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Abstract. In this paper we provide a framework for the study of isoperimetric

problems in finitely generated groups, through a combinatorial study of univer-
sal covers of compact simplicial complexes. We show that, when estimating fill-

ing functions, one can restrict to simplicial spheres of particular shapes, called

“round” and “unfolded”, provided that a bounded quasi-geodesic combing ex-
ists. We prove that the problem of estimating higher dimensional divergence

as well can be restricted to round spheres. Applications of these results include

a combinatorial analogy of the Federer–Fleming inequality for finitely gener-
ated groups and the construction of examples of CAT (0)–groups with higher

dimensional divergence equivalent to xd for every degree d [BD2].

1. Introduction

The k–dimensional isoperimetric (or filling) function of a space X, denoted in
this paper Isok, measures the smallest volume of a (k+ 1)–dimensional ball needed
to fill a k–dimensional sphere of a given area. There is a whole range of filling
functions, from the ones mentioned above, to filling functions of the form IsoV ,
measuring how copies of a given manifold ∂V are filled by copies of a manifold V ,
where V is an arbitrary (k+ 1)–dimensional connected compact sub-manifold with
boundary of Rk+1 . The notion of “volume” that is being used also varies.

A particularly significant type of filling function, especially in the presence of
non-positive curvature, are the divergence functions. These functions measure the
volume of a filling of a sphere, where the filling is required to avoid a ball of large
size. These functions, in some sense, describe the spread of geodesics, and the filling
near the boundary at infinity.

Traditionally, the topic of filling (of spheres, hypersurfaces, cycles etc) belongs to
Riemannian geometry and Geometric measure theory. More recently, it has made
its way in the study of infinite groups, in which the most appropriate framework is
that of simplicial complexes and simplicial maps; this setting arises naturally in the
context of groups whose Eilenberg-Mac Lane space has a finite (k + 1)–skeleton.
In a simplicial setting, analytic arguments and tools are no longer available and
analogous tools must be established anew.
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A main difficulty in obtaining estimates for higher dimensional filling functions,
whether in the context of Riemannian geometry, Geometric measure theory, or
elsewhere, comes from the fact that, unlike in the 1-dimensional case, the knowledge
of the volume of a hypersurface to fill does not bring with it any knowledge of its
shape, or even, in particular, its diameter. This difficulty does not occur in the case
of one-dimensional filling, hence in group theory significant results have already
been found in that case. Isoperimetric functions have been used to characterize a
number of interesting classes of finitely presented groups. For instance, a group
is Gromov hyperbolic if and only if its 1–dimensional isoperimetric function is
subquadratic, and this occurs if and only if this function is linear [Gr2, Ols, Pap95].
Also, it has been shown that automatic groups have k–dimensional isoperimetric
functions that are at most polynomial for every k, and that in the particular case
when k = 1 their isoperimetric functions are always at most quadratic [ECH+].
Recently there has been important progress on isoperimetric functions for lattices
in higher rank semisimple groups, see [BEW, Leu2, You2].

In this paper we prove that, under certain conditions, the study of the minimal
filling of simplicial spheres by simplicial balls can be restricted to classes of spheres
with particular shapes, which we call round and unfolded. A k–dimensional hyper-
surface h is called η–round, for some η > 0, if its diameter is at most ηVol(h)

1
k .

We defer the precise definition of an unfolded hypersurface to Definition 4.9, but,
roughly speaking, a k–dimensional hypersurface is unfolded at scale ρ if within dis-
tance at most ρ of every point the hypersurface looks like a k–dimensional disk (as
opposed to, say, looking like a k–dimensional cylindrical surface that is long and
thin; note that such a cylindrical surface could be spiraling around a point, so the
roundedness condition alone does not rule out its existence).

Convention 1.1. Throughout this paper we work in the context of an n + 1–
dimensional simplicial complex X which is n–connected, and which is the universal
cover of a compact simplicial complex.

We prove that an arbitrary sphere of dimension k ≤ n in X has a partition into
spheres with particular shapes, such that the sum of the volumes of the spheres in
the partition is bounded by a multiple of the volume of the initial sphere. Here
a partition consists of the following: finitely many spheres (more generally, hyper-
surfaces) h1, . . . , hn compose a partition of a sphere h if by filling all of them one
obtains a ball filling h (see Definition 3.6). The hypersurfaces h1, . . . , hn are called
contours of the partition.

We prove the following:

Theorem 4.4 Consider an integer 2 ≤ k ≤ n. Assume that X satisfies an
isoperimetric inequality at most Euclidean for k − 1, if k 6= 3, or an inequality of
the form IsoV (x) ≤ Bx3 for every compact closed surface bounding a handlebody
V , if k = 2 (where B is a positive constant independent of V ).

Then for every ε > 0 there exists a constant η > 0 such that every k–dimensional
sphere h has a partition with contours h1, ...hn that are η–round hypersurfaces, and
contours r1, . . . , rm that are hypersurfaces of volume and filling volume zero such
that

(1)
∑n
i=1 Vol(hi) ≤ 2 · 6k+1Vol(h) .
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(2) h1, ...hn and r1, . . . , rm are contained in the tubular neighborhood NR(h),
where R = εVol(h)1/k.

For k = 2 all the hypersurfaces h1, ...hn and r1, . . . , rm are spheres.
If moreover X has a bounded quasi-geodesic combing then for every k ≥ 3 as

well, h1, ...hn are κη–round spheres, where κ depends only on the constants of the
quasi-geodesic combing.

An immediate consequence of the above is that a simplicial complex with a
bounded quasi-geodesic combing always satisfies an isoperimetric inequality which
is at most Euclidean. Further, an estimate for the filling of round spheres yields
one for arbitrary spheres.

The existence of bounded quasi-geodesic combing implies cone-type inequalities
in the sense of (10) in a straightforward way, see e.g., [ECH+, Section 10] and
Lemma 3.7; in dimension 1 these immediately imply a Euclidean filling function,
but applying these inequalities in higher dimensions to obtain Euclidean filling
functions requires significantly more elaborate arguments, which we carry out here.
Along the same lines, Gromov previously studied homological filling functions by
Lipschitz chains. In this context, Gromov proved that such homological fillings
are at least Euclidean for Hadamard manifolds, and, more generally, for complete
Riemannian manifolds satisfying a cone-type inequality (see for instance (10)) and
for Banach spaces [Gr1]. Gromov’s results were extended to Hadamard spaces in
[Wen1], and then to complete metric spaces satisfying cone-type inequalities in
[Wen3] via another homological version of filling functions using integral currents.

From our result on the partition into round hypersurfaces previously described,
we can deduce the following.

Theorem 4.8 Assume that X has a bounded quasi-geodesic combing.

(1) (Federer-Fleming inequality for groups). For every k ≥ 1, the k–th isoperi-
metric inequality of X is at most Euclidean. For k = 2, moreover, the
supremum of the 2–dimensional filling functions IsoV (x) modelled over all
handlebodies V is at most Bx3, where B > 0 is independent of V .

(2) Assume that for some k ≥ 2, for some η > 0 large enough, and for some
A′ > 0 it is known that every η–round k–sphere of volume at most A′xk

has filling volume at most Bxα with α ∈ [k, k + 1) for some B > 0. Then
Isok(x) ≤ ξBxα, where ξ is a universal constant.

S. Wenger informed us that he believes that the Federer-Fleming inequality
for combable groups can alternatively be proven using an analytic approach as
in [Wen1] and [Wh]; the details of such an approach appear to be delicate.

We further generalize Theorem 4.8 to show that in the study of higher dimen-
sional divergence one may also restrict the study to round spheres. For a definition
of higher dimensional divergence we refer to Definition 5.1. We prove the following.

Theorem 5.3 Assume that X is a simplicial complex of dimension n endowed with
a bounded quasi-geodesic combing. For every ε > 0 there exists η > 0 such that the
following holds. Consider the restricted divergence function Divrk(x, δ), obtained by
taking the supremum only over k–dimensional spheres that are η–round, of volume
at most 2Axk and situated outside balls of radius x.
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Assume that Divrk(x, δ) ≤ Brβ for some β ≥ k+1 and B > 0 universal constant.
Then the general divergence function Divk(x, δ(1 − ε)) is at most B′rβ for some
B′ > 0 depending on B, ε, η and X.

In the theorem above, the notation Divr stands for “restricted divergence”. To
avoid heavy notation we have omitted to specify the parameter η determining the
restricted divergence.

In fact we prove a more general version of the theorem above (see Section 5).
Theorem 5.3 is a powerful tool which we expect will be widely used. Indeed,

in [BD2] the authors use this to construct CAT(0) groups with higher dimensional
divergence exactly a polynomial function of our choice.

When a bounded quasi-geodesic combing exists, another useful restriction to
impose is to restrict one’s study to fillings of spheres that are both round and un-
folded. Note that the condition of roundedness only forbids that a sphere stretches
too much towards infinity, but it does not guarantee that the sphere does not con-
tain many long and thin “fingers” (which may eventually be spiralling, so that
their diameter satisfies the condition imposed by roundedness). It is the condition
of “unfoldedness” that requires from a k-dimensional sphere to be shaped like an
Euclidean k-dimensional sphere. In such a setting we prove the following result.

Theorem 4.14 Let X be a simplicial complex with a bounded quasi-geodesic
combing.

(1) Let k ≥ 2 be an integer. If every k–dimensional sphere of volume at most
Axk that is η–round and ε–unfolded at scale δx, in the sense of Definition
4.9, has filling volume at most Bxα with α ≥ k, then Isok(x) ≤ Cxα, where
C = C(η, ε, δ).

(2) If every (closed) surface of volume at most Ax2 that is η–round and ε–
unfolded at scale δx has filling volume at most Bxα with α ≥ 2 and B
independent of the genus, then IsoV (x) ≤ Cxα, for every handlebody V ,
where C = C(η, ε, δ).

Unlike the case of reduction to round spheres, Theorem 4.14 is not based on a
partition as in Theorem 4.8. Instead, for this result, for an arbitrary sphere, we
produce a partition with a uniformly bounded number of contours that are spheres
round and unfolded and where the remaining contours are spheres whose respective
area is at most ε times the area of the initial sphere, with ε > 0 small.

In previous work of other authors, partial results have been obtained concerning
decompositions of spheres into special types of spheres which yield good limits in
the asymptotic cones. The main results in this direction are those in the one-
dimensional case by P. Papasoglu in [Pap96, Pap00], concerning N–connectedness
by T. Riley in [Ril], and for integral currents by S. Wenger in [Wen3, Wen4].

Related filling functions. There have been several versions of higher dimen-
sional isoperimetric and divergence fillings which have been considered in other
works. Most prior studies, starting with that of Brady–Farb [BF] considered the
case of CAT(0) manifolds and their generalizations, or of groups acting on such
non-positively curved spaces, e.g., [ABDDY, Hin, Leu1, Wen2]. Different notions
of filling sometimes yield the same function [BT], but in general have no relation,
as shown in [ABDY].
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The subject of geometric measure theory has a long history of studying filling
functions, see [Fed]. One approach in this direction, that of filling functions in
metric spaces, has been carried out in some contexts using integral currents, cf.
[AK, Wen3, Wen4]. Indeed, part of our initial plan had been to apply an inductive
strategy as described in [Wen3, Wen4], but it turns out that working in the simpli-
cial setting creates significant differences which don’t allow such a strategy to work
directly. Also, there is no established connection between this simplicial filling of
minimal volume, and the minimal volume filling of integral currents by currents,
beyond the obvious remark that simplicial complexes are currents. In response to
an early draft of this paper, we were informed by S. Wenger that, since simplicial
complexes are currents, he believes that using the tools in [Wen1] and [Wh], he
can prove the filling function defined in terms of simplicial balls filling simplicial
spheres is at most the filling function of integral currents by integral currents, of
the corresponding dimensions (up to an affine rescaling). This appears to be far
from obvious and, accordingly, we believe that clarifying this inequality would be
of independent interest.

