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Abstract There has been recent interest in creating an efficient microbial production route for 3-
hydroxypropionic acid, an important platform chemical. We develop and solve a mathematical model for
the time-dependent metabolite concentrations in the malonyl-CoA pathway for 3-hydroxypropionic acid
production in microbes, using a combination of numerical and asymptotic methods. This allows us to
identify the most important targets for enzyme regulation therein under conditions of plentiful and sparse
pyruvate, and to quantify their relative importance. In our model, we account for sinks of acetyl-CoA
and malonyl-CoA to, for example, the citric acid cycle and fatty acid biosynthesis, respectively. Notably,
in the plentiful pyruvate case we determine that there is a bifurcation in the asymptotic structure of
the system, the crossing of which corresponds to a significant increase in 3-hydroxypropionic acid pro-
duction. Moreover, we deduce that the most significant increases to 3-hydroxypropionic acid production
can be obtained by up-regulating two specific enzymes in tandem, as the inherent nonlinearity of the
system means that a solo up-regulation of either does not result in large increases in production. The
types of issue arising here are prevalent in synthetic biology applications and it is hoped that the system
considered provides an instructive exemplar for broader applications.

Keywords multiscale · bifurcation · 3HP · kinetic model · synthetic biology · microbial production
route
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1 Introduction

3-hydroxypropionic acid (3HP) is a platform chemical which can be converted into several valuable
chemicals, for example acrylic acid and acrylamide [26]. There has been significant recent interest in
introducing metabolic pathways to microorganisms in order to produce 3HP at industrially viable levels
[5, 6, 7, 15, 21, 25]. The manipulation of metabolic pathways in microorganisms is an exciting avenue of
research arising in synthetic biology. As enzyme production within an organism is genetically controlled,
introducing specific genes allows an organism to produce chemicals that it could not previously. One
of the most successful examples of a chemical synthesised by this procedure is amorpha-4,11-diene (a
pre-cursor to artemisinin, an antimalarial) from Escherichia coli [20]. It can be expensive and time-
consuming to introduce a new chemical pathway to a microorganism and optimize the production of a
given metabolite. Moreover, adding and blocking pathways can have unintended consequences for the
metabolism of the microorganism, and the experimental parameter space is extensive. Mathematical
modelling allows systematic progress to be made in understanding a pathway, and can significantly
reduce the experimental parameter space that needs to be searched.
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Fig. 1 A schematic network diagram for the metabolic pathway we consider in this paper, from pyruvate to 3HP via
malonyl CoA. The arrows denote the direction of the reactions, and are labelled by their respective catalytic constants
(also referred to as turnover numbers). We only track the metabolites included in this figure and, specifically, not any
involved in the acetyl-CoA or malonyl-CoA sinks. The subscript for a given enzyme Ei (for i = 1, . . . , 5) corresponds
to the subscript of the related maximal reaction rate. The exception here is for the reversible reaction between malonic
semialdehyde and 3HP, where both reactions use the enzyme E4. Hence, E1 corresponds to the pyruvate dehydrogenase
complex (EC 1.2.4.1, EC 2.3.1.12, and EC 1.8.1.4), E2 corresponds to acetyl-CoA carboxylase (EC 6.4.1.2), E3 corresponds
to malonyl CoA reductase (EC 1.2.1.75), E4 corresponds to 3-hydroxypropionate dehydrogenase (EC 1.1.1.298), and E5

corresponds to malonate semialdehyde dehydrogenase (acetylating) (EC 1.2.1.18).

In [19], three thermodynamically feasible pathways from pyruvate to 3HP are suggested. In previous
work, we investigated 3HP production via the β-alanine route using mathematical modelling [9]. Here, we
are interested in mathematically modelling 3HP production via the malonyl coenzyme A (malonyl-CoA)
route, with the aim of determining the most appropriate enzyme targets for regulation. We consider the
reactions

Pyruvate
k1−−→ Acetyl-CoA, (1a)

Acetyl-CoA
k2−−→ Malonyl-CoA, (1b)

Malonyl-CoA
k3−−→ Malonic semialdehyde, (1c)

Malonic semialdehyde
k4−−⇀↽−−−
k−4

3HP, (1d)

Malonic semialdehyde
k5−−→ Acetyl-CoA, (1e)

Acetyl-CoA
A−−→ Sink, (1f)

Malonyl-CoA
B−−→ Sink, (1g)

where (1f) and (1g) represent the loss of acetyl-CoA and malonyl-CoA to other metabolic pathways, such
as the citric acid cycle or fatty acid biosynthesis. We do not track any metabolites once they reach the
sink. We show a schematic representation of this pathway in Figure 1.

Our general aim is to determine how the system behaves as a function of its parameters, with our
main goal being to understand how to maximize 3HP production while minimizing the levels of malonic
semialdehyde, a toxic intermediate, where possible. To derive and solve our mathematical model, we make
several modelling assumptions. We consider a system that is well mixed and thus spatially independent.
This means that we are able to formulate a mathematical system in terms of ordinary differential equa-
tions in time, rather than partial differential equations in time and space. These differential equations
require initial conditions, and we consider the case where pyruvate is instantaneously introduced to a
system containing all of the relevant enzymes, but none of the intermediate metabolites. This assumption
facilitates a mathematical analysis by reducing the number of unknown parameters in the system. More-
over, we follow the approach of [8, 9] and investigate two simplified cases of pyruvate replenishment,
which model the extremes of the actual time-dependent pyruvate replenishment. The first of these is
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continuous pyruvate replenishment, where the pyruvate is held at a constant concentration, which could
represent a continuous culture, and the second is no pyruvate replenishment which could represent a
batch culture. Understanding these extreme cases allows us to determine the key targets for enzyme reg-
ulation. Finally, we assume that the formation rate of enzyme complex production is much quicker than
the rate of substrate consumption, and thus the reaction rates are governed by Michaelis–Menten-type
laws, the specific form of which we obtain from the literature.

To analyse the nonlinear governing equations that we derive, we use a combination of numerical
and asymptotic methods. The latter enhances our physical insight into the underlying system and allow
us to derive closed-form expressions for how the metabolite concentrations vary as functions of the
experimental parameters. Asymptotic techniques (see, for example, [11, 14]) allow us to largely bypass
the issue of uncertainty in the parameters, as deriving analytic approximations of the dynamic metabolite
concentrations only requires an understanding of the relative order of magnitude of each experimental
parameter. Moreover, the nonlinear nature of the system means that a broad understanding of the system
behaviour cannot be obtained by simply varying one parameter at a time and collecting system outputs,
so asymptotic solutions allow for a quicker and more comprehensive understanding of the system. We
note that there is a bifurcation in the asymptotic structure of the system for the case of continuous
pyruvate replenishment, and we investigate this in terms of our goal of maximising 3HP production.

In §2, we introduce a mathematical model to describe the reaction kinetics. We solve this system
numerically and asymptotically, in §3 for the case with a continuous replenishment of pyruvate, and in
§4 for the case with no replenishment of pyruvate. Finally, in §5 we discuss our results.

