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Abstract. We compute the Hausdorff dimension of sets of very well approximable vectors on
rational quadrics. We use ubiquitous systems and the geometry of locally symmetric spaces. As
a byproduct we obtain the Hausdorff dimension of the set of rays with a fixed maximal singular
direction, which move away into one end of a locally symmetric space at linear depth, infinitely
many times.
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1. Introduction

The main result in the present paper is the computation of the Hausdorff dimen-
sions of the sets of very well approximable vectors on a rational quadric £. The
method is to consider the rational non-degenerate quadratic form ¢q : R” — R
such that the quadric Q is defined by q = 1 and the quadratic form L : R+ —
R, Lg(xt, ..., Xpq1) = x,%H — q(x1, ..., x,). The connected component of the
identity SO; (L) of the stabilizer SO (L) of the form L is a semisimple group
(simpleif n # 3). The integer points of this group compose a lattice. One can con-
sider the symmetric space associated to SO;(Lq) and its quotient by the lattice,
which is a locally symmetric space. The set of very well approximable vectors on
£ can be defined in terms of the geometry of the locally symmetric space, and its
Hausdorff dimension can be estimated using an ubiquitous system which appears
in this context and the general properties of ubiquitous systems.
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406 C. Drutu

1.1. Hausdorff dimension of sets of very well approximable vectors in R"

We denote by || - ||. the Euclidean norm and by || - || the max-norm in R”,
Xl = max{|xi[, [x2l, ..., [xal}.

Throughout ¥+ : R, — R, denotes a decreasing function satisfying
lim,_, o ¥ (x) = 0, also called an approximating function. Rational vectors are
always written in the form éﬁ, where ¢ € N, p = (p1,...,pn) € Z" and
ged(q, p1s oo, pn) = 1.

Let M be a submanifold of R”. The set of simultaneously \-approximable
vectors in M is defined by

Sy(M) ={x € M ; llgx — pll < ¥(g) for infinitely many g € N, p € Z"} .

In the particular case when ¥ (x) = xl” with o > rll the set is also denoted by
Sy (M) and it is called the set of simultaneously o-very well approximable vectors
in M. A subset of it is the set of simultaneously exactly-a-very well approximable
vectors in M,

ESqM) ={xeM; x € Sy(M) and x & Sg(M), VB > a}.
Likewise is defined the set of linearly \-approximable vectors in M, by
Ly(M)={x e M; |g-x— pl <¥(lg]) for infinitely many g € Z", p € N},

where ¢ - X = Y__, gix;. In particular when ¥ (x) = x7#, with B > n, the
previous set is denoted by Lg(M) and it is called the set of linearly B-very well
approximable vectors in M.

Khintchine’s transference principle [BD, §1.3.1] implies that

U Se@®) =] Lo@®".

a>1/n B>n

The vectors in this set are called very well approximable vectors. A conse-
quence of the Khintchine-Groshev Theorem [BD, §1.3.4] is that the set of very
well approximable vectors in R” is of Lebesgue measure zero. Thus, in order
to study the sets of type Sy and £, when v decreases sufficiently quickly at
infinity so that they are of Lebesgue measure zero, a more appropriate tool is
the Hausdorff dimension and the Hausdorff measure. In the sequel we denote by
dimy A the Hausdorff dimension of a subset A in a metric space. We denote by
‘H* the Hausdorff measure corresponding to the parameter s (see Section 4.2 for
definitions). It has been proved in [Ja] that given s € [0, n),

s my = |0, i 2 Ky (k) < o0,
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: 1
In particular, for any o >

1
d = dimy S,(R") = "0 and HU(S,(R") = 0. )
o+ 1
This implies that both relations also hold for £S, (R") instead of S, (R").
In [BoD] it was shown that
n+1
dimg Le(R")Y =n—1+ ——, VB > n. 3
u LgR") 1 B (3)
Moreover the following holds [DV]. Let s € (n — 1,n) and let ¥ be an
approximating function. Then

0, if Y52, Ky k) D < oo,

00, if Yoo KT Yk D = 0o X

H (Ly(R™) = {

1.2. Known results on very well approximable vectors on manifolds

The general question to ask is under what conditions the vectors in a submani-
fold M of R" behave similarly to the vectors in R”, with respect to Diophantine
approximation. If M is a rational affine subspace of dimension & < n in R” then
M=S 1 (M). Therefore, rational affine subspaces must be avoided.

M.M. Dodson, B.P. Rynne and J.A.G. Vickers have shown in [DRV;3] and
in [DRV,] that under some non-zero curvature condition, the set of very well
approximable vectors in M is of measure 0. D. Kleinbock and G.A. Margulis
have shown in [KM;] the same result in a submanifold M of R” non-degenerate
almost everywhere (they have actually shown that a larger set, the set of very well
multiplicatively approximable vectors in M, has measure 0 in this case). A point
X € M is non-degenerate if in a neighborhood of x, M is not near to any affine
subspace. More precisely, in a neighborhood of x the submanifold M is parame-
terized by a function f which is / times continuously differentiable and such that
its partial derivatives in x up to order / span R". A submanifold M non-degenerate
almost everywhere is a submanifold in which almost every pointis non-degenerate.

A Khintchine-Groshev type theory was equally developed in the setting of
manifolds. Concerning the linear approximation (that is, the Groshev type the-
ory) it has been shown that any submanifold non-degenerate almost everywhere
is of Groshev type (see [Ber], [BKM], [BBKM], [BDV;]). For the known results
in simultaneous approximation, that is for a Khintchine type theory on manifolds,
we refer to [BD], [BDV,], [BDV,], [DRV3], [DRV,] and references therein.

Consider a submanifold M with the set of very well approximable vectors of
measure zero. Such a submanifold is also called extremal. One can ask what is
the Hausdorff dimension of each set S, (M) with o > % and Lg(M) with 8 > n.
More is known about the sets Lg(M). R.C. Baker [Bak] proved that if M is a
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planar curve of class C* whose curvature is zero at most in a set of points of
Hausdorff dimension zero, then

3
dimy L4(M) = —— VB = 2. 5
imp Lp(M) = y B = (&)

M.M. Dodson, B.P. Rynne and J.A.G. Vickers [DRV ] later proved that if M
is a C3-submanifold of dimension m > 2 in R” such that at least two principal
curvatures are not zero except on a set of Hausdorff dimension at most m — 1,
then

n+1
dimy Le(M)=m — 14+ —— VB >n. 6
imy Lg(M) =m +1+ﬁ B=n (6)
H. Dickinson and M.M. Dodson have shown in [DD,] that if M is extremal
then

n—+1
di LsM)y>m—1+—— ,VB>n.
imy Lg(M) > m +1+,3 B>n
Finally, in [BDV;], V. Beresnevich, D. Dickinson and S. Velani have shown
that, given M an m-dimensional submanifold in R", with n > 2, M non-degen-

erate almost everywhere, the following holds. Consider s € (m — 1, m). If

Z lIh(k)S*(mf])kl’H»mf]7S — 00 then HS(,Cw(M)) — 0.
k=1

In particular for ¥ (x) = x~# this implies the result of H. Dickinson and
M.M. Dodson, under the given hypotheses for M, and moreover it shows that for
d=m—1+ % the Hausdorff measure H¢ (ﬁ,g (M)) is 00.

These results and Khintchine’s transference principle can be used to obtain
upper and lower bounds for the Hausdorff dimensions of the sets S, (M). As far
as the exact Hausdorff dimension for sets S, goes, the known results are the fol-
lowing. In [BDV,] it is shown that, given ¥ an approximating function such that
limy_, o x¥(x) = 0and s € (0, 1), the following holds.

e v (v
-] IR

In particular this implies that

dimy S,(SY = and H'F9(S,(S") = 00, Vo > 1. (7

14+«

The first equality in (7) had already been proved in [DDy].
In [BD, Theorem 4.8] it is proved thatif k € N, k > 3, and

Co={(x,y) eR*; x* +y* =1},
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then S, (Cy) contains at most four points for « > k — 1, hence dimg S, (Cy) = 0
fora >k —1.