For readers familiar with the analytic setting, we note some of the sources of
difficulties that needed to be surmounted to prove results about simplicial filling
functions, as we do in this paper.

• Unlike for integral currents, where a minimal surface-type theory is at work,
a ball that realizes the minimal volume filling for a given sphere typically
has singularities. Hence, in the neighborhood of certain vertices of the
filling ball the volume may be zero, the volume may not grow with the
distance to the point, etc.
• A main tool in the setting of integral currents is the slicing theorem of

Ambrosio–Kirchheim. For its use, it is essential that the intersections of in-
tegral currents with the level subsets of differentiable functions are integral
currents. In such a setting, the homological nature of the filling is essential.

Slicing arguments cannot be used in our setting. Therefore, for instance,
instead of working with intersections of filling balls with balls B(v, r) cen-
tered in given vertices, we must use different objects, the domains c(v, r).
For these, the position of the boundary ∂c(v, r) with respect to the bound-
ary sphere S(v, r) is unclear, also c(v, r) is strictly smaller than the inter-
section with B(v, r).
• While in the integral current setting after the decomposition into, say, round

parts, there is no need to control the shape of the newly obtained currents,
after our decomposition it is in general not true that the result is a collection
of simplicial spheres. Additional arguments must be made to decompose
the hypersurfaces thus obtained into spheres and hypersurfaces of volume
zero. For this, the Federer-Fleming inequality is not sufficient on its own,
the existence of a bounded quasi-geodesic combing is needed, as explained
in detail in the proofs of our main theorems.

Outline. The plan of the paper is as follows. In Section 2 we recall some basic
notions and establish notation which we will use in the paper. In Section 3 we recall
a few facts about filling functions and we prove an estimate of the filling radius in
terms of the filling function. Section 4 is devoted to the proof that in a simplicial
complex with bounded combing the study of the filling function can be reduced
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to round and unfolded spheres. In Section 5, we prove that in the presence of a
combing, the study of divergence can likewise be restricted to round spheres.

Acknowledgements. The authors thank Bruce Kleiner, Enrico Leuzinger and
Stefan Wenger for useful comments on an earlier version of this paper. J.B. thanks
the Mathematics Departments of Barnard/Columbia and Exeter College/Oxford
University for their hospitality during the writing of this paper. The authors thank
the anonymous referees for a very careful job and for their helpful suggestions for
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2. Preliminaries

2.1. General terminology and notation. We begin with standard notions and
notation used in the study of quasi-isometry invariants. Consider a constant C ≥ 1
and an integer k ≥ 1. Given two functions f, g which both map R+ to itself, we
write f �C,k g if

f(x) ≤ Cg(Cx+ C) + Cxk + C for all x ∈ R+.

We write f �C,k g if and only if f �C,k g and g �C,k f . Two functions R+ → R+

are said to be k–asymptotically equal if there exists C ≥ 1 s.t. f �C,k g. This is an
equivalence relation.

When at least one of the two functions f, g involved in the relations above is
an n–dimensional isoperimetric or divergence function, we automatically consider
only relations where k = n, therefore k will no longer appear in the subscript of the
relation. When irrelevant, we do not mention the constant C either and likewise
remove the corresponding subscript.

Given f and g real-valued functions of one real variable, we write f = O(g) to
mean that there exists a constant L > 0 such that f(x) ≤ Lg(x) for every x; in
particular f = O(1) means that f is bounded, and f = g +O(1) means that f − g
is bounded. The notation f = o(g) means that limx→∞

f(x)
g(x) = 0 .

In a metric space (X,dist), the open R–neighborhood of a subset A, i.e. {x ∈ X :
dist(x,A) < R}, is denoted by NR(A). In particular, if A = {a} then NR(A) =
B(a,R) is the open R–ball centered at a. We use the notation NR(A) and B̄(a,R)
to designate the corresponding closed neighborhood and closed ball defined by non-
strict inequalities. We make the convention that B(a,R) and B̄(a,R) are the empty
set for R < 0 and any a ∈ X.

Fix two constants L ≥ 1 and C ≥ 0. A map q : Y → X is said to be

• (L,C)–quasi-Lipschitz if

dist(q(y), q(y′)) ≤ Ldist(y, y′) + C, for all y, y′ ∈ Y ;

• an (L,C)–quasi-isometric embedding if moreover

dist(q(y), q(y′)) ≥ 1

L
(y, y′)− C for all y, y′ ∈ Y ;

• an (L,C)-quasi-isometry if it is an (L,C)–quasi-isometric embedding q : Y →
X satisfying the additional assumption that X ⊂ NC(q(Y )).
• an (L,C)–quasi-geodesic if it is an (L,C)–quasi-isometric embedding de-

fined on an interval of the real line;
• a bi-infinite (L,C)–quasi-geodesic when defined on the entire real line.
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In the last two cases the terminology is extended to the image of q. When the
constants L,C are irrelevant they are not mentioned.

We call (L, 0)–quasi-isometries (quasi-geodesics) L–bi-Lipschitz maps (paths). If
an (L,C)–quasi-geodesic q is L–Lipschitz then q is called an (L,C)–almost geodesic.
Every (L,C)-quasi-geodesic in a geodesic metric space is at bounded (in terms of
L,C) distance from an (L + C,C)–almost geodesic with the same end points, see
e.g. [BBI, Proposition 8.3.4]. Therefore, without loss of generality, we assume in
this text that all quasi-geodesics are in fact almost geodesics, in particular that
they are continuous.

Given two subsets A,B ⊂ R, a map f : A→ B is said to be coarsely increasing
if there exists a constant D such that for each a, b in A satisfying a+D < b, we have
that f(a) ≤ f(b). Similarly, we define coarsely decreasing and coarsely monotonic
maps. A map between quasi-geodesics is coarsely monotonic if it defines a coarsely
monotonic map between suitable nets in their domain.

A metric space is called

• proper if all its closed balls are compact;
• cocompact if there exists a compact subset K in X such that all the trans-

lations of K by isometries of X cover X;
• periodic if it is geodesic and for fixed constants L ≥ 1 and C ≥ 0 the image

of some fixed ball under (L,C)–quasi-isometries of X covers X;
• a Hadamard space if X is geodesic, complete, simply connected and satisfies

the CAT(0) condition;
• a Hadamard manifold if moreover X is a smooth Riemannian manifold.

2.2. Combinatorial terminology. The usual setting for defining an n–dimen-
sional filling function is that of an n–connected space X of dimension n + 1; of
particular interest is when X is the universal cover of a compact CW-complex K,
with fundamental group G. By the Simplicial Approximation Theorem, cf. [Hat,
Theorem 2.C.2], K is homotopy equivalent to a finite simplicial complex K ′ of the
same dimension; hence we may assume that both X and K are simplicial.

In this paper we use the standard terminology related to simplicial complexes
as it appears in [Hat]. In the setting of isoperimetry problems, this terminology
is used as such in [Pap00], and it is used in a slightly more general but equivalent
form (i.e. the cells need not be simplices but rather polyhedra with a uniformly
bounded number of faces) in [BH, p. 153], [Bri2], and [Ril, §2.3]. Note that when
we speak of simplicial complexes in what follows, we always mean their topological
realisation. Throughout the paper, we assume that all simplicial complexes are
connected.

Given an n–dimensional simplicial complex C, we call the closed simplices of
dimension n the chambers of C. A gallery in C is a finite sequence of chambers such
that two consecutive chambers share a face of dimension n− 1.

Given a simplicial map f : X → Y , where X,Y are simplicial complexes, X of
dimension n, we call f–non-collapsed chambers in X the chambers whose images
by f stay of dimension n. We denote by XVol the set of f–non-collapsed chambers.
We define the volume of f to be the (possibly infinite) cardinality of XVol.

Recall that a group G is of type Fk if it admits an Eilenberg-MacLane space
K(G, 1) whose k-skeleton is finite.
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Proposition 2.1 ([AWP], Proposition 2). If a group G acts cellularly on a CW-
complex X, with finite stabilizers of points and such that X(1)/G is finite then G
is finitely generated and quasi-isometric to X. Moreover, if X is n-connected and
X(n+1)/G is finite then G is of type Fn+1.

Conversely, it is easily seen that for a group of type Fn+1 one can define an
(n + 1)-dimensional n-connected simplicial complex X on which G acts properly
discontinuously by simplicial isomorphisms, with trivial stabilizers of vertices, such
that X/G has finitely many cells. Any two such complexes X,Y are quasi-isometric,
and the quasi-isometry, which can initially be seen as a bi-Lipschitz map between
two subsets of vertices, can be easily extended to a simplicial map X → Y [AWP,
Lemma 12].

A group is of type F∞ if and only if it is of type Fk for every k ∈ N . It was
proven in [ECH+, Theorem 10.2.6] that every combable group is of type F∞.

3. Higher dimensional isoperimetric functions

3.1. Definitions and properties. There exist several versions of filling functions,
measuring how spheres can be filled with balls or, given a manifold pair (M,∂M),
how a copy of ∂M can be filled with a copy of M , or how a cycle can be filled with
a chain. The meaning of ‘sphere’, ‘manifold’ or ‘cycle’ also varies, from the measure
theoretical notion of integral current [AK, Wen2, Wen1] to that of (singular) cellular
map [Bri2, Ril, BBFS] or of Lipschitz map defined on the proper geometric object.
For a comparison between the various versions of filling functions we refer to [Grf1,
Grf2, Grf3].

In the setting of finitely generated groups the most frequently used approach
is to refer to a proper cocompact action of the group on a CW-complex. More
precisely, the n–th dimensional filling function is defined for groups that are of type
Fn+1, that is groups having a classifying space with finite (n + 1)-skeleton. One
can define the n–th dimensional filling function using the (n + 1)-skeleton of the
classifying space, or any other (n + 1)-dimensional complex on which the group
G acts properly discontinuously cocompactly. This is due to the quasi-isometry
invariance of filling functions proved in [AWP]. Since a finite (n+ 1)–presentation
of a group composed only of simplices can always be found, it suffices to restrict
to simplicial complexes. In what follows we therefore define filling functions for
simplicial complexes with a cocompact action.

A simplicial complex X may be endowed with a “large scale metric structure” by
assuming that all edges have length one and taking the shortest path metric on the
1-skeleton X(1). We say that a metric space Y (or, another simplicial complex Z)
is (L,C)–quasi-isometric to X if Y (respectively Z(1)) is (L,C)–quasi-isometric
to X(1).

Convention 3.1. For the rest of the section, we fix a simplicial complex X in which
the filling problem is to be considered. We assume that X is the universal cover of
a compact simplicial complex K with fundamental group G, that it has dimension
n+ 1 and it is n–connected. We will consider fillings in X up to dimension n.

Convention 3.2. Throughout the paper, when we speak of manifolds we always
mean manifolds with a simplicial-complex structure.