2 Model description

The method we use to set-up our governing equations is similar to that of [8], but for a different metabolic
network. Thus, to describe the dynamics of the network from pyruvate to 3HP, shown in Figure 1,
we obtain corresponding Michaelis–Menten-type reaction velocities from the literature. The resulting
dimensional governing system is

d[S1]

dτ
= − k1E1K

i
1[S1]

Ki
1

(
[S1] +KM

1

)
+ [S1][S2]

, (2a)

d[S2]

dτ
=

k1E1K
i
1[S1]
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1

(
[S1] +KM

1

)
+ [S1][S2]

− k2E2[S2]

[S2] +KM
2

+
k5E5[S4]

[S4] +KM
5

−A[S2], (2b)

d[S3]

dτ
=

k2E2[S2]

[S2] +KM
2

− k3E3[S3]

[S3] +KM
3

−B[S3], (2c)

d[S4]
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=

k3E3[S3]

[S3] +KM
3

− k4E4[S4]

[S4] +KM
4

+
k−4E4[P ]

[P ] +KM
−4

− k5E5[S4]

[S4] +KM
5

, (2d)

d[P ]

dτ
=

k4E4[S4]

[S4] +KM
4

− k−4E4[P ]

[P ] +KM
−4

, (2e)

where each variable is defined in Table 1. We will consider two extreme cases of the system (2), cor-
responding to continuous and no replenishment of pyruvate, respectively, noting that the reality will
lie somewhere between these two extremes. In (2), most of the reaction velocity terms are in standard
Michaelis–Menten form, and we obtain the kinetic parameters for these reaction velocities from the cor-
responding references in Table 2. A lower-case k represents a catalytic constant, and an upper-case K
represents a Michaelis (or Michaelis-type) constant. We include a modified Michaelis–Menten term for the
reaction (1a), which encompasses the uncompetitive inhibitory effect that acetyl-CoA has with pyruvate
[17]. Therefore, we use the standard form for uncompetitive inhibition for this reaction velocity [29]. The
reactions (1f) and (1g) correspond to the aggregated loss of acetyl-CoA and malonyl-CoA, respectively,
to other metabolic pathways present in the microorganism, such as the citric acid cycle or fatty acid
biosynthesis. We model each of these aggregated losses as a sink with first-order reaction kinetics, using
the parameters A and B to represent the strength of each sink for acetyl-CoA and malonyl-CoA, respec-
tively. To get around the issue that these parameters are unknown, we will later consider a distinguished
asymptotic limit (in a sense to be made formal later) where both of these sink reactions balance the
other reactions. The parameters Ei, where i = 1, . . . , 5, denote the initial enzyme concentrations for the
reactions they control, noting that the reversible reaction with maximal reaction rates k4 and k−4 are
both controlled by E4.
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Original variable Description Dimensionless variable

[S1] Pyruvate [S1] = S0S1

[S2] Acetyl-CoA [S2] = S0S2

[S3] Malonyl-CoA [S3] = S0S3

[S4] Malonic semialdehyde [S4] = S0S4

[P ] 3HP [P ] = S0P
τ Time τ = (S0/k1E1)t

Table 1 Dimensional and dimensionless variable definitions.

Dimensional Organism Range Dimensionless

k1 = 15 s−1 Lactococcus lactis [24] 4 – 30 s−1 [17, 18, 24]
k2 = 12 s−1 Acinetobacter baumannii [2] 12 – 30 s−1 [2, 12] k̄2 = k2E2/εk1E1 = 11.4
k3 = 28 s−1 Sulfolobus tokodaii [1] 3 – 50 s−1 [1, 13] k̄3 = k3E3/k1E1 = 0.19
k4 = 100 s−1 Nitrosopumilus maritimus [22] 100 – 120 s−1 [16, 22] k̄4 = k4E4/k1E1 = 0.67
k−4 = 2.1 s−1 Nitrosopumilus maritimus [22] 0.2 – 2.1 s−1 [22, 28] k̄−4 = k−4E4/εk1E1 = 2
k5 = 20 s−1 Pseudomonas fluorescens [27] 9 – 20 s−1 [3, 27] k̄5 = k5E5/k1E1 = 0.13
KM

1 = 1 mM Lactococcus lactis [24] 0.13 – 1 mM [17, 23, 24] K̄M
1 = KM

1 /S0 = 0.5
Ki

1 = 0.014 mM Saccharomyces cerevisiae [17] 0.014 – 0.018 mM [17, 23] ε = Ki
1/S0 = 0.007

KM
2 = 0.01 mM Acinetobacter baumannii [2] 0.01 – 0.06 mM [2, 12] K̄M

2 = KM
2 /εS0 = 0.71

KM
3 = 0.04 mM Sulfolobus tokodaii [1] 0.03 – 0.1 mM [1, 13] K̄M

3 = KM
3 /εS0 = 2.86

KM
4 = 0.11 mM Nitrosopumilus maritimus [22] 0.07 – 0.11 mM [16, 22] K̄M

4 = KM
4 /εS0 = 7.86

KM
−4 = 7.9 mM Nitrosopumilus maritimus [22] 7.9 – 17 mM [22, 28] K̄M

−4 = KM
−4/S0 = 3.95

KM
5 = 0.03 mM Pseudomonas fluorescens [27] 0.03 – 0.06 mM [3, 27] K̄M

5 = KM
5 /εS0 = 2.14

A [s−1] Ā = AS0/k1E1 = ε
B [s−1] B̄ = BS0/k1E1 = 1/ε

Table 2 Parameter values. To give an idea of the range of these parameter values, we provide data from several organisms.
As we use an asymptotic analysis, it is the relative magnitude of these values, rather than their exact values, which are
important. As discussed in the main text, we use the value S0 = 2 mM, assume that Ei/E1 = 0.1 for i ∈ {2, ...5}, and we
scale extreme parameter ratios with the small dimensionless parameter ε, defined as the ratio of Ki

1 and S0. As there is a
distinguished asymptotic limit when Ā = O(ε) and B̄ = O(1/ε), we use these scalings in our asymptotic analysis, choosing
Ā = ε and B̄ = 1/ε in our simulations.

The initial levels of each metabolite present in the system are relatively unknown. Thus, we make
a modelling choice to reduce the number of uncertain parameters in the system to facilitate a sim-
plified analysis of the system. We use initial conditions corresponding to the case in which pyruvate
is instantaneously introduced to a system containing all of the relevant enzymes, but none of the in-
termediate metabolites. That is, we use [S1](0) = S0, where S0 represents the prescribed initial or
typical level of pyruvate present in the system, with none of remaining metabolites initially present:
[S2](0) = [S3](0) = [S4](0) = [P ](0) = 0.

We now nondimensionalize the system and exploit various small dimensionless parameter ratios to
introduce a small parameter into the system, thus allowing us to write the system in terms of O(1)
constants and one small parameter to quantify the relative size of each term. This is useful because
kinetic parameters can vary between different environments, as shown in Table 2. To side-step the issues
associated with this parameter uncertainty, we seek to quantitatively understand how the system behaves
as these parameters vary by interrogating the system using an asymptotic analysis (see, for example,
[11, 14]).

We provide our nondimensional variable scalings in Table 1. Essentially, we scale each dimensional
metabolite concentration with S0, the initial concentration of pyruvate, and we scale time with S0/(k1E1),
the characteristic time of the first reaction, which occurs between pyruvate and acetyl-CoA. To form the
dimensionless parameters in the system, we first scale each rate constant with the rate constant of the first
reaction, each Michaelis constant with the initial pyruvate concentration, and each enzyme concentration
with the concentration of the first enzyme. Then, using the typical dimensional values in Table 2, we
note that the parameter ratio ε := Ki

1/S0 = 7 × 10−3 is very small. Hence we scale the other extreme
parameter ratios in our system with the small dimensionless parameter ε, allowing us to write each
additional dimensionless parameter as cεj , where c is an O(1) parameter (in practice, we take this to be
between ε1/2 and ε−1/2), and j is an integer. This allows us to quantify the ‘smallness’ of each parameter
while allowing each parameter c to vary over approximately three orders of magnitude, yielding a system
in terms of a small parameter. We take the typical concentration of pyruvate within a microorganism
to be S0 = 2 mM, and we assume that Ei/E1 = 0.1 for i ∈ {2, ...5}. We make this assumption since we
expect the levels of pyruvate dehydrogenase complex (PDC), corresponding to E1, to be more abundant
than the other enzymes in this pathway since PDC is fundamental to cellular respiration in that it links
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glycolysis to the citric acid cycle. However, we emphasize that different values of Ei can be considered
if required by varying the appropriate dimensionless parameter. The resultant dimensionless parameters
we use in our system are given in Table 2.

