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We introduce a tensor-based clustering method to extract sparse, low-dimensional structure from
high-dimensional, multi-indexed datasets. Specifically, this framework is designed to enable detec-
tion of clusters of data in the presence of structural requirements which we encode as algebraic
constraints in a linear program. We illustrate our method on a collection of experiments measuring
the response of genetically diverse breast cancer cell lines to an array of ligands. Each experiment
consists of a cell line-ligand combination, and contains time-course measurements of the early-
signalling kinases MAPK and AKT at two different ligand dose levels. By imposing appropriate
structural constraints and respecting the multi-indexed structure of the data, our clustering analysis
can be optimized for biological interpretation and therapeutic understanding. We then perform a
systematic, large-scale exploration of mechanistic models of MAPK-AKT crosstalk for each cluster.
This analysis allows us to quantify the heterogeneity of breast cancer cell subtypes, and leads to
hypotheses about the mechanisms by which cell lines respond to ligands. Our clustering method is
general and can be tailored to a variety of applications in science and industry.
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I. INTRODUCTION

Muti-dimensional datasets are now prevalent across
the sciences; their ubiquity and importance will only con-
tinue to grow [1–4]. The analysis of data demands meth-
ods that preserve multi-dimensional structures, and that
exploit them. We introduce a versatile data clustering
framework based on tensors (high dimensional arrays)
and algebra to analyze multi-dimensional datasets. One
key feature of this method is that it can incorporate gen-
eral, application-specific constraints on the composition
of a cluster, and is guaranteed to find optimal partitions.
The flexibility of the method allows it to be used directly
on a dataset (i.e., as a standalone clustering tool), or in
combination with other clustering methods.

We apply our method on an extensive set of time-
course measurements of the activation levels of the
mitogen-activated protein kinase (MAPK) and phospho-
inositide 3-kinase (PI3K) pathways that are involved in
cellular decisions and fates [10–13], and are known to
dysfunction in cancer [10–13, 16]. The key signaling pro-
teins and subtype responses in breast cancer cells are
known; however, among genetically diverse cell lines the
dysfunction varies and is not well understood [1, 15, 16].
Our objective is to find groups of cell lines whose signal
transduction networks have similar dynamics. A high
similarity suggests that the cell lines share pathway fea-
tures that can be relevant for the responses to the ligands.
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We find these groups by clustering experiments by their
temporal profile similarity, subject to ‘interpretability’
constraints, which are that each cluster must match a
subset of cell lines (with similar response) with a subset
of growth factors (whose effect on the signaling path-
ways is perhaps altered by that feature). In other words,
the behavior of the cell line/ligand combinations in each
must be attributable to the same signaling mechanism.
We examine a set of experimental data [1] containing the
response of 36 breast cancer cell lines after exposure to
14 ligands (growth factors/signaling molecules). Each
experiment measures the temporal phosphorylation re-
sponse of a cell line to one ligand. Because the dataset is
complete (i.e., there is a measurement for every combina-
tion of times, proteins, cell lines, ligands, and doses), we
can represent it as a tensor in five dimensions (Fig. 1A).

Our analysis consists of two stages. In stage 1, we
first cluster experimental data encoded in tensors subject
to structural or interpretability constraints in the form
of algebraic inequalities (Fig. 1B,C). Then, in stage 2,
we perform a systematic search for nonlinear ordinary
differential equation (ODE) models that reproduce the
key dynamical features of the time series in each cluster
(Fig. 1D). The partition of the experiments into clusters
from stage 1 can be visualized by color-coding the grid of
experiments (see Figs. 1C and 2) according to their clus-
ter assignment. The constraints force the clusters to pair
a subset of the cell lines with a subset of the ligands in
such a way that each cluster must be rectangle-shaped on
the grid (although possibly disconnected). The assump-
tion behind this constraint is that the observations of
the experiments in each cluster must be generated by the
same biological mechanism: If two experiments, belong

ar
X

iv
:1

61
2.

08
11

6v
2 

 [
q-

bi
o.

Q
M

] 
 2

8 
A

pr
 2

01
7

mailto:seigal@berkeley.edu, joint first author
mailto:beguerisse@maths.ox.ac.uk, joint first author
mailto:harrington@maths.ox.ac.uk


2

to the same cluster, then so should the experiments in the
diagonally opposite entries of the grid. We find clusters
using a novel notion of tensor similarity, and global opti-
mality is ensured by leveraging results from integer pro-
gramming. One of the strengths of our approach, is that
it can incorporate a pre-existing non-rectangular parti-
tion obtained with other methods (e.g., k-means, spec-
tral methods, community detection on graphs). Starting
from an initial partition can be computationally advan-
tageous, and our method is able to find the ‘closest’ op-
timal rectangular clustering (where the distance between
partitions is given by number of reassignments).

Once an optimal partition of the data is obtained, we
search for mechanisms that can explain the behavior of
the experiments in each cluster. We explore differences
between clusters to understand the range of signaling
mechanisms across cancer cell lines. To this end, we
construct, parametrize, and rank models for each clus-
ter from a pool of 729 candidate models.

II. TENSORS AND ALGEBRA

Data tensor. We represent a multi-indexed dataset
(e.g., the complete dataset in Fig. 1A) as a tensor Z
of order h in the real numbers with size n1 × . . . × nh
(i.e., Z ∈ Rn1×...×nh , where ni ∈ N, and i = 1, . . . , h).
When the data is complete, every entry of the tensor
is filled with a number. A full treatment of tensors is
available in [1] and references therein. We introduce here
the tensor theory required for our analysis.

