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Abstract. We study the geometry of infinitely presented groups satisfying the

small cancellation condition C′(1/8), and introduce a standard decomposition
(called the criss-cross decomposition) for the elements of such groups. Our

method yields a direct construction of a linearly independent set of power

continuum in the kernel of the comparison map between the bounded and the
usual group cohomology in degree 2, without the use of free subgroups and

extensions.

1. Introduction

An important direction of research in geometric group theory is the construction
of infinite finitely generated groups with unusual properties, the so-called “infinite
monsters”. In this setting, one of the main techniques is small cancellation theory.
It produces direct limits of Gromov hyperbolic groups that are therefore, in the
class of infinitely presented groups, easier to deal with than other groups, and ben-
efit in many ways from the techniques available in Gromov hyperbolic geometry.
These, and other, infinite monsters are usually constructed with the goal of pro-
ducing counter-examples to various conjectures in algebra, geometry, and analysis.
Therefore, it is rather challenging to obtain positive results about them. Positive
results have been proved for algebraic and geometric properties, and much less for
analytic properties, until very recently. The present paper and its successor [AD17]
have been first steps in this direction. The first arXiv version of this paper has
already given an impetus to later works by various authors.

One of the first and easiest constructions of small cancellation groups is that of
groups satisfying the classical small cancellation condition C ′(λ), where λ ∈ (0, 1/6].
It seems likely that most of the properties of Gromov hyperbolic groups are also
satisfied by such groups, possibly for λ small enough, but this is not yet proved for
many of the analytic properties of hyperbolic groups.

In this paper, we provide a key tool for a systematic approach to the above
mentioned problem, the criss-cross decomposition. As an immediate application,
we provide a new way of constructing an abundance of quasi-homomorphisms in
these groups, see Section 1.2 and Theorem 4.6. Moreover, our quasi-morphisms are
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Z–valued and have defect at most 2. This may be significant because such a bound
on the defect has consequences for the stable commutator length [Bav91].

Our methods very likely generalize to larger classes of groups.

1.1. Main technical tool: criss-cross decompositions. For several analytic
and geometric properties of a group, including the one discussed in this paper, it
is crucial to understand if the group elements possess “standard decompositions”
into products of certain “elementary” parts.

The main technical result of our paper is the construction of such a decomposition
for elements of finitely generated groups defined by infinite presentations with the
small cancellation condition C ′(λ), for λ 6 1

8 (the so-called C ′(1/8)–groups). More
precisely, given a pair of vertices in a Cayley graph of such a group, we obtain a
detailed description of a set containing all the geodesics between the two vertices,
see Theorem 3.15. The existence of such sets allows us to introduce a uniquely
defined decomposition, called the criss-cross decomposition, of the elements of the
given C ′(1/8)–group, see Section 3.

It is worth noticing that our approach differs and cannot be deduced from the
Rips-Sela canonical representatives [Sel92, RS95] in finitely presented small can-
cellation groups. Indeed, the Rips-Sela construction gives an equivariant choice
of quasi-geodesic paths between pairs of vertices (with a view to reduce solving
equations in a finitely presented small cancellation group, or more generally in a
hyperbolic group, to solving equations in a free group). Their arguments are based
on the existence of central points for geodesic triangles, granted by finite presen-
tation only. The similarity in method between the Rips-Sela approach and ours
does not go beyond the common use of the geometry of geodesic bigons [RS95,
Theorem 5.1].

1.2. Application: the bounded versus the usual cohomology. An immediate
application of the criss-cross decomposition is that infinitely presented C ′ (1/12)–
groups are rich in quasi-homomorphisms (see Section 4 for definitions). This has a
strong impact on the bounded cohomology of such groups [Gro82]. We thus deduce
the following theorem.

Theorem 1.1. Let G be a finitely generated group defined by an infinite presen-
tation satisfying the small cancellation condition C ′(1/12). Then the kernel of the
comparison map between the second bounded and the usual group cohomology

H2
b (G)→ H2(G) ,

is an infinite dimensional real vector space, with a basis of power continuum.

The above kernel can be identified with the real vector space Q̃H(G) of quasi-
homomorphisms modulo near-homomorphisms (where by a near-homomorphism
we mean a function h : G → R that differs from a homomorphism by a bounded
function). The fact that the kernel is large has implications for the stable com-
mutator length [Bav91], for the (lack of) bounded generation, for results of non-
embeddability of higher rank lattices, etc.

The computation of Q̃H(G) is therefore important, and it has been done for
various classes of groups.

If G is amenable then Q̃H(G) = 0 [Gro82]. Also, if G is an irreducible lattice in

a semisimple Lie group of rank at least two and with finite center then Q̃H(G) = 0
[BM99, BM02].
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Groups that have a certain type of action on a hyperbolic space (in particular,

subgroups of relatively hyperbolic groups, mapping class groups, etc.) have Q̃H(G)
infinite dimensional, with a basis of power continuum. This was proved by Brooks
for non-abelian free groups [Bro81] and by Brooks and Series for non-amenable sur-
face groups. In [Gro87] Gromov stated that all non-elementary hyperbolic groups
have non-trivial second bounded cohomology. Epstein and Fujiwara proved that,

in fact, for all non-elementary hyperbolic groups Q̃H(G) has a basis of power con-
tinuum [EF97]. Later this result was extended to other types of groups acting on
hyperbolic spaces and to their non-elementary subgroups [Fuj00, Fuj98]; in partic-
ular, to subgroups of mapping class groups of surfaces [BF02]. See also the survey
of Fujiwara [Fuj09] and references therein. The same result was further extended
to groups with free hyperbolically embedded subgroups by Hull and Osin [HO13].

On the whole one can say that in all the cases where it was proved, up to

now, that Q̃H(G) has a basis of power continuum, the argument relied on the
fact that the group considered contained a non-elementary hyperbolic subgroup,
and an extension of the quasi-morphisms of that subgroup could be perfomed, if
the subgroup was “well embedded” (e.g. hyperbolically embedded, in the sense
of [DGO17]). In particular, two years after the first arXiv version of this paper
was posted, it has been proven by Gruber and Sisto in [GS14] that graphical small
cancellation groups are acylindrically hyperbolic, therefore, by work of Hull and
Osin [HO13], contain hyperbolically embedded free non-abelian subgroups, and
consequently the space of quasi-homomorphisms modulo near-homomorphisms has
a basis of power continuum.

Our approach differs from all the previous ones in that we do not require the
existence of “well embedded” non-elementary hyperbolic subgroups, and a potential
extension of our methods may apply to groups satisfying other small cancellation
conditions (e.g. the Ol’shanskii graded small cancellation), in particular, to free
Burnside groups of sufficiently large odd exponent or to various Tarski monsters.

Moreover, besides being by far the first proof of Theorem 1.1, our construction
has the merit of by-passing the technicalities of the two papers [GS14] and [HO13]
and of providing a direct explicit construction of a family of power continuum of

linearly independent elements in Q̃H(G), which is not an extension of a similar
family for a non-elementary hyperbolic subgroup H 6 G, but is contained in the
`1 infinite sum of all such extensions for all such subgroups H.

