
Transference principles and locally symmetric spaces

Cornelia DRUŢU
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Abstract
We explain how the Transference Principles from Diophantine approximation can be inter-
preted in terms of the geometry of the locally symmetric spaces Tn = SO(n)\SL(n,R)/SL(n,Z)
with n ≥ 2, and how, via this dictionary, they become transparent geometric remarks and
can be easily proved. Indeed, a finite family of linear forms is naturally identified to a locally
geodesic ray in a space Tn and the way this family is approximated is reflected by the heights
at which the ray rises in the cuspidal end. The only difference between the two types of
approximation appearing in a Transference Theorem is that the height is measured with
respect to different rays in W 0, a Weyl chamber in Tn. Thus the Transference Theorem is
equivalent to a relation between the Busemann functions of two rays in W 0. This relation
is easy to establish on W 0, because restricted to it the two Busemann functions become two
linear forms. Since Tn is at finite Hausdorff distance from W 0, the same relation holds up
to a bounded perturbation on the whole of Tn.
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1 Introduction

In this paper we explain how the Transference principles appearing in Diophantine approxima-
tion of systems of linear forms have an easy interpretation in terms of geometry of the locally
symmetric spaces SO(n)\SL(n,R)/SL(n,Z).
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Consider a family of ` linear real forms in m variables, and the transposed family of m linear
forms in ` variables:

Li(x1, ..., xm) =
m∑

j=1

aijxj , Mj(y1, ..., y`) =
∑̀

i=1

aijyi .

We denote by L and M the matrices having as entries on the lines the coefficients of (Li)1≤i≤`

and respectively of (Mj)1≤j≤m.
We also denote throughout the paper by ‖ · ‖e the Euclidean norm and by ‖ · ‖max the

max-norm in Rn, that is the norm defined by:

‖x‖max = max{|x1|, |x2|, . . . , |xn|} .

We denote by PZn the set of primitive integer vectors in Rn,

{(p1, p2, . . . , pn) ∈ Zn \ {(0, . . . 0)} ; gcd(p1, p2, . . . , pn) = 1} .

According to Dirichlet Theorem for an arbitrary matrix L the following inequality admits
infinitely many integral solutions (p̄, q̄) = (p1, ..., p`, q1, ..., qm) :

‖L(q̄)− p̄‖max ≤ ‖q̄‖−
m
`

max . (1)

The family of linear forms (Li)1≤i≤` is very well approximable if for some α > 0 and infinitely
many integral vectors (p̄, q̄) the following holds:

‖L(q̄)− p̄‖max ≤ ‖q̄‖−
m+α

`
max . (2)

The definition of very well approximable forms can be slightly generalized using approximat-
ing functions. Throughout, an approximating function is a decreasing function φ : R+ → R+

with limx→∞ φ(x) = 0. In (2) one can replace the second term by φ(‖q̄‖max), where φ is an
approximating function such that limx→∞ x

`
m φ(x) = 0.

The transference principles state that if (Li)1≤i≤` is φ-very well approximable then the
transposed family (Mj)1≤j≤m is ψ-very well approximable, and give estimates of ψ in terms of
φ. More precisely, the following theorem is a version in terms of approximating functions of
[Cas57, Theorem II, Chapter V, Section 2]:

Theorem 1.1. (I) Assume that the following system of inequalities has infinitely many inte-
gral solutions (p̄, q̄) = (p1, ..., p`, q1, ..., qm):

|Li(q̄)− pi| ≤ φ (‖q̄‖max) . (3)

Then there exist infinitely many integral solutions (ā, b̄) = (a1, ..., a`, b1, ..., bm) for the
system of inequalities:

|Mj(ā)− bi| ≤ ψ (‖ā‖max) , (4)

where ψ = F ◦G−1 with F (x) = (s− 1)x
1−`
s−1 φ(x)

`
s−1 and G(x) = (s− 1)x

m
s−1 φ(x)

1−m
s−1 , and

s = ` + m.

(II) In particular, if φ(x) = x−
m+α

` then ψ(x) = x−
`+β
m with β = `α

m(m+`−1)+(m−1)α .
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Note that if φ is an approximating function then the function F : R+ → R+ is decreasing
and limx→∞ F (x) = 0 while the function G : R+ → R+ is increasing and limx→∞G(x) = +∞.
The two properties imply that ψ is an approximating function.

By applying Theorem 1.1 first for ` = 1 , m = n and then for m = 1 , ` = n the following
well-known result is obtained:

Theorem 1.2 (Khintchine’s transference principle). Let v = (x1, ..., xm) be a vector in Rn with
all coordinates irrational, and let ω(v) and ω′(v) be the respective least upper bounds of the real
numbers α and α′ for which the following inequalities have infinitely many integer solutions
(p, q1, ..., qn) and respectively (p1, ..., pn, q):

|q1x1 + · · · qnxn − p| ≤ ‖(q1, ..., qn)‖−n−α
max ,

max1≤j≤n |qxj − pj | ≤ q−
1+α′

n .
(5)

Then the following sequence of inequalities holds (with ω(v) and/or ω′(v) possibly taking the
value +∞):

ω(v)
n2 + (n− 1)ω(v)

≤ ω′(v) ≤ ω(v) . (6)

The first to notice a relationship between Diophantine approximation of systems of linear
forms and behavior of geodesic rays in locally symmetric spaces was Dani [Dan85]. He noticed
that systems of linear forms can be identified with unipotent elements in some group SL(n,R),
and that the way in which the systems of linear forms are approximated reflects the way in
which a locally geodesic ray naturally associated to the unipotent travels in the cusp. We shall
follow this initial idea to point out that the Transference theorems become, via this dictionary,
very transparent geometric remarks.

More precisely, let L ∈ M`×m(R) and M ∈ Mm×`(R), and consider the semisimple group
SL(s,R) with s = ` + m, the symmetric space associated to it Ps = SO(s)\SL(s,R), and the
locally symmetric space Ts = Ps/SL(s,Z). It is well known that Ts is at finite Hausdorff distance
from the isometric image of a Weyl chamber W 0, which is an Euclidean sector of dimension n−1
and of shape prescribed by the Dynkin diagram of SL(s,R).