We denote by V an arbitrary m–dimensional connected compact sub-manifold
of Rm , where m ≥ 2 is an integer and V is smooth or piecewise linear, and with
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boundary. We denote its boundary, by ∂V . Unless otherwise stated, the standing
assumption is that ∂V is connected. We denote its interior by Int (V ).

Given V as above, a V –domain in X is a simplicial map d of D to X(m), where
D is a simplicial structure on V . When the manifold V is irrelevant we simply call d
a domain of dimension m (somewhat abusively, since it might have its entire image
inside X(m−1)); we also abuse notation by using d to denote both the map and its
image.

A ∂V –hypersurface in X is a simplicial map h of M to X(m−1), where M is
a simplicial structure of the boundary ∂V . Again, we abuse notation by letting h
also denote the image of the above map, and we also call both h and its image a
hypersurface of dimension m− 1.

According to the terminology introduced in Section 2.2, DVol, respectivelyMVol,
is the set of d–non-collapsed chambers (respectively h–non-collapsed chambers).
The volume of d (respectively h) is the cardinality of DVol, respectively MVol.
Given a vertex v we write v ∈ DVol (or v ∈MVol) to signify that v is a vertex in a
non-collapsed chamber.

We sometimes say that the domain d is modelled on V , or that it is a V –domain,
and h is modelled on ∂V , or that it is a ∂V –hypersurface. When V is a closed ball
in Rm, we call d an m–dimensional ball and h an (m− 1)–dimensional sphere.

We say that a domain d fills a hypersurface h if this pair corresponds to a
(k + 1)–dimensional connected compact smooth sub-manifold with boundary V in
Rk+1 satisfying D ∩ ∂V =M and d|M = h, possibly after pre-composing h with a
simplicial equivalence of M.

The filling volume of the hypersurface h, FillVol(h), is the minimum of all the
volumes of domains filling h. If no domain filling h exists then we set FillVol(h) =∞.

Remark 3.3. These notions are equivalent to the ones defined in [BBFS, You1]
using admissible maps, as well as to the ones in [AWP], and those in [BH, p.153],
[Bri2], [Ril, §2.3] that are using more polyhedra than just simplices.

Indeed, every domain and hypersurface as above is an admissible map with the
same volume. Conversely, consider an admissible map f : W → X defined on an m-
dimensional domain or boundary of a domain, i.e. a continuous map f : W → X(m),
such that f−1(X(m) \X(m−1)) is a disjoint union

⊔
i∈I Bi of open m-dimensional

balls, each mapped by f homeomorphically onto an m-simplex of X. Recall that
the volume of f is the cardinality of I (by compactness of W , this is finite).

The submanifold with boundary W \
⊔
i∈I Bi admits a triangulation. We apply

the Cellular Approximation Theorem [Hat, Theorem 4.8] to the restriction f : W \⊔
i∈I Bi → X(m−1) and obtain that it is homotopy equivalent to a simplicial map

f̄ : W \
⊔
i∈I Bi → X(m−1). Due to the homotopy equivalence with f it follows

that for every i ∈ I, f̄(∂Bi) and f(∂Bi) coincide as sets. We may then extend f̄ to

a simplicial map f̂ : W → X(m), with the same volume as f , homotopy equivalent

to f , and such that the sets f̂(Bi) and f(Bi) coincide for every i ∈ I.
In filling problems, when dealing with extensions of maps from boundaries to

domains, one may use an argument as above and the version of the Cellular Ap-
proximation Theorem ensuring that if a continuous map between CW-complexes is
cellular on a sub-complex A then it is homotopic to a cellular map by a homotopy
which is stationary on A [Hat, Theorem 4.8].
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For more on equivalent definitions of (filling) volumes and functions we refer to
[Grf1, Grf2, Grf3].

We now define a notion of filling radius.

Definition 3.4. Given a hypersurface h : M→ X and a domain d : D → X filling
it, the radius Rad(d) of the domain d is the minimal R such that d

(
D(1)

)
is in the

closed tubular neighborhood of radius R of h
(
M(1)

)
.

The filling radius FillRad(h) of the hypersurface h is the infimum of all the filling
radii of domains realizing FillVol(h).

We recall two standard results that we will use later. The first is an imme-
diate consequence of Alexander duality and the second is the Jordan-Schoenflies
Theorem.

Proposition 3.5. (1) Given M a k–dimensional compact connected smooth
or piecewise linear sub-manifold without boundary of Rk+1 (or Sk+1), its
complement in Rk+1 (respectively Sk+1) has two connected components.

(2) When k = 1 and M is a simple closed curve, there exists a homeomorphism
of R2 transforming M into the unit circle.

Definition 3.6. Let h : M→ X be a k-dimensional ∂V – hypersurface.
A partition of h is a finite family of k-dimensional hypersurfaces h1, h2, ...hq,

where hi : Mi → X are simplicial maps defined on simplicial structures Mi on
boundaries ∂Vi , with the following properties.

(1) there exist simplicial structures D on V which agrees with M on ∂V , re-
spectively Di on Vi which agrees with Mi on ∂Vi, and simplicial maps
σi : Di → D which are homeomorphisms on Di ∩ IntVi, local homeomor-
phisms on Mi, and may identify distinct simplices on Mi of codimension
at least 1.

(2) V can be written as a (set-wise) union of σi(Di), i = 1, 2, . . . , q; the sets
σi(Di ∩ IntVi), i = 1, 2, . . . , q, are pairwise disjoint;

(3) there exists a domain filling h, i.e. a simplicial map ϕ of D into X such
that ϕ ◦ σi|Mi

= hi for every i ∈ {1, 2, . . . , q}.
Each of the hypersurfaces hi is called a contour of the partition.
When q = 2, we say that h is obtained from h1 adjoined with h2.

When discussing problems of filling we will often assume the existence of a comb-
ing, as defined below.

We say that a simplicial complexX has a bounded (L,C)–quasi-geodesic combing,
where L ≥ 1 and C ≥ 0, if for every x ∈ X(1) there exists a way to assign to every
element y ∈ X(1) an (L,C)–quasi-geodesic qxy connecting y to x in X(1), such that

dist(qxy(i), qxa(i)) ≤ Ldist(y, a) + L ,

for all x, y, a ∈ X(1) and i ∈ R. Here the quasi-geodesics are assumed to be extended
to R by constant maps.

The result below is well known in various contexts (CW–complexes, Riemannian
geometry etc), see for instance [ECH+, Theorems 10.2.1, 10.3.5 and 10.3.6]. We
give a sketch of proof here for the sake of completeness.
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Lemma 3.7. Let X be a simplicial complex with a bounded (L,C)–quasi-geodesic
combing. For every hypersurface h,

FillVol(h) � Vol(h) diam(h).

Proof. Consider an arbitrary hypersurface, h : M → X, where M is a simplicial
structure of the boundary ∂V . Recall that the cut locus, Cut, of V relative to its
boundary, is the closure of the set of points in V that have at least two distinct
shortest paths in V joining them to ∂V . Let p : V → Cut denote the normal map.
Note that V is homeomorphic to the mapping cylinder of p|∂V [Gr1, §3.1.A′′].

Fix a vertex x0 in h(M). The map h can be extended to a quasi-Lipschitz
map on V (with an appropriate simplicial structure) as follows: the whole set Cut
is sent onto x0 and for every vertex v ∈ M the geodesic [v, p(v)] is sent to the
quasi-geodesic in the combing joining x0 and h(v).

The extension can be transformed into a simplicial map as in [AWP, Lemma
12]. Note that [AWP, Lemma 12] (unnecessarily) assumes that the complex X is
what they call m–Dehn, but do not use this hypothesis in the proof. Nonetheless,
by [AWP, Theorem 1, p. 92], the simplicial complex X that we use satisfies the
m–Dehn condition.

We have thus obtained a domain filling h of volume � diam(h) Vol(h). �

Definition 3.8. The k–th isoperimetric function, also known as the k–th filling
function, of a simplicial complex X is the function Isok : R∗+ → R+ ∪ {∞} such
that Isok(x) is the supremum of the filling volume FillVol(h) over all k–dimensional
spheres h of volume at most Axk.

The k–th filling radius of the simplicial complex X is the function Radk : R∗+ →
R+ such that Radk(x) is the supremum of all filling radii FillRad(h) over all k–
dimensional spheres h of volume at most Axk.

In what follows the constant A > 0 from Definition 3.8 is fixed, but not made
precise. Note that the two filling functions corresponding to two different values of
A are equivalent in the sense of the relation � defined in Section 2.1.

Remark 3.9. In dealing with isoperimetric functions some authors use an alternate
formulation where the volume is bounded above by Ar, instead of Ark; this yields
an equivalent notion (although the functions differ by a power of k), but with the
alternative definition one must modify the equivalence relation to allow an additive
term which is a multiple of r instead of rk. We use the present definition because
it yields a formulation consistent with the standard definition of the divergence
function that we use in this paper, see also [BF, Hin, Leu1, Wen2].

Remark 3.10. Note that when considering the k–dimensional isoperimetric func-
tion (and, as we shall see below, the k–dimensional divergence function), we have
that xk � x. Accordingly, in this case we often represent our function by x, as
the property of having a linear filling means the same both under our choice of
normalizing the volume and under the alternative choice.

We may generalize the functions above, using instead of the sphere and its filling
with a ball, a hypersurface and its filling with a domain, both modelled on a (k+1)–
dimensional submanifold with boundary V in Rk+1. We then define as above the
filling function and radius, denoted IsoV and RadV , respectively.

Proposition 3.11 ([BBFS]). Assume that V has dimension k + 1 at least 4.
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(1) Assume that ∂V is connected.
For every hypersurface h : ∂V → X there exists a simplicial map f :

Bk → ∂V defined on the k-dimensional unit ball, whose image B contains all
the chambers that contribute to the volume of h, and a ball b : Bk → X(k−1)

filling the sphere h ◦ f |Sk−1 .
Therefore s and h′ compose a partition of h, where s is the sphere com-

posed by the ball h ◦ f and the ball b, and h′ is the hypersurface with image
in X(k−1) obtained by adding h|∂V \B to the ball b : Bk → X(k−1), h′ with
filling volume zero. In particular

(1) FillVol(h) ≤ FillVol(s) .

(2) If either ∂V is connected or Isok(x) is super-additive then the following
inequality holds:

IsoV (x) ≤ Isok(x) .

Proof. The proof is identical to the proof in [BBFS, Remark 2.6, (4)]. �

Using the terminology in the end of Definition 3.6, we can express the result
above by stating that every hypersurface h of dimension k ≥ 3 is obtained by
adjoining to a k-dimensional sphere a hypersurface with image in X(k−1).

Remark 3.12. A stronger result than Proposition 3.11 is Corollary 1 in [Grf3] which
removes the hypothesis that ∂V be connected. We do not need that generality to
obtain the results of this paper.

By Proposition 3.11, we may assume without loss of generality that the hyper-
surfaces of dimension k 6= 2 are defined on simplicial structures of the k–sphere,
while for k = 2 they are defined on a simplicial structure of a surface.

Lemma 3.13. Given a hypersurface h : M → X(m−1), consider d : D → X(m) a
domain filling h.

Every domain d′ : D′ → X(m) filling h, with the same volume and image as d
and a minimal number of chambers in D′ has the property that every chamber of
D′ is either non-collapsed or it has a vertex in the boundary, M(0).

Proof. Consider d′ : D′ → X(m) filling h, with the same volume and image as d and
a minimal number of chambers in D′.