The following result is another immediate consequence of our theorem above.

Corollary 1.2. Let G be a finitely generated group given by an infinite presenta-
tion satisfying the small cancellation condition C ′(1/12). Then G is not boundedly
generated1.

1.3. Plan of the paper. The paper is organized as follows. Section 2 gives prelim-
inary information on small cancellation groups. In Section 3, we describe the criss-
cross decomposition of elements in infinitely presented small cancellation groups.
We believe this description is of independent interest and it can be applied to get
further results on such groups. In Section 4 we focus on quasi-homomorphisms of
C ′(1/12)-small cancellation groups and prove Theorem 1.1.

1A group is boundedly generated if it can be expressed (as a set) as a finite product of cyclic
subgroups.
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2. Preliminaries on infinite small cancellation presentations

A set of words R in the alphabet A is said to be symmetrized if it contains r−1

and all the cyclic permutations of r and r−1, whenever r ∈ R. Without loss of
generality we always assume that the set of group relators is symmetrized and that
all relators r ∈ R are reduced words in the alphabet A.

We focus on finitely generated groups with infinite presentations,

(1) G = 〈A | r1, . . . , rk, . . .〉 ,

defined by a symmetrized family R of relators consisting of an infinite sequence of
relators r1, . . . , rk, . . . .

We denote by Rk the set {r1, . . . , rk } and by Gk the finitely presented group

(2) Gk = 〈A | Rk〉 = 〈A | r1, . . . , rk〉 .

For two words u, v we write u @ v when u is a subword of v. Let η be a constant
in
(
0, 1

2

]
. If in the preceding we have moreover that

η|v| 6 |u| 6 1

2
|v|

then we use the notation u @η v. We write u @ R if there exists v ∈ R such that
u @ v. Similarly, for @ replaced by @η .

Notation 2.1. We denote by S(R) the set of words u such that u @ R and by
Sη(R) the set of words u such that u @η R.

Definition 2.2 (C ′(λ)–condition). Let λ ∈ (0, 1). A symmetrized set R of words
in the alphabet A is said to satisfy the C ′(λ)–condition if the following holds:

(1) If u is a subword in a word r ∈ R so that |u| > λ|r| then u occurs only once
in r;

(2) If u is a subword in two distinct words r1, r2 ∈ R then |u| < λmin{|r1|, |r2|}.
We say that a group presentation 〈A | R〉 satisfies the C ′(λ)–condition if R satisfies
that condition.

Our technical arguments use the language of van Kampen diagrams over a group
presentation 〈A | R〉, for more details and terminology see [LS77], and observe that
the classical results below still hold for infinite group presentations.

The boundary of any van Kampen diagram (cell) ∆ is denoted by ∂∆.

Lemma 2.3 (Greendlinger [LS77]Ch.V, Thm. 4.4). Every reduced van Kampen
diagram ∆ over the presentation (1) with small cancellation condition C ′(λ) for
λ 6 1

6 contains a cell Π with ∂Π labeled by a relator r ∈ R such that ∂∆ ∩ ∂Π has
a connected component of length > (1− 3λ) |r|.
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Definition 2.4 (n-gon). We call n-gon in a geodesic metric space a loop obtained
by successive concatenation of n geodesics.

We say that the n-gon is simple if the loop thus obtained is simple, that is, it
does not have self-intersections.

Theorem 2.5 (cf. [GdlH91]). Let ∆ be a reduced van Kampen diagram over a
group presentation G = 〈A | R〉 satisfying the C ′(λ)–condition, with λ 6 1

8 .

(1) Assume that ∂∆ is a simple bigon in the Cayley graph of G. Then it has
the form of the bigon B in Figure 1.

(2) Assume that ∂∆ is a simple triangle in the Cayley graph of G. Then it has
one of the forms T1, . . . , T4 in Figure 1 and Figure 2.

Figure 1. Simple bigon B and simple triangle T1.

Figure 2. Simple triangles T2, T3, and T4.

3. Standard decomposition of elements in small cancellation groups

This section is devoted to a thorough analysis of geodesics in Cayley graphs of
infinitely presented small cancellation groups, and to the description of a set which,
from many points of view, plays the part of the convex hull of a two points-set in
irreducible buildings. We show here the main technical result of the paper, Theorem
3.15, and its algebraic counterpart Theorem 3.27.

Convention 3.1. Throughout this section G denotes a finitely generated group
with a (possibly infinite) presentation 〈A | R〉 satisfying the C ′(λ)–condition with
λ 6 1

8 .
We only consider the Cayley graph of G with respect to the fixed (arbitrary)

finite generating set A, and we omit mentioning A from now on. By “vertex” we
shall always mean a vertex in that Cayley graph.



6 GOULNARA ARZHANTSEVA AND CORNELIA DRUŢU

We call contour a loop in the Cayley graph of G labeled by a relator r ∈ R. By
abuse of notation, given a contour t we denote by |t| its length. Observe that a con-
tour is always a simple loop (a non-trivial self-intersection leads to a contradiction
with the small cancellation assumption by the Greendlinger lemma).

By an arc we mean a topological arc, that is the image of a topological embedding
of an interval into a topological (in particular metric) space.

For every path p in a metric space, we denote the initial point of p by p− and
the terminal point of p by p+. Given two points x, y on a geodesic g, we denote by
[x, y] the sub-geodesic of g with endpoints x, y.

Lemma 3.2. Let t be a contour labeled by a relator r and let a, b be two points
on t.

(1) If one of the two arcs with endpoints a, b has length < |t|
2 then that arc is

the unique geodesic with endpoints a, b in the Cayley graph.

(2) If both arcs with endpoints a, b have length |t|2 then these arcs are the only
two geodesics with endpoints a, b in the Cayley graph.

(3) The intersection of a geodesic with a contour is always composed of only
one arc.

Proof. (1) Assume there exists a geodesic joining a, b distinct from that arc. Then
they compose at least one non-trivial simple bigon. Consider the minimal van
Kampen diagram ∆ with the same boundary label as this bigon. Let u be the label
of the sub-arc of t and v the label of the sub-arc of the geodesic. According to
Lemma 2.3, there exists a cell Π labeled by a relator intersecting the boundary ∂∆
in an arc of length > 1− 3λ of the length of ∂Π.

Assume first that ∂Π does not coincide with t. By the small cancellation con-
dition, the arc can have at most λ of the length of ∂Π in common with the arc
labeled by a subword of r, hence it has > 1 − 4λ of the length of ∂Π in common
with the arc with the same label as the geodesic. As λ 6 1

8 , this contradicts the
fact that this is the label of a geodesic.

Now if ∂Π coincides with t, then ∂Π has at least 1
2 − 3λ of its length in common

with the arc labeled by v. In particular, it follows that |u| > |v| >
(

1
2 − 3λ

)
|r|.

Then ∂∆4∂Π composes a new simple bigon with both sides of length at most 3λ|r|.
We apply the argument above to this new bigon, the boundary of the cell provided
by Lemma 2.3 cannot coincide with t this time, and we obtain a contradiction.

(2) The argument to show that there exists no geodesic joining a, b and which is
not entirely contained in t is as above.