The examples of Stand G, k > 3, already emphasize that, unlike in the case
of linear approximation, a condition of non-zero curvature is not enough to deduce
the Hausdorff dimensions of the sets S,. B.P. Rynne [Ry] showed moreover that
for every C*-submanifold M of R”" of dimension m there exist C*-submanifolds
M and M/, arbitrarily C k_close to M (in a suitable sense) such that for « suffi-
ciently large S (M;) = ¥ and dimp So (M) > k:’;—:—ll)‘ It follows that conditions
taking into account only the structure of differential submanifold and depending
continuously on this structure cannot suffice to obtain information about S, (M),
at least not for large values of «. The following result from [BDV] on the other
hand seems to indicate that for values of o near to %, where 7 is the dimension
of the ambient space R”, there should exists however a formula holding for any
non-degenerate submanifold of R". More precisely, in [BDV|] it is shown the
following. Let f € C3([a,bl), a < b, let C; = {(t, f(t)) ; t € [a,b]}, let
s € (1/2, 1) and let ¢ be an approximating function.

o If Z,fil k'S (k)*T! = oo then H (Sy(Cyp)) = 0
o Let )H/, = liminf,_ _lnn‘”(x) If the Hausdorff dimension of the set {t €

la,b] ; f”(t) = 0} is at most 1+A L then d = dimy(Sy(Cy)) = ?;i:

Assume moreover that Ay, € (1/2,1). Then limsup,_,  x X% dl//(x)“”rl > 0
implies that H (S, (Cy)) = oo
In the particular case when ¥ (x) = x~“ with « € (1/2, 1) this gives the
following.
o dimy S,(Cy) = d = 72 and H*(S,(Cy)) = o0
o If moreover the Hausdorff d1mens10n of the set {t € [a,b]; f"() =0}is at
most Ty thendimy S, (Cy) =

In the partrcular case of a rational quadric £ in R? one obtains dimy S, (Q) =
%_Tg for o € [1/2,1). Note that for Q = S! this differs from the formula for
« > 1 given in (7). Thus in this case, unlike in the cases treated in (2), (3), (5)
and (6), the Hausdorff dimension of the sets of very well approximable vectors is
not a rational function in « but a piecewise rational function in o, with different
expressions for ¢ € [1/2, 1) and for « > 1.

In [DL] the Hausdorff dimension of S, (M) has been computed for large values
of o and for M a manifold parameterized by polynomials with integer coefficients.

1.3. Very well approximable vectors on rational quadrics

The purpose of the present paper is to compute the Hausdorff dimension of the
sets Sy (Qq) for o > 1, where g is a quadric defined by the equation q = 1,
for a given non-degenerate rational quadratic form g : R” — R. Obviously q
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cannot be negative definite. The main result of the paper, formulated not in the
most general form, is the following.

Theorem 1.1. Let r be an approximating function such that lim, _, oo x¥ (x) = 0.

(D) IfQqNQ" =P then Sy (Qq) = 9.
(2) If Qq N Q" # ¥ then

dimy Sy (Qq) =o(m —1),

T In x
where o = limsup,._, nx—Iny(x)

Moreover, iflimsup,_, . x' =79 (x)7 > 0 then H®"=D (Sw(i]q)) = o0.
In particular the set Sy (Qq) has Hausdorff dimension d = {7 01[ foranya > 1

and H¥ (84 (Qq)) = co. Both statements also hold for the set £ESy(Qq).

According to [BSh, Chapter 1, §7] a rational non-degenerate quadratic form
in n > 5 variables takes the zero value on Z" \ {(0, ..., 0)} if and only if it is not
defined. This theorem applied to the form L4 implies that forn > 4,Q,NQ" # ¢
for any rational quadratic form q. For n = 2, 3 see [BSh, Chapter 1, §7].

Outline of proof of Theorem 1.1.

Statement (1) is a straightforward consequence of Lemma 4.1.1. Therefore
we may assume that Qg N Q" # @. The symmetric space corresponding to the
semisimple group SO;(Ly) is the space P,41(Lq) of minimal positive definite
quadratic forms Q such that [L4(x)] < Q(x), Vx (see [Bo] or Section 3.3).
The boundary at infinity of it, 9,cP,4+1(Lg), is a spherical building which can
be canonically identified with the spherical building of flags of R"*! composed
of subspaces totally isotropic with respect to Lq ([Mo, §15, §16], [Wi, §4.G]).
In particular 0oP,41(Lq) contains a maximal singular stratum corresponding to
the 1-dimensional subspaces totally isotropic with respect to Lq. We call it the
stratum g and the points composing it points of type g. Correspondingly we say
that a geodesic ray in P, (L) is of type g if its point at infinity is.

Convention: Throughout, a semisimple group acts by isometries on the right on
the symmetric space associated to it and on its boundary at infinity.

The quadric Q4 can be identified with an open Zariski dense subset of the
stratum  in 9o P, 41(L¢). On the other hand, for any geodesic ray ¢ in P, 1(Lq)
of type g, the opposite unipotent U (o) of o (see Section 2.3 for a definition) can
be identified with an open Zariski dense subset of the stratum g via the bijection
u — p(oo)u. With a countable covering argument we can replace in our study
Sy (Qq) by Sy (), where Q is a relatively compact open subset whose closure
is contained in the image of U, (o) for some o. The set 2 can be identified with
a relatively compact open subset of U (o).
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Let ' = SO;(Lq) N SL(n + 1,Z). The locally symmetric space V =
Pa+1(Lq)/ T has ends if and only if Q4 N Q" # ¥J. Moreover there exist finitely
many geodesic rays 7;, i € {1,2,..., k},inV such that their lifts ; in P, (Lq)
are of type g and the following holds. Let r;I" be the I"-orbit of r;, let Csp;
be the corresponding set of points at infinity r; (co)[" and let Csp be the set of
points at infinity Uf;l Csp;. Then Csp intersected with Q4 seen as a subset of
0o Put1(Lg) is Q¢ NQ". In particular N Q" = QN Csp, and it can be seen as
a subset of U, (o). For each w € Csp N Q2 we use u,, to denote its corresponding
unipotent element in U, (o).

Note that to every point w = r;(co)y in Csp it is naturally associated a
horoball Hb,, = Hb(r;y) having it as a basepoint (see Section 2.1 for the defini-
tion of a horoball). Let 0?7 be the geodesic ray opposite to o . To every element
w € Csp N Q2 one can associate a weight d,, € R, which is the distance from the
horoball Hb(0?) to the horoball Hb,,. In €2 seen as a subset of U (0) one can
then consider the set SS, (2) of elements u such that

dist(u, u,) < W¥(dy), forinfinitely many w € Csp, (8)

where dist is a left invariant metric on U, (0) and W is an approximating function.

It turns out that, due to Lemma 4.1.1, the sets Sy, (€2) and S$ () are closely
related, for an appropriate choice of the function W. This relation is established
using some explicit formulas obtained in Sections 3.3 and 3.4. See the double
inclusion (29) and the whole dissussion in Section 4.4 for details.

It suffices to study the set S, () from the point of view of the Hausdorff
dimension. Moreover, it is not difficult to see that one can restrict the study to a
subset SY, (2) defined by replacing in (8) the set Csp by the subset Csp;.

In the particular cases when ¢ is positive definite or of signature (1,n — 1),
Pusi1(Lg) is isometric to the hyperbolic space H", and all the results in this
paper follow from the results in [BDV,, §8.3], generalizing previous results from
[HV]. We give an argument for the remaining cases. This argument actually works
for the two previous cases too, with some slight modification. The inequality
dimy Sfl,(Q) < o(n — 1) is not difficult to obtain. The main ingredient in its
proof is the counting result Corollary 2.7.2, which gives an estimate of the num-
ber of balls B(u,, , ¥(dy)) in U, (o) of a given size. This counting result itself
follows from the equidistribution result Proposition 2.6.6.

For the converse inequality we use ubiquitous systems. We deduce from the
equidistribution result Proposition 2.6.5 and the counting result Corollary 2.7.2
that the set of points X = {u,, ; w € Csp; N 2} together with the weight func-
tionw : Csp; N Q — R, w(w) = dy, compose a local ubiquitous system
with respect to an appropriate ubiquitous function and an appropriate increasing
sequence of positive numbers, in the terminology of Section 4.3. We then use
the properties of ubiquitous systems as developed in [BDV;] to deduce the lower
bound of the Hausdorff dimension of Sfl, (R2), as well as the other results.
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Some comments are necessary concerning the counting result Corollary 2.7.2.
This statement corresponds in our case to the result in [Su, §6, Proposition 4],
given for the rank one case. A generalization of Sullivan’s result in the setting of
geometrically finite Kleinian groups has been given in [HV]. A consequence of
Corollary 2.7.2 is the following statement.