The dimensionless system is then given by
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dt
= − εS1

ε
(
S1 + K̄M

1

)
+ S1S2

, (3a)

dS2

dt
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ε
(
S1 + K̄M

1

)
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− εk̄2S2

S2 + εK̄M
2

+
k̄5S4

S4 + εK̄M
5

− ĀS2, (3b)
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3

− B̄S3, (3c)

dS4

dt
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k̄3S3

S3 + εK̄M
3

− k̄4S4

S4 + εK̄M
4

+
εk̄−4P
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−4

− k̄5S4

S4 + εK̄M
5
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dP

dt
=

k̄4S4

S4 + εK̄M
4

− εk̄−4P

P + K̄M
−4

, (3e)

where ε is a small parameter. The dimensionless initial conditions are: S1(0) = 1, S2(0) = 0, S3(0) = 0,
S4(0) = 0, and P (0) = 0.

We emphasize that the asymptotic sizes of Ā and B̄ are not currently set, and that we have not yet
scaled our dependent variables with ε. As we are not able to accurately estimate the typical sizes of Ā
and B̄, we instead consider the distinguished asymptotic limit in which they balance the core reaction
velocities over the same timescale; from pyruvate to acetyl-CoA, from acetyl-CoA to malonyl-CoA, from
malonyl-CoA to malonic semialdehyde, and from malonic semialdehyde to 3HP. The reaction velocity
from pyruvate to acetyl-CoA has asymptotic size O(min(1, S1, ε/S2)). The reaction velocity from acetyl-
CoA to malonyl-CoA has asymptotic size O(min(ε, S2)). Balancing these two reaction velocities, and
noting that we start with S1 = O(1), we may deduce that the size of these reaction velocities must be
of O(ε), and hence we obtain the scaling S2 = O(1). For these reaction velocities to balance with ĀS2,
we must consider the distinguished limit Ā = O(ε). Balancing these terms with the reaction velocity
from malonyl-CoA to malonic semialdehyde, with asymptotic size O(min(1, S3/ε)), we obtain the scaling
S3 = O(ε2). Then, the balance with B̄S3 yields the distinguished limit B̄ = O(1/ε). Therefore, we use
the scalings Ā = εÂ and B̄ = B̂/ε, where Â, B̂ = O(1). This appears to be the only distinguished limit
of interest.

We now solve this system for two different cases of pyruvate replenishment. The first is continuous
pyruvate replenishment, where the pyruvate dynamics are not governed by (3a), and instead we impose
S1(t) ≡ 1. The second is no pyruvate replenishment, and (3a) does hold. We will deduce that the
two systems are equivalent for t = O(1), and only diverge when t = O(1/ε). In both cases, we are
interested in determining how to maximise 3HP production. For the continuous replenishment case, we
are also interested in trying to minimize the long-time levels of malonic semialdehyde, a toxic intermediate
compound, present in the cell over a long timescale. As the no-replenishment-of-pyruvate case eventually
tends to no metabolites in the system, the long-time levels of malonic semialdehyde in that case are
trivial. We now consider the continuous pyruvate replenishment case.

3 Continuous replenishment of pyruvate

We first consider the case where the pyruvate is continuously replenished, modelling the bacteria being
harvested in a continuous culture. A numerical simulation of the system (3b–e) with S1(t) ≡ 1 shows
that the 3HP concentration is bounded above as t → ∞ (Figure 2). For our goal of maximising 3HP
production, we would like to understand how to improve the 3HP production by regulating the enzymes
in the system. In this section we solve the nonlinear system (3b–e) with S1(t) ≡ 1 through an asymptotic
analysis, exploiting the small parameter ε. Our analysis reveals that there is a bifurcation in the asymp-
totic structure for the large-time behaviour of 3HP with important implications for 3HP production.
Our results allow us to quantify this bifurcation in terms of the system parameters, providing physical
insight and suggesting which reactions should be the key targets for genetic manipulation.
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Fig. 2 The dynamics of each metabolite in the system when pyruvate is continually replenished. The solid grey lines are
the numerical solutions from the system (3b–e) with S1 ≡ 1, the dashed blue lines are the early-time asymptotic results
from (6), and the dotted black lines are the late-time results, where we use the asymptotic results (11), (12), and (15)
for S3, S4, and P , respectively. These asymptotic results yield a single reduced ODE for S2, given in (9), and it is the
numerical solution to this that we plot for S2 as a dotted black line. We use the parameter values given in Table 2.

3.1 Asymptotic structure

We now discuss the asymptotic structure of the continuous-replenishment case, with reference to the
metabolic network shown in Figure 1. In this case, there are two important timescales in the system:
early time, where t = O(ε), and late time, where t = O(1/ε). Over the early timescale, the levels
of malonyl-CoA and malonic semialdehyde reach a steady and quasi-steady state, respectively. The
remaining metabolite concentrations increase through this early timescale, with a change in the power
law governing their growth. Over the late timescale, the levels of acetyl-CoA reach a steady state, but
the behaviour of the 3HP depends on the system parameters. There is a bifurcation in the asymptotic
structure for the large-time behaviour of 3HP, the levels of which are bounded above unless some critical
parameter ratio is reached. We investigate this bifurcation when we consider the late-time behaviour.

3.2 Early time: t = O(ε)

We start our analysis over the distinguished timescale t = O(ε), and thus we make the scaling t = εt̂.
By balancing reaction velocities, we find that the appropriate scalings for the dependent variables over
this timescale are (S2, S3, S4, P ) = (εŜ2, ε

2Ŝ3, ε
2Ŝ4, ε

2P̂ ), which converts the system (3b–e) into

dŜ2

dt̂
=

1

1 + K̄M
1 + Ŝ2

− εk̄2Ŝ2

Ŝ2 + K̄M
2

+
εk̄5Ŝ4

εŜ4 + K̄M
5

− ε2ÂŜ2, (4a)
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dŜ3

dt̂
=

k̄2Ŝ2
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, (4c)
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The leading-order version of (4) is

dŜ2

dt̂
=
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1 + K̄M
1 + Ŝ2

,
dŜ3

dt̂
=

k̄2Ŝ2

Ŝ2 + K̄M
2

−
(
v̄3 + B̂

)
Ŝ3,

dŜ4

dt̂
= v̄3Ŝ3 − (v̄4 + v̄5)Ŝ4,

dP̂

dt̂
= v̄4Ŝ4,

(5)

where vi = ki/K
M
i for i ∈ {3, 4,−4, 5}. We may solve (5) to obtain

Ŝ2(t̂) =
(

2t̂+
(
1 + K̄M

1

)2)1/2

−
(
1 + K̄M

1

)
, (6a)

Ŝ3(t̂) = k̄2

∫ t̂

0

Ŝ2(s)

Ŝ2(s) + K̄M
2

e(v̄3+B̂)(s−t̂) ds, (6b)

Ŝ4(t̂) =
k̄2v̄3

v̄3 + B̂ − v̄4 − v̄5

∫ t̂

0

Ŝ2(s)

Ŝ2(s) + K̄M
2

(
e(v̄4+v̄5)(s−t̂) − e(v̄3+B̂)(s−t̂)