(3) It suffices to prove that this intersection is path connected. Indeed, let g be
a geodesic and let a, b be two points on g ∩ t. The above arguments show that the
part of g between a and b must be contained in t. �

Definition 3.3 (Relator-tied geodesics and components). Let g be a geodesic in
the Cayley graph of G and let η be a number in (0, 1).

(1) g is called η–relator-tied if it is covered by sub-geodesics labeled by words
in Sη(R).

(2) an η–relator-tied component of g is a maximal sub-geodesic of g that is
η–relator-tied.

Lemma 3.4. (1) The η–relator-tied components of a geodesic g are disjoint.
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(2) Assume that η 6 1
2 − 2λ. If two points a, b are the endpoints of a geo-

desic g with no η–relator-tied component then g is the unique geodesic with
endpoints a, b.

Proof. Assertion (1) follows by definition, since two distinct η–relator-tied sub-
geodesics that intersect compose a longer η–relator-tied sub-geodesic.

(2) Any other geodesic g′ with endpoints a, b and distinct from g would com-
pose with g simple geodesic bigons, therefore by Theorem 2.5, (1), g would contain
a
(

1
2 − 2λ

)
–relator-tied component. �

Definition 3.5 (η–compulsory geodesic). Given 0 < η 6 1
2 − 2λ, a geodesic as in

Lemma 3.4, (2), is called an η–compulsory geodesic. A pair of endpoints a, b of an
η–compulsory geodesic is called an η–compulsory pair.

We now proceed to analyze the η–relator-tied components of geodesics.

Lemma 3.6. Let η > 2λ. Let g be a η–relator-tied geodesic in the Cayley graph of
G. Then there exists a unique sequence of successive vertices

x0 = a, x1, y0, x2, y1, . . . , xk+1, yk, yk+1 = b

such that the sub-geodesics with endpoints xi, yi with i ∈ {0, 1, . . . , k+1} are labeled
by words in Sη(R), and are maximal with this property with respect to inclusion
(see Figure 3).

Proof. By hypothesis g ⊆
⋃
i∈S0

gi, where gi denotes a sub-geodesic of g labeled by

a word ui ∈ Sη(R) and the index set S0 is finite (by compactness).
Without loss of generality, we assume that all the sub-geodesics gi in the covering

above are maximal with respect to inclusion.
Indeed, we begin by the sub-geodesics containing the vertex g−. Consider two

such sub-geodesics. If one is contained in the other, by the C ′(λ)–condition and
the fact that η > 2λ it follows that both are subwords of the same relator r1 ∈ R.
Therefore we take the longer of the two subwords and we select it as the first term g1

of the new covering. The endpoint (g1)+ must be contained in another sub-geodesic
gu. The sub-geodesic g1 t gu cannot be labeled by a word in Sη(R), because this
would contradict the maximality of g1. We consider the maximal sub-geodesic
g2 labeled by a word in Sη(R) and containing gu. Continuing this argument, we
obtain a cover

⋃
i∈S1

gi of g for some S1 ⊆ S0 such that gi are maximal sub-geodesics

labeled by words in Sη(R).
For an arbitrary small ε > 0 we have that g ⊆

⋃
i∈S1

gεi , where gεi denotes the
ε–neighborhood of gi in g . Since g has topological dimension one, there exists
S2 ⊆ S1 such that g ⊆

⋃
i∈S2

gεi and every point in g is contained in at most two
sets gεi with i ∈ S2.

If an edge e in g is not contained in
⋃
i∈S2

gi then for ε < 1
2 this contradicts the

fact that {gεi | i ∈ S2} cover e. If a vertex in g is not contained in
⋃
i∈S2

gi, then

the edges adjacent to it are not contained in
⋃
i∈S2

gi and we use the above.

We thus obtain that g ⊆
⋃
i∈S2

gi and every point in g is contained in at most
two sets gi with i ∈ S2.

Assume that there exist two sequences x0 = a, x1, y0, x2, y1, . . . , xk+1, yk, yk+1 =
b and x′0 = a, x′1, y

′
0, x
′
2, y
′
1, . . . , x

′
m+1, y

′
m, y

′
m+1 = b, and let k 6 m. We prove by

induction on 0 6 i 6 k + 1 that [xi, yi] = [x′i, y
′
i].
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First, consider case i = 0. Then either [x0, y0] ⊆ [x′0, y
′
0] or [x′0, y

′
0] ⊆ [x0, y0].

The assumption η > 2λ implies that both the label of [x0, y0] and that of [x′0, y
′
0] are

subwords of the same relator r. The maximality condition implies that [x0, y0] =
[x′0, y

′
0].

We now assume that for some j > 0 we have [xi, yi] = [x′i, y
′
i] for 0 6 i 6 j.

We have that either [yj , yj+1] ⊆ [yj , y
′
j+1] or [yj , y

′
j+1] ⊆ [yj , yj+1]. By maximality

and Lemma 3.2, the contour tj containing the geodesic [xj , yj ] is distinct from
the contour tj+1 containing the geodesic [xj+1, yj+1], respectively the contour t′j+1

containing the geodesic [x′j+1, y
′
j+1], see Figure 4. It follows that

dist(xj+1, yj) < λ|rj+1| 6
λ

η
dist(xj+1, yj+1) ,

whence

dist(yj , yj+1) >

(
1− λ

η

)
dist(xj+1, yj+1) > η

(
1− λ

η

)
|rj+1| .

Similarly, we obtain that

dist(yj , y
′
j+1) > η

(
1− λ

η

)
|r′j+1| .

The hypothesis η > 2λ implies that η
(

1− λ
η

)
> λ, therefore the inclusions

[yj , yj+1] ⊆ [yj , y
′
j+1] or [yj , y

′
j+1] ⊆ [yj , yj+1]

imply that tj+1 = t′j+1. The maximality of the sub-geodesics [xj+1, yj+1] and
[x′j+1, y

′
j+1], and Lemma 3.2 allow to conclude that [xj+1, yj+1] = [x′j+1, y

′
j+1].

�

Convention 3.7. For the rest of this section, let η be a fixed constant such that
1
2 − 2λ > η > 2λ and η′ := η − λ.
Definition 3.8 (η–succession). We say that a sequence of contours t0, t1, . . . , tk+1

is an η–succession of contours if, for every i, one of the endpoints of ti−1 ∩ ti is at
distance > η|ti| from at least one of the endpoints of ti ∩ ti+1 (distance measured
in ti).

Corollary 3.9. Let g be an η–relator-tied geodesic. Then there exists a unique
η–succession of contours t0, t1, . . . , tk+1 such that for the decomposition described
in Lemma 3.6 the sub-geodesic with endpoints xi, yi is contained in ti.

Figure 3. An η–relator-tied geodesic inside a succession of contours.
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Figure 4. The uniqueness of the decomposition in Lemma 3.6.

Lemma 3.10. Let a, b be two vertices joined by an η–relator-tied geodesic g. Then
every geodesic g′ with endpoints a, b is η′–relator-tied, for η′ := η−λ; moreover, g′ is
contained in the η–succession of contours t0, t1, . . . , tk+1 determined by g according
to Corollary 3.9.