Let {v, w} be endpoints of an edge that are not in M(0). If d′ sends both v and
w to one vertex, then by retracting the link of {v, w} to the link of v one obtains a
new domain filling h, with the same volume and image as d and a smaller number
of chambers in its domain than d′.

We may therefore deduce that every chamber in D′ is either non-collapsed or it
has a vertex in M(0). �

Theorem 3.14 (Theorem 1 and Corollary 3 in [AWP]). Let X1 and X2 be two
n–connected locally finite CW–complexes such that for each i ∈ {1, 2} a group Gi
acts on Xi cellularly and such that X

(n+1)
i /Gi has finitely many cells.

Let V be an arbitrary (n + 1)–dimensional connected compact sub-manifold of
Rn+1 , where n ≥ 1, V smooth or piecewise linear, and with connected boundary.

If X1 is quasi-isometric to X2 then

IsoX1

V � IsoX2

V .
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In particular, for every 1 ≤ k ≤ n
IsoX1

k � IsoX2

k .

Theorem 3.14 allows us to define n–dimensional filling functions for groups of
type Fn+1, up to the equivalence relation �.

Definition 3.15. Let G be a group acting properly discontinuously by simplicial
isomorphisms on an n-connected simplicial complex such that X(n+1)/G has finitely
many cells. For every 1 ≤ k ≤ n, the k–th isoperimetric function of G is defined to
be the k–th isoperimetric function of X.

Likewise, the isoperimetric function of G modelled on V is defined to be IsoXV .

According to Theorem 3.14 any pair of choices of simplicial complexes as in
Definition 3.15 yield filling functions which are �-equivalent, thus the definition is
consistent. This definition is also equivalent to the definitions appearing in [AWP,
Bri2, Ril, BBFS].

3.2. Filling radius estimates provided by filling functions. We begin by
defining a simplicial object which, in all arguments on simplicial complexes, is
meant to replace the intersection of a submanifold with a ball in a Riemannian
manifold.

Consider a simplicial map c : C → X representing either a domain d : D → X
modelled on a sub-manifold V of Rk+1, or a hypersurface h : M→ X modelled on
∂V . Let v be a vertex of C and let r > 0.

Notation 3.16. We denote by C(v, r) the maximal sub-complex of C composed
of chambers that can be connected to v by a gallery whose 1-skeleton is entirely
contained in c−1

(
B̄(c(v), r)

)
. Here B̄(c(v), r) represents the closed ball centered in

c(v) with respect to the distance dist on X(1). Let ∂C(v, r) denote the boundary of
this subcomplex.

When c is a sphere (or a ball), modulo some slight modifications preserving the
volume, its restriction to C(v, r) is either a domain or the whole sphere (or ball),
while its restriction to ∂C(v, r) is a hypersurface. The same is true when c is a
domain and r is strictly less than the distance in X(1) between c(v) and c

(
∂C(1)

)
.

Indeed, in case C(v, r) is not a whole sphere, given an arbitrary point p in it,
a small neighborhood of p is either an open set in Rk+1, respectively Rk, or is
homeomorphic to a half-ball in the same space, or, for a point p in the interior of
a simplex of codimension at least 1 contained in the boundary, it may have some
other shape. It suffices to cut along all these latter simplices of codimension at
least 1 to obtain a complex C(v, r)cut which is modeled on a smooth compact sub-
manifold with boundary in Rk+1, respectively Rk. If Gcut

r : C(v, r)cut → C(v, r) is
the map gluing back along the simplices of codimension ≥ 1 where the cutting was
done, then the restriction of c to C(v, r) must be pre-composed with Gcut

r .

Notation 3.17. We denote by c(v, r) and by ∂c(v, r) the domain, respectively the
hypersurface, defined by restricting c to C(v, r), respectively to ∂C(v, r), and pre-
composing it with Gcut

r .

A relation can be established between the filling radius and the filling function.
Note that for k = 1 and α = 2 this relation was first proved in [Pap96, Proposition
pg. 799].



14 JASON BEHRSTOCK AND CORNELIA DRUŢU

Proposition 3.18. Let k ≥ 1 be an integer.
If k 6= 2 then assume that Isok(x) ≤ Bxα for α ≥ k and some constant B > 0;

while if k = 2 then assume that for every compact closed surface ∂V bounding a
3–dimensional handlebody V in R3, IsoV (x) ≤ Bxα, where α ≥ 2 and B > 0 are
independent of V .

Consider an arbitrary connected hypersurface h : M → X of dimension k such
that FillVol(h) ≥ 1. For every filling domain d : D → X realizing FillVol(h) and
such that D has a minimal number of chambers, the following holds.

(1) If α = k then Rad(d) ≤ C ln FillVol(h) , where C = C(A,B, k).

(2) If α > k then Rad(d) ≤ D [FillVol(h)]
α−k
α , where D = D(A,B, k, α).

(3) If α > k and if for ε > 0 small enough and for x larger than some x0,
Isok(x) ≤ εxα (respectively, for k = 2, IsoV (x) ≤ εxα and this holds for V
as above) then either Rad(d) ≤ Bxα0 or

Rad(d) ≤ Lε [FillVol(h)]
α−k
α +

1

(Lε)
α
α−k

where L = L(A, k, α) .

Proof. Consider an arbitrary vertex v of DVol \M, and a positive integer

(2) i < dist
(
d(v) , h

(
M(1)

))
.

The filling domain di = d(v, i) realizes the filling volume of the hypersurface
hi = ∂d(v, i), by the minimality of the volume of d.

Since v is in DVol\M, Vol(di) ≥ 1 for every i ≥ 1. By the isoperimetric inequality
this implies that Vol(hi) ≥ 1.

When k = 1, by Proposition 3.5(1), we have that D(v, i) is homeomorphic to a
disk with holes having pairwise disjoint interiors. In particular, D(v, i) is contained
in a simplicial disk Di ⊂ D whose boundary Si is inside a connected component of
∂D(v, i). It follows that

Vol(di) ≤ Vol (d|Di) ≤ B
(

Vol (d|Si)
A

)α
k

≤ B
(

Vol (hi)

A

)α
k

.

Assume now that k ≥ 2. By Proposition 3.5(2), if ∂D(v, i) is composed of several
closed connected k–dimensional submanifolds s1, s2, ...sq then D(v, i) is the inter-
section of connected components of D \ si, one component for each i ∈ {1, 2, ...q} .
For one i ∈ {1, 2, ...q} the connected component does not contain the boundary
M. Let Di be that connected component. It is a domain modelled on a manifold
V such that ∂V is connected and has a simplicial structure isomorphic to si. Then

Vol(di) ≤ Vol (d|Di) ≤ IsoV

((
Vol (d|si)

A

) 1
k

)
≤ IsoV

((
Vol (hi)

A

) 1
k

)
.

If k ≥ 3 then IsoV

((
Vol(hi)
A

) 1
k

)
≤ Isok

((
Vol(hi)
A

) 1
k

)
by Proposition 3.11.

If k = 2 then IsoV

((
Vol(hi)
A

) 1
k

)
≤ B

(
Vol(hi)
A

)α
k

by hypothesis.
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Thus, in all cases we obtained that

(3) Vol(di) ≤ B
(

Vol (hi)

A

)α
k

.

Since i is strictly less than dist
(
d(v) , h

(
M(1)

))
, the volume of di+1 is at least

the volume of di plus
(

1
k+1

)
–th of the volume of hi.

Indeed, every codimension one face in hi is contained in two chambers ∆,∆′,
such that ∆ is in D(v, i) and ∆′ is not. If ∆′ is collapsed then d(∆′) = d(∆ ∩∆′),
whence ∆′ is in D(v, i) too. This contradicts the fact that the codimension one face
∆ ∩∆′ is in the boundary of D(v, i). It follows that ∆′ is not collapsed, and it is
in D(v, i+ 1) \ D(v, i).

Whence
(4)

Vol (di+1) ≥ Vol (di)+C
′Vol (di+1)

k
α ≥ Vol (di)+C

′Vol (di)
k
α , where C ′ =

A

(k + 1)B
k
α

.

Part (1). Assume that k = α. Then the above gives Vol (di+1) ≥ (1+C ′) Vol (di),
hence by induction

(5) Vol (di+1) ≥ (1 + C ′)i.

In (5), when we choose i maximal we have that i + 1 satisfies the inequality
opposite to that in (6), hence

(6) i ≥ dist
(
d(v) , h

(
M(1)

))
− 1 ,

while Vol (di+1) is at most Vol (d) = FillVol(h). We thus obtain that

ln FillVol(h)

ln(1 + C ′)
≥ dist

(
d(v) , h

(
M(1)

))
− 1 ,

and by taking the supremum over all vertices v we obtain the inequality in (1).

Part (2). Assume that α > k . We prove by induction on i ≤ dist(v,M) that

(7) Vol (di) ≥ D′i
α
α−k for D′ small enough.

The statement is obvious for i = 1, and if we assume it for i then

Vol (di+1) ≥ D′i
α
α−k + CD′

k
α i

k
α−k .

Thus it suffices to prove that

D′
[
(i+ 1)

α
α−k − i

α
α−k
]
≤ CD′ kα i

k
α−k .

A standard application of the Mean Value Theorem, as we illustrate in more
detail in the next part, proves that the latter holds if D′ is small enough compared
to C.

Part (3). Assume α > k and moreover that for every x ≥ x0, Isok(x) ≤ εxα

(respectively IsoV (x) ≤ εxα for every surface, when k = 2).

For i ≥ i0 = Bxα0 we have that xi =
(

Vol(hi)
A

) 1
k

is at least x0 . Thus the domain

di filling hi and realizing the filling volume has

Vol(di) ≤ εxαi
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This implies that for i ≥ i0

(8) Vol (di+1) ≥ Vol (di) + Cε Vol (di)
k
α , where Cε =

A

(k + 1)ε
k
α

.

Let D = µ

ε
k

α−k
, where µ =

(
A(α−k)

α2
k

α−k (k+1)

) α
α−k

.

Consider j0 large enough so that Vol(dj0+1) ≥ D. We can take j0 to be the
integer part of D. We prove by induction that for every i ≥ j0 + 1

Vol (di) ≥ D(i− j0)
α
α−k .

Assume that the statement is true for i. According to (8),

Vol (di+1) ≥ D(i− j0)
α
α−k + CεD

k
α (i− j0)

k
α−k .

The right hand side of the inequality is larger than D(i+ 1− j0)
α
α−k if

(9) D
[
(i+ 1− j0)

α
α−k − (i− j0)

α
α−k
]
≤ CεD

k
α (i− j0)

k
α−k .

We may apply the Mean Value Theorem to bound the left hand side of (9) from
above and write

D
[
(i+ 1− j0)

α
α−k − (i− j0)

α
α−k
]
≤ D α

α− k
(i+1−j0)

k
α−k ≤ D α

α− k
2

k
α−k (i−j0)

k
α−k

Thus the inequality (9) holds true if

D
α

α− k
2

k
α−k ≤ CεD

k
α .

The value chosen for D implies that we have equality. �

Two types of filling function estimates, listed below, play an important part in
the theory.

A simplicial complex X is said to satisfy a cone-type inequality for k, where
k ≥ 1 is an integer, if for every k–dimensional sphere h : M→ X its filling volume
satisfies the inequality:

(10) FillVol(h) � Vol(h)diam(h) .