Corollary 1.2 (equidistribution of rational vectors on rational quadrics). Suppose
that Qq N Q # (. Let Q be a relatively compact open subset of Qq such that its
closure does not intersect Tz, Qq for some Xy € Qq. Let a > 1. For every open
subset O of Q we denote by N (k; O) the cardinal of the set of rational vectors

1
{—15 ceQ'NO; |q| € [a",a"“)} :
q
For any a > aop(q, 2) we have that
K a®D0=Dy0) < Nk ; 0) < Ky a* VD (0), for every k > ko(O, ),

where v is the canonical measure on Qq and K; = K;(q, ).

It is worth mentioning that our methods cannot be used to obtain either Khint-
chine type results or results on badly approximable vectors in 4 or any other type
of results concerning vectors approximable nearly as well as the generic vectors
in R". This can be seen for instance by applying the logarithm law ([Su], [KM;])
in our setting. It implies that for every ¢ > 0, for almost every X € Q4, we have

X 1 1
a1 @) > V-peQy.
q

X —

7l
—p|| = 1 1
q g(ng)m=ite  g'ta

Consequently, for almost all X € £ the rational approximants are outside £ .
It seems that in order to study badly approximable and Khintchine type approxi-
mable vectors in £ 4, the study of the intrinsic geometry of V is not sufficient, and
one has to consider also the “ambient” geometry of 7,11 = P,11/SL(n + 1, 7Z),
where P, ;1 is the symmetric space of positive definite quadratic forms on R"*! of
determinant 1 in the canonical basis. The locally symmetric space 7, contains
a proper embedding of V [Bo, §5].

1.4. Rays moving away in the cusp

We consider again the set g&, (€2) defined in Section 1.3. Without loss of generality
we may assume that £2 = U, (0) and we may denote the corresponding set simply
by S’,. This set can be related to a set of geodesic rays moving away in the cusp for
infinitely many times ¢ at depth at least t — ¢ (¢), where the depth is measured with
respect to the ray r; and ¢ : [a, +00) — [b, +00) is a function depending on the
function . The results on the Hausdorff dimension of the set S!, can be thereby
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translated in terms of this set of rays. To simplify the exposition we present here
a particular case of the results that can be obtained with such an argument, the
general statements can be found in Section 5.

Let 8 € (0, 1) and define

Rpg = {u € Ui(0); f7 (proj (o(t)u)) < —pt infinitely many times as t — oo} .

Above we have resumed the notation in Section 1.3, proj denotes the projection
of P,41(Lq) onto V and f7 denotes the Busemann function of the ray 7; in V, as
defined in Section 2.1.

Note that Rg can also be seen as a set of geodesic rays, by identifying each u
to the ray ¢ u. The condition defining R g means that for infinitely many times ¢
the projection onto V of the geodesic ray o u goes into the cusp at depth at least
Bt, the depth into the cusp being measured with respect to the ray ;. We also
consider a subset of Rg, representing the rays which in some sense do not go
deeper than St in the cusp as t — o0:

ERp=Rg\ U Rpg = {u € Rg ; limsup — /i (proj (e(®)w) = ,B} )

B> t—+00 t

Theorem 1.3 (Corollary 5.1.5). For any B € (0, 1),

dimy Rp = dimy ERg = (1 — ) dim U, (o)
=d and H* (Rp) = H! (ERs) = 0.

For a discussion of the cases 8 = 0, 1 see Section 5.1.

A natural question to ask is whether other results on the Hausdorff dimension
and measure of sets of very well approximable vectors have an interpretation in
terms of rays moving away in the cusp of some locally symmetric space. We
establish such an interpretation for the formulas (1) and (4). Most likely this can
be done in other cases as well. For the two formulas that we discuss the appro-
priate symmetric space is P, 1, and the appropriate locally symmetric space is
Toi1 = Pur1/SL(n + 1, Z). Let proj be the projection of P, onto 7, . Let
r1 and r, be the geodesic rays in P,. defined as in (19). Theray r;, i = 1, n,
projects onto a geodesic ray r; in 7,,+1. We define the set

i

5= {u € Uy (ri); f7 (proj (r; (t)u)) < —pt infinitely many times as t — oo} ,

wherei = 1, n, and 8 € (0, 1). We also consider the subset

ERL = Riﬁ\ U Ri, = {u e R% ; limsup —Jn (proj (ri(Hw)) = /3} .

p=p f— 00 t

Formula (1) implies the following.
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Theorem 1.4 (Corollary 5.2.3). For any 8 € (0, 1),

dimy Ry = dimy ERY = (1 — B) dim U, (ry)
=d and H'(Rp) =H'(ERy) =00, i=1,n.

Formula (4) also can be expressed in terms of sets of rays moving away in
the cusp, but the situation slightly changes. In this case the ray in the cusp with
respect to which the depth is measured and the rays whose behavior is studied
are not in the same orbit of SL(n + 1, R), or in the terminology of Section 2.4,
they do not have the same slope. This explains why in this case the parameter
does not get near to 1, but is bounded by a smaller constant depending on the two
slopes. More precisely, we define for every 8 € (0 l)

R}g” = {u € Uy (r1); f, (proj (r1(t)u)) <—Pt infinitely many times as t — oo} .

Let' & R};’ = R}g" \U 5> p R;{,’ . The sets R’Z,l and £ R’;l can be defined similarly
by intertwining 1 and n.

Theorem 1.5 (Corollary 5.3.4). For any B8 € (O, %)

dimy R} = dimy ERY = (1 — B)dim U ()
=d and H'(R})) = H'(ER) = o0, (i, j} = {1.n}.

For the cases § = 0, 1, see Section 5.3.

n’

1.5. Open question

Theorems 1.3, 1.4 and 1.5 suggest that there might be a general formula for the
Hausdorff dimension of the set of rays moving away into the cusp at linear depth.
This justifies the following question.

Let X be a symmetric space of non-compact type without Euclidean factors, let
G be the connected semisimple group of isometries of X, let I be a non-uniform
irreducible lattice of isometries of X, let )V = X/ I" and let proj be the projection
of X onto V. Consider p a geodesic ray in X, r a geodesic ray in V and r a lift
of r in X. The ray r is contained in some Weyl chamber of vertex r(0). In this
same Weyl chamber there exists a unique ray ; of vertex r(0) and contained in
the orbit oG. The Busemann function f, restricted to o; has the form — Byt for
some Bo > 0. This implies that, as soon as By > 0, proj(o;) moves away in the
cusp of V and the depth at which it moves away at time ¢ measured with respect
to the ray 7 is fo¢. Note that among all the geodesic rays in oG with origin on the
horosphere H (r), the ray ¢; has the maximal depth at moment ¢ with respect to
F.



Diophantine approximation on rational quadrics 415

Question 1.6. For every € (0, Bp), consider the set
Rpg={uecUi(o); —fi (o(t)u) > Bt infinitely many times as t — oo} .
Is it true that d = dimy Rp = (1 — B) dim U, (o) and that H? (7?,,3) =007

1.6. Organization of the paper

Section 2 contains preliminaries on horoballs, symmetric spaces and semisim-
ple groups. The equidistribution results Proposition 2.6.5 and Proposition 2.6.6
in Section 2.6 play an important part in our arguments. In particular the latter
implies the counting results Proposition 2.7.1 and Corollary 2.7.2.

In Section 3 are given the formulas for the Busemann functions in the ambi-
ent symmetric space P, as well as in the symmetric space associated to the
quadric, P, 11 (Lg) . In Sections 3.4 and 3.5 we study the geometry of horoballs of
Pus1(Lg). The obtained results together with the counting result Corollary 2.7.2
yield the equidistribution of rational vectors on rational quadrics as formulated in
Corollary 1.2, and also a more general result, Proposition 3.4.4.

Section 4 contains the proof of Theorem 1.1. The notion of ubiquitous system
is recalled in Section 4.3. In Section 4.4 we show the relation between the set
Sy (Qg) and the set of unipotents Sy,. We end our argument in Section 4.5 by
exhibiting a local ubiquitous system and applying results from [BDV;].

In Section 5 we prove results on the Hausdorff dimension and measure of sets
of locally geodesic rays moving away in the cusp of a locally symmetric space.
In Section 5.1 we study the case of rays of type g in the locally symmetric space
Pus1(Lg)/ T, where I' is an arbitrary lattice in SO (L ). In the other two sections
we deduce from (1) and (4) respectively results about rays in the locally symmetric
space 7,4 1.