Both matrices L in the space M`×m(R), and matrices M in Mm×`(R) can be identified to
unipotents in SL(s,R) (see (18) and (19)), so they can also be naturally identified to locally
geodesic rays in Ts. Moreover, when M = LT the unipotent is the same, and so is the ray.

It is shown that L (respectively M) is very well approximable if and only if that locally
geodesic ray goes infinitely many times in the cusp at larger and larger heights, with lower
bounds on the height given by a function of the time when the height is attained. The function
depends on the approximation function initially considered. See Proposition 3.3.1 for the precise
statements.

The only difference between the case of L and the case of M is that the height is measured
with respect to different rays in W 0. Indeed W 0 contains a ray r̄1, which is equally a 1-
dimensional face of W 0, and whose lifts in Ps have as boundary at infinity all the rational
points. (Recall that the boundary at infinity of Ps can be identified to the spherical building of
flags in Pn−1R.) Another 1-dimensional face of W 0, the ray r̄s−1, has the property that its lifts
have as boundaries at infinity all the rational hyperplanes in Pn−1R.

When considering L, the height of the ray in Ts has to be measured with respect to r̄1, that
is, using the Busemann function of r̄1 (see Section 2.1 for a definition). When studying M , the
height must be measured with respect to r̄s−1. A picture representing the case s = 3 can be
seen in Figure 2.
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It follows that in order to relate an approximating function for L to an approximating func-
tion for M = LT one needs to relate the Busemann function of r̄1 to the Busemann function of
r̄s−1, on Ts. This relation is easy to establish on W 0, because restricted there the two Busemann
functions become two linear forms (see Example 2.1.2), and the angle between their respective
vectors of coefficients is completely determined. Since Ts is at finite Hausdorff distance from
W 0, the same relation up to a bounded perturbation holds on the whole of Ts (see Proposition
2.5.2 and Figure 1).

This easy to see geometric relation between the two Busemann functions turns out to be
the same as the relation between approximating functions in transference principles. This is
illustrated by some explicit computations in Section 3.4.

The plan of the paper is as follows. In Section 2 notations are introduced, some general
notions and results are recalled, and the objects and formulas from the theory of symmetric
spaces are made explicit in the case of the symmetric space Ps. The same is done for the locally
symmetric space Ts, moreover in Proposition 2.5.2 is proved an estimate relating the Busemann
functions of r̄1 and r̄s−1.

In Section 3 are described two families of geodesic rays rising in the cusp, it is explained that
their definition is natural, and Proposition 2.5.2 is used to relate them (see Lemma 3.2.3).

The relation between sets of very well approximable linear forms and sets of geodesic rays
rising in the cusp is established in Proposition 3.3.1.

Summing up Proposition 3.3.1 and Lemma 3.2.3 one is able to reprove the transference
results. This is shown in Section 3.4 by an explicit computation.

2 Preliminaries on (locally) symmetric spaces

2.1 Notations

We denote by diag(a1, a2, . . . , an) the diagonal matrix in SL(n,R) having entries a1, a2, . . . , an

on the diagonal. We denote by Idn the identity matrix.
We sometimes call a 1-dimensional linear (sub)space of Rn a line.
We denote by 〈v1, . . . , vk〉 the linear subspace generated by the vectors v1, . . . , vk.

Given two functions f and g with values in R, we write f ¿ g if f(x) ≤ C · g(x), for every
x, where C > 0 is a universal constant. We write f ³ g if both f ¿ g and f À g hold.

We also use the notation f + O(1) to signify a function of the form f + C with C a fixed
constant.

If G is a group, we denote by Z(G) its center {z ∈ G ; zg = gz , ∀g ∈ G}. If H is a subgroup
of G we denote by CG(H) the center of H in G, that is the group {z ∈ G ; zh = hz , ∀h ∈ H}.

If G is a topological group, we denote by Ge its connected component containing the identity.

Let X be a complete Riemannian manifold of non-positive curvature. Two geodesic rays r
and r′ in X are called asymptotic (and we write r ∼ r′) if they are at finite Hausdorff distance
one from the other. The boundary at infinity of X is the quotient R/ ∼ of the set R of all
geodesic rays in X by the equivalence relation ∼. It is usually denoted by ∂∞X. Given ξ ∈ ∂∞X,
we signify that a geodesic ray r is in the equivalence class ξ by the equality r(∞) = ξ.

Let r be a geodesic ray in X. The Busemann function associated to r is the function

fr : X → R , fr(x) = lim
t→∞[dist(x, r(t))− t] .

The limit exists because the function t 7→ dist(x, r(t))− t is non-increasing and bounded.
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Lemma 2.1.1 ([BGS85]). For any geodesic ray r in X and any two points x, y in X,

|fr(x)− fr(y)| ≤ dist(x, y) .

The level hypersurfaces Ha(r) = {x ∈ X ; fr(x) = a} are called horospheres, and the
sublevel sets Hba(r) = {x ∈ X ; fr(x) ≤ a} are called closed horoballs. For a = 0 we use the
notation H(r) for the horosphere, and Hb(r) for the closed horoball.

Example 2.1.2. If X = Rn an arbitrary geodesic ray is of the form r(t) = t ·v+w, where v and
w are vectors and ‖v‖e = 1. An easy computation shows that fr(x) = −〈x|v〉 + 〈x|w〉, where
〈·|·〉 is the standard cartesian product. In particular Hb(r) = {x ∈ Rn ; 〈x|v〉 ≥ 〈x|w〉}.

Assume now that the manifold X is also simply connected. The Busemann functions of two
asymptotic rays in X differ by a constant [BH99]. Therefore they are also called Busemann
functions of basepoint ξ, where ξ is the equivalence class containing the two rays. The families
of horoballs and horospheres are the same for the two rays. We shall say that they are horoballs
and horospheres of basepoint ξ.