In the above inequality the diameter diam(h) is the diameter of h
(
M(1)

)
mea-

sured with respect to the metric of the 1-skeleton X(1).
A simplicial complex X is said to satisfy an isoperimetric inequality at most Eu-

clidean (respectively Euclidean) for k if Isok,X(x) � xk+1 (respectively Isok,X(x) �
xk+1).

An immediate consequence of Proposition 3.18 is the following.

Corollary 3.19. Let k ≥ 1 be an integer and assume that X satisfies an isoperi-
metric inequality at most Euclidean for k, if k 6= 2, or an inequality of the form
IsoV (x) ≤ Bx3 for every compact closed surface bounding a handlebody V , if k = 2.

Then the filling radius described in Definition 3.8 is bounded from above by an
affine function of x.
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4. Filling reduced to round unfolded spheres

4.1. Partition into round hypersurfaces. Among the k–dimensional hypersur-
faces, there is a particular type for which the cone-type inequality (10) implies an
isoperimetric inequality at most Euclidean.

Definition 4.1. A k–dimensional hypersurface h is called η–round for a constant
η > 0 if diam(h) ≤ ηVol(h)

1
k .

Note that for k = 1 the hypersurfaces, i.e. the closed curves, are always round.
In what follows we extend, for k ≥ 2, a result from Riemannian geometry to the
setting of simplicial complexes, more precisely we prove that every sphere has a
partition into round hypersurfaces.

Proposition 4.2 (partition into round hypersurfaces). Consider an integer k ≥ 2,
and X a simplicial complex of dimension at least k + 1. If k 6= 3 then assume that
Isok−1(x) ≤ Bxk for some constant B > 0. If k = 3 then assume that for every
handlebody V in R3, IsoV (x) ≤ Bx3, where B > 0 is independent of V .

Then for every ε > 0 there exists a constant η > 0 such that every k–dimensional
sphere h has a partition with contours h1, ...hn and r such that hi are η–round hy-
persurfaces for every i ∈ {1, 2, ...n}, r is a disjoint union of hypersurfaces obtained
from k–dimensional spheres adjoined with hypersurfaces of volume and filling vol-
ume zero, and

(1)
∑n
i=1 Vol(hi) ≤ 2Vol(h) ;

(2) Vol(r) ≤ θVol(h) , where θ = 1− 1
6k+1 .

(3) h1, ...hn and r are entirely contained in the neighborhood NR(h), with R =
εVol(h)1/k.

r

Figure 1. A sphere partitioned into round spheres and a sphere,
r, of smaller area.

Remark 4.3. In Proposition 4.2, for k = 2 all the hypersurfaces hi are spheres,
and r is a disjoint union of spheres. For k ≥ 3, following Proposition 3.11 one
can only say that each hi is obtained from a k–dimensional sphere by adjoining it
with a hypersurface of volume and of filling volume zero, and the same for all the
components of r.

Proof. Let h : M → X be a k-dimensional sphere. We denote by λ > 0 a fixed
small constant to be determined during the argument.
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If the volume of h is zero then we simply take r = h. In what follows we therefore
assume that Vol(h) ≥ 1. For an arbitrary vertex y ∈MVol we define r0(y) to be the
maximum of r ≥ 1 such that h(y, r) has volume at least λrk. Since h(y, 1) contains
at least one chamber, if we assume that λ ≤ 1

2k
, we ensure that for every y the

radius r0(y) is at least 2. Due to the fact that the volume of h(y, r) is always an
integer, a maximal radius r0(y) as above exists.

Step 1. Let r1 be the maximum of the r0(y) for y ∈MVol. As all the points
y are vertices, there are finitely many of them, hence finitely many values r0(y) to
consider, and one can speak of maximum. Let y1 ∈MVol be such that r1 = r0(y1).
Then consider Y2 = MVol \M(y1, 6r1), the maximum r2 of the r0(y) for y ∈ Y2,
and y2 ∈ Y2 such that r2 = r0(y2). Assume that we have found inductively y1, ..., yj
and in Yj+1 =MVol \

⋃j
i=1M(yi, 6ri) consider the maximal radius r0(y) denoted

by rj+1 and a point yj+1 ∈ Yj+1 such that r0(yj+1) = rj+1.
We thus find a sequence y1, ..., yN of vertices and a non-increasing sequence

r1 ≥ r2 ≥ .. ≥ rN of radii, and we clearly have that for i 6= j the sets M(yi, 2ri)
and M(yj , 2rj) do not contain a common chamber. For N large enough we have

that MVol \
⋃N
i=1M(yi, 6ri) is empty. For each i, either Vol (h(yi, 6ri)) equals

Vol (h(yi, ri)) or it is strictly larger than Vol (h(yi, ri)). In the latter case, we can
write:

Vol (h(yi, 6ri)) ≤ λ6krki ≤ 6kVol (h(yi, ri)) .

In both cases we can write:

Vol(h) ≤
N∑
i=1

Vol (h(yi, 6ri)) ≤ 6k
N∑
i=1

Vol (h(yi, ri)) .

We may therefore conclude that the union of the domains {h(yi, ri)}1≤i≤N con-
tain at least 1

6k
of the volume of h.

If for some j we have that MVol ⊂ M(yj , 6rj) then λrkj ≤ Vol(h) ≤ λ(6rj)
k

and this may be seen as a particular case of the above, with the set of domains
{h(yi, ri)}1≤i≤N replaced by the singleton set {h(yj , rj)} .

In what follows we assume that for every i, MVol is not contained in any
M(yi, 6ri).

Step 2. Fix i ∈ {1, 2, . . . , N} and define the function Vi(r) = Vol(h(yi, r)).
By the definition of ri we have that Vi(ri) ≥ λrki while Vi(ri + 1) ≤ λ(ri + 1)k.

Assume that Vol(∂h(yi, ri)) > 0 . We may write that

Vi(ri + 1) ≥ Vi(ri) +
1

k
Vol(∂h(yi, ri)) ,

whence, according to the Mean Value theorem,

Vol(∂h(yi, ri)) ≤ λk2(ri + 1)k−1 ≤ Cλrk−1
i

where C = 2k−1k2.
If ∂h(yi, ri)) is empty, i.e. h = h(yi, ri) then the inequality above is automatically

satisfied.
If k = 2 then M(yi, ri) is either a disk with holes with disjoint interiors or it is

the whole sphere, i.e. ∂M(yi, ri) is either empty or a union of circles. We fill the
h-image of each circle in X with a disk of area quadratic in the length of the circle,
and transform h(yi, ri) into a sphere hi of area at most Vi(ri) + C2λ2r2

i .
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Figure 2. The sphere hi in the case k = 2.

The added area is at most C2λ2r2
i , which for λ small enough is at most 1

6λr
2
i ≤

1
6Vi(ri). Therefore the sphere hi has area at most

(
1 + 1

6

)
Vi(ri).

On the other hand, we consider the remainder of the complexM\
⋃N
i=1M(yi, ri)

to which we add
⋃N
i=1 ∂M(yi, ri). We fill in X the h-image of each circle in⋃N

i=1 ∂M(yi, ri) with a disk of area quadratic in the length of the circle, and trans-
form h|M\⋃Ni=1M(yi,ri)

into a disjoint union of 2-spheres, denoted by r.

If k ≥ 3 then M(yi, ri) has boundary composed of (k − 1)–dimensional hyper-
surfaces and by using a similar argument, the hypothesis on the (k− 1)–filling and
Proposition 3.11(2), when k ≥ 4, we transform each h(yi, ri) into a hypersurface hi
of volume at most

(
1 + 1

6

)
Vi(ri), and the remaining complex M\

⋃N
i=1M(yi, ri)

into a disjoint union composed of a k-sphere and of k-hypersurfaces. Proposition
3.11(1), allows to write each of these hypersurfaces as spheres of the same volume
adjoined with k-hypersurfaces contained in X(k−1) with volume and filling volume
zero. We again denote this union by r.

The hypersurface hi has volume � rki and diameter � ri, since h(yi, ri) has
diameter at most 2ri, and for the filling domain of each component of ∂h(yi, ri) the
radius is � ri by Proposition 3.18.

In both cases k = 2 and k ≥ 3 we obtain the following which completes the proof
of part (1):

N∑
i=1

Vol(hi) ≤
(

1 +
1

6

) N∑
i=1

Vol(h(yi, ri)) ≤ 2

N∑
i=1

Vol(h(yi, ri)) .

Since for every i 6= j the sets of chambers in h(yi, ri)∩MVol and respectively in
h(yj , rj) ∩MVol are disjoint,

N∑
i=1

Vol(h(yi, ri)) ≤ Vol(h) .

The union r is obtained by replacing the domains h(yi, ri) with unions of filling
domains of their boundary components. It therefore has volume at most Vol(h)−∑N
i=1 Vol (h(yi, ri)) + 1

6

∑N
i=1 Vol (h(yi, ri)) = Vol(h) − 5

6

∑N
i=1 Vol (h(yi, ri)). We

combine this with the fact that
∑N
i=1 Vol (h(yi, ri)) ≥ 1

6k
Vol(h) and obtain that

Vol(r) is at most Vol(h)− 5
6k+1 Vol(h), which implies (2).

To prove (3) it suffices to note that both r and hi are obtained by adding minimal
volume domains filling hypersurfaces corresponding to connected components of
each ∂M(yi, ri). Each of these components has area at most Cλrk−1

i . This, the
hypothesis on the filling in dimension k − 1 and Proposition 3.18, (2), implies that
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hi is contained in NRi(h), where Ri ≤ D′λ
1
k−1 ri. On the other hand λrki ≤ Vol(h),

whence ri ≤ λ−
1
kVol(h)

1
k . It follows that Ri ≤ D′λ

1
k(k−1) Vol(h)

1
k , and the latter

bound is at most εVol(h)
1
k , for λ small enough. �

By iterating Proposition 4.2 we obtain that every sphere has a partition com-
posed of round hypersurfaces and hypersurfaces of volume and filling volume zero.
This is a key fact which allows one to reduce the filling problem to filling round
hypersurfaces, and ultimately to filling round spheres.

Theorem 4.4. Consider an integer k ≥ 2, and X a simplicial complex of dimension
at least k+1. If k 6= 3 then assume that Isok−1(x) ≤ Bxk for some constant B > 0.
If k = 3 then assume that for every 3-dimensional handlebody V , IsoV (x) ≤ Bx3,
where B > 0 is independent of V .

Then for every ε > 0 there exists a constant η > 0 such that every k–dimensional
sphere h has a partition with contours h1, ...hn that are η–round hypersurfaces, and
contours r1, . . . , rm that are hypersurfaces of volume and filling volume zero such
that

(1)
∑n
i=1 Vol(hi) ≤ 2 · 6k+1Vol(h) .

(2) h1, ...hn and r1, . . . , rm are contained in the tubular neighborhood NR(h),
where R = εVol(h)1/k.

For k = 2 all the hypersurfaces h1, ...hn and r1, . . . , rm are spheres.
If moreover X has a bounded quasi-geodesic combing then for every k ≥ 3 as

well, h1, ...hn are κη–round spheres, where κ depends only on the constants of the
quasi-geodesic combing.