Proof. There exist successive points in the intersection g ∩ g′,

z0 = a, z1, . . . , z2m−1, z2m, z2m+1 = b

such that z2i, z2i+1 are the endpoints of a connected component of g ∩ g′, while
z2i+1, z2i+2 are the endpoints of two sub-geodesics of g respectively g′, composing
a simple bigon.

Let x0 = a, x1, y0, x2, y1, . . . , xk+1, yk, yk+1 = b be the unique sequence of points
on g provided by Lemma 3.6. For every 0 6 i 6 m − 1 consider the endpoints
z2i+1, z2i+2 of a simple bigon. According to Theorem 2.5, (1), the corresponding
bigon is as in Figure 1. Consider τ , one of the contours appearing in this bigon;
let α, β be the endpoints of the intersection of g with τ . By the small cancellation
condition and the fact that the two sides of the bigon are geodesics it follows that the
label of the sub-geodesic of g limited by α, β is a sub-word of length >

(
1
2 − 2λ

)
|τ |.

Let m be the midpoint of the sub-geodesic of g limited by α, β. Then there
exist xj , yj separated by m. If the contour τ is distinct from the contour tj
then 1

2

(
1
2 − 2λ

)
|τ | < 1

2dist(α, β) < λ|τ |, whence λ > 1
8 , a contradiction. It

follows that τ = tj , hence α = xj and β = yj . Thus, the endpoints of inter-
sections of contours of the bigon with g compose a subsequence of the sequence
x0 = a, x1, y0, x2, y1, . . . , xk+1, yk, yk+1 = b, with the property that xi+1 = yi.

Let z2i+1 be an endpoint of a bigon. According to the above z2i+1 equals some
xj such that tj is the first contour in the bigon. Consider now xj−1, yj−1 and
the contour tj−1 6= tj . Then dist(xj , yj−1) < λ|tj−1|, whence dist(xj−1, xj) =
dist(xj−1, yj−1)− dist(xj , yj−1) > η|tj−1| − λ|tj−1| = η′|tj−1|.

We thus found that the sub-geodesic with endpoints z2i, z2i+1 common to g and
g′ is η′–relator-tied. A sub-geodesic of g′ composing one of the simple bigons is
easily seen to be η′–relator-tied as η′ 6 1

2 − 2λ, hence the entire of g′ is η′–relator-
tied.

The fact that g′ is contained in the η–succession of contours t0, t1, . . . , tk+1 is
immediate from the argument above: the sub-arcs of g′ with endpoints z2i, z2i+1

are contained in g, while the sub-arcs with endpoints z2i+1, z2i+2 are covered by
contours τ which are in the set {t0, t1, . . . , tk+1}. �
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The goal of the following two statements is to prepare the ground for the defini-
tion of the η–criss-cross decomposition for a pair of vertices a, b.

Lemma 3.11. Let a and b be two arbitrary vertices. The endpoints of an η–relator-
tied component in a geodesic joining a, b are contained in any other geodesic joining
a, b.

Proof. Let g, g′ be two geodesics with endpoints a, b and let x, y be the endpoints
of an η–relator-tied component on g. Assume that x is not on g′. Then x is in the
interior of one of the sides of a bigon composed by g and g′. On the other hand,
this side is

(
1
2 − 2λ

)
–relator-tied, hence the component of g between x, y is not a

maximal η–relator-tied sub-geodesic, a contradiction.
It follows that x ∈ g′ and a similar argument shows that y ∈ g′. �

Definition 3.12 (Geodesic sequences). (1) We say that a vertex p is between
two vertices a and b if dist(a, p) + dist(p, b) = dist(a, b). We do not exclude
that p = a or p = b.

(2) We call geodesic sequence a finite sequence of vertices p1, . . . , pm such that
for every 1 6 i 6 j 6 k 6 m, pj is between pi and pk.

(3) If a, b, c, d is a geodesic sequence then we write (b, c) b (a, d) and we say
that the pairs (b, c) and (a, d) are nested.

Lemma 3.13. Let p, a, q, b be a geodesic sequence such that p, q and respectively
a, b are the endpoints of η–relator-tied geodesics. Then there exists an η–succession
of contours that contains every geodesic joining p and b.

Proof. We denote by [p, q] and respectively [a, b] the η–relator-tied geodesics. Con-
sider two arbitrary geodesics [p, a] and [q, b] (not necessarily contained in [p, q] and
respectively [a, b]).

In the geodesic [p, a]∪ [a, b], the sub-geodesic [a, b] is contained in a maximal η–
relator-tied component [a′, b]. Lemma 3.11 applied to p, b and the geodesic joining
them [p, q] ∪ [q, b] implies that a′ ∈ [p, q], moreover a′ is on every geodesic joining
p, b. Thus, by possibly replacing a with a′ we may assume that a is contained in
every geodesic with endpoints p, b, in particular that a ∈ [p, q]. A similar argument
allows to state that without loss of generality we may assume that q is contained
in every geodesic joining p, b, in particular q ∈ [a, b].

By Corollary 3.9, there exist two η–successions of contours,

t0, t1, . . . , tk+1 and τ0, τ1, . . . , τm+1

such that every geodesic joining p, q is contained in
⋃k+1
i=0 ti, and every geodesic

joining a, b is contained in
⋃m+1
j=0 τj .

Consider i maximal such that a ∈ ti.
Assume i 6= k + 1. If τ0 6= ti then [a, b] ∩ τ0 intersects ti in a sub-geodesic of

length < λ|τ0|, consequently it intersects ti+1 in a sub-geodesic of length either
at least λ|τ0| or at least (η − λ)|ti+1|. In both cases it follows τ0 = ti+1 , whence
a ∈ ti+1 , which contradicts the choice of i.

Thus, in this case, it follows that τ0 = ti.
Let ` > 0 be maximal such that τr = ti+r for 0 6 r 6 `. It is immediate from

the definition of an η–succession that the sequence

t0, . . . , ti = τ0, . . . , ti+` = τ`, τ`+1, . . . , τm+1
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is such a succession.
An arbitrary geodesic joining p and b must contain a and q, the sub-geodesic

from p to a must be contained in
⋃i
j=0 tj , while the sub-geodesic from a to b must

be contained in
⋃m+1
r=0 τr .

Assume now that i = k + 1. Every geodesic joining a, q must be contained in
tk+1.

Suppose moreover that τ0 6= tk+1. Then dist(a, q) < λmin{|tk+1|, |τ0|}. Since
the distance from q to one of the endpoints of tk ∩ tk+1 is at least η|tk+1|, the same
is true about one of the endpoints of τ0 ∩ τ1, since it will be situated after q on a
geodesic from a to b. Therefore, in this case

t0, t1, . . . , tk+1, τ0, τ1, . . . , τm+1

is an η–succession of contours.
Given an arbitrary geodesic joining p and b, the sub-geodesic from p to q is in⋃k+1
j=0 tj , the sub-geodesic from a to b is in

⋃m+1
r=0 τr .