2.2 The symmetric space Ps of positive definite quadratic forms of determi-
nant one

Throughout the paper we shall identify a quadratic form Q on Rs with its matrix MQ in the
canonical basis of Rs. We shall denote by bQ the bilinear form associated to Q.

In what follows we freely use the terminology and the results from the theory of symmetric
spaces of non-compact type without Euclidean factors, and associated semisimple groups. We
refer the reader to [Hel01], [CE75, Chapter 3], [OV], [Mos73], [Rag72] and [Mor] for details on
the theory.

We study here mainly one such space, that is the space Ps of positive definite quadratic
forms of determinant one on Rs. It can be endowed with a metric defined as follows. Given
Q1 , Q2 ∈ Ps, there exists an orthonormal basis with respect to Q1 in which Q2 becomes diagonal
with coefficients λ1, . . . , λs ∈ R∗+. We define

d(Q1, Q2) =

√√√√
s∑

i=1

(lnλi)2 . (7)

The connected component of the identity of the group of isometries of Ps can be identified
to the semisimple group PSL(s,R). This group acts on the right on Ps by

Φ : PSL(s,R)×Qs → Qs , Φ(B, M) = BT MB .

The action can be written in terms of quadratic forms as Φ(B, Q) = Q[B] = Q ◦B.
Thus, the symmetric space Ps can be identified with SO(s)\SL(s,R) by associating to each

right coset SO(s) Y the quadratic form QY whose matrix in the canonical basis is MY = Y T ·Y .
The Lie algebra of SL(s,R) is gs = {B ∈ L(s,R) ; traceB = 0}.
In the symmetric space Ps consider as a fixed basepoint the quadratic form Q0 of matrix

Ids. The geodesic symmetry with respect to this point is a global isometry, as Ps is a symmetric
space. In terms of matrices in the canonical basis of Rs the symmetry with respect to Q0 can be
written as MQ 7→ M−1

Q . It defines on SL(s,R) the involution B 7→ (BT )−1. The corresponding
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Cartan involution on the Lie algebra gs is θ(B) = −BT , and the Cartan decomposition is
g = k⊕ p with k = {B ∈ gs ; BT = −B} and p = {B ∈ gs ; BT = B}.

The Killing form on the Lie algebra gs is Q(A,B) = trace(AB) hence −Q(A, θ(B)) =
trace(ABT ) defines a positive definite quadratic form on g invariant under the adjoint rep-
resentation Ad restricted to SO(s). The projection SL(s,R) → Ps = SO(s)\SL(s,R) is a
Riemannian submersion.

An element g0 in SL(s,R) is hyperbolic if there exists g ∈ GL(n,R) such that gg0g
−1 is

diagonalizable with all the eigenvalues real positive.
Consider a field K ⊂ R. We say that a Lie group G is defined over K if G has finitely

many connected components and if its connected component of the identity coincides with the
connected component of the identity of a real algebraic group defined over K [Mor, Definition
6.2].

A torus is a closed connected Lie subgroup of SL(s,R) which is diagonalizable over C, i.e.
such that there exists g ∈ GL(s,C) with the property that g T g−1 is diagonal. A torus is called
K-split if it is defined over K and diagonalizable over K, that is if there exists g ∈ GL(s,K) with
the property that g T g−1 is diagonal.

Conventions: In this paper by torus we mean a non-trivial R-split torus. By wall/Weyl chamber
we mean a closed wall/Weyl chamber. By its relative interior we mean the open wall/Weyl
chamber.

We call singular torus in SL(s,R) a torus A0 which, in every maximal torus A containing
it, can be written as

⋂
λ∈Λ kerλ, where Λ is a non-empty set of roots on A. Any such torus is a

union of walls of Weyl chambers.

The subgroup of SL(s,R)

A = {diag(et1 , et2 , . . . , ets) ; t1 + t2 + · · ·+ ts = 0}

is a maximal Q-split torus as well as a maximal R-split torus. A Q-Weyl chamber (as well as
an R-Weyl chamber) is /A = {diag(et1 , et2 , . . . , ets) ; t1 + t2 + · · ·+ ts = 0, t1 ≥ t2 ≥ · · · ≥ ts}.

We recall that a flat in Ps is a totally geodesically embedded copy of an Euclidean space in
X, and that a maximal flat is a flat which is maximal with respect to the inclusion.

For instance, the set of positive definite quadratic forms

F0 = {diag (et1 , et2 , . . . , ets) ; t1 + t2 + · · ·+ ts = 0}

is a maximal flat. Note that F0 is nothing else than the orbit Q0[A]. Finitely many hyperplanes
in F0 appear as intersections of it with other maximal flats through Q0. These hyperplanes split
F0 into finitely many Weyl chambers. One of them is the Weyl chamber W0 = Q0[/A], i.e. the
subset of quadratic forms whose matrices moreover satisfy t1 ≥ t2 ≥ · · · ≥ ts. The others can
be obtained by performing all the possible permutations in the sequence of inequalities defining
W0.

The group SL(s,R) acts transitively on the collection of maximal flats, as well as on the
collection of Weyl chambers in X. This is equivalent to saying that it acts transitively by
conjugation on the collection of maximal tori and on the collection of Weyl chambers in G.

The dimension 1 walls (singular rays) of W0, parameterized with respect to the arc length,
are the sets of quadratic forms

ri = {diag (eλit, . . . , eλit

︸ ︷︷ ︸
s−i times

, e−µit, . . . e−µit

︸ ︷︷ ︸
i times

) ; t ∈ R+} , (8)
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where λi =
√

i
s(s−i) and µi =

√
s−i
si , i ∈ {1, 2, . . . s− 1}.

2.3 Parabolic and unipotent subgroups of Ps

There are two ways of defining parabolic subgroups, we recall them both.
If /A0 is a wall or a Weyl chamber in the torus A0, the parabolic group corresponding to

/A0 can be defined as

P (/A0) = {g ∈ G ; sup
n∈N

|anga−n| < +∞ , ∀a ∈ /A0} ,

and the unipotent group corresponding to /A0,

U(/A0) = {g ∈ G ; lim
n→∞anga−n = e , ∀a in the relative interior of / A0} .

