula ¢, we set MRD(X) := MRD(9).

Lemma 16.15. Let f : X — Y be an M-definable bijection of M-definable
sets. Then MRD(X) = MRD(Y).

Proof. By induction on MRD. Exercise. O

Proposition 16.16 (Baldwin-Saxl, tt case). Let (G;-) be a totally transcenden-
tal group. Then there is no infinite descending chain of G-definable subgroups
G=Gy>G1>....

Proof. Suppose (G;); is such. Each G; contains G;+1 and a distinct (hence
disjoint) coset ¢;G;it+1, and MRD(g;G;11) = MRD(G;41) since z +— g;z is a de-
finable bijection. Now MR(G;) < co by Proposition so by Lemma
MRD(G;) > MRD(G41). So we contradict well-orderedness of On*> x w. [

Fact 16.17 (Macintyre). Any totally transcendental field (K;+, ) is algebraically
closed.

Conjecture 16.18 (Cherlin-Zilber Algebraicity Conjecture). If (G;-) is an in-
finite simple group with MR(G")(G) < w, then G is an algebraic group over an
algebraically closed field.

Definition 16.19. Let A C M.
e For p € S(A), MRD(p) := inf e, MRD(6)).
e For a € M, MRD(a/A) := MRD(tp(a/A)).
Lemma 16.20. Let ¢ be a consistent L(M)-formula.
(1) MR(¢) = max{MR(p) : ¢ € p € S(M)}.

(i) If MR(¢) € On, then there are precisely MD(¢) types ¢ € p; € S(M) with
MR(p;) = MR(¢).

Proof. (i) It suffices to find p € S(M) with MR(p) = MR(¢). If MR(¢) =
+00, any p 3 ¢ has MR(p) = +00. Otherwise, let ¢' - ¢ with MRD(¢') =
(MR(¢),1). Then py = {3 : MR(¢' A¢) = MR(¢')} is complete and
MR(p) = MR(¢') = MR(9).

(ii) By Lemma any such type p; contains some ¢’ as in (i), and then

Pi = Py
O

Lemma 16.21. Let AC M ET. Ifb € acl(AUa), then MR(b/A) < MR(a/A).
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Proof. By induction on o := MR(G/A). The result is immediate if o = 400, so
suppose « € On.

Say ¥(%,7) € tp(a, b/A) with F Vz. 359 4(7, 7) and MR(3g. (7, 7)) = .

Suppose (6;(7))icw are L(M)-formulas defining disjoint subsets of T4 (T, 7).

Let ¢;,(Z) := 3g. (Y(T,y) A 3;(7)). The conjunction of any d + 1 of the ¢;
is inconsistent, and it follows that MR(e;,) < « for some ig; indeed, otherwise
each ¢; is in at least one of the finitely many MR = « types on 3g. ¥(Z,7)
given by Lemma (ii), so one contains infinitely many ¢;, contradicting the
inconsistency of any d + 1 of them.

Now say A" Cgy, M is such that ¢ and §;, are both £(A’)-formulas. By
Lemma i) and No-saturation, let b € iy (M) be such that MR(B//A’) =
MR(5;,). Then there is @ € e;, (M) such that M F (@, b ). So by the inductive
assumption, MR(d;,) = MR(B//A’) < MR(@/A') < a. Hence MR(b/A) <
MR(3Z. ¥(Z,7)) < «, as required. O

16.2 Morley rank in a strongly minimal theory

Let T be a strongly minimal theory. Let M E T be Ny-saturated.

Definition 16.22. Let A C M and @ € M<“. Then dim(a/A) is the maximal
n such that @’ F p(f) for some subtuple @’ of @.

Theorem 16.23. Let A C M anda € M<“. Then MR(a/A) = dim(a/A).

Proof. Let n := dim(a/A), and let @’ be a subtuple with @’ F pff). Then by
the maximality, a; € acl(AU@’) for all i. So acl(Aua’) = acl(4AUa), and so
by Lemma m MR(a/A) = MR(a@'/A). So we may assume a =@ F p%) and
n > 0. We may inductively assume that MR(a/Aa1) = dim(a/Aa1) = n — 1.

Let ¢(%) € pff). Set ¢/ (Z,y) := (Y(T) ANx1 = y). Then @ E ¢'(T, a1), so
MR(¢/(F,a1)) > n — 1. By Lemma [16.3(i), MR(¢/(Z,a})) > n — 1 for any
ay E pa; these formulas are pairwise inconsistent, and so MR(v)) > n.

By the result for m < n, we have inductively that for every B C M’ E T,
every type p € S, (B) with p # pg) has rank MR(p) < n.

Let 0(z) be an L(M)-formula with 6 + ¢ and MR(6) = n. By Lemmal[16.20{i)
applied to 6 and the previous paragraph, we have MR(pS\T/L‘) ) = n. Then again by
Lemma [16.20{1) and the previous paragraph, MR(Z = 7) = n. So MR(¢)) = n.
Hence MR(pXL)) =n. O
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