Suppose that τ0 = tk+1. As before, the fact that q is at distance > η|τ0| from
one of the endpoints of tk∩ tk+1 implies that one of the endpoints of τ0∩τ1 satisfies
the same. Therefore,

t0, t1, . . . , tk+1 = τ0, τ1, . . . , τm+1

is an η–succession of contours, and an argument as above shows that it contains
every geodesic joining p and b. �

Remark 3.14. The statement of Lemma 3.13 can be generalized as follows: if

p0, p1, q0, p2, q1, . . . , pk+1, qk, qk+1

is a geodesic sequence such that pi, qi are the endpoints of η–relator tied geodesics
for i ∈ {0, 1, . . . , k + 1}, then there exists an η–succession of contours containing
every geodesic from p0 to qk+1.

The proof adapts the argument of Lemma 3.13, and we leave it as an exercise to
the reader.

Theorem 3.15. For every pair of vertices a, b in the Cayley graph of G there exists
a finite geodesic sequence

z0 = a, y1, z1, y2, z2, . . . , ym, zm, b = ym+1 ,

a sequence of η–compulsory geodesics [z0, y1], [z1, y2], . . . , [zi, yi+1], . . . , [zm, ym+1]
and a sequence of η–successions of contours

t
(i)
1 , . . . , t

(i)
ki
, i ∈ {1, 2, . . . ,m}

such that yi ∈ t(i)1 , zi ∈ t(i)ki and every geodesic joining a, b is contained in

(3) [a, y1]∪
k1⋃
j=1

t
(1)
j ∪[z1, y2]∪

k2⋃
j=1

t
(2)
j ∪· · ·∪[zi−1, yi]∪

ki⋃
j=1

t
(i)
j ∪[zi, yi+1]∪· · ·∪[zm, b] .

Definition 3.16 (η–criss-cross decomposition). We say that the sequence

(4) (a, y1), \y1, z1/, (z1, y2), \y2, z2/, . . . , \ym, zm/, (zm, b)

is the η–criss-cross decomposition for the pair a, b.
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Figure 5. The η–criss-cross decomposition for the pair a, b.

Notation 3.17. For an arbitrary pair of vertices a, b we denote by Gη(a, b) the set
described in Theorem 3.15, see (3) and Figure 5.

Proof of Theorem 3.15. If a, b is an η–compulsory pair then there is nothing to
prove. Assume therefore that there exists a geodesic joining a, b with an η–relator-
tied component. Let p1, q1, . . . , ph, qh be all the pairs of points that appear as
endpoints of η–relator-tied components in some geodesic joining a, b. Let g be an
arbitrary geodesic joining a, b. According to Lemma 3.11, g contains all points
p1, q1, . . . , ph, qh. The order in which these points appear is independent of the
choice of g, since it is only determined by metric relations.

We consider the union
⋃h
i=1[pi, qi], where [pi, qi] denotes here the sub-geodesic of

g with endpoints pi, qi. The connected components of this union are sub-geodesics
[y1, z1], . . . , [ym, zm] appearing on g in this order. Note that yi ∈ {p1, . . . , ph} and
that zi ∈ {q1, . . . , qh}. In particular, both the points and the order are independent
of the choice of the geodesic g.

It remains to apply Lemma 3.13 and Remark 3.14. �

Corollary 3.18. For every pair of points a, b at distance d > 0 and every x 6 d
there exist at most 2 points p with the property that a, p, b is a geodesic sequence
and dist(a, p) = x.

See Figure 6 for an example where there exist two points q1, q2 between a and
b, at distance x − 3 from a, and two points p1, p2 between a and b, at distance x
from a.

Remark 3.19. Note that

(1) according to the above every geodesic with endpoints ym, zm is η′–relator-
tied, in particular, it is non-trivial;

(2) due to the maximality condition defining the pairs yi, zi, we have that
zi 6= yi+1 for every 1 6 i 6 m− 1;

(3) on the other hand, in the pairs (a, y1), (zm, b) the endpoints may coincide.

Remark 3.20. If (p, q) b (x, y) b (a, b) with p, q, x, y points in {p1, q1, . . . , pk, qk},
and if p, q are endpoints of an η–relator-tied component in a geodesic joining a, b,
then p, q are endpoints of an η–relator-tied component in a geodesic joining x, y.

This simply follows from the fact that a geodesic g joining a, b and on which p, q
bound an η–relator-tied component must also contain x, y, see Lemma 3.11.
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Figure 6. Example of pair a, b with two points between them at
distance x from a.

Definition 3.21 (η–relator covered pair). If the η–criss-cross decomposition of a
pair a, b is \a, b/ , then we call such a pair an η–relator covered pair.

Definition 3.22 (Compulsory vertices). Given an η–criss-cross decomposition

(a, y1), \y1, z1/, (z1, y2), \y2, z2/, . . . , \ym, zm/, (zm, b)

of a pair a, b, we call the vertices between zi, yi+1 for some i ∈ {1, 2, . . . ,m − 1}
η–compulsory vertices.

Clearly, every geodesic with endpoints a and b must contain all the compulsory
vertices.

Definition 3.23 (Prefixes and suffixes). Given an element h ∈ G we denote by
P (h) (standing for prefixes of h) all the elements between 1, h and by S(h) (standing
for suffixes of h) all the elements of the form x−1h for x ∈ P (h).

Note that the two sets P (h) and S(h) depend on the fixed generating set A.

Definition 3.24 (Compulsory and η–relator-covered elements). Let h ∈ G.

• If h is joined to 1 by at least one η–relator-tied geodesic then we call h an
η–relator-tied element.
• If the pair 1, h has the η–criss-cross decomposition (1, h) (hence, there exists

only one geodesic joining 1, h, composed of compulsory vertices), then we
call h an η–compulsory element.
• If the pair 1, h has the η–criss-cross decomposition \1, h/ then we call h an
η–relator-covered element.

Notation 3.25. We denote by RT η the set of η–relator-tied elements. We denote
by Cη the set of η–compulsory elements in G and by RCη the set of η–relator-covered
elements.

Remark 3.26. The fact that h is η–relator-covered does not mean that there ex-
ists an η–relator-tied geodesic labeled by h, it only means that every geodesic
[a, b] labeled by h contains a family of successive vertices y0 = a, y1, z0, y2, z1, . . . ,
ym, zm−1, zm = b such that for every i there exists an η–relator-tied geodesic with
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endpoints yi, zi. In particular, by Lemma 3.10, every geodesic labeled by h is
η′–relator-tied.

An algebraic version of Theorem 3.15 is the following.

Theorem 3.27. Every element g ∈ G can be written uniquely as a product

(5) g = α1β1α2β2 . . . αmβmαm+1 ,

such that

• βi are non-trivial η–relator-covered elements;
• αi are compulsory elements (non-trivial with the possible exception of α1,
αm+1);
• the vertices yi = α1β1 . . . αi and zi = α1β1 . . . αiβi compose the geodesic

sequence determining the η–criss-cross decomposition of the pair 1, g.

Notation 3.28. Given an arbitrary element h ∈ G we denote by Gη(h) the set
Gη(1, h) as described in Notation 3.17.

Notation 3.29. Given i ∈ N, i > 2, we denote by Di the set of i–tuples

(a1, a2, . . . , ai−1, b)

such that for the element g = a1a2 · · · ai−1b the elements a1, a2, . . . , ai−1 are the
first i − 1 elements in the criss-cross decomposition of g as described in Theorem
3.27.