Similarity tensors. In a similarity matrix the entry
(i, j) records the pairwise similarity of the two items la-
belled by unidimensional indices i and j. We now intro-
duce the high-dimensional generalization of a similarity
matrix, which extends this to multi-indexed data. Sup-
pose we want to compute the similarity of the data in-
dexed by i = (i1, i2) and that indexed by j = (j1, j2):

si,j = sim (Z(i1, i2, :, . . . , :), Z(j1, j2, :, . . . , :)) , (1)

where i1, j1 ∈ {1, . . . , n1} and i2, j2 ∈ {1, . . . , n2}. The
similarity function sim : Rn3×···×nh × Rn3×···×nh → R
computes the similarity between the data indexed by i
and j (e.g., correlation or cosine similarity). In general,
for data indexed by the first d dimensions, we have the
multi-indices i = (i1, . . . , id) and j = (j1, . . . , jd). The
dimensions of Z can be re-ordered as needed. We can
construct a similarity tensor S of order 2d. The shape
of S is determined by the chosen dimensions of the data:
S ∈ Rn1×...×nd×n1...×nd . The similarity tensor and the
similarity matrix are related by flattening the tensor as
follows. The original data tensor Z can be flattened (re-

shaped) into a data matrix Z̃ ∈ RN1×N2 , where N1 =∏d
r=1 nr, and N2 =

∏h
r=d+1 nr. Each row of Z̃ is a N2-

dimensional vector that corresponds to multi-index i, and
the length N2 is the product of the dimensions of Z that
are not included in i.
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FIG. 1. Schematic of constrained tensor clustering method
and model identification. (A) The complete set of experi-
ments can be represented by the multi-indexed tensor Z; see
Data section. (B) The similarity scores between experiments
(each cell line/ligand combination) can be stored in a sim-

ilarity matrix S̃, that can be used to construct a similarity
tensor S, or to find a preliminary clustering of the data W
that may not comply with the constraints. (C) Structured
clustering via integer programming. The starting point can
either be the similarity tensor S or the pre-existing cluster-
ing W. The possible clusterings are represented by points on
the grid. The red line is the value of the objective function
(equations 6 and 7). The best integer value (orange point)
is found inside the convex feasible region (blue). (D) A large
scale search for mechanistic models for each cluster involves
parametrising, and ranking the best ODE models for each
cluster.
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The similarity matrix between the rows of Z̃ is S̃ ∈
RN1×N1 , which is obtained by flattening the similarity
tensor, S. We summarize this relationship in the follow-
ing diagram:

Z S.

Z̃ S̃

flatten

similarity of i and j

similarity of rows

reverse flatten

To compute the similarity tensor S, we can simply flatten

the data tensor Z into Z̃, construct a similarity matrix

S̃, and then reverse flatten it into the desired S. Note

that Z and S have the same number of entries as Z̃ and
S̃ respectively.

Example. Let Z ∈ R10×5×3 be a tensor of order 3. If
i = (i1, i2) is the multi-index, then d = 2, N1 = 10 · 5 =
50, and N2 = 3. The (order 4) similarity tensor S has

size 10 × 5 × 10 × 5. The similarity matrix S̃ has size

50× 50. The flattened data matrix Z̃ has size 50× 3.

Algebraic interpretability condition. When clustering
a set of data points we typically seek to find a partition
such that the points within a cluster are more similar
(or close) to each other than to the rest of the data [17].
In the simplest cases, there are few restrictions on the
clusters other than the similarity or distance be reflected
in the cluster assignments. In certain cases, imposing
restrictions on the clusters can be desirable or even re-
quired. Here we pursue structured clustering; that is, we
impose restrictions on the shape of the clusters in the ten-
sor, which in this application, allow us to interpret clus-
ters in terms of data-generating mechanisms (i.e., group-
ing cell lines/ligand combinations to ensure mechanistic
interpretation). See Results section for the biological jus-
tification of these constraints.

A hard partition of a dataset represented as a tensor
Z of size n1 × · · · × nh into m clusters can be encoded in
two ways:

1. An (n1 × . . . × nd) × (n1 × . . . × nd) tensor X in
which the data has multi-indices i = (i1, . . . , id)
and j = (j1, . . . , jd), and:

xij =

{
0 if i and j belong to the same cluster,

1 otherwise.
(2)

The tensor X can be seen as a Boolean approxima-
tion of the distances between pairs of data points:
xij = 0 if i and j are ‘close’ (in the same cluster),
and xij = 1 if they are ‘far’ (in different clusters).
To ensure that X encodes a valid clustering of the
data, the three conditions of an equivalence rela-
tion must be met. These conditions are given by

the following algebraic equations and inequality:

Reflexivity: xii = 0,

Symmetry: xij = xji, (3)

Transitivity: 0 ≤ −xik + xij + xjk ≤ 2.

2. In a n1 × . . .× nd ×m tensor Y where

yik =

{
1 if the data indexed by i belongs to cluster k,

0 otherwise.

(4)

We require that
∑m

k=1 yik = 1, to ensure that each
data item has been assigned to exactly one cluster.

The tensors X and Y are related by the following equa-
tion:

1− xi,j =

m∑
k=1

yi,kyj,k.

Integer Optimization. The structural or interpretabil-
ity conditions we have imposed on the clusters take the
form of linear constraints. These constraints, along with
the fact that the tensors are Boolean, allow us to find
optimal tensors X and Y by solving an integer linear
program [18, 19]. Specifically we use the branch and cut
algorithm [20] as we describe in the Structured clustering
section below.

III. DATA

We examine an extensive experimental dataset detail-
ing the temporal phosphorylation response of signaling
molecules in genetically diverse breast cancer cell lines in
response to different growth factors [1]. This dataset is
complete and can be represented by a tensor Z of order 5
whose dimensions correspond to 36 cell lines, 14 ligands,
2 doses, 3 time points, and 2 proteins (pERK, pAKT)
(see the SI Appendix). In this work each experiment is a
set of measurements (ie doses, time points and proteins)
for each cell line/ligand combination (i.e., 36 · 14 = 504
experiments). Our goal is to find sets of experiments with
a similar response; consequently, the data structures we
require are the following:

Z ∈ R36×14×2×3×2, (data tensor)

Z̃ ∈ R504×12, (flattened data tensor)

S ∈ R36×14×36×14, (similarity tensor)

S̃ ∈ R504×504. (similarity matrix)

Each experiment has a multi-index i = (i1, i2), where
i1 ∈ {1, . . . , 36} and i2 ∈ {1, . . . , 14}. We compute the

504 × 504 cosine similarity matrix S̃ of the normalized

rows of Z̃ (see SI Appendix).
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IV. STRUCTURED CLUSTERING

Clustering biological data is not a straightforward
task; challenges include choosing the an appropriate
method for the data [17], working with high-dimensional
data [21, 22], and the consideration of the context of the
problem, which must be done almost on a case-by-case
basis [23]. Constrained clustering is an active field of
research [24]. One of the most common approaches in-
corporates pairwise must-link and cannot-link constraints
to indicate whether two items must or must not be in the
same cluster [25, 26]. Other methods set constraints on
what the possible clusters can be, rather than constrain-
ing the elements in a cluster; there is a large pool of
candidate clusters from which those that meet selection
criteria can be chosen [27].