Remark 4.5. Theorem 4.4 is true also for k–dimensional hypersurfaces h. Indeed,
for k ≥ 3 the statement follows from Theorem 4.4 for spheres and Proposition 3.11.
For k = 2 the same argument works and yields a decomposition with h1, ...hn and
r1, . . . , rm surfaces. The only difference is that, in the proof of Proposition 4.2,
M(yi, ri) are subsurfaces with boundary, and after their boundary circles are filled
with disks they become closed surfaces hi. The remaining r, obtained from h after
performing this operation for all i, is likewise a disjoint union of surfaces.

Proof. Proposition 4.2 allows to find, for an arbitrary ε′ > 0 a constant η > 0 such
that for every i ≥ 1, an arbitrary k-dimensional sphere h admits a partition with
contours hi1, ...h

i
ni , ri such that hi1, ...h

i
ni are η-round, moreover:

(1) Vol(ri) ≤ θiVol(h) ;

(2)
∑ni
j=1 Vol

(
hij
)
≤ 2

∑i−1
`=0 θ

` Vol(h);

(3) hi1, ...h
i
ni , ri are contained in NRi(h), where Ri = ε′(1 + θ + · · ·+ θi−1),

where θ = 1− 1
6k+1 .

Indeed, the above can be proved by induction on i ≥ 1, where the conclusion of
Proposition 4.2 yields the initial case i = 1.

Assume that we found the required partition for i. We apply Proposition 4.2 to
the disjoint union of k-spheres composing ri, once the k-dimensional hypersurfaces
of volume and filling volume zero are removed.

We obtain k1, . . . , km η–round hypersurfaces and ri+1 disjoint union of k-spheres
and of k-dimensional hypersurfaces of volume and filling volume zero such that
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(1)
∑m
i=1 Vol(ki) ≤ 2Vol(ri) ≤ 2θiVol(h) ;

(2) Vol(ri+1) ≤ θVol(ri) ≤ θi+1Vol(h) ;

(3) k1, . . . , km and ri+1 are contained in the tubular neighborhood of ri of radius
ε′Vol(ri)

1/k.

We then consider the set of hypersurfaces{
hi+1

1 , . . . , hi+1
ni+1

}
=
{
hi1, . . . , h

i
ni , k1, . . . , km

}
.

For large enough i, Vol(ri) = 0, thus we obtain the required partition. According
to Remark 4.3, for k = 2 the hypersurfaces hi are spheres, and r is a disjoint union
of spheres.

For k ≥ 3, according to Proposition 3.11 each hi has a partition composed of
a k–dimensional sphere si of dimension k and a hypersurface h′i of volume and of
filling volume zero. Moreover, this partition is obtained by filling a sphere σi of
dimension k − 1 and volume zero on hi with a ball bi also contained in X(k−1).
The existing bounded quasi-geodesic combing allows to construct bi so that its
diameter is at most a constant κ (depending on the quasi-geodesic constants) times
the diameter of σi. This means that if hi is η–round then si is κη–round. �

Corollary 4.6. Consider an integer k ≥ 2, and a simplicial complex X of di-
mension at least k + 1. If k 6= 3 then assume that Isok−1(x) ≤ Bxk for some
constant B > 0. If k = 3 then assume that for every 3-dimensional handlebody V ,
IsoV (x) ≤ Bx3, where B > 0 is independent of the handlebody.

If for some η > 0 large enough, and some A′ > 0, all the η-round k–hypersurfaces
of volume at most A′xk have filling volume at most Cxα with α ≥ k, then Isok(x) ≤
ξCxα, where ξ is a universal constant.

Remark 4.7. In the above, for k = 2 it suffices to require that for every round
k–sphere of volume at most Axk the filling volume is at most Bxα.

Proof. We consider the set of contours of a partition as provided by Theorem 4.4,

{h1, . . . , hn, r1, . . . , rm} .

The problem of filling h is thus reduced to the problem of filling the round
hypersurfaces hi. These are filled by a volume ≤ B

∑n
j=1 V ol(hi)

α
k ≤ BξV ol(h)

α
k .
�

This allows to prove a Federer-Fleming type inequality for simplicial complexes,
hence for groups of finite type.

Theorem 4.8. Assume that the simplicial complex X has a bounded quasi-geodesic
combing.

(1) (Federer-Fleming inequality for groups). For every k ≥ 1, Isok(x) � xk+1.
Moreover for k = 2 the supremum of IsoV (x) over all handlebodies V is
� x3.

(2) Assume that for some k ≥ 2 it is known that every round k–sphere of
volume at most Axk has filling volume at most Bxα with α ∈ [k, k + 1).
Then Isok(x) ≤ ξBxα, where ξ is a universal constant.
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Proof. (1) For k = 1 the cone filling inequality implies the quadratic filling inequal-
ity. For k = 2 consider an arbitrary surface h modelled on ∂V in R3. It can be cut
into round surfaces as in Proposition 4.2. Indeed, with the notations in the proof of
that Proposition, the h(yi, ri) are modelled on sub-surfaces with boundary of ∂V .
By filling the circles composing the boundary of each h(yi, ri), the surface h is cut
into round surfaces h1, ...hn, and a disjoint union of surfaces r with Vol(r) ≤ θVol(h).
By iterating this decomposition, as in Theorem 4.4, we reduce the problem of filling
h to that of filling round surfaces h1, ...hq with

∑q
j=1 Vol(hj) ≤ 2

∑∞
`=0 θ

` Vol(h).

Lemma 3.7 allows us to deduce that FillVol(hi) ≤ B(Vol(hi))
3
2 , where B depends

only on the constants of the combing and on η; whence FillVol(h) ≤ B′(Vol(h))
3
2 ,

where B′ depends only on B and on λ.
By inducting on k, Theorem 4.6 and Lemma 3.7 allow us to deduce the result

for all k ≥ 3.

(2) follows from (1) and Corollary 4.6. �

4.2. Filling estimates deduced from those on round unfolded spheres. In
this section we explain how, in the search for filling estimates, the study can be re-
stricted to spheres that are round and unfolded. The latter condition requires that,
for a k–sphere of volume at most Axk and of diameter at most x, the intersection of
the sphere with balls of radius δx centred in each of the sphere’s points looks more
or less like a k–disk. More precisely, we would like to avoid that, at scale δx, the
sphere looks like a long and thin k–dimensional cylindrical surface, and therefore
we put the condition that the area enclosed in a ball B(x, r), r ∈ (0, δx), around
a point x on the sphere is at least εrk, for some ε > 0. We begin by defining the
“folded part” of a hypersurface, the part that we would like to remove.

Definition 4.9. Given a k–dimensional hypersurface h :M→ X, its ε–folded part
at scale ρ is the set

Foldedε(h, ρ) =

{
v ∈MVol | ∃ r ∈ [1, ρ] such that Vol(h(v, r)) ≤ 1

2 · 12k
εrk
}
.

A hypersurface h with Foldedε(h, ρ) empty is called ε–unfolded at scale ρ. When-
ever the parameters are irrelevant, we shall simply say that a hypersurface is un-
folded.

In the definition above, 1
2·12k

ε should be seen as a small positive constant. The

multiplicative coefficient 1
2·12k

has no real relevance for the definition, it is there
only to avoid adding a similar multiplicative coefficient in some of the inequalities
that follow.

Recall that MVol denotes the set of h–non-collapsed chambers, and that v ∈
MVol means that v is a vertex of one of these chambers.

The following result describes how a proportion of the ε–folded part of a k–
dimensional sphere can be removed by cutting out round hypersurfaces of volume
of order at most ερk. This will allow to completely remove the folded part via
iteration.

Proposition 4.10 (removal of folded parts). Consider an integer k ≥ 2. If k 6= 3
then assume that Isok−1(x) ≤ Bxk for some constant B > 0. If k = 3 then assume
that for every handlebody V in R3, IsoV (x) ≤ Bx3, where B > 0 is independent of
the handlebody.
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For every ε ∈ (0, 1) small enough and every ρ > 1 the following holds.
Assume that k ≥ 3. Then every k–dimensional sphere h has a partition with

contours h1, ..., hq and r, where hi are hypersurfaces and r is a disjoint union of k–
dimensional spheres adjoined with hypersurfaces of volume and filling volume zero,
such that

(1) 0 < Vol(hi) ≤ 2ερ
k

6k
;

(2) diam(hi) ≤ σ

ε
1
k

Vol(hi)
1
k , where σ depends on k and the filling constants

A,B;

(3)
∑q
i=1 Vol(hi) ≥ 1

2·12k
card Foldedε(h, ρ) ;

(4) Vol(r) + 1
2

∑q
i=1 Vol(hi) ≤ Vol(h) .

Assume k = 2. Then all the above is true for h1, ..., hq spheres and r a disjoint
union of spheres.

Moreover h can be taken to be a surface, in which case the above is true for r a
disjoint union of surfaces.

r

h1

h2

h3

Figure 3. A sphere partitioned into folded spheres h1, h2, and h3

and a sphere, r, with a smaller folded set.

Proof. We assume that Foldedε(h, ρ) 6= ∅, otherwise we take r = h and no h1, ..., hq .
We use the notation introduced in 3.16 and 3.17. For every y ∈ Foldedε(h, ρ)
consider Vy(r) = Vol(h(y, r)). Consider

R∗(y) = inf

{
r ∈ [1, ρ] | Vy(r) <

1

2 · 12k
εrk
}
,

and

r∗(y) = sup
{
r ∈ [1, R∗(y)] | Vy(r) > εrk

}
.

We assume that ε < 1, thus for r = 1 we know that

Vol(h(y, r)) > εrk.

Note that εr∗(y)k ≤ 1
2·12k

εR∗(y)k, whence r∗(y) < R∗(y)
12 .

Lemma 4.11. The radius r(y) = r∗(y) + 1 satisfies the following:

(L1) Vy(6r(y)) ≤ 12kVy(r(y));

(L2) r(y) < R∗(y)
6 ≤ ρ

6 ;

(L3) 1
2·12k

εr(y)k ≤ Vy(r(y)) ≤ εr(y)k;

(L4) Vol (∂h(y, r(y))) ≤ Ckε
1
kVy(r(y))

k−1
k , where Ck = k(k + 1)3k−1.
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Proof. In what follows, for simplicity we write r∗, R∗ instead of r∗(y), R∗(y).
The inequality

Vy(12r∗) > 12kVy(r∗) ,

would contradict the maximality of r∗. Therefore we can write

Vy(6r(y)) ≤ Vy(12r∗) ≤ 12kVy(r∗) ≤ 12kVy(r(y)) .

The inequality (L2) follows from the fact that r(y) = r∗(y) + 1 < R∗(y)
12 +

1 < R∗(y)
6 ≤ ρ

6 . The latter inequalities are true because 1 ≤ r∗(y) < R∗(y)
12 , and

R∗(y) ∈ [1, ρ].
Property (L3) follows from the maximality of r∗, and from the fact that r(y) <

R∗(y)
6 < R∗(y).
We prove (L4). We argue by contradiction and assume the inequality opposite

to the one in (L4). We can write that

Vy(r(y) + 1) ≥ Vy(r(y)) +
1

k + 1
Vol (∂h(y, r)) > εrk∗ + kε

1
k 3k−1ε

k−1
k rk−1
∗

The right-hand side equals εrk∗+kε(3r∗)
k−1, and the latter is larger than ε(r(y)+

1)k, by a standard application of the Mean Value Theorem, combined with the fact
that r∗ ≥ 1. This contradicts the maximality of r∗, hence property (L4) is true as
well. �

Proof of Proposition 4.10 continued. Consider r1 to be the maximum of all r(y)
with y ∈ Foldedε(h, ρ) and y1 ∈ Foldedε(h, ρ) such that r(y1) = r1. Then consider
r2 to be the maximum of all the r(y) with y ∈ Foldedε(h, ρ) \ M(y1, 6r1) and y2

a point in the previous set such that r(y2) = r2. Inductively, we find vertices
y1, ..., yq and radii r1, ..., rq and define rq+1 as the maximum of all the r(y) with
y ∈ Foldedε(h, ρ) \

⋃q
i=1M(yi, 6ri) and yq+1 as a point such that r(yq+1) = rq+1.