The following lemma will be crucial for the results in Section 4 on quasi-homo-
morphisms.

Lemma 3.30. Let λ 6 1
10 and let η > 3λ.

Every η–succession of contours t0, t1, . . . , tk+1 is totally geodesic: if a, b are two

vertices in
⋃k+1
i=0 ti then every geodesic joining a and b is contained in

⋃k+1
i=0 ti.

Proof. Without loss of generality we assume that a ∈ t1 \ t2 and that b ∈ tk+1 \ tk.
Otherwise, assuming that a appears before b in the succession, we consider the
largest i such that ti contains a and the smallest j such that tj contains b and take
the succession ti, ti+1, . . . , tj−1, tj instead of the initial one.

Let g be a geodesic joining a and b. We argue for a contradiction and assume

that g is not contained in
⋃k+1
i=0 ti. Without loss of generality we assume that g

intersects
⋃k+1
i=0 ti only in its endpoints (otherwise, we replace g by a sub-geodesic

with this property).

Let p be a topological arc joining a and b in
⋃k+1
i=0 ti and of minimal length. By

the Greendlinger Lemma, there exists a contour τ such that one of the connected
components of its intersection with p ∪ g has length > (1 − 3λ)|τ |. If τ = ti for
some i then by the hypothesis on g, τ intersects p in a connected component of
length > (1 − 3λ)|τ |. Then p can be shortened by a length of (1 − 6λ)|τ |, which

contradicts the choice of p as an arc of minimal length joining a and b in
⋃k+1
i=0 ti.

We therefore assume that τ 6∈ {t0, t1, . . . , tk+1}. Since g is a geodesic, it follows
that τ intersects p in a subarc of length >

(
1
2 − 3λ

)
|τ |.

On the other hand, p contains a succession of vertices

x0 = a, x1, y0, x2, y1, . . . , xk+1, yk, yk+1 = b

such that the sub-arcs with endpoints xi, yi with i ∈ {0, 1, . . . , k+1} are labeled by
words in S(R), which are moreover in Sλ(R) if i 6= 0, k+1. Therefore the connected
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component of the intersection τ ∩ p cannot contain a pair xi, yi with i ∈ {1, . . . , k}.
It follows that it can intersect at most two consecutive sub-arcs with endpoints
xi, yi with i ∈ {0, 1, . . . , k + 1}, hence it is of length < 2λ|τ |. We thus obtain that
1
2 − 3λ < 2λ, whence λ > 1

10 , a contradiction. �

The following results are not used in an essential manner in our arguments, but
they complete nicely the description of geodesics in small cancellation groups.

Lemma 3.31. Let g be an η–relator-tied geodesic and let p be a sub-geodesic in it.
Then p is either an η–compulsory geodesic, or it is the concatenation of three sub-
geodesics p = pctp0tp′c, where pc, p

′
c are η–compulsory and contained in a contour

(possibly either one of them or both trivial) and p0 is an η–relator-tied component
of p.

Proof. Let a, b be the endpoints of g. With the previous convention g = [a, b] .

Step 1. Let us first assume that p = [a, σ], with a, σ, b a geodesic sequence.
Let x0 = a, x1, y0, x2, y1, . . . , xk+1, yk, yk+1 = b be the unique sequence of points

on g defined by Lemma 3.6.
Assume that σ is in between a pair yj , xj+2. If the word labeling the geodesic

[xj+1, σ] is contained in Sη(R) then p is η–relator-tied.
If the word labeling [xj+1, σ] is not in Sη(R) (while it is still a sub-word of

the relator labeling the contour tj+1) then the pair xj+1, σ is η–compulsory. This
implies that the required decomposition is p = [a, yj ] t [yj , σ] .

Assume now that σ is in between a pair xj+1, yj . If [xj , σ] is labeled by a word
in Sη(R) then p is η–relator-tied; while in the opposite case the geodesic [xj , σ]
is η–compulsory, and the conclusion holds with the decomposition p = [a, yj−1] t
[yj−1, σ].

Step 2. Assume now that p = [%, σ], where a, %, σ, b is a geodesic sequence. Ac-
cording to Step 1, [a, σ] = [a, µ]t [µ, σ] , where [a, µ] is an η–relator-tied component
and [µ, σ] is η–compulsory (possibly trivial) and contained in a contour. If % ∈ [µ, σ]
then p is η–compulsory. If % ∈ [a, µ] then by reversing the order on [a, µ] and ap-
plying Step 1 we obtain that [%, µ] = [%, ν] t [ν, µ] , where [%, ν] is η–compulsory
(possibly trivial) and contained in a contour, and [ν, µ] is an η–relator-tied compo-
nent. It follows that

p = [%, µ] t [µ, σ] = [%, ν] t [ν, µ] t [µ, σ]

is the required decomposition. �

Lemma 3.32. For each pair \yj , zj/ in an η–criss-cross decomposition there exists
a geodesic sequence

(6) p′1 = yj , p
′
2, q
′
1, p
′
3, q
′
2, . . . , p

′
n, q
′
n−1, q

′
n = zj , for some n = n(j) ,

such that:

• (p′s, q
′
s) are maximal with respect to the partial order relation b;

• p′`+1, q
′
` bound η–relator-tied sub-geodesics both in the η–relator-tied geodesic

joining p′`, q
′
` and in the η–relator-tied geodesic joining p′`+1, q

′
`+1.

Proof. By definition, [yj , zj ] =
⋃
i∈Ij [pi, qi] . Without loss of generality we assume

that there are no nested pairs among the (pi, qi) with i ∈ Ij , in other words each
pair (pi, qi) is maximal with respect to the partial order relation b. Proceeding as
in the proof of Lemma 3.6 we also assume that, after selecting a subset in Ij , every
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point on a (every) geodesic joining yj , zj is between at most two pairs (pi, qi). It
then follows that the set of pairs indexed by Ij compose a geodesic sequence as in
(6). We set p′i := pi and q′i := qi.

Consider now two consequent pairs that overlap: two pairs (p′i, q
′
i) and (p′i+1, q

′
i+1)

such that p′i, p
′
i+1, q

′
i, q
′
i+1 is a geodesic sequence.

By definition, there exists a geodesic g joining a, b such that p′i, q
′
i are the end-

points on it of an η–relator-tied component. Given two points x, y ∈ g, we denote
by [x, y] the sub-geodesic of g with endpoints x, y.

We likewise know that there exists a geodesic p such that p′i+1, q
′
i+1 bound an

η–relator-tied component on p. According to the above, p must contain q′i. In what
follows, for x, y in p we denote by x, y the sub-arc of p with endpoints x, y.

We have that p′i+1 ∈ [p′i, q
′
i]. Lemma 3.31 implies that either [p′i+1, q

′
i] is an

η–compulsory component contained in a contour, or [p′i+1, q
′
i] = [p′i+1, x] t [x, q′i],

where [p′i+1, x] is an η–compulsory component contained in a contour (possibly
trivial) and [x, q′i] is an η–relator-tied component.