2. Preliminaries on (locally) symmetric spaces

The reader acquainted with semisimple groups and symmetric spaces may skip
Sections 2.1 to 2.5 and refer to them only when needed.

2.1. Notation and conventions

We denote by PZ" the set of primitive integer vectors in R”",

{(p1, P2, .- pn) € Z"\{(0,...0)} ; ged(p1, p2, ..., pn) =1},

and we denote by PZ"_ the subset

{(p1, P2, ... Pw) €PZL" ; py>0o0rp; >0, pip1=---=p, =0}.
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In a metric space (X, dist), for any subset A of X, we denote by N, (A) the set
{x € X; dist(x, A) < a}.

When A = {xo} then N,(A) becomes an open ball and we use the notation
B(xg, a).

We denote by diag(aj, az,...,a,) the diagonal matrix having entries
ai, a, ..., a, on the diagonal. In the particular case whena; = --- = g, = 1
and ag4) = - -+ = ag+¢ = —1, k+ € = n, we denote by I , the diagonal matrix.

We denote by /d, the identity matrix.

Throughout by /ine we mean a 1-dimensional linear (sub)space.

Let A be a subset of R”. We denote by RA the union of all the lines intersecting
A. We denote by PA the image of RA in P*~'R. If B C P"~'R we denote by RB
the subset in R” which is union of all lines contained in B.

We denote by (vy,...,v;) the linear subspace generated by the vectors
Uy euono, Ug.

Given two functions f and g with values in R, we write f < g if f(x) <
C - g(x), for every x, where C > 0 is a universal constant. We write f =< g if
both f <« g and f > g hold. We write f ~ gif% — 1 when x — oco. We
denote by || f||oo the supremum norm of the function f.

If G is a group, we denote by Z(G) its center {z € G ; zg = gz, Vg € G}.
If H is a subgroup of G we denote by Cs(H) the center of H in G, that is the
group {z € G ; zh = hz, Yh € H}.

If G is a topological group, we denote by G, its connected component con-
taining the identity.

Let G be a Lie group. A lattice in G is a discrete subgroup I' of G such that
G/ T has a finite G-invariant measure induced by the Haar measure on G. If G/ T’
is compact, the lattice is called uniform, otherwise it is called non-uniform.

If a group G acts on a space X, for every point x € X we denote by G, the
stabilizer of x in G, that is the subgroup {g € G ; gx = x}.

Let X be a complete Riemannian manifold of non-positive curvature. Two
geodesic rays in X are called asymptotic if they are at finite Hausdorff distance
one from the other. This defines an equivalence relation ~ on the set R of all geo-
desic rays in X. The boundary at infinity of X is the quotient R/~. It is usually
denoted by ., X. Given £ € 05X and a geodesic ray r in the equivalence class
&, one writes r(00) = £.

Let r be a geodesic ray in X. The Busemann function associated to r is the
function

fr: X > R, f,(x) = lim[dist(x, r(z)) —¢] .
—00
Since the function ¢+ — dist(x, 7(¢)) — ¢ is non-increasing and bounded, the

limit exists. The level hypersurfaces H,(r) = {x € X ; f,(x) = a} are called
horospheres, the sublevel sets Hb,(r) = {x € X ; f,(x) < a} are called closed
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horoballs and their interiors, Hbo,(r), are called open horoballs. For a = 0 we
use the notation H (r) for the horosphere, and Hb(r), Hbo(r) for the closed and
open horoball, respectively.

Suppose moreover that X is simply connected.

Given an arbitrary point x € X and an arbitrary point at infinity § € 05X,
there exists a unique geodesic ray r with r(0) = x and r(c0) = &.

The Busemann functions of two asymptotic rays in X differ by a constant
[BH]. Therefore we shall sometimes call them Busemann functions of basepoint
&, where & is the common point at infinity of the two rays. The families of horo-
balls and horospheres are the same for the two rays. We shall say that they are
horoballs and horospheres of basepoint &.

Two points £ and ¢ in 0, X are said to be opposite if there exists a complete
geodesic & such that the point at infinity of &|jo 4+ is & and the point at infinity
of le(—oo,O] is C

Definition 2.1.1. The oriented distance odist(Hb(ry), Hb(r,)) between two
horoballs Hb(r)) and Hb(ry) of opposite basepoints is inf yc gp(ry) fr, (X).

2.2. Semisimple groups and symmetric spaces

Henceforth by X we denote a symmetric space of non-compact type without
Euclidean factors, and by G the connected component of the identity in its group
of isometries. Then G is a semisimple Lie group. We identify the symmetric
space X with K\ G, where K is a maximal compact subgroup of G. Hence we
consider the action of G on X by isometries fo the right, and correspondingly
we consider the action of G on itself by isometries to the right (with respect to
the proper metric), and the action by conjugation also to the right, i.e.a : G —
Aut (G), a(go)(g) = gy ! g8o. For the theory of symmetric spaces and associated
semisimple groups we refer to [He].

We recall that every connected semisimple real Lie group is isomorphic to the
identity component of the real Lie group of real points of a semisimple algebraic
group. Therefore, one can always talk about polynomial, rational and bi-rational
maps on G. Moreover G has a faithful embedding f : G — SL(n, R) such that
f(GT = f(G)and f(K) = f(G)N O(n, R). Details can be found for instance
in [OV], [Mo] or in [Ra].

Notation: We denote dist(e, g) by |g|, where dist is the right invariant metric
on G.

An element gy in SL(n, R) is hyperbolic if there exists g € GL(n, R) such
that ggog ™' is diagonalizable with all the eigenvalues real positive.

All the Lie groups considered in the sequel are real Lie groups, unless otherwise
stated.
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Consider a field K € R. We say that a Lie group G is defined over K if G
has finitely many connected components and if its connected component of the
identity coincides with the connected component of the identity of a real algebraic
group defined over K [Wi, Definition 6.2].

A torus is a closed connected Lie subgroup of SL(n, R) which is diagonal-
izable over C, i.e. such that there exists g € GL(n, C) with the property that
g T g~ is diagonal. A torus is called K-split if it is defined over K and diagonal-
izable over KK, that is if there exists g € GL(n, K) with the property that g T g~!
is diagonal.

A torus (and more generally a reductive group) is called K-anisotropic if it is
defined over K and if it does not contain any non-trivial K-split torus. Note that
a Q-anisotropic torus T has the property that the set of its integer points 77 is a
lattice in it [Bo].

Conventions: Henceforth by forus we mean a non-trivial R-split torus. The only
exception is when we talk about K-anisotropic torus, in which case the word
keeps its general meaning. By wall/Weyl chamber we mean a closed wall/Weyl
chamber. By its relative interior we mean the open wall/Weyl chamber.

We call singular torus in G a torus Ay which, in every maximal torus A con-
taining it, can be written as (), ., ker A, where A is a non-empty set of roots on
A. Any such torus is a union of walls of Weyl chambers.

Let <Aq be a wall or a Weyl chamber in the torus Ay, and let <1Agp be the
opposite wall. We consider the parabolic group corresponding to <Ay,

P(<Ag) ={g € G; supla"ga™| < +o00, Va € <Ay},
neN

and the unipotent group corresponding to <Ay,

" = e, Va in the relative interior of < Ap}.

U<Ay) ={geG; nli)rglo aga”
We denote U (<Ay”) by U (<Ap).
We have that P(<Ag) = Cg(Ag)U(xAg) = U(<Ag)Cq(Ap), U(<Ayp) is the
unipotent radical of P(<Ay), and P(<Ay) is the normalizer of U (<«Ag) in G. The
center decomposes as Cg(Ag) = MAg = AgM, where Z(M) is compact and
M /Z(M) is semisimple. It follows that

P(<Ag) = MAgU (<Ap) = U(<Ap)AoM ,

which is called the Langlands decomposition of P(<Ay).

Remark 2.2.1. The action of M on U(<A) by conjugation preserves the Haar
measure.
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Proof. Any semisimple connected Lie group coincides with its commutator sub-
group (see for instance [OV, §1.4.1 and §4.1.3]), hence any linear representation
of a semisimple group preserves the volume. Consequently Ad (M) restricted to
the Lie algebra u of U preserves the volume, which yields the conclusion. O

The Lie algebras u and u, of U(<Ayp) and U, (<Ag) decompose into proper
subspaces for Ad(Ao), 4 = D, .a0)>1 W and 1y = P 4.~ Ua respectively.
Here A(<Ap) > 1 signifies that A > 1 when restricted to the relative interior of
<Ay.