Notation: If /Aop
0 is the opposite wall, we denote U(/Aop

0 ) by U+(/A0).

We have that P (/A0) = CG(A0)U(/A0) = U(/A0)CG(A0), U(/A0) is the unipotent radical
of P (/A0), and P (/A0) is the normalizer of U(/A0) in G.

Now let A = (at) be a one-parameter subgroup of G composed of hyperbolic elements and let
A+ be the positive sub-semigroup (at)t≥0. Let r be a geodesic ray in X such that r(t) = r(0)at

for every t ≥ 0. We consider A0 either the minimal singular torus containing A or, if no such
torus exists, the unique maximal torus containing A. We have the equality CG(A) = CG(A0).
If A0 has dimension one we call the one-parameter group A, the semigroup A+ and the geodesic
ray r maximal singular.

Let /A0 be the wall/Weyl chamber containing A+ \ {e} in its relative interior. We denote
P (/A0), U(/A0) and U+(/A0) also by P (r), U(r) and U+(r), respectively, and we call them the
parabolic, the unipotent and the opposite (expanding) unipotent group of the ray r.

Another way of defining the parabolic subgroups is as follows:

P (r) = {g ∈ G ; rg ∼ r} , P 0(r) = {g ∈ P (r) ; r(0)g ∈ H(r)} .

The latter definition justifies calling P 0(r) the horospherical group of r.
For instance, the parabolic group of ri is the group

P (ri) =
{(

M1 0
N M2

)
∈ SL(s,R) ; M1 ∈ GL(s− i,R), M2 ∈ GL(i,R), N ∈ Mi×(s−i)(R)

}
.

The horospherical subgroup is

P 0(ri) =
{(

εM1 0
N εM2

)
; M1 ∈ SL(s− i,R), M2 ∈ SL(i,R), ε ∈ {±1}, N ∈ Mi×(s−i)(R)

}
.

The opposite unipotent group is

U+(ri) =
{(

Ids−i N
0 Idi

)
; N ∈ M(s−i)×i(R)

}
. (9)
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2.4 Boundary at infinity and Busemann functions of Ps

If W is a Weyl chamber or a wall in Ps then its boundary at infinity W (∞) is a spherical
simplex in ∂∞Ps, also called spherical chamber or respectively spherical wall. These simplices
cover ∂∞Ps and determine a structure of spherical building on it ([Mos73, Chapters 15,16],
[BGS85, Appendix 5]).

The group SL(s,R) acts on ∂∞Ps on the right by automorphisms of spherical building.
In fact it coincides with the group of automorphisms of the spherical building ∂∞Ps. The
fundamental domain of the action of SL(s,R) on ∂∞Ps is W0(∞), hence one can define a
projection sl : ∂∞X → W0(∞). The image sl(ξ) of every point ξ in ∂∞X is called the slope of
ξ. The slope of a geodesic ray r is the slope of r(∞).

Given a point ξ in the relative interior of a spherical wall W (∞), where W = x / A0, the
stabilizer of ξ is the stabilizer of the whole wall W (∞), and it is the parabolic group P (/A0).

The boundary at infinity ∂∞Ps can in fact be identified to the geometric realization of
the spherical building of flags in Rs. Indeed, the complex of incidence of the flags in Rs is a
spherical building according to [Tit74]; according to [KL97] it can be realized geometrically as
a CAT(1)-spherical complex. The sense of the above statement is that ∂∞Ps endowed with the
Tits metric, a definition of which can be found in [BGS85], is isomorphic and isometric to the
geometric realization of the spherical building of flags. Via this identification, the statement that
SL(s,R) coincides with the group of automorphisms of the spherical building ∂∞Ps becomes
the Fundamental Theorem of Projective Geometry.

Also via the above identification, r1(∞) = 〈es〉 and more generally ri(∞) is the subspace
〈es−i+1, . . . , es〉, for i ∈ {1, 2, . . . s − 1}. The spherical chamber W0(∞) is identified to the flag
〈es〉 ⊂ · · · ⊂ 〈es−i+1, . . . , es〉 ⊂ · · · ⊂ 〈e2, . . . , es〉.

A maximal singular ray r has slope ri(∞) if and only if r(∞) is a linear subspace of dimen-
sion i.

Given a flag F : V1 ⊂ · · · ⊂ Vk in Rs and a matrix B ∈ GL(s,R) we denote by BF the flag
B(V1) ⊂ · · · ⊂ B(Vk).

Remark 2.4.1. The isometric action to the right Φ of SL(s,R) on Ps induces the action to the
right Φ on ∂∞Ps identified to the spherical building of flags in Rs, defined by Φ(B,F) = B−1F ,
where F is an arbitrary flag.

The Busemann functions of Ps have been computed in [Dru05, §3.2]. We recall here some of
the results.

Lemma 2.4.2. Let Q be a positive definite quadratic form of determinant 1 on Rs, let Qi be its
restriction to 〈es−i+1, . . . , es〉 and let det Qi be the determinant of Qi in the basis {es−i+1, . . . , es}.
Then

fri(Q) =
√

s

(s− i)i
ln detQi .

In particular

fr1(Q) =
√

s

s− 1
ln Q(es) and frs−1(Q) =

√
s

s− 1
ln Q∗(e1) ,

where Q∗ is the “dual quadratic form”, that is the quadratic form whose matrix in the canonical
basis is M∗

Q, if MQ is the matrix of Q.
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Lemma 2.4.3. Let d be a line in Rs and let v be a non-zero vector on d.

(i) The function fv : Ps → R, defined by fv(Q) =
√

s
s−1 ln Q(v) , is a Busemann function of

basepoint d.

(ii) Every Busemann function of basepoint d is of the form fw, where w ∈ d, w 6= 0.

A similar argument gives the following.

Lemma 2.4.4. Let H be a linear hyperplane in Rs and let v be a non-zero vector orthogonal
to it.