Assume that [p′i+1, q
′
i] is an η–compulsory component contained in a contour.

Then the geodesic p must also contain [p′i+1, q
′
i] ⊂ g. By replacing on p the sub-arc

with endpoints a, p′i+1 by [a, p′i+1] ⊂ g we obtain a new geodesic r joining a, b such
that p′i and q′i+1 are the endpoints of an η–relator-tied sub-geodesic. It follows
that (p′i, q

′
i+1) b (α, β), where α, β are the endpoints on r of an η–relator-tied

component. In particular (α, β) = (p`, q`) for some ` ∈ Ij , and (p′i, q
′
i) b (p`, q`).

This contradicts the fact that we have considered pairs maximal with respect to b.
Assume that [p′i+1, q

′
i] = [p′i+1, x] t [x, q′i], where [p′i+1, x] is an η–compulsory

component contained in a contour (possibly trivial) and [x, q′i] is an η–relator-
tied component. Since q′i ∈ p and [x, q′i] is an η–relator-tied component between
p′i+1 and q′i it follows that x ∈ p, hence [p′i+1, x] ⊂ p. There exists y ∈ p such

that p′i+1, y is labeled by a word in Sη(R) and it is contained in a contour t. If

y ∈ p′i+1, x = [p′i+1, x] then the contour t intersects a distinct contour in a sub-arc

of length > η|t|, a contradiction. Hence we must have that x ∈ p′i+1, y.

According to the small cancellation condition x, y has length >
(

1− λ
η

)
of the

length of p′i+1, y, so at least η
(

1− λ
η

)
|t|. This implies that if η

(
1− λ

η

)
> λ,

equivalently η > 2λ, then by Lemma 3.10, t must be the first contour for the pair
x, q′i. But this implies that p′i+1 = x.

Similarly, we argue that p′i+1, q
′
i is an η–relator-tied geodesic. �

4. Quasi-homomorphisms on small cancellation groups

Recall that a quasi-homomorphism (also called a quasi-morphism or a pseudo-
character) on a group G is a function h : G→ R such that its defect

d(h) := sup
a,b∈G

|h(ab)− h(a)− h(b)|

is finite. The real vector space Q(G) of all quasi-homomorphisms of G has three
important subspaces: the subspace `∞(G) of bounded real functions on G, the sub-
space Hom(G,R) = H1(G,R) of homomorphisms on G, and the subspace `∞(G) +
Hom(G,R) of functions that differ from a homomorphism by a bounded function.
Consider the quotient spaces

QH(G) = Q(G)/B(G) and Q̃H(G) = Q(G)/ [`∞(G) + Hom(G,R)] .
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The space Q̃H(G) can be identified with the kernel of the comparison map

H2
b (G)→ H2(G) ,

where H2
b (G) is the second bounded cohomology of G.

In this paper, as an application of our results on the geometry of small cancel-
lation groups with the C ′ (1/12)–condition, we show that for such a group G the

space Q̃H(G) is infinite dimensional, with a basis of power continuum.
Following the work of Epstein and Fujiwara [EF97, Fuj00, Fuj98] as well as of

Bestvina and Fujiwara [BF02], we shall prove the following.

Proposition 4.1. Let G be a finitely generated infinitely presented group and let
〈S | R〉 be a presentation such that R satisfies the C ′ (1/12)–condition. For a given
η ∈ [3λ, 1

2 − 2λ] appropriately chosen, there exists a sequence un of elements in G
and a sequence hun

: G→ R of quasi-morphisms, with n ∈ N , n > 1 , such that

(1) the set of word lengths |un| diverges to ∞;
(2) every group homomorphism φ : G→ R has the property that φ(un) = 0 for

every n ∈ N , n > 1;
(3) the sequence of defects d (hun

) is bounded;
(4) for every n and every k ∈ N, k > 1, hun

(
ukn
)

= k ;

(5) for every n 6= m, and every k ∈ N, k > 1, hun

(
ukm
)

= 0 .

Proof. We enumerate the relators {r1, r2, . . . } in R so that their lengths compose
a non-decreasing sequence. Consider the sequence of finite subsets of N defined by

In = [1 + 2 + . . .+ n, 1 + 2 + . . .+ n+ 1) ∩ N .

Define two sequences of finite subsets An and Bn of R, described by An =
{r2i−1 | i ∈ In} and Bn = {r2i | i ∈ In} .

To simplify the notation, in what follows we denote the relator r2i−1 by αi and
r2i by βi, respectively. Thus, An = {αi | i ∈ In} and Bn = {βi | i ∈ In}.

Let X be a finite set of relators equal either to a set An or to a set Bn. We
construct an element x ∈ G corresponding to X, as follows. Assume X is composed
of the relators ρ1, . . . , ρk enumerated in increasing order. For every i ∈ {1, 2, . . . , k}
let yi be the prefix of ρi of length

⌊
|ρi|
2

⌋
. Define the element x = y1y2 · · · yk. An

argument very similar to the one in Lemma 3.30 implies that x is an η–relator-tied
element and that every geodesic joining 1 and x is contained in the η–succession
of contours t1, y1t2, y1y2t3, . . . , [y1 · · · yk−1]tk , where ti is the loop through 1 in the
Cayley graph, labeled by ρi.

When X = An, respectively X = Bn the corresponding element x is denoted by
an, respectively by bn.

We define un = [an, bn]. This implies property (2) in Proposition 4.1.
Lemma 3.30 applied to geodesics joining 1 to un implies that the length |un| is

at least the double of
(

1
2 − λ

)∑
i∈In [|αi|+ |βi|] . It follows that property (1) in

Proposition 4.1 is also satisfied.
We now define the sequence of quasi-morphisms. We start with a general con-

struction. Let v be an η–relator-tied element in G.

Definition 4.2. (1) Let (a, b) ∈ G×G. A quasi-copy of v nested inside (a, b)
is a pair of points x, y ∈ Gη(a, b) such that y = xv and such that there
exists an η–succession of contours t1, . . . , tk contained in Gη(a, b) such that:
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• x is either one of the endpoints of the intersection of t1 with a contour
t0 such that t0, t1, . . . , tk is an η–succession contained in Gη(a, b), or
the intersection of t1 with a compulsory geodesic preceding t1, . . . , tk
in Gη(a, b);

• y is either one of the endpoints of the intersection of tk with a con-
tour tk+1 such that t1, . . . , tk, tk+1 is an η–succession contained in
Gη(a, b), or the intersection of tk with a compulsory geodesic succeed-
ing t1, . . . , tk in Gη(a, b).

(2) We say that two quasi-copies of v nested inside a, b are non-overlapping if
the corresponding η–successions of contours t1, . . . , tk respectively τ1, . . . , τk
are disjoint, as finite sets of contours.

(3) When (a, b) = (1, g) for some element g ∈ G we speak about quasi-copies
of v nested inside g.

Note that according to the definition of Gη(a, b) and to Lemma 3.10, the pair of
points x, y uniquely determines the η–succession t1, . . . , tk.