Given a similarity tensor S, we seek to obtain the best
partition of experiments subject to constraints that en-
sure the interpretability of the clusters. To ensure that
the clusters can be interpreted in terms of biological
mechanisms, we impose that the clusters be rectangular-
shaped with respect to cell lines and ligands (see eq. (5)
and results section). This approach is similar to the one
in Ref. [22]; however, we do not require the rectangles
to be connected. This is because we do not require a
fixed order for the rows and columns of the data. This
is an important strength of our method: an ordering of
the data is artificial, and we seek clustering results that
are not biased by order. We describe the biological mo-
tivation for these constraints in the results section and
mathematical details of the method here.

We present two implementations of our method. The
first one does not require previous knowledge about the
clustering assignment of the experiments, and provides
an optimal clustering directly from the similarity data.
This implementation can, however, be prohibitively ex-
pensive to compute. To sidestep high computational
costs we present a second implementation that begins
with a pre-existing partition of the experiments into clus-
ters (not necessarily compliant with the constraints),
which might originate from any clustering method (e.g.,

using the reshaped similarity tensor S̃). This implemen-
tation then reconstructs S and finds the nearest optimal
clustering compliant with the constraints. Starting with
an initial clustering has the advantage that it is less com-
putationally expensive than starting with no prior knowl-
edge of the clusters (see SI Appendix).

A. No prior clustering

This implementation works with the similarity tensor
S whose entries record the similarity of experiments i and
j, where i = (i1, i2), j = (j1, j2), and the ranges of indices
are i1, j1 ∈ {1, . . . , 36} and i2, j2 ∈ {1, . . . , 14}.

The clustering assignments are recorded by the tensor
X defined in equation (2). The rectangular-shaped inter-
pretability condition corresponds to three simultaneous

algebraic constraints on the entries of X:

xi1i2j1j2 = xi1j2j1i2 ,

0 ≤ xi1i2j1j2 − xi1i2j1i2 ≤ 1, (5)

0 ≤ xi1i2j1j2 − xi1i2i1j2 ≤ 1.

We search over arrays X that satisfy these conditions,
and find the one that best maximizes internal similarity,
according to the following criterion. Experiments in the
same cluster should have high similarity, so we maximize
the similarity between experiments in the same cluster.
This maximization is equivalent to solving the integer
optimization problem

max
X

〈S, (1−X)〉+ λ〈1,X〉, (6)

subject to bl ≤ V · vec(X) ≤ bu,

where the tensors X and S are as above, 〈·, ·〉 denotes the
entry-wise inner product, and · represents matrix multi-
plication of the matrix V by the vector vec(X). The
5042 × 1 vector vec(X) is the vectorized form of X, and
1 is the tensor of ones with the same size as X. The co-
efficient λ is a regularization term introduced to control
the number of clusters. The matrix V encodes the con-
straints on X given in eq. (3) and eq. (5). This matrix
has over 1 million rows, 5042 columns and is extremely
sparse. The kth row of V represents the kth constraint to
the values of vec(X): the entry is the coefficient (which
can be 0, 1, or −1, depending on the constraint) with
which each entry of vec(X) appears in the constraint.
The kth entry of bl and bu (which can be 0, 1, or 2) give
the lower and upper bounds respectively of each linear
inequality. We solve this optimization program using the
branch and cut algorithm [20] via the IBM ILOG CPLEX
Optimization Studio [28].

The resulting rectangle-shaped clusters are a sparse,
low-rank representation of the data. The tensor 1 −X,
of size (36 × 14) × (36 × 14), gives a binary measure of
the distance between any two experiments. This ten-
sor has sparse block structure: it consists of m cuboids
of 1s along the diagonal, where m is the number of
clusters, and has zeros everywhere else. As a conse-
quence X has low multilinear rank [29], bounded above
by (m,m,m,m), which is less than the maximum possi-
ble value of (36, 14, 36, 14).

B. Pre-existing clusters

Our method can find interpretable, structured clusters
from an initial unstructured partition of the data. As
before, we find structured clusters using linear integer
optimization. The input is an initial partition of the 504
experiments into m clusters that do not have to be rect-
angular. We then modify the cluster assignments to reach
the closest possible interpretable, structured clustering.

Mathematically, this implementation is set up in the
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following way. The initial clustering is encoded by a par-
tition tensor, W, of size 36× 14×m

wik =

{
1, i is in cluster k,

0, otherwise,

where i = (i1, i2) indexes an experiment. The new clus-
ters are encoded by a tensor Y of the same size (defined
according to equation (4)). In order to have rectangular
clusters, the entries of Y must satisfy the conditions

m∑
r=1

yijr = 1, (unique cluster assignment)

−1 ≤ yikr + yjlr − yilr ≤ 1. (interpretability condition)

As before, we use the branch and cut algorithm to ob-
tain the global optimum (given W) for the optimization
problem

max
Y

〈W,Y〉. (7)

The inner product 〈W,Y〉 sums the number of cluster-
ing assignments unchanged by converting the initial un-
structured clustering into a clustering that satisfies the
interpretability constraints.

We obtain the tensor Y, of size 36 × 14 ×m by solv-
ing the optimization problem in eq. (7). As with X, the
tensor Y also has sparse and low-rank structure. Its m
two-dimensional slices, each a matrix of size 36×14, have
rank two and block structure with a rectangle shape pop-
ulated by 1s and all other values equal to 0.

V. RESULTS

Each experiment in our data is indexed by (c, l), where
c is the cell line, and l is the ligand. A high similarity
between experiments suggests the possibility of a com-
mon underlying biological mechanism. This is the basic
notion that underpins the constraints in our clustering
method. The biological hypothesis is that if experiments
(c1, l1) and (c2, l2) are in the same cluster, it is possi-
ble that cell lines c1 and c2 share a feature such as a
genetic mutation. This feature causes them to respond
similarly to ligands l1 and l2, and the genetic mutation
is relevant to the part of the signaling pathways these
ligands activate. Such biological causality would imply
that if we swapped the ligands, experiments (c2, l1) and
(c1, l2) should also respond in a similar way. The biolog-
ical mechanism that gives rise to the similarity between
(c1, l1) and (c2, l2) can be discounted if it is not also re-
flected in experiments (c1, l2) and (c2, l1); this is why we
require that the clusters of experiments have a rectangu-
lar shape.