For large enough q the two sequences thus constructed have the following list of
properties:

(P1) 1
2·12k

εrki ≤ Vyi(ri) ≤ εrki ;

(P2) ri ≤ ρ
6 ;

(P3) M(yi, 2ri) and M(yj , 2rj) have no chamber in common when i 6= j;

(P4) Vol (∂h(yi, ri)) ≤ Ckε
1
kVyi(ri)

k−1
k , where Ck = k(k + 1)3k−1;

(P5)
∑q
i=1 Vyi(ri) ≥

1
2·12k

card Foldedε(h, ρ).

Properties (P1), (P2) and (P4) follow from Lemma 4.11, (L3), (L2) and (L4),
respectively, while (P3) follows from the construction of the sequences (yi) and
(ri). Property (P5) follows for q large enough because the process can continue
until Foldedε(h, ρ) \

⋃q
i=1M(yi, 6ri) is empty, in which case

card Foldedε(h, ρ) ≤ 2

q∑
i=1

Vyi(6ri) ≤ 2 · 12k
q∑
i=1

Vyi(ri) .

The last inequality above uses Lemma 4.11, (L1).
Let i ∈ {1, 2, . . . , q}. Assume k = 2. If h is a sphere then h(yi, ri) is a disk

with other open disks removed from its interior. By filling each boundary circle
with a quadratic area one obtains a sphere hi of area ≤ Vyi(ri)(1 + C2

2ε), and the
remainder r is a disjoint union of spheres.
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If we take h to be a surface, then h(yi, ri) is a surface with boundary. In that
case, again fill each of the boundary circles with a quadratic area. This will yield
a surface hi of area ≤ Vyi(ri)(1 + C2

2ε), and the remainder r is a disjoint union of
surfaces.

If k = 3 then h(yi, ri) is a handlebody with other handlebodies removed from
its interior. We fill each of the surfaces that compose ∂h(yi, ri) with cubic volumes

and obtain a 3-dimensional hypersurface hi of volume ≤ Vyi(ri)(1 +C
3/2
3 ε1/2); the

remainder is a disjoint union of a 3-sphere with 3-dimensional hypersurfaces, and
we apply Proposition 3.11 (1). A similar argument works in the case k ≥ 4.

Note that for ε small enough we obtain in all cases that

(11) Vol(hi) < 2Vol (h(yi, ri)) .

All the properties listed in Proposition 4.10 are satisfied. Indeed:

• property (1) follows from (11), (P1) and (P2);
• inequality (2) is implied by the fact that the diameter of h(yi, ri) is at most

2ri and by (P1), as well as by (P4) and Proposition 3.18;
• inequality (3) follows from the fact that Vol(hi) ≥ Vol (h(yi, ri)) and from

(P5);
• inequality (4) is an immediate consequence of (11).

�

An iteration of Proposition 4.10 allows to find a partition of an arbitrary sphere
into unfolded spheres, hypersurfaces of volume and filling volume zero, and hyper-
surfaces h1, ..., hq with the properties (1), (2) and (4) as in Proposition 4.10 (with r
in (4) representing the union of the elements in the partition other than h1, ..., hq).

This is described in detail below.

Proposition 4.12 (folded-unfolded decomposition). Consider an integer k ≥ 2.
If k 6= 3 then assume that Isok−1(x) ≤ Bxk for some constant B > 0. If k = 3
then assume that for every handlebody V in R3, IsoV (x) ≤ Bx3, where B > 0 is
independent of the handlebody.

For every ε ∈ (0, 1) small enough and for every δ > 0 the following holds.
Assume that k ≥ 3. Then every k–dimensional sphere h admits a partition with

contours h1, ..., hq and r, where hi are hypersurfaces and r is composed of a disjoint
union of k–dimensional spheres which are each adjoined with a hypersurface of
volume and filling volume zero, let r′ : R′ → X and r′′ : R′′ → X denote the
simplicial maps representing the union of k–dimensional spheres, respectively the
union of adjoined hypersurfaces, such that:

(1) (r′ is unfolded) every vertex v in R′Vol and every r ∈
[
1 , 6δVol(r)

1
k

]
have

the property that

Vol(r′(v, r)) ≥ 1

2 · 12k
εrk ;

(2) (volumes of hypersurfaces hi are proportionally small) for every i, 0 <
Vol(hi) ≤ 2δkεVol(h);

(3) (hi are round) diam(hi) ≤ σ

ε
1
k

Vol(hi)
1
k , where σ = σ(A,B, k);

(4) (sum of volumes is controlled by Vol(h)) Vol(r) + 1
2

∑q
i=1 Vol(hi) ≤ Vol(h) .
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Assume that k = 2. Then all the above is true with h1, ..., hq spheres and r = r′

a disjoint union of spheres.
Moreover one can take h to be an arbitrary surface, in which case the statement

holds with h1, ..., hq surfaces and r a disjoint union of surfaces.

Proof. The proof is by recursive applications of Proposition 4.10. We apply Propo-
sition 4.10 to the sphere h and ρ = 6δVol(h)

1
k . We obtain a partition r1, h1, ..., hq1 ,

where r1 is a disjoint union of k–dimensional spheres each adjoined with a hypersur-
face of volume and filling volume zero. Let r′1 be the union of disjoint k–dimensional
spheres and r′′1 denote the union of hypersurfaces of volume and filling volume zero
adjoined to each of the spheres.

At step i we apply Proposition 4.10 to the union of spheres r′i−1 and to ρi−1 =

6δVol(ri−1)
1
k and we obtain a partition of ri−1 with contours ri, hqi−1+1, ..., hqi .

We have that

Vol(ri) +
1

2

qi∑
j=1

Vol(hj) ≤ Vol(h) .

This in particular implies that the sum must be finite, hence the process must
stabilize at some point. Hence at some step i we must find that Foldedε (r′i, ρi) is
empty.

We take r′ = r′i and we know that Foldedε

(
r′, 6δVol(r)

1
k

)
is empty. �

Note that “unfolded” does not imply “round”, because the property of being
“unfolded” only takes into account vertices inMVol. For instance, in a hypersurface
h : M → X that is ε–unfolded at scale 6δVol(h)

1
k , one can take a maximal set S

in MVol whose image by h is
[
12δVol(h)

1
k

]
–separated, and its cardinality must

be at most a number N = N(ε, δ). Still, the
[
12δVol(r)

1
k

]
–neighborhood of h(S)

only covers h (MVol) , not h (M) , therefore no bound on the diameter of the form

(N + 2)
[
24δVol(h)

1
k

]
can be obtained.

In the next proposition we strengthen the hypotheses: instead of Euclidean
isoperimetric inequalities one dimension down, we require the existence of a bounded
quasi-geodesic combing. Recall that the latter implies the former by combining
Corollary 4.6 and Lemma 3.7.

Proposition 4.13 (decomposition of unfolded into unfolded and round). Assume
that the simplicial complex X has a bounded quasi-geodesic combing and let k ≥ 2
be an integer.

For every two numbers ε and δ in (0, 1) there exists N = N(ε, δ, k) such that the
following holds.

If k ≥ 3 then consider an arbitrary disjoint union of k–dimensional spheres
r : R → X such that Vol(r) ≥ V0 for some large enough constant V0.

Assume that r is ε–unfolded at scale 6δVol(r)
1
k , in the sense that

(*) every vertex v in RVol and every r ∈
[
0 , 6δVol(r)

1
k

]
have the property that

Vol(r(v, r)) ≥ ε

2 · 12k
rk.
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Then r has a partition into a union r0 of hypersurfaces of volume zero and m round
spheres of dimension k, ri : R(i) → X with i ∈ {1, 2, ...,m} and m ≤ N , such that

(1) for every i ∈ {1, ...,m}, every vertex v in R(i)
Vol and every r ∈

[
0 , 6δVol(r)

1
k

]
have the property that

Vol(ri(v, r)) ≥
1

2 · 12k
εrk ;

(2) diam(ri) ≤ κ
εδk−1 Vol(r)

1
k , where κ depends only on the constants L and C

of the combing;

(3) εδk

2 Vol(r) ≤ Vol(ri) ≤ Vol(r).

If k = 2 then r0 does not appear.
Moreover, if r is taken to be a disjoint union of surfaces then the statement holds

with ri, i ∈ {1, . . . ,m}, surfaces, and r0 again does not appear.

Proof. Note that since X is a simplicial complex with a bounded quasi-geodesic
combing, by Theorem 4.8.(1), we have a euclidean bound on its isoperimetric func-
tions.

If Vol(r) = 0 then take r0 = r . We assume that Vol(r) > 0.
Let q be the maximal number of connected components of r with positive volume.

Property (*) implies that q has a uniform upper bound depending on ε. Thus,
without loss of generality, we may assume that r is one k–dimensional sphere.

Let v be an arbitrary vertex in RVol. Let W denote 24δVol(r)
1
k .

We choose the constant V0 in the hypothesis large enough so that W ≥ 6.
Suppose that for every r ∈

[
W, 17

εδk
W
]
, R(v, r+W )\R(v, r) contains a chamber

from RVol.
We divide

[
W, 17

εδk
W
]

into consecutive intervals with disjoint interiors [r1 −
2W, r1 + 2W ], ..., [rq − 2W, rq + 2W ]. Each R(v, ri +W ) \R(v, ri) contains a cham-
ber from RVol , and for a vertex vi of that chamber the chambers in R(vi,W ) are
all contained in R(v, ri + 2W ) \ R(v, ri − 2W ). Therefore the sets of chambers in
R(vi,W ) are pairwise disjoint, and the cardinality of each set intersected with RVol

is at least ε
2·12k

W k by property (*).

It follows that Vol(r) is at least
17

εδk
W−W
4W

ε
2·12k

W k ≥
16

εδk
W

8W εδkVol(r) ≥ 2Vol(r).
This is a contradiction.

We conclude that there exists r ∈
[
W, 17

εδk
W
]

such that R(v, r + W ) \ R(v, r)
does not contain a chamber from RVol. The boundary of R1 = R(v, r +W/2) has
no volume. Assume for a contradiction that there exists a (k−1)-chamber H of the
boundary which is sent by r onto a (k − 1)-dimensional simplex of X. Then there
exists a non-collapsed chamber containing H, and hence contained in R(v, r+W ),
but not in R(v, r +W/2). This contradicts the hypothesis.

It follows that the boundary of R1 = R(v, r + W/2) has no volume. This
boundary is composed of hypersurfaces contained in X(k−2), each can be filled with
a domain inside X(k−1) using the combing (see Lemma 3.7). For k ≥ 3, r1 becomes
a sphere r′1 : R′1 → X with a hypersurface r′′1 of volume and filling volume zero
adjoined to it, and r \ r1 becomes r1, a disjoint union of spheres with hypersurfaces
of volume and filling volume zero adjoined to them. We denote the disjoint union
of spheres by r′1 and the union of hypersurfaces by r′′1 .
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Assume k = 2. Assume r is a disjoint union of spheres. Then R1 is topologically
a disc with open discs removed from its interior. The hypothesis that the boundary
of R1 has no volume implies that each boundary circle is sent onto one vertex.
Therefore, by replacing R with the quotient simplicial complex in which the above
mentioned boundary circles become points, r1 becomes a sphere, while r restricted
to R \R1 becomes a disjoint union of spheres r′1.