)
ds, (6c)

P̂ (t̂) =
k̄2v̄3v̄4

v̄3 + B̂ − v̄4 − v̄5

∫ t̂

0

Ŝ2(s)

Ŝ2(s) + K̄M
2

(
1− e(v̄4+v̄5)(s−t̂)

v̄4 + v̄5
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v̄3 + B̂

)
ds. (6d)

We see that the early-time results (6) (dashed black lines) agree very well with the numerical results
(solid grey lines) when t = O(ε) = O(10−2) in Figure 2. However, the metabolite concentrations stray
from these asymptotic results (with the exception of Ŝ3) as t becomes larger than of O(ε). This is because
new terms in the system become of leading order, and so we must explore a new asymptotic region to
understand the system fully. We investigate this in the next section. As such, it is helpful to state the
large-t̂ limits of the solutions (6), as these will allow us to match appropriately into the next timescale.
In this limit, we obtain the following expressions

Ŝ2 ∼
√

2t̂, Ŝ3 ∼
k̄2

v̄3 + B̂
, Ŝ4 ∼

k̄2v̄3

(v̄4 + v̄5)
(
v̄3 + B̂

) , P̂ ∼ k̄2v̄3v̄4t̂

(v̄4 + v̄5)
(
v̄3 + B̂

) as t̂→∞, (7)

and hence we see that Ŝ3 and Ŝ4 reach a steady state over t = O(ε), while Ŝ2 and P̂ continue to grow over
the same timescale. In the next subsection, we consider the remaining important timescale t = O(1/ε).

3.3 Late time: t = O(1/ε)

The second and final distinguished timescale for continuous replenishment is t = O(1/ε), so we now use
the scaling t = T/ε. This is the timescale over which there is a balance between the source from pyruvate
and the sinks from acetyl-CoA and malonyl-CoA. Over this timescale S2 and P are both of O(1), and
the scalings for the remaining metabolites are still (S3, S4) = (ε2Ŝ3, ε

2Ŝ4), which follow from (7), the
large-time limits of the early-time solutions. Using the scalings mentioned above, we obtain the late-time
version of (3b–e):
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εŜ3 + K̄M
3

− B̂Ŝ3, (8b)

ε2
dŜ4

dT
=

k̄3Ŝ3

εŜ3 + K̄M
3

− k̄4Ŝ4

εŜ4 + K̄M
4

+
k̄−4P

P + K̄M
−4

− k̄5Ŝ4

εŜ4 + K̄M
5

, (8c)
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dP

dT
=

k̄4Ŝ4

εŜ4 + K̄M
4

− k̄−4P

P + K̄M
−4

. (8d)

From (8), we obtain the leading-order differential-algebraic system, given by

dS2

dT
=

1

S2
− k̄2 + v̄5S̃4 − ÂS2, (9a)

dP

dT
= v̄4Ŝ4 −

k̄−4P

P + K̄M
−4

, (9b)

0 = k̄2 −
(
v̄3 + B̂

)
S̃3, (9c)

0 = v̄3Ŝ3 − v̄4Ŝ4 +
k̄−4P

P + K̄M
−4

− v̄5Ŝ4. (9d)

The ‘initial’ conditions of the system are obtained by matching with the large-time results of the early-
time system (7), to yield

S2(0) = 0, Ŝ3(0) =
k̄2

v̄3 + B̂
, Ŝ4(0) =

k̄2v̄3

(v̄4 + v̄5)
(
v̄3 + B̂

) , P (0) = 0. (10)

From (9c), we can immediately deduce that S̃3 is constant over this timescale. That is, over the late
timescale, S̃3 takes the constant value

S̃3 =
k̄2

v̄3 + B̂
. (11)

From (9)–(11), we can write S̃4 in terms of P as follows

S̃4 =
1

v̄4 + v̄5

(
k̄2v̄3

v̄3 + B̂
+

k̄−4P

P + K̄M
−4

)
. (12)

Substituting (12) into (9), we obtain the following closed ODE for P (T ):

dP

dT
=

k̄−4v̄5

v̄4 + v̄5

(
k̄4

k̄∗
− P

P + K̄M
−4

)
, (13)

where the critical parameter k̄∗ is defined as

k̄∗ =
K̄M

4 k̄−4v̄5

(
v̄3 + B̂

)
k̄2v̄3

, (14)

and we shall justify shortly the critical nature of k̄∗. The differential equation (13) is solved implicitly by

k̄−4v̄5

(
k̄4 − k̄∗

)2
k̄∗ (v̄4 + v̄5)

T =
(
k̄4 − k̄∗

)
P − k̄∗K̄M

−4 log

(
1 +

k̄4 − k̄∗

k̄4K̄M
−4

P

)
. (15)

The asymptotic late-time results (11), (12), and (15) (dotted black lines) agree well with the numeri-
cal results (solid grey lines) when t = O(1/ε) = O(102) in Figure 2. The remaining nonlinear differential
equation (9a) decouples from the rest of the system, and solving this equation is not required to un-
derstand the dynamics of the rest of the system. However, we note that the remaining equation will
be important when there is no replenishment of pyruvate, which we consider in the next section. To
understand the dynamics of S2, (9a) must be solved numerically, and the solution to this agrees well
with the full numerical solution of S2 in Figure 2.

Given that the argument of the logarithm in (15) will vanish for some positive value of P if and only
if k̄4 < k̄∗, we may deduce that the large-time behaviour of P has a critical dependence on the sign of
k̄4 − k̄∗. Thus, k̄∗ is the bifurcation point for the parameter k̄4, in terms of changing the asymptotic
structure of the solution. Specifically, when k̄4 < k̄∗, corresponding to a weak reaction from malonic
semialdehyde to 3HP, we obtain the bounded large-time behaviour

P →
k̄4K̄

M
−4

k̄∗ − k̄4
as T →∞, (16a)
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Fig. 3 The large-time limits of (a) 3HP production and (b) malonic semialdehyde varying over the critical parameter
k̄4 = k̄∗. The grey lines denote the asymptotic predictions (from (16) and (18)), and the black crosses denote numerical
results (solving (3b–e) with S1 ≡ 1). The subcritical and supercritical regimes are to the left and right, respectively, of the
dashed lines in each subfigure. To obtain the large-time numerical limits we run the simulations until t = tend := 1012; we
approximate limt→∞ dP/dt ≈ P (tend)/tend and limt→∞ S4 ≈ S4(tend). Apart from k̄4, which we vary in this figure, we use
the parameter values given in Table 2, and these correspond to an asymptotic value of the critical parameter k̄∗ ≈ 1.3951.

however when k̄4 > k̄∗, corresponding to a strong reaction from malonic semialdehyde to 3HP, we obtain
the unbounded large-time behaviour

P ∼
k̄2v̄3

(
k̄4 − k̄∗

)
K̄M

4

(
v̄3 + B̂

)
(v̄4 + v̄5)

T as T →∞. (16b)

We show this bifurcation behaviour in Figure 3a, including a comparison between the numerical and
asymptotic results. We see that our numerical results show the bifurcation behaviour predicted by our
asymptotic results. Moreover, our asymptotic results are good predictions of both the location of the
bifurcation and the long-time behaviour.

It is of mathematical interest to briefly note that when k̄4 = k̄∗, the solution to (13) is

P = K̄M
−4

[(
1 +

2v̄−4v̄5T

v̄4 + v̄5

)1/2

− 1

]
as T →∞. (17)

Hence, as k̄4 passes through the bifurcation point, the long-time behaviour of P is to increase with the
square-root of time.