(i) The function f∗v : Ps → R defined by f∗v (Q) =
√

s
s−1 ln Q∗(v) , is a Busemann function of

basepoint H.

(ii) Every Busemann function of basepoint H is of the form f∗w, where w 6= 0 is orthogonal to
H.

We have that fr1 = fes and frs−1 = f∗e1
.

2.5 The locally symmetric space Ps/SL(s,Z)

The subgroup Γ = SL(s,Z) is an irreducible lattice in SL(s,R), therefore SL(s,R)/Γ has a
SL(s,Z)-invariant finite measure. The Q-rank r of Γ is the same as the R-rank of SL(s,R), that
is s− 1. The quotient space Ps/Γ is a non-compact locally symmetric space of finite volume.

Notations: We denote Ps/Γ by Ts; we denote by proj the projection of Ps onto Ts, and by projG
the projection of SL(s,R) onto SL(s,R)/Γ.

Note that the space SL(s,R)/Γ can be naturally identified to the space of lattices of covolume
1 in Rs, via the map B · Γ 7→ B · Zs, where B ∈ SL(s,R). Consequently the space Ts =
SO(s) \SL(s,R)/Γ can be identified to the space of lattices of covolume 1 in Rs up to solid
rotations preserving orientation. On the other hand, since Ts = Ps/Γ, this quotient space
can also be seen as the space of positive definite quadratic forms of determinant 1 up to the
equivalence relation Q1 ' Q2 ⇔ Q1 = Q2 ◦B for some B ∈ SL(s,Z).

The projection proj restricted to the Weyl chamber W0 is an isometry. Therefore W 0 =
proj(W0) is an isometric copy of W0 in Ts. Moreover, Ts is at finite Hausdorff distance from W 0.
For details see [Sie45] and [Bor69].

We denote by r̄ the projection of a ray r in W0.
Given a geodesic ray r contained into W0, the height into the end of Ts can be measured by

the Busemann function fr̄ of r̄. Moreover the following holds:

Lemma 2.5.1 ([Dru05], Remark 2.5.1, (1)). For a < 0 with |a| large enough, the projection of
the horoball proj(Hba(r)) is the horoball Hba(r̄).

This and Lemma 2.4.3 imply that for a < 0 with |a| large enough the projection of Hba
es

is Hba(r̄1) and its pre-image is
⋃

v∈PZs Hba
v. Likewise Hba

e∗1
projects onto Hba(r̄s−1) and its

pre-image is
⋃

v∈PZs Hba
v∗ .

Notation: For simplicity, we denote in what follows the Busemann function fri on Ps by fi, and
the Busemann function fr̄i on Ts by f̄i.

9



According to Lemma 2.4.3, if Ts is seen as the space of lattices of covolume 1 in Rs up to solid
rotations then f̄1 is the function associating to every lattice Λ in Rs the value

√
s

s−1 ln ‖w‖e,

where w is a shortest non-zero vector in Λ with respect to the Euclidean norm ‖ · ‖e.
If Ts is seen as the space of positive definite quadratic forms of determinant 1 up to the

equivalence relation ' then f̄1 is the function associating to every equivalence class of quadratic
forms [Q] the value

√
s

s−1 ln λ1(Q), where λ1(Q) is the first minimum of Q with respect to the
lattice Zs.

Likewise, using Lemma 2.4.4, the function f̄s−1 can be seen either as the function associating
to every lattice Λ the value

√
s

s−1 ln vol∗e , where vol∗e is the minimal Euclidean covolume of a
subgroup of Λ which is a lattice in a hyperplane of Rs; or as the function associating to every
equivalence class of quadratic forms [Q] the value

√
s

s−1 ln vol∗Q, where vol∗Q is the minimal
covolume with respect to Q of a subgroup of Zs which is a lattice in a hyperplane of Rs.

The following result turns out to be a geometric version of a Transference principle.

Proposition 2.5.2 (comparison of Busemann functions on Ts). The following inequality holds
on Ts:

(s− 1)f̄s−1 −O(1) ≤ f̄1 ≤ 1
s− 1

f̄s−1 + O(1) . (10)

Remark 2.5.3. The statement in Proposition 2.5.1 can be easily seen on a picture. See for
instance Figure 1 where the case s = 3 is represented. Note that in this case the Weyl chamber
W0 is known to be an Euclidean sector of angle π

3 .

Proof. The fact that Ts is at finite Hausdorff distance from W 0 and Lemma 2.1.1 imply that
it suffices to prove inequality (10) for the restrictions of f̄s−1 and f̄1 to W 0. Or W 0 can be
identified to the following polytopic cone in Rs:

{(t1, t2, . . . , ts) ; t1 + t2 + · · ·+ ts = 0, t1 ≥ t2 ≥ · · · ≥ ts} .

r̄1

r̄2

π
3

f2 = c
2c

c
2

W 0

T3

10



Figure 1: Inequality (10) in case s = 3.

According to Example 2.1.2, for any i ∈ {1, 2, . . . s− 1} the Busemann function f̄i restricted
to W 0 coincides, via this identification, with −〈·|vi〉, where

vi = (λi, . . . , λi︸ ︷︷ ︸
s−i times

,−µi, . . . ,−µit︸ ︷︷ ︸
i times

), with λi =

√
i

s(s− i)
and µi =

√
s− i

si
. (11)

Any two rays in W 0 with same vertex as W 0 form an angle strictly smaller than π
2 . This can

be verified in this case by direct computation, and it also follows from general results stating
that in a Weyl chamber any two rays with origin in its vertex form an angle smaller or equal
to π

2 , and the equality case may appear if and only if the corresponding symmetric space is
reducible, i.e. it decomposes as a cartesian product. See for instance [KL97] where the latter
result is explained in a nice and geometric way.

It follows that any horosphere Ha(r̄) with r̄ a ray in W 0 intersects W 0 in a finite polytope.
In particular it is the case for a horosphere defined by f̄s−1 = −c, with c a large enough positive
constant c.