Assume now that r is a disjoint union of surfaces. Then R1 is topologically a
surface with boundary. An argument as above implies that by replacing R with
the quotient simplicial complex in which each boundary circle becomes a point, r1
becomes a closed surface r′1, while r restricted to R \ R1 becomes a disjoint union
of closed surfaces r′1.

We prove that, for all k ≥ 2, both r′1 and r′1 satisfy the property (*). Indeed, the
part added to r1 to become r′1, and to r restricted to R \ R1 to become the union
of r′1 with r′′1 does not contribute to the volume, it suffices therefore to check (*)

for vertices a in RVol
1 , respectively in (R \R1)

Vol
.

Let a ∈ (R1)Vol. Then a is in a non-collapsed chamber in R(v, r), since R1 \
R(v, r) does not contain non-collapsed chambers. It follows that R

(
a, W4

)
⊆

R
(
v, r + W

2

)
. Thus, for every t ∈

[
0, W4

]
, r1(a, t) = r(a, t) , hence (*) is satisfied

for r1.
Likewise, let a be in (R \R1)Vol. Hence a ∈ R \ R(v, r + W ). If R

(
a, W4

)
would intersect R1 in a non-collapsed chamber then a would be in R(v, r + W ),
a contradiction. Thus R

(
a, W4

)
Vol

is in R \ R1 and as before we conclude that r

restricted to R \R1 satisfies (*).

In particular the volume of r′1 is at least εδk

2 Vol(r).
The diameter of r′1 is at most κ1(r+W ), where κ1 depends on the constants L and

C of the combing. An upper bound for r + W is
(

17
εδk

+ 1
)
W ≤ 18

εδk
24δVol(r)

1
k =

κ2

εδk−1 Vol(r)
1
k .

We thus obtain the estimate in (2) for the diameter of r′1.
We repeat the argument for r′1 , and find r2 etc. The process must stop after

finitely many steps because of inequality (3). �

We now state and deduce the main result of this section:

Theorem 4.14. Let X be a simplicial complex with a bounded quasi-geodesic comb-
ing, and let η, ε and δ be small enough positive constants.

(1) Let k ≥ 2 be an integer. If every k–dimensional sphere of volume at
most Axk that is η–round and ε–unfolded at scale δx, in the sense of
Propositon 4.13.(1), has filling volume at most Bxα with α ≥ k, then
Isok(x) ≤ Cxα, where C = C(η, ε, δ).

(2) If every (closed) surface of volume at most Ax2 that is η–round and ε–
unfolded at scale δx has filling volume at most Bxα with α ≥ 2 and B
independent of the genus, then IsoV (x) ≤ Cxα, for every handlebody V ,
where C = C(η, ε, δ).

Proof. Proposition 4.13 implies that every disjoint union of k–dimensional spheres
(respectively, surfaces), that is of volume at most Axk and ε–unfolded at scale δx,
has filling volume at most BNxα, where N = N(ε, δ, k).
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We prove by induction on n that k–dimensional spheres (respectively surfaces)
h of volume at most 2n satisfy

FillVol(h) ≤ A (Vol(h))
α
k

for A large enough.
Indeed, for k = 2 it suffices to use the decomposition in Proposition 4.12, and to

apply the inductive hypothesis to each hi. For k ≥ 3, according to Proposition 3.11,
each hi has a partition composed of a sphere h′i and a hypersurface h′′i of volume
and filling volume zero. We apply the inductive hypothesis to each h′i. �

5. Divergence.

We begin by recalling a few facts about the 0–dimensional divergence. There
are several, essentially equivalent versions of 0–dimensional divergence. The first
careful study of the notion was undertaken by S. Gersten [Ger2, Ger1]. The main
reference for the first part of this section is [DMS, §3.1].

Let X denote a geodesic metric space, quasi-isometric to a one-ended finitely
generated group (this assumption can be replaced by a weaker technical hypothesis
called (Hypκ,L), but we do not need that generality here). Also, we fix a constant
0 < δ < 1.

For an arbitrary triple of distinct points a, b, c ∈ X we define div(a, b, c; δ) to be
the infimum of the lengths of paths connecting a, b and avoiding the ball centred
at c and of radius δ · dist(c, {a, b}. If no such path exists, define div(a, b, c; δ) =∞.

The divergence function DivX(n, δ) of the space X is defined as the supremum
of all finite numbers div(a, b, c; δ) with dist(a, b) ≤ n. When the ambient space is
clear we omit X from the notation.

It is proven in [DMS, Lemma 3.4] that, as long as δ is sufficiently small and

n sufficiently large, DivX(n, δ) is always defined and, by construction, takes only
finite values. In [DMS, Corollary 3.12], it is proven that, up to the equivalence
relation � (which in this case means up to affine functions), the various standard
notions of 0–dimensional divergence agree and that the � class of the divergence
function is invariant under quasi-isometry. As our main results are only about �
classes of functions, it is no loss of generality to assume that the value of n used
in the above function is taken sufficiently large so that DivX(n, δ) is defined; hence
we will make this assumption for n for the remainder of the paper.

An important feature of the 0–dimensional divergence function is its relationship
to the topology of asymptotic cones as described in [DMS, Proposition 1.1].

We now proceed to discuss an extension to higher dimensions of the divergence
function defined above. In an arbitrary dimension, the divergence may be seen as
a filling function when moving towards infinity (e.g. when moving closer and closer
to the boundary, if a boundary ∂∞ can be defined).

The notion has been used mostly in the setting of non-positive curvature (see
e.g., [BF] for a version defined for Hadamard manifolds). Another homological
notion of higher dimensional filling was provided by [ABDDY], generalizing the
definitions in [BF] and provided for a finer measurement, allowing, for instance, one
to use the invariant to distinguish between various degrees of polynomial divergence.
Among other things, in a Hadamard space the divergence can distinguish the rank.
Indeed, for a symmetric space X of non-compact type, Divk grows exponentially
when k = Rank(X) − 1 [BF, Leu1], while when k ≥ Rank(X) the divergence
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Divk = O(xk+1) [Hin]. More generally, for a cocompact Hadamard space X and
for a homological version of the divergence, defined in terms of integral currents,
if k = Rank(X) − 1 then Divk � xk+2 , while if k ≥ Rank(X) then Divk � xk+1

[Wen2].
In what follows, we define a version of the higher dimensional divergence func-

tions in the setting of simplicial complexes, in particular of groups of type Fn.
Therefore, we fix an n-connected simplicial complex X of dimension n+ 1 which is
the universal cover of a compact simplicial complex K with fundamental group G.
Recall that we assume edges in X to be of length one, and that we endow X(1) with
the shortest path metric. We also fix a constant 0 < δ < 1. Given a vertex c in
X, a k–dimensional hypersurface h : M→ X modelled on ∂V such that k ≤ n− 1,
and a number r > 0 that is at most the distance from c to h(M(1)), the divergence
of this quadruple, denoted div(h, c; r, δ), is the infimum of all volumes of domains
modelled on V filling h and disjoint from B(c, δr). If no such domain exists then
we set div(h, c; r, δ) =∞.

Definition 5.1. Let V be a manifold as described in Convention 3.2.
The divergence function modelled on V of the complex X, denoted DivV (r, δ), is

the supremum of all finite values of div(h, c; r, δ), where h is a hypersurface modelled
on ∂V with the distance from c to h(M(1)) at least r and Vol(h) at most Ark.

When V is the (k + 1)–dimensional unit ball, DivV (r, δ) is denoted Div(k)(r, δ),
and it is called the k–dimensional divergence function (or the k–th divergence func-
tion) of X.

In the above, as for the filling functions, we fix the constant A > 0 once and
for all, and we do not mention it anymore. We note that when k = 0, the volume
condition is vacuously satisfied and thus the above notion coincides with that of
the 0–dimensional divergence given previously.

An immediate consequence of Proposition 3.18 is that when the isoperimetric
function IsoV is smaller that the Euclidean one, the divergence function DivV co-
incides with the isoperimetric function. Although quasi-isometric invariance of the
higher-divergence functions in not known in general, it is in this setting, since IsoV
is quasi-isometric invariant in general.

Proposition 5.2. Let V be a manifold as described in Convention 3.2, and let ε
and δ be small enough positive constants. Assume that IsoV (x) ≤ εxk+1. Then
DivV (x, δ) = IsoV (x) for every x large enough.

Proof. Proposition 3.18, (3), implies that RadV (x) ≤ 2Lεx for x ≥ xε. It follows
that for every k–dimensional hypersurface h : M→ X of area at most Axk, there
exists a filling domain d : D → X realizing FillVol(h) and with the image d(D(1))
entirely contained in a tubular neighborhood of h(M(1)) of radius 2Lεx. Therefore,
if h(M(1)) is disjoint from a ball B(c, x) then, for x large enough, d(D(1)) is disjoint
from the (δx)–ball around c, provided that 2Lε+ δ < 1. �

More importantly, the cutting arguments that we have described previously allow
to reduce the problem of estimating the divergence to hypersurfaces that are round,
in the particular case when a bounded combing exists.

Theorem 5.3. Assume that X is a simplicial complex of dimension n endowed
with a bounded quasi-geodesic combing. Let V be a (k + 1)–dimensional connected
compact sub-manifold of Rk+1 with connected boundary, where 2 ≤ k ≤ n− 1.
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For every ε > 0 there exists η > 0 such that the following holds.
Consider the restricted divergence function DivrV (x, δ), obtained by taking the

supremum only over hypersurfaces modelled on ∂V that are η–round, of volume at
most 2Axk and situated outside balls of radius x.

Assume that DivrV (x, δ) ≤ Brβ for some β ≥ k+1 and B > 0 universal constant.
Then the general divergence function DivV (x, δ(1 − ε)) is at most B′rβ for some
B′ > 0 depending on B, ε, η and X.

Proof. Let h be a hypersurface modelled on ∂V , of volume of most Axk and with
image outside the ball B(c, x).

According to Theorem 4.4 and Remark 4.5, for every ε there exists η = η(ε)
such that h can be decomposed into η–round spheres h1, . . . , hn and hypersurfaces
r1, . . . , rm of volume and filling volume zero, all of them contained in Nεx(h).

All the spheres h1, . . . , hn have area at most 2Axk.
We put aside the spheres hi that have volume at most εxk. For all these, by

Proposition 3.18, the filling radius is at most Lεx for x large enough, where L is a
universal constant, therefore they can be filled in the usual way outside B(c, δx) if
ε is small enough.

In the end we obtain finitely many round components h1, . . . , hN of volume at
least εxk and at most 2Axk, where N = O

(
A
ε

)
, by Theorem 4.4, (1). Moreover

h1, . . . , hN have images outside B(c, (1 − ε)x) If h1, . . . , hN can be filled with a
domain of volume at most Bxβ outside B(c, δ(1− ε)x), then h can be filled outside
the same ball with a volume at most NBxβ+A′xk+1, where the second term comes
from the filling of the hypersurfaces with small volume that we had put aside, and
from Theorem 4.4. �
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