From (12), we see that S̃4 will tend to a constant in the far-field; for k̄4 < k̄∗, we have the subcritical
regime

S̃4 →
k̄2v̄3

v̄5

(
v̄3 + B̂

) as T →∞, (18a)

and for k̄4 > k̄∗, we have the supercritical regime

S̃4 →
1

v̄4 + v̄5

(
k̄2v̄3

v̄3 + B̂
+ k̄−4

)
as T →∞. (18b)

We show this bifurcating behaviour in Figure 3b, including a comparison between the numerical and
asymptotic results. As before, we see that our numerical results display the bifurcation behaviour pre-
dicted by our asymptotic results, and that the latter are a good predictor of the bifurcation behaviour.
Recall that our goal for the continuous-pyruvate-replenishment case is to maximize 3HP production
while minimizing the large-time levels of malonic semialdehyde, the latter being a toxic intermediate
compound. Therefore, as large-time 3HP production is zero and malonic semialdehyde levels are higher
in the subcritical regime, Figure 3b tells us immediately that the subcritical regime is a bad regime for
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industrially viable 3HP production, and that the parameter regime k̄4 > k̄∗ is much better for our goal.
From Table 2 we note that the critical parameter k̄∗ ≈ 1.3951, but k̄4 = 0.67. Therefore the simulations
in Figure 2 occur in the subcritical regime, as can be deduced by noting that the 3HP concentration is
bounded above. Our model predicts that one can achieve large gains in 3HP production if one is able to
move into the supercritical regime.

3.4 Physical implications

To frame our discussion around parameters that can be varied experimentally (essentially the levels of
each enzyme, regulated by the over- or under-expression of the genes that control their production), we
re-write our results in terms of dimensional quantities. In dimensional terms, the bifurcation occurs when
k4 = k∗, where

k∗ =
k−4k5K

M
4 E5

k2KM
5 E2

(
1 +

BKM
3

k3E3

)
. (19)

From (19), we see that an up-regulation of E2 and a down-regulation of E5 have the most significant
effect on lowering k∗, the critical bifurcation parameter, and thus hopefully moving into the supercritical
regime for significantly increased 3HP production. Additionally, an up-regulation of E3 will also have
an effect in lowering k∗, but with diminishing returns. Notably, our model suggests that regulation of
neither E1 nor E4 has a significant effect on this critical bifurcation parameter (see below for a potential
important role for E4, however).

The supercritical regime occurs when k4 > k∗, and this corresponds to a non-zero large-time produc-
tion of 3HP, which is the target if we are to attain the goal of industrially viable 3HP production. In this
case, the dimensional large-time production of 3HP is

d[P ]

dτ
∼
k2E2

(
1− k−4k5K

M
4 E5

k2k4KM
5 E2

(
1 +

BKM
3

k3E3

))
(

1 +
BKM

3

k3E3

)(
1 +

k5K
M
4 E5

k4KM
5 E4

) , (20)

and the dimensional large-time levels of malonic semialdehyde in the system are

[S4] ∼
k2K

M
4 E2

(
1 +

k−4E4

k2E2

(
1 +

BKM
3

k3E3

))
k4E4

(
1 +

BKM
3

k3E3

)(
1 +

k5K
M
4 E5

k4KM
5 E4

) . (21)

As our goal for the continuous-replenishment case is to maximize 3HP production while minimizing the
large-time levels of malonic semialdehyde, we consider the ratio of the large-time levels of d[P ]/dτ to
[S4], to obtain

d[P ]
dτ

[S4]
∼
k2k4E2E4

(
1− k−4k5K

M
4 E5

k2k4KM
5 E2

(
1 +

BKM
3

k3E3

))
KM

4

(
k2E2 + k−4E4

(
1 +

BKM
3

k3E3

)) . (22)

While (22) appears to have a convoluted form, it provides a quantitative value that we wish to maximize.
In particular, we are able to see that the most significant gains can be made by up-regulating E2 and
E4 in tandem. Our model suggests that an increase in only one of these enzymes will increase the ratio
(22), but with diminishing returns (Figure 4). However, increasing both enzymes will result in significant
increases in the 3HP production to malonic semialdehyde ratio (Figure 4). Additionally, we note that
3HP production can also be increased by up-regulating E3 and down-regulating E5, though this will
have diminishing returns. We emphasize that maximising (22) should not be considered a definitive
metric, since the toxic effect of malonic semialdehyde ([S4]) will have its own nonlinear effects for which
to account. Other relevant metrics could involve keeping the maximum value of malonic semialdehyde
below a critical value or keeping the cumulative presence of malonic semialdehyde low. Our multiscale
approach allows for the efficient analysis of any such metric.
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Fig. 4 The effect of regulating enzymes in the pathway shown in Figure 1 on the key ratio (22), obtained by solving (3b–e)
with S1 ≡ 1. We use the parameter values in Table 2, but with increased enzyme concentrations as specified on the x-axis.
While up-regulating E2 yields improvement, this has diminishing returns. However, even though up-regulating E4 by itself
does not appear to have a significant effect on the ratio, up-regulating E2 and E4 in tandem does have a significant effect.

4 No replenishment of pyruvate

We now consider the case where the pyruvate is never replenished. Due to the connectivity of the
metabolic network and the sinks in the system, this problem results in a long-term decay of each metabo-
lite. As the only metabolite initially present in the system is pyruvate, the remaining metabolites will
each reach a maximum level at some (generally different) point in time. Our main goal in this subsection
is to obtain an asymptotic expression for the maximum level of 3HP present in the system, and the time
at which this occurs. In a batch culture system, where nothing is added or removed to the system until
the run is stopped for harvesting, this time provides an approximation for when to stop the run and
harvest the product. We will summarise the system that governs this optimal time and product yield,
but we relegate the details to Appendix A for brevity.

4.1 Asymptotic structure

We now discuss the asymptotic structure of the no-replenishment case, with reference to the metabolic
network shown in Figure 1. The no-replenishment-of-pyruvate case is equivalent to the continuous-
replenishment case at leading order until we reach the timescale t = O(1/ε) (as shown in Figure 5
for S2, S3, S4, and P ), at which point the depletion of pyruvate occurs as a leading-order effect.

Over this longer timescale, the rest of the system remains unchanged until the levels of pyruvate are
of O(ε), which we define to occur at t = Td/ε = O(1/ε). The pyruvate is then depleted to a negligible
level at a relatively quicker rate, over a timescale of t − Td/ε = O(1), as can be seen in Figure 6, while
the remaining metabolites are unchanged at leading order. After this rapid depletion of pyruvate, the
reaction from pyruvate to acetyl-CoA is negligible and so the levels of acetyl-CoA start to deplete, again
over the timescale of t = O(1/ε). When the levels of acetyl-CoA become of O(ε), which we define to
occur at t = T ∗/ε = O(1/ε), the Michaelis–Menten reaction from acetyl-CoA to malonyl-CoA becomes
unsaturated, and the lower levels of acetyl-CoA are felt through the rest of the system. After this point,
all the remaining metabolites start to deplete over a timescale of t = O(1/ε), and so t = T ∗/ε marks the
time at which the level of 3HP in the system is maximal. In the next section, we present the reduced
system required to be solved to determine T ∗.
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Fig. 5 A comparison between the metabolic dynamics in the continuous- and no-replenishment-of-pyruvate cases. The
solid grey lines are the numerical solutions from the continuous-replenishment-of-pyruvate system (3b–e) with S1 ≡ 1 and
the dashed blue lines are the numerical solutions from the no-replenishment-of-pyruvate system (3). We see that the two
cases are essentially equivalent until around t = 5, after which the metabolite levels drop in a sharp manner for S2, S3, and
S4, and at a slower rate for P . The maximal level of 3HP occurs around the time of the sharp drop. We use the parameter
values given in Table 2 for these figures.