The sets P(<Ag)U+(<Ap) and Uy (<Ag) P(<Ap) are open and Zariski dense
in G. Therefore they both give coordinate systems in G near e.

Suppose that the group G is defined over Q, that Ag is a Q-split torus and that
<Ay is a Q-wall or a Q-Weyl chamber in it. Then C5(Ag) and U(<Ay) are also
defined over Q. Moreover Cg(Ag) = M'Ag = AgM’, where M’ is defined over
Q, Z(M"),, is a Q-anisotropic torus and M’/Z (M), is semisimple. Recall that in
this case I' = Gy is a lattice in G, that U (<Ag) N I is a uniform lattice and that
M’ N T isalattice in M'.

For details on the previous results we refer to [Bo], [Ra] and [Wi].

We recall that a flat in X is a totally geodesically embedded copy of an Euclid-
ean space in X, and that a maximal flat is a flat which is maximal with respect
to the inclusion. Every maximal flat F is the orbit of a maximal torus A. Given
apoint x € F, a Weyl chamber or a wall with vertex x is a set of type x < Ay,
where <A is a Weyl chamber or respectively a wall in the torus A. A singular
flat through x is an orbit x Ag, where A is a singular torus in A. In the particular
case when G is defined over QQ, A, A are Q-split, <A is a Q-Weyl chamber or
wall, the corresponding maximal/singular flat, Weyl chamber or wall are called
Q-maximal/singular flat, Q-Weyl chamber and QQ-wall, respectively.

The group G acts transitively on the collection of maximal flats, as well as
on the collection of Weyl chambers in X. This is equivalent to saying that it acts
transitively by conjugation on the collection of maximal tori and on the collection
of Weyl chambers in G. The stabilizer in G of a Weyl chamber Wy in X is a
compact subgroup K. Therefore Ko\ G can be identified with the fiber bundle of
the Weyl chambers in X.

2.3. Geodesic rays, Busemann functions

Let A = (a,) be a one-parameter subgroup of G composed of hyperbolic ele-
ments and let AT be the positive sub-semigroup (a,),>¢. Let r be a geodesic ray
in X such that r(t) = r(0)a, for every t > 0. We consider A either the minimal
singular torus containing A or, if no such torus exists, the unique maximal torus
containing A. We have the equality Cs(A) = Cg(Ap). If Ay has dimension one
we call the one-parameter group .A, the semigroup A and the geodesic ray r
maximal singular.
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Let <A be the wall/Weyl chamber containing A" \ {e} in its relative interior.
We denote P(<Ag), U(<Ap) and U, (<Ap) also by P(r), U(r) and U, (r), respec-
tively, and we call them the parabolic, the unipotent and the opposite (expanding)
unipotent group of the ray r.

The parabolic group P(r) decomposes as P(r) = AP°(r), where P°(r) is
a codimension 1 subgroup acting transitively with compact stabilizer on every
horosphere H, (r). We call P°(r) the horospherical group of r.

The following simple lemma will be useful in the future.

Lemma 2.3.1. Let r be a geodesic ray in the symmetric space X and let & be the
unique geodesic containing it, parameterized by arc length suchthatr = |0 +o0)-
Let P° be the horospherical group of r. A function ¥ : X — R which is invariant
with respect to P° and such that W (&(t)) = —t , ¥Vt € R, coincides with f,.

Proof. For every x € X there exists a unique ¢t € R and p € P° such that
x = &(1)p.Wehave W(x) = V(&(t)p) = V(6(1)) = —1 = f:(&1)) = [ (x).
O

Consider the particular case when G is defined over Q and when AT = <Aq
is a Q-wall. By the discussion in the end of Section 2.2, the horospherical group
PY equals M'U(<Ag) = U(<A¢)M’, where M’ and U (<Ay) are defined over Q.

2.4. Boundary at infinity

If W is a Weyl chamber or a wall in X then its boundary at infinity W(oo) is a
spherical simplex in d», X, also called spherical chamber or respectively spherical
wall. These simplices cover d., X and determine a structure of spherical building
on it ([Mo, Chapters 15,16], [BGS, Appendix 5]).

Let Wy be an arbitrary Weyl chamber in X. The group G acts on d., X on the
right with fundamental domain Wy (c0). Given a point £ in the relative interior of
a spherical wall W (oc0), where W = x < A, the stabilizer of £ is the stabilizer of
the whole wall W (c0), and it is the parabolic group P(<Ap). Since any parabolic
group acts transitively on X, it follows that for every point x € X there exists a
wall W, of vertex x and such that W,(oc0) = W(00).

Given a fixed Weyl chamber Wy, d., X/ G can be identified with Wy(0c0), and
one can define a projection sl : 90X — Wy(00). The image sl(§) of every point
& in 05 X is called the slope of &. The slope of a geodesic ray r is the slope of
r(o0).

Let x¢ be an arbitrary point in X and let K be the maximal compact subgroup
fixing xo. Given a wall W with vertex x, its stabilizer Ky in K is contained in the
stabilizer K ¢ of the minimal singular flat containing W, and it fixes both W and F
pointwise. The group K acts transitively on the set of Weyl chambers of vertex xo.
Hence, given the stabilizer Ky, of a Weyl chamber W, of vertex xo, the quotient
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Kw,\K can be identified with the set of Weyl chambers of vertex x,. In particular,
by the previous remarks, K acts transitively on the set of spherical chambers of
000X, and every spherical chamber Wy(00) can be seen as the quotient 05, X /K.

2.5. Locally symmetric spaces

LetI" be alattice in G. Here we shall be mainly interested in non-uniform irreduc-
ible lattices in semisimple groups of real rank at least 2. By Margulis Arithmeticity
Theorem [Wi] such a lattice I" is an arithmetic lattice of Q-rank r > 1. The quo-
tient space V = X/I is a locally symmetric space. It contains finitely many
totally geodesic Euclidean sectors Wy, - - - , W,,, of dimension r, eventually glued
to each other along faces, such that V is at finite Hausdorff distance of the union
Wi U---UW,,.Every sector Wy, ..., W, is the projection of a Q-Weyl chamber.
The quotient V can have several topological ends if and only if r = 1. For details
see [BoS] and [Le].

Notation: We denote by proj the projection of X onto V and by proj,; the pro-
jection of G onto G/ T.

Given a geodesic ray 7 entering one of the sectors W;,i € {1,...,m}, the
depth into the end containing W; can be measured by the Busemann function f;
of r. If r is a face of dimension one of W;, i € {l,...,m}, then we call it a
maximal singular cusp ray. Let r be a lift of 7 in X.

Remarks 2.5.1. (1) For a < 0 with |a| large enough, the projection proj(H b, (r))
is Hb, (7).
(2) There exists « = a(r) > 0 such that

Invol Hb,(7)
_— =

a——00 a

Proof. (1) Since the projection proj is a contraction, f;(proj(x)) < f.(x), Vx €
X. This implies that proj(Hb,(r)) C Hb,(r).

One can identify VV with a fundamental domain of I' in X, contained in a
Siegel set as in [Bo, Theorem 15.5]. Suppose that 7 is chosen so that under this
identification 7 becomes r. Obviously for a < 0 with |a| large enough, Hb,(r)
coincides with the trace of Hb,(r) on the fundamental domain. This implies that
Hb,(r) C proj(Hb,(r)).

(2) follows by looking at the form of the Siegel set as given in [Bo, Theorem
15.5]. O

Suppose that T" is arithmetic. Then without loss of generality we may sup-
pose that G admits a Q-structure such that 7 is the projection of a Q-wall r. The
horospherical group P°(r) can be written as M'U (<Ag) = U (<Ag)M’, with both
M’ and U (<Ag) defined over Q. In what follows, we denote P°(r) and U (<Ag)
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simply by P and respectively U. According to [Bo, Corollary 7.13], P° N T is
commensurable to the semidirect product (UNT")(M'NT"). Therefore P°/(P°NI")
and P°/(U NT)(M’' NT) have a common finite covering. Now given D a funda-
mental domain of U with respect to U N I" and F a fundamental domain of M’
with respect to M’ N T, the set FD is a fundamental domain of P° with respect
to (UNT)(M' NT). Indeed:

e FDUUND)YM' NT)=FUM' NT)=FM' NIHU =M'U;

o ifu e UNT and m € M’ N T are such that for some f; € F and d; € D,
i =1,2, fidjum = frd», then fimm~'(diju)m = frd>, whence fim = f>
and m~'(dju)m = d,. The former equality implies that m = e, the latter
implies that u = e.