The maximum and minimum of f̄1 on the above polytope must be attained in one of the
vertices, since f̄1 restricted to the polytope coincides with the linear function −〈·|vi〉. Or the
vertices are here the intersections of the horosphere H−c(r̄s−1) with r̄i for all i ∈ {1, 2, . . . s−1}.
One easily sees that they are r̄i(ti), with ti = c

〈vi|vs−1〉 , which by the above identification of W 0

to a polytopic cone in Rs, become tivi.
Now f̄1(r̄i(ti)) = c 〈vi|v1〉

〈vi|vs−1〉 . Elementary computations give 〈vi|v1〉 =
√

s−i
i(s−1) , and 〈vi|vs−1〉 =

√
i

(s−i)(s−1) , hence f̄1(r̄i(ti)) = c
(

s
i − 1

)
. We conclude that the maximum of f̄1 on W 0 ∩

H−c(r̄s−1) is attained for i = 1, and it is s− 1, while the minimum is attained for i = s− 1, and
it is 1

s−1 . This implies that the inequalities in (10) hold on W 0 without the O(1) terms.

3 Diophantine approximation and excursions of geodesic rays

3.1 Diophantine approximation for families of forms

In what follows we study from the Diophantine approximation viewpoint families of ` linear
forms in m variables, and their transposed family of m linear forms in ` variables:

Li(x1, ..., xm) =
m∑

j=1

aijxj , Mj(y1, ..., y`) =
∑̀

i=1

aijyi .

Notation: We denote by L the matrix (aij)1≤i≤`,1≤j≤m and by M its transposed. We also
denote the sum ` + m by s.

Given an approximating function φ we consider the set of φ-approximable families of ` linear
forms in m variables

Lφ = {L ∈ M`×m(R) ; |Li(q̄)− pi| ≤ φ (‖q̄‖max) for infinitely many (p̄, q̄) ∈ PZs} . (12)
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Note that if L satisfies the hypothesis in Theorem 1.1 then L is in Lφ.
Similarly we define the set

Mψ = {M ∈ Mm×`(R) ; |Mj(ā)− bi| ≤ ψ (‖ā‖max) for infinitely many (ā, b̄) ∈ PZs} . (13)

Both the set Lφ and the set Mψ can be related to sets of geodesic rays of the same slope as
rm and rising further and further in the cusp.

3.2 Two collections of geodesic rays

Notation: To simplify the formulas, we use the notation η for the constant
√

s
s−1 . We shall also

continue using λi and µi to designate the constants defined in (11) for i ∈ {1, 2, . . . s−1} , i 6= m,
while for i = m we shall drop henceforth the index, and simply write λ and µ.

We introduce now two sets of geodesic rays, we explain that their definition is natural, and
in the end we explain how these two sets relate to sets of type Lφ and respectively Mψ.

Consider a (strictly) increasing function ϕ : [a,+∞) → [b,+∞) and for k = 1, s − 1 define
the following set of unipotents:

Rk
ϕ =

{
u ∈ U+(rm) ; −f̄k (proj (rm(t)u)) ≥ αkt− ϕ(t) infinitely many times as t →∞}

,
(14)

where αk = 〈vk|vm〉, with vi the vectors defined in (11). Thus

α1 = 〈v1|vm〉 =
√

m

`(s− 1)
= ηµ , αs−1 = 〈vs−1|vm〉 =

√
`

m(s− 1)
= ηλ . (15)

The set Rk
ϕ, though a set of unipotents, can be identified to a set of rays of same slope as

rm in Ps via the bijection
u 7→ rmu .

These rays have the property that their projection in Ts rises infinitely many times in the
cusp at height at least αkt− ϕ(t), where the height is measured with respect to the ray r̄k and
t is the time at which that height is attained (see Figure 2).

Several explanations are needed concerning the choice of defining Rk
ϕ as a set of unipotents,

and the form of the function measuring the height.

Remark 3.2.1 (why a set of unipotents). All geodesic rays having the same slope as rm are in
the orbit rmG, and the set P (rm)U+(rm) is open Zariski dense in SL(s,R).

If a geodesic ray has a projection on Ts moving away into the cusp infinitely many times
with height measured by the function αkid − φ with respect to the ray r̄k, then any geodesic
ray asymptotic to it has the same property, up to a bounded perturbation of the height. Thus
if u ∈ Rk

ϕ then any geodesic ray ρ in rmP (rm)u has the property that −f̄k (proj (ρ(t))) ≥
αkt− ϕ(t)− C infinitely many times as t →∞ for some constant C = C(ρ).

We may therefore say that the setRk
ϕ deals with all rays with same slope as rm and ascending

speed in the cups measured by the function αkid−φ+O(1) with respect to r̄k, with the exception
of an algebraic variety.

12



r̄1 r̄2

proj (rmu)

α1t− ϕ(t)

proj (rm(t)u)

Ts

Figure 2: The set R1
ϕ.

Lemma 3.2.2 (why the ascending function αkid−φ). If a geodesic ray ρ in Ps has the property
that −f̄k (proj (ρ(t))) ≥ αkt + O(1) infinitely many times as t → ∞ then −f̄k (proj (ρ(t))) =
αkt + O(1), and ρ is asymptotic to a ray ρ′ contained in the same Weyl chamber as a lift of r̄k

(i.e. a ray in rkΓ).

Lemma 3.2.2 thus implies that αk id is the maximal possible ascending function with respect
to r̄k.

Proof. According to the argument in Remark 3.2.1, the case when ρ is in rmP (rm)U+(rm) can
be reduced to the case when ρ is in rmU+(rm).

The other cases can likewise be reduced to sets of rays of the form rmU+(rm)w, where w is one
of the elements of the Weyl group corresponding to F0 (that is, and element in ZG(A0)\NG(A0),
hence an element that can be realized as a permutation matrix). But applying a permutation
matrix does not change the data in an important way. Thus, the arguments that we give below
for a ray in rmU+(rm) also works for rays in rmU+(rm)w. We leave this as an exercise to the
reader.