4.2 Reduced system for T ∗

The time at which the level of 3HP in the system is maximal is given by t = T ∗/ε + O(1), where
T ∗ = O(1). To determine T ∗ at leading order, it suffices to solve the reduced system

dS2

dT
= f(S2)− k̄2 + v̄5Ŝ4(T )− ÂS2(T ) for 0 < T < T ∗, with S2 ∼ (2T )

1/2
as T → 0+, (23a)

and we provide a derivation of this reduced system in Appendix A. In (23a), the nonlinear function f is
given by

f(S2) =


1

S2
if 0 < T < Td,

0 if Td < T < T ∗.
(23b)

Additionally, since the remaining metabolite concentrations are equivalent to those in the continuous-
replenishment case until acetyl-CoA depletion occurs, the concentration of malonic semialdehyde Ŝ4 is
given by the implicit representation (12), (14)–(15). As shown in Appendix A, the asymptotic leading-
order time at which pyruvate depletion occurs is T = Td, where Td satisfies the implicit equation∫ Td

0

f(S2(s)) ds = 1. (23c)
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Fig. 6 The dynamics of pyruvate (S1) when it is never replenished, obtained from solving (3). We see that it becomes
exponentially small shortly after t = 12. We use the parameter values given in Table 2.

The time at which there is a maximal amount of 3HP in the system T = T ∗ is when acetyl-CoA depletion
occurs, since this is when the remaining metabolites in the system start to feel the lack of the previous
metabolites. Asymptotically, this occurs when S2(T ∗) = 0 or, equivalently, for T ∗ satisfying the implicit
equation

1 + v̄5

∫ T∗

0

Ŝ4(s) ds = k̄2T
∗ + Â

∫ T∗

0

S2(s) ds, (23d)

which is obtained by integrating (23a) in time and using (23c). It is a simple task to solve this system
numerically for any specified parameter values. Then, the maximal amount of 3HP in the system can be
obtained by substituting T ∗ into (15) to yield the implicit equation

k̄−4v̄5

(
k̄4 − k̄∗

)2
k̄∗ (v̄4 + v̄5)

T ∗ =
(
k̄4 − k̄∗

)
P (T ∗)− k̄∗K̄M

−4 log

(
1 +

k̄4 − k̄∗

k̄4K̄M
−4

P (T ∗)

)
. (24)

Comparing this reduced system to the full system in Figure 7, we see that the maximal 3HP produced
is very similar between the asymptotic and numerical results, and that there is an O(1) difference in the
predicted time at which this maximal 3HP is produced between the two, as predicted by the error in our
asymptotic results. We show this excellent agreement for a range of relative concentrations of E5 (Figure
8), the enzyme which recycles malonic semialdehyde back into acetyl-CoA. Moreover, we see that more
3HP is produced when E5 is down-regulated.

An alternative implicit equation for T ∗ is given by (45), which uses the analytic solution for S2 when
Td < T < T ∗, stated in (44).

4.3 Asymptotic expression for T ∗ when v̄5 → 0

Our model predicts that 3HP production can be improved by under-expressing the enzyme that controls
the reaction from malonic semialdehyde to acetyl-CoA, which has maximal reaction rate k̄5 (Figure 8).
If this reaction is completely removed from the metabolic network, we are able to provide an analytic
expression for T ∗ and P (T ∗). This corresponds to taking the limit k̄5 → 0, equivalent to v̄5 → 0. In this
limit, there is no further production or depletion of 3HP when t > T ∗/ε, and the total amount of 3HP
produced is given by P (T ∗).

As v̄5 → 0, there are several scalings that reduce the parameter dependence of the system. We scale
T = T̄ /Â and S2(T ) = k̄2Y (T̄ )/Â, to turn (23a) into

dY

dT̄
= f̄(Y )− 1− Y for 0 < T̄ < T̄ ∗, with Y ∼

(
2αT̄

)1/2
as T̄ → 0+, (25a)
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Fig. 7 A comparison of numerical solutions for the full system in (3) and the reduced system presented in §4.2. Our
solutions for the reduced system are valid for 0 < t < T ∗/ε. Here, t = T ∗/ε is the asymptotic result for the point at which
the 3HP in the system is maximal, and P (T ∗) in (24) gives the asymptotic result for the maximal level of 3HP. We mark
the maximal value of 3HP in the system with a cross in the appropriate colour for the numerical and asymptotic solutions,
respectively. We use the parameter values given in Table 2.

Fig. 8 The maximum amount of 3HP in the system as the concentration of E5 is varied, for the full numerical system
(3) and the reduced system presented in §4.2. We use parameter values from Table 2, with E5 modified as specified on the
x-axis. The maximum discrepancy between numerical and asymptotic solutions for the maximum value of 3HP is around
4%, which occurs for smaller relative concentrations of E5.

where α = Â/k̄2
2, T ∗ = T̄ ∗/Â, the nonlinear function f̄ is defined as

f̄(Y ) =

{ α
Y

if 0 < T̄ < T̄d,

0 if T̄d < T̄ < T̄ ∗,
(25b)

and Td = T̄d/Â has the form ∫ T̄d

0

dT̄

Y (T̄ )
= 2β, (25c)

where β = k̄2/2, which will be useful later for notational purposes.
When 0 < T̄ < T̄d, the system (25a) is solved implicitly by

−2T̄ = log

(
α− Y − Y 2

α

)
+

2√
1 + 4α

tanh−1

[(√
1 + 4α

)
Y

2α− Y

]
. (26)
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We are able to obtain an explicit expression for Y (T̄d) by re-writing (25c) as

2β =

∫ Y (T̄d)

0

dY

Y Ẏ
=

∫ Y (T̄d)

0

dY

α− Y − Y 2
=

2√
1 + 4α

tanh−1

[(√
1 + 4α

)
Y (T̄d)

2α− Y (T̄d)

]
, (27)

where we use (25a) for Ẏ ≡ dY/dT̄ . Re-arranging (27), we obtain

Y (T̄d) =
2α tanh

(
β
√

1 + 4α
)

√
1 + 4α+ tanh

(
β
√

1 + 4α
) . (28a)

We can then obtain an explicit expression for T̄d by substituting (27)–(28a) into (26), to yield

T̄d = log

[√
1 + 4α+ tanh

(
β
√

1 + 4α
)

√
1 + 4α sech

(
β
√

1 + 4α
) ]

− β. (28b)

When T̄d < T̄ < T̄ ∗, the system (25a) is solved explicitly by

Y (T̄ ) =
(
1 + Y (T̄d)

)
eT̄d−T̄ − 1, (29a)

and as T̄ ∗ satisfies Y (T̄ ∗) = 0, we can state T̄ ∗ in terms of T̄d as follows

T̄ ∗ = T̄d + log
(
1 + Y (T̄d)

)
, (30)

where each term in (30) can be determined explicitly from (28).
As we provide the general implicit result for maximal 3HP in (24), we can derive a reduced version

for the limit we consider in this sub-section by taking the same limit, v̄5 → 0, noting that k̄∗ also scales
with v̄5. Using (30), the reduced result for the time at which the levels of 3HP are maximal, the total
amount of 3HP produced is given explicitly by

P (T ∗) =

(
v̄3

v̄3 + B̂

)
F (α, β), (31a)

F (α, β) :=
1

2αβ

(
log

[√
1 + 4α+ (1 + 2α) tanh

(
β
√

1 + 4α
)(√

1 + 4α
)

sech
(
β
√

1 + 4α
) ]

− β

)
. (31b)

To visualise (31), we provide a plot of F (α, β) in Figure 9, but as a function of αβ2 = Â/4 and β = k̄2/2,
as these are proxies for the strength of the sink and source in the system, respectively. As F is bounded
above by 1 and this limit is attained as α → 0, decreasing α (and hence Â) to zero will have a more
significant effect than any finite increase in β (and hence k̄2), as long as the organism is able to survive
with low values of Â.