A. Interpretable groups by mutation and receptor
subtype

In a clinical setting, prognosis and treatment decisions
for breast cancer are guided by tumor grade, stage and
clinical subtype [30], which is based on the presence of
cellular receptors:
• HER2amp cells are characterized by amplification

of the HER2 gene, leading to over-expression of the
ErbB2 receptor tyrosine kinase;

• HR+ cells are characterized by the expression of
the estrogen receptor (ER) or progesterone receptor
(PR);

• Triple negative breast cancer (TNBC) cells are neg-
ative for HER2 amplification and express ER and
PR at low levels.

We compare the clusters from our method with the three
standard clinical subtypes above. We also compare our
clusters with the mutational status of the cell lines [31,
32], and with their drug response [33].

Clustering clinical subtypes. We first investigate a
fine-grained classification within each of the three clin-
ical subtypes. A summary statistic between 0 and 1
(based on the cosine similarity, see SI Appendix) quan-
tifies the within-class variation for each clinical subtype.
A score of 0 indicates complete homogeneity, and 1 in-
dicates complete heterogeneity. The HER2amp cell lines
show comparatively little variation, with an average dif-
ference score of 0.086. The TNBC and the HR+ cell lines
have an average difference score of 0.224 and 0.334. We
obtained clusters without prior knowledge of an initial
clustering by solving the optimization problem (6). The
results (shown in Fig. 2A and 2B) identify heterogene-
ity within each subtype as well as cell lines of particular
interest.

The TNBC cell lines are divided into 12 clusters
(Fig. 2A) which mirror the heterogeneous behavior of
TNBC in the clinic [34]. All but one TNBC cell lines with
a PTEN mutation appear in the green cluster. The only
exception is the HCC1937 cell line which has a PTEN
mutation but appears in the yellow cluster. The cluster
assignment of cell lines MDA-MB-231 and MDA-MB-157
is markedly different than the other cells across the lig-
ands. These assignments might be explained by the mu-
tational status of the cell lines; MDA-MB-231 is the only
cell line with an NF2 mutation or a BRAF mutation,
whereas MDA-MB-157 is the only cell line with an NF1
mutation. The bright orange cluster contains five cell
lines (all but HCC1937) with the same two CDKH2A
mutations.

Figure 2B shows the clustering of the HR+ cell lines.
Cell line MDA-MB-415 stands out for its response to
so-called high-response ligands [1] (ligands to the left of
HRG in Fig. 2B). Among all cell lines, MDA-MB-415 has
the second highest susceptibility to the drugs Ixabepi-
lone, Methylglyoxal and PD [33]. CAMA-1 cell line, is
distinctive in its response to the low-response ligands (to
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FIG. 2. Tensor-based structured clustering. (A) TNBC clustering with no prior clustering information. (B) HR+ clustering
with no prior information. (C) Clustering of all cell lines starting from an initial partition into three clusters. (D) Clustering
from an initial partition into five clusters.

the right of HRG), which might help explain why it is
particularly susceptible to both (Z)-4-Hydroxytamoxifen
and TCS PIM-11 [33].

The HER2amp cell lines cluster together for all lig-
ands except for the MDA-MB-361 cell line. This is the
HER2amp cell line most resistant to HER2-targeted ther-
apy such as Lapatinib [33]. In fact, its resistance to La-
patinib exceeds that of some TNBC cell lines (HCC2185
and MDA-MB-453). The grouping of the rest indicates
the consistency among all other HER2amp cell lines (see
SI Appendix).

Clustering all cell lines. We now apply our method to
the full dataset. Here we solve the optimization problem
(7), which means that we rely on an initial clustering
to speed up computations (see the SI Appendix). The
groups we find respect the broad division of the cell lines
seen in Fig. 2A,B, which is a sign of the consistency be-
tween the two implementations of our method.

We obtained our initial clustering by first construct-
ing a graph of experiments using the Relaxed Minimum
Spanning Tree algorithm [2–4]. Then we used the Markov
Stability community detection method [5, 6] to obtain the
clusters. Markov Stability identifies robust partitions of
the experiments into three, five and seven groups (see SI
Appendix).

From the initial partition into three clusters, we obtain
three rectangular clusters (Fig. 2C). Of these, we find
that two groups of ligands correspond to previously re-
ported high active expression profiles (yellow and green)
and one to muted profiles (blue), respectively [1]. Within
the more highly active group, the HR+ cell lines are pre-

dominantly in the yellow cluster, while the HER2amp cells
are in the green cluster. This separation of the HR+

and HER2amp clinical subtypes is entirely data driven
and supports the notion that our method is indeed able
to find interpretable groups. The cell lines that are not
clustered according to their subtype reflect previous find-
ings that neither growth factor responses nor sensitivity
to drugs that target signal transduction pathways is uni-
form within clinical subtypes [1, 16, 19]. The TNBC cell
lines are divided between the yellow and green clusters,
providing further evidence of the heterogeneity in TNBC
cell lines [19, 41–45].

When we use initial clustering into five groups, the
rectangular clusters split the ligands into a low response
group (blues) and high response (green, yellow, brown).
This split is nearly the same as we obtained before
(Fig. 2D). Note that the difference in the ligand HGF
may be due to the fact that it is not part of the ErbB nor
the FGF families of ligands. The HER2amp cell lines are
now all assigned to the green cluster and there are only
three HR+ cell lines not assigned to the yellow cluster.
A new brown cluster consists of cell lines: MDA-MB-
175-VII (classified as a HR+), UACC-812 (HER2amp),
1845B5 (TNBC) and HS578T (TNBC). While none of
them have the same cell classification or genetic muta-
tion, all cell lines in the brown cluster show high suscep-
tibility to Gefitinib [33]. Note that MDA-MB-175-VII is
the only HR+ cell line that is not assigned to the yellow
group in either three or five clusters; this might be due
to the fact that this cell line carries a unique chromoso-
mal translocation. The translocation leads to the fusion
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and amplification of neuregulin-1 which signals through
ErbB2/ErbB3 heterodimers [46, 47], and could be the
underlying cause of the cell line’s unique sensitivity to
ErbB-targeting drugs like Lapatinib or Afatinib [16, 19].