2.6. Equidistribution results

Let G be a connected semisimple Lie group without compact factors and with triv-
ial center. Let A = (a,) be a one-parameter subgroup of G composed of hyperbolic
elements, and AT = (a,),>¢. Let A be either the minimal singular torus contain-
ing A or the unique maximal torus containing A, and <A its unique wall/Weyl
chamber containing A™ \ {e} in its relative interior. Let € = Cg(Ag) = Cg(A),
P = P(<Ag), U = U(«Ap) and U, = Uy(<Ayp), endowed with their Haar
measures.

Notation: For every subset S of G, we denote by S, the subseta(a_;)S. We denote
by S~! the image of S under the inversion in G.

For p € P fixed, we consider the (partially defined) map W, from U, to U,
defined by

W, (uy) = u, suchthat Pu, = Pu p .

Let D, be its maximal domain of definition. Associated to this map, we have
themapsn, : D, - P,v, : D, — Uandk, : D, — Cdefined by the relations

V,(up)p =m,(up)uy and 7,(uy) = vy(ug)i,(uy) . )

Notation: Foroa > Owedefine @, ={peP; p=uc,uclU, |ul<a,cec
<, ] < al.

Lemma 2.6.1. (i) For any p € P, the domain D, is an open Zariski dense sub-
set of U and the map YV, is bi-rational. It satisfies the relation a(a;) oW, =
Yo o a(a,), where a : G — Aut(G) is the action to the right of G on
itself by conjugation.

(ii) Let K be a compact subset in P. The set () pex Dp contains a neighborhood

of e.
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Fig. 1. The map WV,

(iii) Let K be a compact subset in P and 2 an open subset in U .. The intersection
ﬂpeK V,(2N D,) is open.

(iv) Themap A, : D, — Uy, A,(uy) = u;llllp(qu) tends to the constant map
equal to the identity element e uniformly on compact subsets as p € Q, and
a — 0.

(v) The Jacobian of the map WV ,, which we denote by ‘ % , tends to the constant

map equal to 1 uniformly on compact subsets as p € Q, and o — 0.
(vi) The map S,(uy) = SUpe0, (|Up(ll+)| + |Kp(ll+)|) tends to zero uniformly
on compact subsets as p € Q, and o — O.

Proof. (i) Let D, = Uy N PU, p, which is an open Zariski dense subset of U,.
For every u; € D, u, p~! =pu, € PU,. It follows that V,(u;) = uy. The
map from PU, to U, defined by pu, — u, is arational map. Hence the map ¥,
is rational. Moreover, since the converse map is V-1, the map W, is bi-rational.
The behavior of W, with respect to the action of the group (a;) can be deduced
by applying a(a,) in the first equality in (9).

(ii) Suppose that [ pex Dp does not contain a neighborhood of e. Then there
exists a sequence u — e and a sequence p, € K such thatuf p-! ¢ PU, for
any n € N. A subsequence of uf p—! converges to some py € P C PU,. This

n
contradicts the fact that PU is open.
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(iii)) We prove that UpeK C\Ilp(Q N D,) is closed. Let u be a sequence in
this set, converging to u,. For every n € N there exists p, € K such that
u’ ¢ W, (2N D,,). Up to taking a subsequence, p, converges to p € K. Sup-
pose that uy € W,(2 N D,), which is equivalent to the fact that uyp € PQ.
Since P is an open set in G and u, p, — u, p, for some n large enough we
have w' p, € PQ, thatisu € ¥, (Q N D,, ). This contradicts the hypothesis.

From its definition it is straightforward that when p € Q, and @ — 0 the map
VU, — Id uniformly in the C! topology on compact subsets. This implies (iv),
(v) and (vi). O

Let Q2 be a relatively compact open neighborhood of e in U and let « be a
small positive number. We suppose that & < 1 and that €2 is small enough to be
contained in mpeglugjl D,.

Definitions 2.6.2. The («, 2)-box of basepoint g is the set

Boxao(g)= ) |J wipeo.

pEQqy u+elIJ,,(§Z)

We call

a,Boxa,0(g0) = U U W pgr

Pe(Qu)r u €Wy ()

where g, = a,8o, the t-pushed («a, 2)-box.

We denote by §(o, Q) and S(«, 2) the maximal values, for p € Q,, of

dv,
Supll+ eQ dqu

—1 ‘ and of sup, .o Sq(u4) respectively.

Definitions 2.6.3. We call e-base of Q2 an open relatively compact neighborhood
Q. of e in Uy such that v(2 A QK) < ev(2), for every nonempty K C 2,
where v is the Haar measure on Uy and A A B = (A\ B) U (B \ A).

We call (e, a)-base of Q2 any subset of U of the form

Qo = m W, (Qg N Dp—l) ,
P€Qa

where Q. is an g-base of 2. According to Lemma 2.6.1, (iii), Q2o is an open
relatively compact neighborhood of e.
We call Box, g, ,(80) an e-base of the box Box, o(go).



Diophantine approximation on rational quadrics 425

Qg £

@)
oM
o)
&

/ ~ Box ™
o,Q

£,0.

p P

Fig. 2. A box and an e-base of it

Notation: We denote ¢, fdu = ﬁ [y fdu.

Lemma 2.6.4. Let [ be a bounded uniformly continuous function on G, of mod-
ulus of continuity w. Let Q2 be a sufficiently small relatively compact open neigh-
borhood of e in Uy, let ¢ be a small positive number and let Q2. be an e-base of
Q. For o > 0 sufficiently small we have that

fiy)dv(uy) — @ f(uyy)dv(uy)

Q; o
=0 (o (S(a, Q) + || flloo [€ + & (o, 2€2:)]) , (10)

for every go € G, every t € [0,400) and every y,y' in the t-pushed e-base
a,Box, o, ,(80)

Proof. We suppose that @ < 1 and that @ C ) peQUQ;! D, . It suffices to prove
(10) for y" = g;. Since y € a,Boxq,q, ,(go), we may write y = a,U, pgo, where

p e Qyanduy € V,(Qq) C Q. Then

A fQupy)dv(uy) = A f(uiai pgo) dv(uy)

= jli f@m i pgo) dv(ng) = ?gr f@mipgo)dv(ng).

By the definition of ., we have that v (2 A Qu,) < ev(). It follows that

f@mypgo)dv(ng) = ﬁf(azmpgo)dV(m) + Ol flloo) -
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We want to change the integration domain from €2 to W, (€2). We consider o
small enough so that A ,(2) C ., forany p € Q, U 9, .
We have

W, () ={¥y(uy); uy € Qf={uAp(uy); uy € Qf C QQ, .

Therefore v(W,(2) \ 2) < eV ().

We write 2\ W, (€2) as the image under W, of W,,-1 (€2)\ 2. An argument similar
to the previous implies that W,-1(£2) C €2€2, hence v(W,-1(2) \ 2) < ev(2).
Since the Jacobian of W, differs from 1 by O (8 (a, €2€2;)) on W -1 (£2), we may
conclude that v(2 \ ¥, (€2)) < ev(Q) [1 + 6 (a, Q2£2;)]. Consequently

1
% f@mypgo)dv(ng) = —— f@mypgo)dv(ng)
Q v(€2) Jy, @

+0 (el flloo [1 48 (a, Q2€2)]) .
With the change n, = W, (1)) we may write

1
v(£2) W, (Q)

f@mypgo) dv(ng) = ?gz f(av, (') pgo) dv(n,)
+0 (8(t, ) ([ flloo) -

Using the notation in (9) we may write

?if (a, ¥, (") pgo) dv(n,) = ?i I (@, D, )n'g0) dv(n)y) .
By the right invariance of the metric on G we have that
dist (a,v, ("D, ()M, 80 M, g0)
= dist (a(a—t) (Up(nii-)) Kp(n:,_) ) e) < S(, Q).

Therefore the last integral is equal to
yg f@mn' go)dv(n') + O(w(S(a, Q)))
Q

=¢ flurg)dv(uy)+ O(w(S(a, 2))) .
Q

O

Proposition 2.6.5. Let I be an irreducible lattice in G and let f : G/T — R
be a function which is uniformly continuous and bounded. Let (a;);cr be a one-
parameter group composed of hyperbolic elements and let U, be the expanding
unipotent subgroup corresponding to (a;);>o. Let Q2 be an open relatively compact
set in Uy, with the property that there exists uy € Q™' such that for any ty € R,
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the family of sets a(a_;) (Qug) , t € [ty, +00), is a summing net for Uy, in the
sense of [Pa, §4.15]. For any go € G/ T,

% fauigo)dv(uy) — fduast — 400,
Q G/T

where | is the measure on G/ 1 induced by the Haar measure on G.