4.3.1 Physical implications

In a similar manner to the analysis in §3.4, we now discuss the physical implications of our results from
this subsection and we reintroduce dimensional variables to our key results.

The first key result is the time at which the 3HP levels are maximal, τ = τ∗, where

τ∗ =
S0T

∗

k1E1ε
. (32)

The effective production rate of 3HP is

[P ](τ∗)

τ∗
=

k2k3E2E3

k3E3 +BKM
3

, (33)

which can be increased by increasing E2 or E3, though the latter has diminishing returns. The total
amount of 3HP produced is given by

[P ](τ∗) =
S0k3E3

k3E3 +BKM
3

F

(
Ak1E1K

i
1

k2
2E

2
2

,
S0k2E2

2Ki
1k1E1

)
, (34)



16 Mohit P. Dalwadi, John R. King

Fig. 9 The asymptotic result for F (α, β), the total 3HP produced with no replenishment of pyruvate in the limit of v̄5 → 0,
given in (31). We use axes 4αβ2 and 2β, which are proxies for the strength of the sink and source in the system, respectively.

where F is defined in (31). Defining

α̂ =
1

αβ2
=

4Ki
1k1E1

AS2
0

, β̂ =
1

αβ
=

2k2E2

AS0
, (35)

as proxies for E1 and E2, we see that up-regulating E2 results in higher levels of 3HP, whereas up-
regulating E1 results in lower levels of 3HP, with significant diminishing returns as E1 increases (Figure
10). The negative effect of up-regulating E1 may appear counter-intuitive, since E1 is required for a
connected pathway. However, it can be explained by noting that the effect of increasing E1 is to increase
the amount of acetyl-CoA in the system, which has the result of greatly increasing the amount of acetyl-
CoA that is taken up by the sink, but only slightly increasing the amount converted into malonyl-CoA.
This is because we have assumed that we are in a regime where the sink has first-order kinetics, whereas
the reaction from acetyl-CoA to malonyl-CoA follows Michaelis–Menten-type kinetics. This effect may
be reduced if we were in a regime where the acetyl-CoA sink was saturating. Hence, our model suggests
that a slow conversion of pyruvate into acetyl-CoA is better for 3HP production if it is not possible to
over-regulate E2. We note that this down-regulation is only important for the maximum amount of 3HP
produced when the time taken to produce this 3HP is taken into account, as there is no dependence on
E1 in the effective production rate (33). We emphasize that E1 → 0 is a singular limit in the system,
which appears because we are in the no-replenishment-of-pyruvate regime. As E1 → 0, the early-time
kinetics of the problem would vary, and we would not have the same late-time problem that we consider
here. We do not analyse this limit further, since it is not of particular physical interest.

5 Discussion

We develop and solve a mathematical model for the reaction kinetics of the 3-hydroxypropionic acid
(3HP) pathway from pyruvate via malonyl-CoA. We consider two main cases, continuous and no re-
plenishment of pyruvate, to model the metabolite dynamics in the two extreme cases of plentiful and
scarce pyruvate. Our main goal is to understand how to maximize 3HP production, and in the case
of a continuous pyruvate replenishment to additionally minimize the maximum levels of the toxic in-
termediary malonic semialdehyde in the system, where possible. We summarise our enzyme regulation
recommendations for each case in Table 3.

We note that while our regulation recommendations suffer from diminishing returns if implemented on
a single enzyme at a time, we can overcome this issue in the continuous replenishment of pyruvate case if
we up-regulate acetyl-CoA carboxylase (EC 6.4.1.2) in tandem with 3-hydroxypropionate dehydrogenase
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Fig. 10 A plot showing F (α̂, β̂), the asymptotic result for the total 3HP produced with no replenishment of pyruvate in
the limit of v̄5 → 0, given in (31). In contrast to Figure 9, we present F in terms of a variation in the parameters E1 and
E2 (as shown in (35)), corresponding to regulation of enzymes.

Enzyme [EC number(s)] Continuous replenishment No replenishment
Pyruvate dehydrogenase complex [1.2.4.1, 2.3.1.12, 1.8.1.4] No effect Down-regulate
Acetyl-CoA carboxylase [6.4.1.2] Up-regulate Up-regulate
Malonyl CoA reductase [1.2.1.75] Up-regulate Up-regulate
3-hydroxypropionate dehydrogenase [1.1.1.298] Up-regulate Up-regulate
Malonate semialdehyde dehydrogenase (acetylating) [1.2.1.18] Down-regulate Down-regulate

Table 3 A summary of the enzyme regulations we recommend based on the results of our model, in the two cases of
continuous and no replenishment of pyruvate. These are the extremes of the actual time-dependent pyruvate replenishment
in the cell, and can model continuous and batch culture, respectively.

(EC 1.1.1.298). Even though a solo up-regulation of either of these enzymes has diminishing returns on
improving the ratio of 3HP production rate to maximum malonic semialdehyde, our analysis demonstrates
that the up-regulation of both enzymes at the same time has the nonlinear effect of strongly increasing
this ratio with no diminishing returns, as shown in Figure 4.

We also emphasise that the regulation of pyruvate dehydrogenase complex (EC 1.2.4.1, EC 2.3.1.12,
and EC 1.8.1.4) is only important when the pyruvate is scarce. In this case the total 3HP produced can
be increased, perhaps counterintuitively, by a slight down-regulation of pyruvate dehydrogenase complex.
This is because there are competing destinations for acetyl-CoA - either a sink out of the system or on-
wards to malonyl-CoA - and the route out of the system becomes favoured as the amount of acetyl-CoA
in the system increases. Hence, a slower production of acetyl-CoA from pyruvate is preferable to channel
more acetyl-CoA towards malonyl-CoA rather than to the sink, which means a down-regulation of pyru-
vate dehydrogenase complex. We note that this effect disappears when we account for the time taken
to produce the maximal 3HP; the effective production rate of 3HP in this case has no dependence on
pyruvate dehydrogenase complex. Moreover, we emphasize that this down-regulation effect is a singular
limit of the system. Hence, one cannot obtain maximal 3HP by completely removing pyruvate dehydro-
genase complex from the system - in fact the amount of 3HP produced would be zero if this enzyme were
completely removed from the system.

To deal with an inherent uncertainty in the parameter values, we maximise our analytic progress by
using an asymptotic analysis to solve the system, exploiting the significant difference in typical parameter
ratios. This allows us to systematically understand the effect of up- and down-regulating different enzymes
without resorting to an expensive parameter sweep. In the continuous replenishment of pyruvate case,
our asymptotic analysis reveals a bifurcation in the asymptotic structure of the problem; we quantify the
effect of this bifurcation for 3HP production and derive an analytic expression for the critical surface in
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parameter space at which this occurs. Physically, this bifurcation corresponds to a sudden change in the
large-time 3HP production across the critical parameter.