Finally, the clustering that begins with an initial par-
tition into seven groups shows high consistency with the
five cluster case (see SI Appendix). We therefore con-
tinue our analysis on the five clusters.

B. Systematic model identification

We now analyze the response of the five structured
groups found in the previous section (Fig. 2D) to obtain
a mechanistic insight about how the cell line/ligand com-
binations in them respond to the stimuli. We perform
systematic model analysis of 729 possible ODE network
models, and find that with our data 44 are structurally
identifiable, a prerequisite for performing parameter esti-
mation and model selection. Then, we parametrize, rank
and choose the models that best represent each cluster’s
response. As a result, we have a list of candidate sig-
naling mechanisms for each cluster which provides more
information than the statistical predictions of the sen-
sitivity of MAP Kinase drug targets (e.g., ErbB drug
class) [19].

Models of the MAPK and AKT pathways have been
studied under a variety of biological and modeling as-
sumptions [8, 9], including pathway crosstalk [13, 15–17].
Here we consider simple models to ensure the parameters
are at least locally identifiable so there are a finite number
of parameter values to fit the data. See the SI Appendix
for a brief synopsis of MAPK models.

We construct nonlinear ordinary differential equation
models to describe the dynamics of the AKT and ERK
signaling pathways. These models include three molec-
ular species: Receptor (R), pERK (E) and pAKT (A).
Since the data contains the response of pERK and pAKT,
we assume that the receptor must phosphorylate ERK
and/or AKT. We consider positive, negative, or no inter-
action between pERK and pAKT under different types of
kinetic regimes (mass-action or Michaelis–Menten) and
different types of inhibition (blocking/sequestration or
removal/degradation). The combination of these features
result in the 44 structurally identifiable models that we
study in further detail. Each model corresponds to a
different mechanistic hypothesis of the dynamics in the
pathways (see SI Appendix). To find the models that
best describe the response of each of the five clusters,
we estimate parameters using the Squeeze-and-Breathe
algorithm [21], and rank them using the Akaike informa-
tion criterion score (AICc) (see SI Appendix). The best
models for each cluster are shown in Fig. 3.

The AICc penalizes more complex models; therefore
it is not surprising that the top models are the sim-
plest ones. The best models for each cluster have differ-
ent feedback strengths (parameter values) and network
topologies (see Fig. 3); this supports the hypothesis that
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FIG. 3. The top four models for each cluster. The strength of
interactions are indicated by the size of the arrow. The grey
arrows indicate a blocking mechanism for inhibition. Black
inhibition arrows indicate a removal mechanism for inhibition.

mutations may play a role in the dynamics. Although
the values of the parameters vary, the model with arrows
from the receptor to pAKT and pERK appears in all
clusters, which is in line with how cells are understood
to operate. We remark that cluster 4, which corresponds
to HR+ cells (yellow in Fig. 2D), includes inhibition
crosstalk as the second best model, whereas in all other
clusters this mechanism appears in fourth place. These
results support the notion that clusters may have dif-
ferent parameter values/network structure and that our
approach is viable.

VI. DISCUSSION

We have introduced a novel framework to cluster multi-
indexed data based on tensors that allows structural con-
straints to be incorporated using algebraic relationships.
This method can be used to extract clusters directly from
the data, but if an initial clustering (which may not sat-
isfy the constraints) is provided it can find the closest
optimal partition that satisfies the constraints and re-
duce computation time. A key advantage of this frame-
work is that it allows more control over the composition
of clusters than in many unsupervised methods, and to
tailor the clustering to the requirements of the problem
at hand.
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We applied this method on a dataset charting the re-
sponse of genetically diverse breast cancer cell lines to
ligands. We identified both similarities (e.g., HER2amp)
and heterogeneities (e.g., TNBC) within clinical sub-
types. The heterogeneity of our clustering analysis (see
Fig. 2B) seems to be related to both the mutational sta-
tus of the cells as well as their response to inhibitors.
This result means that similar analyses in patient tissues
might be able to identify patients that respond differently
to therapeutic methods commonly used within a clinical
subtype. By analyzing clusters from all subtypes, we also
showed that we cannot explain the dynamics of each data
cluster with only one mathematical model, which helps
explain network model differences across cell type.

The applicability of our method goes beyond the bi-
ological problem presented here. It can be used in any
context in which the constraints on the clusters can be ex-
pressed in algebraic form (as equalities and inequalities),
such as when there are size restrictions on the clusters,
or to impose/prohibit particular combinations of data
beyond must-link and cannot-link constraints. For ex-
ample, this method could be used to construct optimal
portfolios that comply with rules about their composi-
tion [53], to help the formation of teams that maximize

members’ preferences and are compliant with skill re-
quirements [54], to find communities in networks with
quotas, among others. The presented pipeline (a sophis-
ticated and interpretable data analysis method that feeds
into a nonlinear modeling framework) will be ever more
necessary as increasingly more large-scale, comprehensive
datasets become available.
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SUPPLEMENTARY INFORMATION FOR: TENSOR CLUSTERING WITH ALGEBRAIC
CONSTRAINTS GIVES INTERPRETABLE GROUPS OF CROSSTALK MECHANISMS IN BREAST

CANCER

Appendix A: Data

We analyse a data set first presented in Ref. [1]. The data consists of time-course measurements (at 0, 10, 30, and
90 minutes) of the fold change in the phosphorylation levels of the mitogen activated protein kinase (MAPK) pERK
and the phosphoinositide 3-kinase (PI3K) pAKT in 36 breast cancer cell lines (Table I), each exposed to two doses
(low: 1 ng/ml and high: 100 ng/ml) of 14 different ligands (Table II). Figure S1 shows an example of the temporal
response of pAKT and pERK in the cell line MCF7 to doses of betacellulin.