Proof. Step 1. We suppose that Q is aneighborhood of e contained in () PeO1U quDp
and that uy = e. We denote by  the modulus of continuity of f. We fix arbitrary
8o € G/ T and & small positive number. We consider €2, an e-base of 2 and o > 0
sufficiently small so that the conclusion of Lemma 2.6.4 holds, and also so that
w(S(a, Q) <eandé (o, RY,) < ﬁ

The group U, acts ergodically on G/ I" [Zi, §2.2]. This and the fact that the
family of sets 2, = a(a_,) (£2) is a summing net implies that fﬂ, fuyg)dv(uy),
seen as a function of g € G/ I, converges to 9§G/1‘ fduin L2(G/T) ast — o0
[Pa, §5]. This implies that for the given ¢ and for any small A > O there exists
T = T(e, A, ) such that for every t > T the set of points g € G/ I' satisfying

flapg)dv(uy) — fdp
o) G/T

>e 11)

has measure strictly smaller than L. We take A to be the measure of the projection
in G/ T of the e-base Box,. g, ,(80). Hence, for every t > T, at least one point y
in the projection of the ¢-pushed e-base satisfies the inequality opposite to (11).
This and Lemma 2.6.4 imply that for every ¢t > T,

fuig)dv(uy) — fdp| <Ce,

N G/T

where C = C(|| fllo) and g; = a,&o.

Step2. 'We suppose thatuy = e and that 2 is an arbitrary open relatively com-
pact neighborhood of e in U, satisfying the hypothesis and not necessarily con-
tained in ﬂpteUer D, . There exists T € (0, +00) so that 2_, = a(a;) () C
N peQiUQ;! D,,. We apply the result obtained in Step 1 to £2_, and with a change
of variables we obtain the same result for 2.

Step 3. 'We consider the general case. By Step 2 we have the conclusion of
the Proposition for Qug. This implies the conclusion for 2. O

Proposition 2.6.6. Let " be a lattice in G and f : G/T" — R a bounded uni-
formly continuous function. Let (a,);cr be a one-parameter group composed of
hyperbolic elements and let U ;. be the expanding unipotent subgroup correspond-
ing to (a;);>0 and € be the center of the group in G. Let Q2 be an open relatively
compact set in Uy, with the same property as in Proposition 2.6.5 and let ®
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be a finite volume submanifold in €. We denote by ¥ the volume on ®. For any
8 € G/T,

f(a;eurgp) dv(uyp)dd(c) — fduast — 400,
oQ G/T

where [ is the measure on G/ U induced by the Haar measure on G.

Proof. We fix an arbitrary small positive number . There exists a compact subset

K = K(¢g) in ® such that 9 (P \ K) < m 9 (). It follows that

f(aeuigo)dv(uy)di(e) — @ f(acuygo)dv(uy)di(e)| <e.
[19) KQ

Let w be the modulus of continuity of f. Leté > 0 be such that w(§) < €. By
compactness of K, there existKy, ..., K, in K so that the set of balls B(k;, §), i €
{1,...,m}, is a cover of K. Thus, for every ¢ € K there exists i € {1,...,m}
such that dist(c, k;) < 8, which by the right invariance of the distance and the fact
that the projection is a contraction implies that dist(ca;u go , k;a,u,go) < 8, for
any t € R,u; € Uy and gy € G. It follows that

| f(cauygo) — f(kijaupgo)l < e,

whence

% S (cau,go)dv(uy) — f f(kauggo)dv(uy)| < ¢,
Q Q

foranyt € Rand gy € G.
Now

% f(kiauy go)dv(uy) = % f(amuik;go)dv(uy).
Q K

k!

The set k; QK; I also satisfies the hypothesis of Proposition 2.6.5. It follows that

there exists 7 > O such that forany r > T and any i € {1, ..., m},
$  raukgave) - § s <e.
K; QK G/T
We conclude that for every t > T
f(cauy go)dv(uy)dd () — fdup| <2e
KQ G/T
and that
f(cauy go)dv(uy)dd(c) — fdup| <3e.
oQ G/T
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2.7. Counting results

Throughout the whole of this section we work in the following setting. We consider
" an irreducible lattice in G and ¥V = X/ T the corresponding locally symmet-
ric space. Let 7 be a maximal singular cusp ray in V), let r be a lift of it and let
& = r(00). We denote by Hb, the horoball Hb,(r) and by H, its boundary hor-
osphere. When ¢ = 0 we drop the index. Consider P = P(r), P° = P°(r) and
U = U (r) the parabolic, horospherical and respectively the unipotent group of r.
Let Ag = (a;);cr be the one-dimensional singular torus such that r(¢) = r(0)a,
for every t > (. Assume that u — a(a,)(u) = a_,ua, is a dilating homothety on
U of factor e, with A > 0. We denote the topological dimension of U by A.

Notation: For every y € X we denote by K (y) the maximal compact subgroup
of G stabilizing y. According to Section 2.4, we can identify £ G with £ K (y) and
with K (y)¢\ K (y). Every such identification endows £ G with a natural measure
coming from the measure on K (y):\K (y), which we denote by 0,.

Every open set 2 in £ G can be identified with an open setin K (y):\K (y). We
denote by Q) its pre-image in K (y), also open. The set Qg y) is the maximal
setin K (y) such that Q = £ Qg ).

Proposition 2.7.1. Let O be an open set in EG, let x be a point in X and let
T > 0. For every k € N, let N, (k, O) be the number of horoballs Hby, y € T,
with basepoint in O and such that dist(x, Hby) is in [kT, (k + 1)T). For any
T > Ty(G) and any x € X we have that

C M DTAg (O)<N, (k, O) < Cre**+DT20 () for every k>ky(x, O, Hb),
where C; = C;(G, ") fori =1, 2.

Proof. We fix an arbitrary point x in X and an open set O in £G. We put K
for K(x). We also fix a Weyl chamber W, having r as a face and we denote its
stabilizer in G by K. Since P acts transitively on X it follows that there exists
p € P suchthatr(0)p = x. Then Wy p is a Weyl chamber of vertex x, containing
& in its boundary at infinity, and Wy pOy is the set of Weyl chambers of vertex x
containing one of the points in O in their boundaries at infinity.

The set of Weyl chambers with vertices on H, containing & in their boundaries
at infinity is Woa_; P°. Consider the horoball Hby . It has its basepoint £y in O
and it is at distance at least kT and smaller than (k 4+ 1)7 from x if and only if
for some s € [kT, (k + 1)T), Woa_; P’y N WopOk # ¢. This is equivalent to
Koa_; Py N pOx # @. Since K, commutes with Ay and it is contained in P,
we have that Kpa_ P° = a_, P°. Thus, N, (k, O) is the cardinal of the set

{y e N PO\T; 3s € [kT, (k + DT) such that pOg Na_, P’y # 9}
={y e /("' N P%; 3s € [kT, (k + 1)T) such that pOgy Na_,P° # @}
={y €T; 3s € [kT, (k + DT) such that pOgy Na_,P°/(' N P°) # @},
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where in the last set either we may suppose that we are in G/(I' N P), or we
may suppose that we are in G, in which case P°/(I" N P?) signifies a fundamental
domain of P° with respect to I" N P°.

Case 1. Suppose that G has real rank at least 2. Then I is an arithmetic lattice and
r is a maximal singular Q-wall. According to Section 2.3, the horospherical group
P%isequalto UM’ = M'U, where U/U NT is compact and M’/ M’ NT has finite
volume. By Section 2.5, P°/(I' N P%) and P°/(U NT)(M’' NT) have a common
finite covering. Consequently, we can replace in the counting problem above the
former by the latter. Also according to Section 2.5, if F is a fundamental domain
of M’ with respect to M’ NT", and D is a fundamental domain of U with respect to
U NT then FD is a fundamental domain of P° with respect to (U NT)(M'NT).
The counting problem above becomes the counting of the number of times when
proj; (a_sFD) intersects proj; (pOk) in G/ ', fors € [kT, (k+ 1)T).