Case k = 1. Let u be a unipotent in U+(rm). The fact that −f̄1 (proj (rm(t)u)) ≥
α1t + O(1) infinitely many times as t → ∞ implies that for infinitely many (p̄, q̄) ∈ PZs the
value f(p̄,q̄)(rm(t)u) is at most −α1t + O(1). According to Lemma 2.4.3, (i), this is equivalent

to the fact that r1(t)u(p̄, q̄) is at most Ce
−α1t

η = Ce−µt, for some constant C.
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Assume that u is as in the formula (9), for some matrix N ∈ M`×m(R). Then the above
implies that

eλt‖p̄ + Nq̄‖2 + e−µt‖q̄‖2 ≤ Ce−µt ⇒ ‖p̄ + Nq̄‖ ¿ e−
λ+µ

2
t , ‖q̄‖ ¿ 1 .

The last inequality implies that up to taking a subsequence we may assume that q̄ is con-
stant. Then, as p̄ + Nq̄ now varies in the lattice Z` + Nq̄, the first inequality, when t is
large enough, implies that p̄ + Nq̄ = 0, in particular p̄ is a constant. For the fixed vector
(p̄, q̄) ∈ PZs we have that f(p̄,q̄)(rm(t)u) = η ln[eλt‖p̄ + Nq̄‖2 + e−µt‖q̄‖2] = −ηµt + 2η ln ‖q̄‖,
hence −f̄1 (proj (rm(t)u)) = α1t + O(1).

From the equality p̄ + Nq̄ = 0 also follows that
(

Ids−i N
0 Idi

)
·
(

q̄
p̄

)
=

(
0
p̄

)
.

This can be rewritten as u(q̄, p̄) = (0, p̄).
Note that, since the vector (0, p̄) is in the subspace 〈e`+1, ..., es〉, which can be identified to

rm(∞) (see Section 2.4), the vector (0, p̄) can be written as ρ(∞) for some ray in the same Weyl
chamber as rm.

Take γ ∈ Γ such that γ−1(es) = (q̄, p̄). This is the same as writing that r1(∞)γ is (q̄, p̄).
Therefore r1(∞)γu−1 is (0, p̄). This implies that r1(∞)γ = ρ(∞)u. Now ρu is in the same Weyl
chamber as rmu, and r1γ projects in Ts onto r̄1, hence ρu projects to a geodesic ray asymptotic
to r̄1.

Case k = s − 1. Assume now that u ∈ U+(rm) is such that −f̄s−1 (proj (rm(t)u)) ≥
αs−1t + O(1) infinitely many times as t → ∞. Then there exist infinitely many (ā, b̄) ∈ PZs

such that f∗
(ā,b̄)

(rm(t)u) is at most −αs−1t + O(1). Equivalently (with the same form of u as in

Case 1) e−λt‖ā‖2
e + eµt‖NT ā + b̄‖2 ≤ Ce

−αs−1t

η = e−λt.
It follows that eventually by taking a subsequence we may assume that ā is fixed. Also, since

NT ā + b̄ is in the lattice NT ā + Zm and since ‖NT ā + b̄‖ ¿ e−
λ+µ

2
t with t →∞ it follows that

NT ā + b̄ = 0 for some b̄ ∈ Zm. For the fixed vector (ā, b̄) ∈ PZs thus found, a straightforward
application of Lemma 2.4.4 gives that f∗

(ā,b̄)
(rm(t)u) = −f̄s−1 (proj (rm(t)u)) = −αs−1t + O(1).

Thus, u−1 applied to the rational hyperplane of coefficients (−ā, b̄) gives the rational hyper-
plane of coefficients (−ā, 0). The subspace 〈e`+1, ..., es〉 is contained in this hyperplane, hence
the hyperplane of normal vector (−ā, 0) is ρ(∞) for some ρ in the same Weyl chamber as rm

(and of same slope as rs−1).
Take γ ∈ Γ such that γT (e1) = (−ā, b̄), equivalently rs−1(∞)γ = (−ā, b̄). Then rs−1(∞)γu−1 =

ρ(∞). Hence ρu projects to a geodesic ray asymptotic to r̄s−1, and it is in the same Weyl cham-
ber as rmu.

Proposition 2.5.2 immediately implies the following relation between the two sets of ascending
rays defined in (14).

Lemma 3.2.3. 1. Let ϕ : [a,+∞) → [b, +∞) be a strictly increasing function. Then

R1
ϕ ⊂ Rs−1

ψ with ψ(t) = η

(
λ− µ

s− 1

)
t +

1
s− 1

ϕ(t) + O(1) . (16)

2. Let ψ : [a′,+∞) → [b′, +∞) be a strictly increasing function. Then

Rs−1
ψ ⊂ R1

ϕ with ϕ(t) = η

(
µ− λ

s− 1

)
t +

1
s− 1

ψ(t) + O(1) . (17)
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3.3 Relation between sets of linear forms and sets of rays

The set of matrices M`×m(R) can be naturally identified to U+(rm), with the map

L 7→
(

Id` L
0 Idm

)
. (18)

With this identification, the set Lφ defined in (12) becomes a subset L̃φ in U+(rm).
Likewise the set of matrices Mm×`(R) can be naturally identified to U+(rm) by means of the

map

M 7→
(

Id` MT

0 Idm

)
. (19)

As previously, with this map, we identify the setMψ from (13) with a subset M̃ψ in U+(rm).
We establish the following relations between sets of well approximable linear forms and

geodesic rays rising in the cusp.

Proposition 3.3.1. Let ϕ : [a,∞) → [b,∞) be a function such that ϕ and η(λ + µ)id − ϕ are
(strictly) increasing. Then

L̃Φ1 ⊂ R1
ϕ ⊂ L̃Φ2 and M̃Φ1 ⊂ Rs−1

ϕ ⊂ M̃Φ2 (20)

where Φ1(x) = 1√
s
xe−

λ+µ
2

ϕ−1(2η ln(
√

2sx)) and Φ2(x) =
√

sxe−
λ+µ

2
ϕ−1(2η ln(x)).