The data set is complete in the sense that it contains measurements of pAKT and pERK in every cell line, exposed to
2 doses of each of the 14 ligands at 4 time points. As a result, we are able to represent the data as a ×36×14×2×3×2
tensor Z, with entries zijptd. The index p ∈ {pAKT, pERK} denotes which protein was measured, i corresponds to
the cell lines in Table I, j corresponds to the ligands in Table II, d ∈ {1, 100} denotes the doses, and t ∈ {10, 30, 90}
is time after the stimulus.

Appendix B: Clustering

We first describe how we normalize the experimental data for clustering. Then we provide details for how we
clustered directly from the data, and then how we obtained and incorporated an initial clustering.

1. Normalization

We normalize the data as follows. We scale all the pAKT and pERK foldchange responses such that their average
takes each the value 1. This normalization balances the effects of AKT and ERK, so that the behavioural features
and not the scale are the dominating features, and to ensure we treat them with equal significance in our study. The
mean value (pre-normalization) across the AKT responses is 1.7754 and that across the ERK responses is 11.4190.

2. No prior clustering

As a summary statistic of the three clinical subtypes, we compute the average distance score within each subtype.
The score for the 11 HER2amp cell lines is obtained as follows. There are 154 = 11×14 experiments in the dataset that
involve HER2amp cell lines, each consisting of 12 measurements. For each pair of experiments, we find the dissimilarity
between the 12 measurements, using cosine dissimilarity 1 - dot(v1,v2)/(norm(v1,2)*norm(v2,2)). The average
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FIG. S1. Time course measurements of cell line MCF7 exposed to two doses of betacellulin (BTC).
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Cell line Subtype
MCF7 HR+
SK-BR-3 HER2amp
MDA-MB-231 TNBC
AU-565 HER2amp
BT-20 TNBC
BT-474 HER2amp
BT-483 HR+
BT-549 TNBC
CAMA-1 HR+
HCC-1395 TNBC
HCC-1419 HER2amp
HCC-1428 HR+
HCC-1569 HER2amp
HCC-1806 TNBC
HCC-1937 TNBC
HCC-1954 HER2amp
HCC-202 HER2amp
HCC-38 TNBC
HCC-70 TNBC
Hs 578T TNBC
MDA-MB-134VI HR+
MDA-MB-157 TNBC
MDA-MB-175VII HR+
MDA-MB-361 HER2amp
MDA-MB-415 HR+
MDA-MB-436 TNBC
MDA-MB-453 TNBC
MDA-MB-468 TNBC
T47D HR+
UACC-812 HER2amp
UACC-893 HER2amp
ZR-75-1 HR+
ZR-75-30 HER2amp
184-B5 TNBC
HCC-1187 TNBC
HCC-1500 HR+

TABLE I. Breast cancer cell lines used in the data set [1].

Ligand name Abbreviation
Betacellulin BTC
Epidermal Growth Factor EGF
Epiregulin EPR
Fibroblast Growth Factor (acidic) FGF-1
Fibroblast Growth Factor (basic) FGF-2
Hepatocyte Growth Factor HGF
Heregulin β1 HRG
Insulin-like Growth Factor 1 IGF-1
Insulin-like Growth Factor 2 IGF-2
Insulin INS
Nerve Growth Factor NGF-beta
Platelet Derived Growth Factor BB PDGF-BB
Stem Cell Factor SCF
Vascular endothelial growth factor A VEGF165

TABLE II. Ligands used in the data set [1].
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Clustering Her2amp straight from the data
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FIG. S2. Clusters from the data of HER2amp cell line.

dissimilarity is obtained by averaging these pairwise distances across the
(
154
2

)
= 11781 pairs. Similarly for the HR+

cell lines and for the TNBC cell lines. The averages obtained are 0.086 for HER2amp, 0.334 for HR+, and 0.224 for
TNBC. The partitioning of the HER2amp cell lines is given in Fig. S2.

3. Pre-existing clusters

a. Computing pre-existing clusters

We find an initial clustering of the experiments. For this initial clustering, we label each experiment by a single
index. The data for the ith experiment is:

Z̃(i, :) =
[
AKT1

i

∣∣ ERK1
i

∣∣ AKT100
i

∣∣ERK100
i

]
, (B1)

where AKT1
i is the normalised time series of fold-change response of pAKT under dose 1ng/ml, and so on. We

compute the 504× 504 similarity matrix S̃, in which sij indicates the cosine similarity of experiments i and j:

sij =
〈z̃i, z̃j〉

||z̃i||2 ||z̃j ||2
= cos (z̃i, z̃j). (B2)

where z̃i = Z̃(i, :) and z̃j = Z̃(j, :). The entries of z̃i and z̃j are nonnegative, which means that sij ∈ [0, 1]. If
sij = 1, experiments i and j have an identical response to the treatments in both AKT and ERK (up to a scaling
constant). When sij = 0, the data for the experiments are orthogonal. The task of clustering the experiments presents

two challenges: the number of clusters is not known a priori, and the matrix S̃ is full matrix and is noisy due to
experimental error. To tackle these challenges we use a combination of tools from manifold learning and network
science. We create a network (graph) in which each of the 504 experiments is represented by a node, and where
connections exist between similar experiments. We first define the dissimilarity matrix D (dij = 1 − sij). We then
use the Relaxed Minimum Spanning Tree (RMST) algorithm [2–4], which extracts a network representation from
high-dimensional point clouds (in this case the z̃i) that are embedded in a lower dimensional manifold.

Specifically, the algorithm creates an undirected, unweighted network with an edge between i and j if they are
neighbors in a minimum spanning tree (MST) from D. The algorithm adds extra edges to the network if they
are consistent with the continuity of the data, i.e. if the distances between the points in D is comparable to their
separation in the MST and is consistent with the continuity of the data, according to the equation

dij < mlinkij +
1

2
(ki + kj).
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FIG. S3. Number of communities and variation of information for the network obtained from RMST similarity graph.

Here mlinkij is the maximal edge weight in the MST path connecting i to j, and ki is the the distance to the nearest
neighbour of i (i.e., the minimum value on the ith row of D, excluding dii). Basically, what the RMST algorithm
does is allows edges to be added to the MST (it ‘relaxes’ the MST), so that we obtain an network description of high
dimensional data that is embedded on a lower dimensional manifold.