For reactions between the metabolites we tracked, we use modified Michaelis–Menten reaction ve-
locities obtained from the literature, including the effect of inhibition in the reaction from pyruvate to
acetyl-CoA from both of these metabolites. We add the effect of acetyl-CoA and malonyl-CoA loss to
other metabolic pathways by including an aggregate sink from these metabolites, governed using first-
order reaction kinetics. The initial conditions we used corresponded to an instantaneous introduction of
pyruvate to a well-mixed solution of enzymes containing no other metabolites. We choose these condi-
tions for mathematical convenience, as the real cells are likely to contain an unknown level of the other
metabolites in the system when production is initiated. We do not expect this to be an issue for the case
with a continuous replenishment of pyruvate, in that we expect a small initial amount of intermediate
metabolites to change the early-time problem only. However, this is not true for the case with no replen-
ishment of pyruvate, as the depletion dynamics will be sensitive to the initial conditions. Obtaining these
measurements for the initial conditions would be difficult in vivo, though can be achieved by rapidly
quenching the cellular metabolism before using mass spectrometry to examine the metabolites [4]. In
addition, there may be cases where the assumption of a well-mixed system does not hold, in particular
over larger lengthscales, e.g. a colony of bacteria. In such cases, one could determine effective reaction
rates by coupling the nonlinear reaction dynamics we consider here to spatial transport processes over
longer lengthscales. This procedure could be carried out in a computationally efficient manner if one
exploited the extreme ratios of the different lengthscales in the system, as performed in [10] for diffusive
transport and linear reactions.

In this paper, we have accounted for the toxicity of malonic semialdehyde by constructing appropriate
metrics to evaluate our results. That is, the toxic effect is not directly included in our model assumptions,
only analysed post hoc. Since this toxicity has a negative effect on biomass production, it could be included
as a negative feedback in (1) if appropriately quantified.

Finally, we note how this works highlights how mathematical modelling and asymptotic techniques
can be used to understand a biological system, and to address the key questions facing experimentalists.
In this case, to identify a combination of enzyme regulation with a greater theoretical output than could
be obtained by measuring outputs from regulating just one enzyme at a time. This key insight into the
system behaviour was possible due to the asymptotic analysis allowing us to overcome uncertainty in
parameter values. We hope that these methods can be used to understand other biological systems, and
to reduce the time taken to explore their experimental parameter space.
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We thank Christian Arenas, Katalin Kovács, Jessica Locker, Nigel Minton, and Klaus Winzer for helpful
discussions. This work was supported by the Biotechnology and Biological Sciences Research Council
[grant number BB/L013940/1]; and the Engineering and Physical Sciences Research Council, jointly
funding the first grant number.

A Depletion dynamics

In the case where the pyruvate is not replenished, the system we consider is (3), and we no longer impose S1 ≡ 1.
However, in the no-replenishment case, the leading-order system is equivalent to the leading-order system for the continuous
replenishment case until t = O(1/ε). Thus, it is helpful to work in the long timescale T = εt = O(1), over which the full
system is given by (8b)–(8d), along with

dS1

dT
= −

S1

ε
(
S1 + K̄M

1

)
+ S1S2

, (36a)

dS2

dT
=

S1

ε
(
S1 + K̄M

1

)
+ S1S2

−
k̄2S2

S2 + εK̄M
2

+
k̄5Ŝ4

εŜ4 + K̄M
5

− ÂS2. (36b)

A.1 Slow depletion of pyruvate: 0 < T < Td

Over the timescale T = O(1) and until the pyruvate becomes of O(ε), the leading-order system for S2, S̃4, S̃3, and P
is still given by (9), the leading-order system for the continuous replenishment case. The leading-order equation for S1 is
obtained from (36a) to yield

dS1

dT
= −

1

S2
, (37)
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which we can integrate to obtain the leading-order solution

S1(T ) = 1−
∫ T

0

ds

S2(s)
, (38)

in terms of S2. The solution (38) is valid until S1 = O(ε), at which point a new asymptotic balance occurs. This occurs
when T = Td (equivalently t = Td/ε), where

S1(Td) = 0, (39)

with an O(ε) correction (equivalently O(1) in terms of t). Hence, Td can be obtained by solving

dS2

dT
=

1

S2
− k̄2 + v̄5Ŝ4(T )− ÂS2, with S2 ∼ (2T )1/2 as T → 0+, (40)

forward in time, using (12), (14)–(15) for Ŝ4, and terminating the calculation when S1 = 0. Thus, this analysis is valid for
T < Td.

A.2 Rapid depletion of pyruvate: t− Td/ε = O(1)

The next timescale is an interior layer [11], which occurs when t− Td/ε = (T − Td)/ε = t̄ = O(1). Over this timescale, S1

varies from being of O(ε) to exponentially small, while the remaining dependent variables are unchanged at leading order.
Making the scaling S1 = εY , the leading-order equation for the pyruvate concentration in this interior layer is given by

dY

dt̄
= −

Y

K̄M
1 + Y S2

, (41)

with appropriate matching conditions as t̄ → −∞. This depletion results in the exponential decay of Y , and hence S1,
and is a slightly modified version of the coupled pyruvate and acetyl-CoA depletion dynamics considered in Appendix B in
[8]. As these depletion dynamics are not required to calculate details of 3HP production, we do not consider the dynamics
of S1 any further here for brevity; the analysis will be similar to that in [8] and require first-order correction terms to
match to an appropriate accuracy. Since S1 is exponentially small as we move forward in time out of this interior layer, we
henceforth treat it as zero in the remaining timescales.

A.3 Slow depletion of acetyl-CoA: Td < T < T ∗

After the depletion of pyruvate, we remain in the timescale T = t/ε = O(1), but now with T > Td. The system is thus
given by (8b)–(8d), replacing (8a) with

dS2

dT
= −

k̄2S2

S2 + εK̄M
2

+
k̄5Ŝ4

εŜ4 + K̄M
5

− ÂS2. (42)

As each non-pyruvate dependent variable remains unchanged over the previous interior layer, the correct matching condi-
tions are obtained by imposing continuity of each dependent variable across T = Td. The leading-order system is given by
(9), replacing the first equation with

dS2

dT
= −k̄2 + v̄5Ŝ4 − ÂS2. (43)

This system is solved by (11)–(12) and (15), along with

S2(T ) = −
k̄2

Â
+

(
S2(Td) +

k̄2

Â

)
e−Â(T−Td) + e−Â(T−Td)

∫ T

Td

v̄5Ŝ4(s)eÂ(s−Td) ds, (44)

and these solutions are valid until S2 = O(ε), at which point a new asymptotic balance will occur. This occurs when
T = T ∗ (equivalently t = T ∗/ε), where

0 = S2(T ∗) = −
k̄2

Â
+

(
S2(Td) +

k̄2

Â

)
e−Â(T∗−Td) + e−Â(T∗−Td)

∫ T∗

Td

v̄5Ŝ4(s)eÂ(s−Td) ds, (45)

with an O(ε) correction (equivalently O(1) in terms of t). After this point, the remaining metabolites will all start to deplete,
so P (T ∗) represents the maximal level of 3HP in the system with no replenishment of pyruvate. Physically, t = T ∗/ε gives
the asymptotic ‘optimal’ time at which to terminate a batch run and harvest the 3HP that has been produced.

A.4 The remaining depletion dynamics

The remaining depletion dynamics are unimportant to the task of determining the maximal 3HP in the system, so we only
state them briefly here for completion. The exact details of the transition of S2 from O(1) to O(ε) occur in another interior

layer over the timescale t− T ∗/ε = (T − T ∗)/ε = O(1), where Ŝ3 and Ŝ4 also vary but do not change in asymptotic order.
Over this timescale, the levels of P do not vary. In the forward-in-time far-field of this interior layer, the levels of each
metabolite tends to a constant.

The final depletion dynamics occur over the timescale T = t/ε = O(1), but with T > T ∗. Over this timescale, the
metabolites decay exponentially, governed by an ODE for P with the remaining metabolites coupled to the levels of P in
a quasi-steady manner.
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