Proof. Case k = 1. We prove the first inclusion. Assume that L ∈ LΦ1 , that is there exist
infinitely many (p̄, q̄) ∈ PZs such that ‖p̄ + Lq̄‖max ≤ Φ1(‖q‖max). For each such primitive

vector consider t = ϕ−1(2η ln(
√

2‖q̄‖e)). Then e−µt‖q̄‖2
e = 1

2e
ϕ(t)−α1t

η .
On the other hand eλt‖p̄+Lq̄‖2

e ≤ seλt‖p̄+Lq̄‖2
max ≤ eλt‖q̄‖2

maxe
−(λ+µ)t ≤ eλt‖q̄‖2

ee
−(λ+µ)t =

e−µt 1
2e

ϕ(t)
η = 1

2e
ϕ(t)−α1t

η .

On the whole we obtain that eλt‖p̄ + Lq̄‖2
e + e−µt‖q̄‖2

e ≤ e
ϕ(t)−α1t

η , whence f(p̄,q̄)(rm(t)u) ≤
ϕ(t)− α1t.

Now we prove the second inclusion. Take a unipotent u corresponding to a matrix L such
that −f̄1(proj(rm(t)u)) ≥ α1t− ϕ(t) infinitely many times as t goes to infinity.

Then for infinitely many (p̄, q̄) ∈ PZs we have for some t > 0 that

eλt‖p̄ + Lq̄‖2
e + e−µt‖q̄‖2

e ≤ e
ϕ(t)−α1t

η .

It follows that ‖q̄‖2
e ≤ e

ϕ(t)
η . This and the fact that ϕ is increasing imply that t ≥

ϕ−1(2η ln ‖q̄‖e).

Then ‖p̄ + Lq̄‖2
e ≤ e

ϕ(t)−(λ+µ)t
η . The hypothesis that η(λ + µ)id−ϕ is increasing implies that

the latter term is smaller than ‖q̄‖2
ee
−(λ+µ)ϕ−1(2η ln ‖q̄‖e). Whence ‖p̄ + Lq̄‖max ≤ Φ2(‖q̄‖max).

Case k = s − 1. Take M ∈ MΦ1 . Then for infinitely many (ā, b̄) ∈ PZs we have that
‖M(ā)− b̄‖max ≤ Φ1 (‖ā‖max).

For every (ā, b̄) as above let t = ϕ−1(2η ln(
√

2‖ā‖e)), equivalently such that ‖ā‖2
e = 1

2e
ϕ(t)

η .

By hypothesis ‖Mā + b̄‖2
e ≤ s‖Mā + b̄‖2

max ≤ ‖ā‖2
maxe

−(λ+µ)t ≤ 1
2e

ϕ(t)
η e−(λ+µ)t .

15



We conclude that e−λt‖ā‖2
e + eµt‖Mā + b̄‖2

e ≤ e
ϕ(t)

η
−λt = e

ϕ(t)−αs−1t

η . This and Lemma
2.4.4 imply that, if u is the unipotent corresponding to the matrix M , then we may write
f∗
(ā,b̄)

(rm(t)u) ≤ ϕ(t)− αs−1t.
For the second inclusion, assume that u is such that −f̄s−1(proj(rm(t)u)) ≥ αs−1t − ϕ(t)

infinitely many times as t goes to infinity.
Then there exist infinitely many (ā, b̄) ∈ PZs, and t > 0, such that

e−λt‖ā‖2
e + eµt‖Mā + b̄‖2

e ≤ e
ϕ(t)−αs−1t

η .

Then ‖ā‖2
e ≤ e

ϕ(t)
η , which implies that t ≥ ϕ−1(2η ln ‖ā‖e).

It follows that ‖Mā + b̄‖2
e ≤ e

ϕ(t)−(λ+µ)t
η . Since η(λ + µ)id − ϕ is increasing we may bound

the last term by ‖ā‖2
ee
−(λ+µ)ϕ−1(2η ln ‖ā‖e), and conclude that ‖Mā + b̄‖max ≤ Φ2(‖ā‖max).

Remark 3.3.2. The conditions on the function ϕ are not so restrictive, in the sense that one
does not really exclude from discussion some of the ascending rays. Indeed, if a ray ρ is in a set
Rk

ϕ with a positive function ϕ such that limt→∞ ϕ(t) = ∞ (otherwise we are in the case of Lemma
3.2.2) and such that limt→∞ αkt−ϕ(t) = ∞ (otherwise the set of rays is uninteresting) then one
can choose a sequence of parameters tn →∞ such that −f̄k (proj (rm(tn)u)) ≥ αktn−ϕ(tn) and
such that ϕ restricted to the sequence (tn) is increasing. By replacing ϕ with a piecewise affine
map coinciding with ϕ on (tn) one can make both ϕ and η(λ + µ)id− ϕ strictly increasing.

3.4 Transference principles deduced from geometry of the locally symmetric
space Ts

Proposition 2.5.2 can be used to obtain transference principles. Since the computations needed
to deduce Theorem 1.1, (I), are more elaborate, we shall only give the arguments needed to
deduce Theorem 1.1, (II), to give an idea of how it all works.

Take a matrix L ∈ LΦ, with Φ(x) = x−
m+α

` , let u be the corresponding unipotent, and let
M = LT . According to (20), u is in R1

ϕ with ϕ such that

x−
m+α

`
−1 = e−

λ+µ
2

ϕ−1(2η ln(
√

2sx)) .

From this it can be deduced by a simple computation that

ϕ(t) =
s

s + α

√
`

m(s− 1)
· t + O(1) .

Proposition 2.5.2 implies that u ∈ Rs−1
ψ , with ψ such that ψ(t) = η

(
λ− µ

s−1

)
t + 1

s−1ϕ(t) +
O(1).

This gives ψ(t) = s[m(s+α)−m−α]

(s+α)(s−1)
√

`m(s−1)
· t + O(1).

By the last inclusion of (20) we then deduce that M is in MΨ, with Ψ ³ x
1− (s+α)(s−1)

m(s+α)−m−α .
The exponent of x can be rewritten as `+β

m with β = `α
m(s−1)+(m−1)α .
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