Once we have obtained the network from the similarity matrix, we extract communities using the Markov Stability
(MS) community detection algorithm [5, 6]. This method employs continuous time random walks of varying duration
(Markov time) to extract communities of the network at different levels of resolution. Shorter Markov times produce
small communities, whereas longer Markov times lead to coarse partitions of the network. Obtaining the optimal
partition of a network into communities is an NP complete problem, so MS uses heuristics to find communities.
Because there is no guarantee of finding a global optimum, MS repeats the heuristic search 100 times for each Markov
time. The variability in each set of 100 solutions is measured with the Variation of Information (VI) [7]. A low value
of the VI for a Markov time indicates that the solutions obtained are similar to each other, we take this similarity as
a sign that there is a robust partition of the network for this Markov time. In Fig. S3 we show that the network A
has a robust partition into 3, 5 and 7 communities.

b. Structured clusters from pre-existing clusters

We present the clustering assignments after using MS to obtain our initial partition into clusters. The pre-existing
and structured cluster results for three clusters (Fig. S4), five clusters (Figs. 2D, S4) and seven clusters (Fig. S6).

A finer clustering into seven groups (see Fig. S6) divides the ligands into three groups: high response (yellow,
green, brown) {BTC, EGF, EPR, FGF-1, FGF-2, HGF, HRG} and lower response (blues) {IGF1, IGF2, INS} and {
NGF-β, PDGF-BB, SCF, VEGF175}. The assignment of cell types is remarkably similar to the five cluster results.
The exception cell lines are: HCC1419 (green to brown), and ZR-75-30 (green to the new seventh cluster). Given this
consistency, we restrict to mechanistic interpretation of the five cluster case.

4. Comparison of implementations

When we employ our method assuming no initial clusterings, the integer optimization is learning the values, 0 or
1, for an array of size c × c × l × l (where c = #cell lines and l = # ligands). When we use an initial clustering,
CPLEX uses the same branch and cut algorithm on an array of size c× l×m, where c = #cell lines, l = #ligands and
m = #clusters, so the array is much smaller for the pre-existing clustering implementation. We show a comparison
of the performance of the two implementations in Fig. S7.
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Appendix C: Models

1. Models of the MAPK pathway

The MAP Kinase pathway has been widely studied. Models have focused on various features of the cascade, such
as its three-tier phosphorylation feedback structure [8, 9]. The activation profile of these kinases is directly related
to cellular decisions and fates [10–13]. The AKT pathway has been modeled by EGF-dependent activation, including
phosphorylation of AKT (pAKT) and its downstream intracellular proteins [14]. Few models of crosstalk between
ERK and AKT exist. One model was created for studying PC12 cells, and they found that AKT acts as a low-pass
filter which decouples the EGF signal [15]. Another model was created to study HEK293 cells in the presence of a
MEK inhibitor; they found crosstalk is reinforced between Ras and PI3K [16]. Another model found that JNK is
regulated by AKT and MAPK feedbacks in these pathway [17]. Chen and co-authors constructed and analyzed an
ErbB model focusing on the receptor dynamics and early activation response of the MAPK and AKT pathways in
response to ligands in A431 or H1666 cells [13]; however their model was unidentifiable, meaning there were an infinite
number of parameter values to fit the data [13]. Weakly activated models of MAPK activation cascades with optimal
amplification under a variety of stimuli were analyzed in [18].
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2. All wiring diagrams

We consider all possible wiring diagrams to describe the interactions between the receptor, the Erk pathway and
the Akt pathway. These can be written as a wiring-diagram where we assume an arrow exists between the ligand L
and receptor R:
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pErk

Ligand

Receptor

pAkt

We first consider all possible network topologies with interactions between the variables R, E and A. There are
three possibilities for the directed interaction from one variable to another: positive (→), negative (a), or no significant
interaction (no arrow). There are six potential directed interactions in the network which give a total of 36 = 729
networks.

Many of these networks can be ruled out. The data shows some response in pERK and pAKT for each stimuli,
therefore we require that both pERK and pAKT have at least one arrow coming into each of these (to ensure a
response). Given this restriction from the data, we can eliminate many networks, for example a network where the
receptor inhibits pAKT and pERK is biologically infeasible. We also do not have dynamic data of the phosphorylated
receptor, therefore we cannot distinguish a network topology that has an arrow feeding back from the phopho-form to
the receptor; thus we fix the interaction from pERK to R and pAKT to R to none (no arrow). All of these restrictions
produce Table III.

Based on these wiring diagrams, we now consider different possible kinetics for each arrow, summarized in the
Table, and described in the next subsection.

3. Construction of mechanistic models

We construct systems of ordinary differential equation models to describe interaction dynamics between the receptor
(R), pAKT (A) and pERK (E). The equation describing the evolution of the phosphorylated receptor is dR/dt =
αL(Rtot − R) − δR. The total amount of receptor, Rtot, is estimated from the receptor abundance data. The
unphosphorylated receptor is given by (Rtot−R). The parameter α determines the rate at which it is phosphorylated
by the ligand dose (L = 1 or 100 ng/ml). The time evolution of pERK and pAKT can be activated by R. There
are two other ordinary differential equations that describe the change in the phosphorylation (in fold change) of A
and E with respect to time, whose left hand side is given by dA/dt and dE/dt. Crosstalk between the ERK and



17

Number of arrows Total number of networks Number of networks we consider
All 34 = 81 15
0

(
4
0

)
· 20 = 1 None

1
(
4
1

)
· 21 = 8 None

2
(
4
2

)
· 22 = 24 3

3
(
4
3

)
· 23 = 32 8

4
(
4
4

)
· 24 = 16 4

TABLE III. In total, we consider 15 network topologies: those that are biologically plausible given the data. There are different
possible kinetics for each model: mass-action or Michaelis-Menten. This gives 15× 2 = 30 possible models. Furthermore, seven
of these include inhibition (a) which we model via either: blocking or removal (described in the text). Accounting for all our
kinetic models gives a total of 44 models.

AKT pathways is encoded by interactions between pERK and pAKT, which can either activate or inhibit the other
pathway. Activation terms are modeled using either mass action or Michaelis-Menten kinetics. We consider two types
of inhibition: blocking through a saturation term or through a removal term using mass action kinetics.

Without data from receptor dynamics, we write the change in phosphorylated receptor (in arbitrary units) as a
function of time as:

dR

dt
= αL(Rtot −R)− δR,

where αL(Rtot−R) describes the fraction of non-phosphorylated receptor that becomes phosphorylated at some rate
proportional to the ligand L, and δ is the rate at which R is de-phosphorylated.