Lemma 4.3. Let x, y be a pair of points in Gη(g) (with the Notation 3.28) compos-
ing a nested quasi-copy of v in g, and let t1, . . . , tk be the corresponding η–succession

of contours. There exists no other pair of points p, q in
⋃k
i=1 ti such that q = pv .

Proof. Lemma 3.30 can be easily generalized to pairs of points a, b contained in an
η–succession of contours. Applied to the pair x, y, it implies that every geodesic
joining x, y is η–relator-tied. This implies that v is an η–relator-tied element. Let
g be an η–relator-tied geodesic joining 1 and v. It follows that xg is contained

in
⋃k
i=1 ti, whence the unique sequence of vertices on g described in Lemma 3.6

contains k pairs xi, yi.
Assume that there exists another pair of points p ∈ tr and q ∈ ts with 1 6

r 6 s 6 k such that p, q compose a nested quasi-copy of v in g. The pg is a
geodesic joining p and q, which according to Lemma 3.30 is contained in

⋃s
i=r ti.

The uniqueness of the sequence in Lemma 3.6 implies that s − r + 1 = k, whence
r = 1 and s = k. The same uniqueness implies that each pair pxi, pyi, translate of
the corresponding pair on g, is the pair of endpoints of the intersection pg ∩ ti.

The first pair in the unique sequence of vertices on g as in Lemma 3.6 is of the
form 1, h, where h is represented by a word w1 in S

1
2−2λ(R), prefix of a relator ρ

labeling a unique loop τ through 1 in the Cayley graph. By the above xτ = pτ = t1,
therefore p−1xτ = τ . This and the small cancellation condition C ′ (1/12) imply
that the element p−1x is trivial in G. Indeed, the condition C ′ (1/12) implies that
the stabilizer in G of any contour is trivial, otherwise one could find two distinct
copies of the same long sub-word in the label of that contour.

We conclude that p = x, and q = pv = xv = y . �

Definition 4.4. The point x is called the initial point of the nested quasi-copy,
while y is called the terminal point of the nested quasi-copy.

We define cv : G×G→ R such that cv(a, b) is the maximal number of pairwise
non-overlapping quasi-copies of v nested inside (a, b).

By abuse of notation, we define cv : G → R such that cv(g) is the maximal
number of pairwise non-overlapping quasi-copies of v nested inside g.

Clearly cv(a, b) = cv(ha, hb) and cv(g) = cv(h, hg), for every h ∈ G.
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Proposition 4.5. Let v be one of the elements un for n ∈ N. The map hv : G→ R,
hv = cv − cv−1 is a quasi-morphism with defect at most 2.

Proof. Let g and h be two arbitrary elements in G. Our goal is to show that

|hv(gh)− hv(g)− hv(h)| 6 2 .

The study of geodesic triangles that was done in the preceding section implies
that the intersection Gη(g) ∩ Gη(h) ∩ Gη(g, gh) is either a contour, or a tripod
(with some branches possibly reduced to a point) appearing as intersection of three
contours, or a sub-path in a contour ω composed of three consecutive sub-paths
(possibly reduced to a point) of lengths < λ|ω|, for the first and third, and < η|ω|
for the second. Note that whatever the geometric nature of the intersection, it splits
each of the three sets Gη(g), Gη(h), Gη(g, gh), into two connected components.

We call the intersection Gη(g)∩Gη(h)∩Gη(g, gh) the median object for the triple
g, h, gh, and we denote it m(g, h).

We say that m(g, h) separates a quasi-copy of v nested inside (a, b), where (a, b) ∈
{(1, g), (1, gh), (g, gh)} if the two points x, y determining that quasi-copy are in two
different connected components of Gη(a, b) \m(g, h).

Assume that the maxima cv±1(g), cv±1(gh) and cv±1(g, gh) are all attained only
by considering nested quasi-copies that are not separated by m(g, h). In that case
one can easily see that hv(gh)− hv(g)− hv(h) = 0.

Assume now that every counting that realizes the maximum cv(gh) must take
into account a pair x, y separated by m(g, h) . Inside Gη(gh) one has then an η–
succession of contours t1, . . . , tk with x ∈ t1 and y ∈ tk. The choice of the labels of
contours in Gη(un) implies that:

• no quasi-copy of v−1 nested inside gh can contain a sub-sequence in the
sequence of contours t1, . . . , tk;

• no initial point of a quasi-copy of v nested inside g can be contained in⋃k
i=1 ti ∩ Gη(g);

• no terminal point of a quasi-copy of v nested inside (g, gh) can be contained

in
⋃k
i=1 ti ∩ Gη(g, gh).

It is nevertheless possible that
⋃k
i=1 ti∩Gη(g) contains an initial point of a quasi-

copy of v−1 nested inside g. But in that case no terminal point of a quasi-copy of

v−1 nested inside (g, gh) can be contained in
⋃k
i=1 ti ∩ Gη(g, gh). We thus obtain

that

(7) hv(gh)− hv(g)− hv(h) = 2 .

Similarly,
⋃k
i=1 ti∩Gη(g, gh) may contain a terminal point of a quasi-copy of v−1

nested inside (g, gh); in which case
⋃k
i=1 ti ∩ Gη(g) cannot contain an initial point

of a quasi-copy of v−1 nested inside g, and (7) is still verified.
If none of the above two cases occurs then the right-hand side in (7) is 1.
In the case when every counting that realizes the maximum cv−1(gh) must take

into account a pair x, y separated by m(g, h) similar arguments work and give
equalities like in (7), with the right hand side either −2 or −1.

The cases when cv±1(gh) is replaced by either cv±1(g) or cv±1(g, gh) are treated
similarly and give equalities like in (7), with the right hand side ±2 or ±1. �

We now finish the proof of Proposition 4.1. Proposition 4.5 implies that all the
quasi-homomorphisms hun

have a defect bounded by 2. Properties (4) and (5)
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follow from Corollary 3.9 and from the construction of the η–relator-tied elements
un. �

The end of the proof now follows the standard argument in the work of Epstein-
Fujiwara [EF97, Fuj00, Fuj98] and Bestvina-Fujiwara [BF02]. We repeat it here for
the sake of completeness.

Theorem 4.6. Let G be an infinitely presented finitely generated group given by a
presentation satisfying the small cancellation condition C ′(1/12). Then there exists

an injective linear map `1 → Q̃H(G) . In particular, the dimension of Q̃H(G) is
power continuum.

Proof. We consider the map `1 → Q(G) defined by (an) 7→
∑
n anhun . Proposi-

tion 4.1, (3), implies that each image is indeed a quasi-morphism. Proposition 4.1,
(1), implies that when anhun

is evaluated in some element g ∈ G, only finitely many
terms take non-zero value, thus the sum is always finite.

The above map defines a linear map `1 → Q̃H(G) . We now prove that it is
injective. Let (an) ∈ `1 be such that h =

∑
n anhun

is at bounded distance from a
homomorphism. In particular, it follows by Proposition 4.1, (2), that for every n
and k, h

(
ukn
)

is uniformly bounded.
On the other hand, given n ∈ N such that an 6= 0, Proposition 4.1, (4) and

(5), imply that h
(
ukn
)

= ank. This contradicts the fact that h
(
ukn
)

is bounded
uniformly in k. �
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