The other two equations, dA/dt and dE/dt, describe the change in the phosphorylation (in fold change) of A and
E with respect to time. These equations change based on the assumed interactions, each different set of equations
describes a different mechanistic model.

We assume that activation is either via mass-action kinetics or Michaelis-Menten kinetics, and that inhibition is
either via removal or blocking. For example, if we consider the model R→ E → A, R a A, we can write this as:

dR

dt
= αL(Rtot −R)− δR, (C1)

dE

dt
=

k1R

Km1 +R
− δE, (C2)

dA

dt
=

k2E

Km2 + E
− k3AR− δA, (C3)

where the blue denotes the Michaelis-Menten term (ignoring the blue is mass-action), and the red term k3AE describes
inhibition of A as a removal interaction. However, when A is inhibiting by blocking, now the red term is written in a
the following form:

dR

dt
= αL(Rtot −R)− δR, (C4)

dE

dt
=

k1R

Km1 +R
− δE, (C5)

dA

dt
=

(
k2E

Km2 + E

)(
k3

k3 +R

)
− δA. (C6)

We summarize the 44 models analyzed in more detail in Fig. S8.

Appendix D: Model identification

1. Estimating the total abundance of receptor, Rtot

Our mechanistic analysis requires us to estimate the total abundance of receptor (both phosphorylated and un-
phosphorylated) prior to the addition of any ligand. We do this based on the Receptor Abundance Data from [19,
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FIG. S8. Mechanistic models of breast cancer cell lines. The name of network model is indexed first by whether it is a
two arrow (A), three arrow (B), or four arrow (C) model. The second index assigns a number to each network topology.
Each network can be further subdivided to describe a model with mass action kinetics (1 in third index) and a model with
Michaelis-Menten kinetics (2 in third index). Any network with inhibition (a) has 4 models considered: mass action removal
(1 in third index), Michaelis-Menten removal (2 in third index), mass action blocking (1b in third index), or Michaelis-Menten
removal (2b in third index). Stars next to the model name are globally structurally identifiable models, all other models are
locally structurally identifiable.

Figure 1]. Each ligand has one or more receptors associated to it, as shown in Table IV.
Each experiment involves a cell line and a ligand. For each cell line/ligand pair, we estimate the receptor abundance

by averaging the receptor abundances for that cell line, for each of the receptors associated to the ligand. We do this
averaging over all receptor, cell line pairs for which we have data.

We then estimate the receptor abundance for a cluster by averaging the values obtained above for each cell line,
ligand pair that is present in the cluster.

2. Identifiability analysis

Before estimating model parameters from the data, we determine whether a model is identifiable. Models that
are globally identifiable have parameters that are uniquely identifiable under ideal data conditions. Models that
are locally identifiability have a finite number of indistinguishable parameter values. Since we only have time-course
measurements for A and E, we use a differential algebra approach for eliminating the species R. We test identifiability
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Ligand Associated Receptors

BTC ErbB1, ErbB4
EGF ErbB1
EPR ErbB1, ErbB4
FGF-1 FGFR-1, FGFR-2, FGFR-3, FGFR-4
FGF-2 FGFR-1, FGFR-2, FGFR-3, FGFR-4
HGF cMET
HRG ErbB4
IGF-1 IGF1R
IGF-2 IGF1R, IGF2R
INS InsR
NGF-beta TrkA
PDGF-BB PDGFRa, PDGFRb
SCF c-Kit
VEGF165 VEGFR-1, VEGFR-2, VEGFR-3

TABLE IV. Receptors associated to each ligand

using the algorithm DAISY [20]. All of our models are locally, if not globally identifiable given the experimental data.
Globally identifiable models are denoted by brown boxes in Fig. S8.

3. Parameter estimation

We estimate parameters using the average time-course for each cluster. The model simulated at a parameter vector
θ gives a vector of model predictions of E and A at dose L and time point tj and data D is the set of normalised

measurements of Ê and Â. The squared sum of errors of the model with parameter set θ is:

ED(θ) =
∑

L∈ doses

∑
tj

(
Âij(tj ; L)−Aij(tj ; θ, L)

)2
+
(
Êij(tj ; L)− Eij(tj ; θ, L)

)2
.

We seek the parameter set θ∗ that minimises the discrepancy between the model and the data:

θ∗ = argmin
θ

ED(θ), subject to θ∗ ≥ 0. (D1)

We find θ∗ using the Squeeze-and-Breathe (SB) evolutionary optimisation algorithm [21]. Given an initial estimate
of the distribution of the parameter values (a ‘prior’). SB generates a large number of parameter sets using Monte-
Carlo simulation. These points are used as the starting guess for a local minimisation of ED(θ) using a derivative
free method such as Nelder-Mead [22]. The local minima are ranked and the best points are used to recompute
the distribution of the parameters (the ‘posterior’). These new posteriors are used as priors in a new iteration of
the algorithm, which again looks for new local minima and keeps the best. This process goes on until the error
function converges. One of the key advantages of SB is that it can handle situations where little is known about the
parameter values by efficiently exploring the parameter space, even venturing to regions outside the original prior (for
this reason the posteriors are not true posteriors in the Bayesian sense). Figure S9 shows an example for the type of
output produced by SB.
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FIG. S9. Example output of the Squeeze and Breathe parameter estimation algorithm. A: Sequence of posteriors for each
parameter after each iteration. B: Convergence of the objective function. The plot shows the error of best parameter sets after
each iteration. C: Final distribution of the parameters after convergence. The red star marks the value of the parameter with
the lowest error. D and E: Time course of the model with the best parameters for one cluster.

4. Model selection

We perform model selection on the 40 models and 5 clusters using the Akaike Information Criterion with a correction
for finite sample size (AICc) [23]. For a given model i with pi parameters,

AICci = n ln(nRSSi) + 2pi +
2pi(pi + 1)

n− (pi + 1)
,

where n is the number of observations and RSSi is the residual sum of squares of the model. The AICc balances how
well the model fits the data with the complexity of the model (the number of parameter values). The lowest AICci
is the preferable model. Figure S10 shows the AIC scores of the models for each cluster, ranked from first (best) to
tenth.
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