Notation: For a small positive number ¢ we denote by B, the open ball B(x, €)
in X.

We also consider O¢~ ¢ O C O°" with O°~ and O** two open subsets of
&G very near O.

The map

I: Ko\G > K (0)\G x P\G ~ X x £€G

defined by the two projections is C*. Therefore for two open sets I3 in X and
in£G, TI~1(B x Q) is an open set in Ko\ G. We denote its pre-image in G by Q5.
The set 3 is the maximal set in G with the property that W2z is the set of Weyl
chambers with vertices in B and containing a point from 2 in their boundary at
infinity. A picture of a set W23 can be seen in Figure 3, in the particular case
when X is the hyperbolic disk D?.

Upper estimate. We want to define a continuous function f} on G taking values
in [0, 1] and such that f is 1 on Op_ and 0 outside O‘EB;. There exists a continuous
function fll X — [0,1], fll = 1 on B, and fll = 0 outside By,. If O¢T is well
chosen then there exists a continuous function f12 1 EG — [0,1], f12 = 1on
O and f? = 0 outside O°". The function f : X x €G — [0, 1] defined by
f(x,€g) = fl(x)fE(€g)is 1 on B: x O and 0 outside By, x O°T, and by means
of it and of the projection IT one can obtain the function f;.

If ¢ is small enough, f; can also be seen as a function in G/ I'. Note that f; is
a bounded function with compact support, hence uniformly continuous. Proposi-
tion 2.6.6 applied to fj, the semigroup (a_;)s>0, P C U and F C M’ (or their
relative interiors), and go = e gives that

?g fi(a_scue)dv(u)di(c) — fidu when s — oo,
FD G/T
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Q

Fig. 3. Example of a set Wy

where v and ¢ are the measures induced from the Haar measures on U and M’,
respectively. In particular, for s > s(f1), we have

?g Sfi(a_scue)dv(w)di(c) <2 fidp < 2v0l(By) vk (Ok) + x1,
FD G/T

where vk is the Haar measure on K and x — 0 when ¢ — 0 and O°" converges
to O.
This is equivalent to the fact that for s > s( f}),

Si(eua_)dv()dd(¢) < 2vol(Bae)[vk (Ok) + x1,
where D, = a_;Da,. We can rewrite the previous inequality as
ffD fi(ewa_)dv(d (c) < 29 (F)e**v(D)vol (Bye) [vk (Ok) + X1 -
By integration we obtain

t+t
/ fi(cua_y)dv(n)dd(c) ds < CeTO* | (12)
t F Dy

where C; = 3 9(F)v(D)vol(Ba) [vk (Ok) + x1.
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‘We have that

t+t
/ fi(cua_y)dv(w)di(c) ds
t FD;

t+t
> / f 1o, (cua_;)dv(w)di(c) ds. (13)
t FDyg

The second term is the same as
1+t
ft /Dg IU;/GF 04,y (Cua_g)dv(w)dd(c) ds
1+t
= f / 1), 05y @_scw)dv(w)dd ()™ ds

t+1
f / 10,y (a_sew)dv(w)dd ()™ ds .
t

yel

Since FD and a fundamental domain P of P° with respect to P° NI have a com-
mon finite covering, the integral above is equivalent (in the sense of the relation <
defined in Section 2.1) to the integral

> f / 1o, , (a_sew)dv(w)d®d (c)e*** ds

yel

= Z Z / f 10,y (@_sew)dv(w)dd (e)e*™ ds

yel'/PONT y1ePONT

= Z Z / / 1038y(a—‘stll)dv(u)dz‘}(c)eMS ds
Py

yel'/PONT y,ePONT

t+t
- Z f Z f IOBEV(a—scu)dl)(u)dﬂ(c)e)qu ds
yer/Ponr ' yeponr VPV
= Z / / Lo, ,(a_sew)dv(u)dd (c)e*™ ds. 14
yer/pPonr

The projection G — K\ G sends Koa_,P° = a_, P? onto the set of Weyl
chambers containing the point & in their boundaries at infinity and with vertices
on the horosphere H;. The image of the set KoOp,y = Op, y is the set of Weyl
chambers containing each one point from Oy in their boundaries at infinity, and
with vertices in B, y.

This shows that 10, , takes the value 1 on a_, P for some s € [r,1 + 7] if
and only if &£ € Oy and B,y intersects the closed strip Hb;,. \ Hbo;.

Let ¥(P° N T') be such that B,y is entirely contained in the closed strip
Hb; . \ Hbo; and such that & € Oy. The first condition is equivalent to
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d = dist(xy, H) € [t + ¢,t + © — ¢€]. The second condition is equivalent to
the fact that pOgy Na_,P° # @. We can write

t+7
/ / 10,y (@_seu)dv(w)dd (¢)e*™ ds
t po

d+e
> / / 10,,, (a_scu)dv(w)dd (¢)e*™ ds
d po

—&

The latter term can be rewritten as
+&
/ /0 1o,y (cua_45)dv()dd(c) ds = vol(B:)vg, (Ke) .
—& P

Here v, is the measure induced on K by the Haar measure on P°.

It follows that the sum in (14) is larger than N vol(B¢)vk, (K:), where N is
the number of y € I'/(I' N P%) such that d = dist(xy, H) € [t +&,t + 1T — €]
and pOgy Na_yP° £ @. If weputt +e =kT andt 4+ 7 — & = (k + 1)T then
N is nothing else than N, (k, O). Inequalities (12) and (13) imply that

N, (k, ©) vol(B,) < cavol (Bye) [k (Ok) + x]e*2e et 2k

where ¢; = ¢ (G, I').

For small ¢ the ratio 22.(B2)

vol(Bg)
and O°* is close enough to O, we have that x < vg(Ok) and that *2¢ < 2.
Thus we obtain

N, (k, 0) < Cuvg (Og)e™** VT for k > ko(O, x, Hb) .

is bounded from above. Also, if ¢ is small enough

Lower estimate. Consider f, : G — [0, 1] a continuous function defined to be
1 on O and 0 outside Op,, . Such a function can be constructed for O°~ well
chosen in a way similar to fj. For small ¢, f, can also be seen as a function in
G/ T'. We apply Proposition 2.6.6 as for the upper estimate, but with the function
J>. We get

frla_eud)dvdd(e) > ¢ frdu,
FD G/T
when s — 00. As above, we obtain that for s > s'(f2), we have
_ 1 1 ,
fa(cua_g)dv(w)di(c) > = fadu > —vol(B:)[vk (Ok) — x'1,
FDy 2 Jo/r 2

where ' — 0 when ¢ — 0 and O°~ converges to O.
Computations similar to the previous yield

1+t
/ / fr(cud_g)dv(u)dd(c) ds > Che™* |
t FDy

where C; = 1€22=1 9 (F)u(D)vol(B,) [vk (Ok) — x'].
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TAA

For 7 large enough e™* — 1 > %e and we have

t+t
f / fr(cua_y)dv(u)dd(c) ds > Cre" T | (15)
t FDy

where C, = ﬁ H(F)v(D)vol(B,) [UK(OK) — X/]-

Now we write

t+t
/ / fr(cua_g)dv(u)dv(c) ds
t FDy

t+t
< / / 10328 (cua_y)dv(n)dd(c) ds . (16)
t FDy

The previous argument implies that the second term in (16) is equivalent to
the sum

t+t
> / / 1o, y(a_,cu)dv(w)dd(c)e*™ ds . (17)
t PO ‘

yel/Ponr

The considerations above imply that the sumin (17) is smaller than N’ vol (B,)
vk, (K¢), where N’ is the number of y € T'/T" N P? such that B,,y intersects
Hb, . \ Hbo, and such that ¢ € Qy. These conditions are equivalent to the fact
that the distance d = dist(xy, H)isin [t —2¢, t+1+2¢e]andto pOxyNa_, P° #
@. Consequently, if we choose t —2¢ = kT and t + 7 4+ 2¢ = (k+ 1)T, we obtain
N’ = N, (k, O). Inequalities (15) and (16) imply that

N, (k, O) vol(Bae) = ejvol(B,) [vk (Ok) — x']e 2 *DT
whence we obtain that for ¢ small enough
Ny (k, ©) > Ci vk (Og)e2* DT for every k > ki (O, x, Hb).
We now note that vg (Og) =< 6, (0).

Case 2. Suppose that G has real rank 1. Then the horospherical group P is equal
to the unipotent group U, and we have that U/U N T is compact. One can repeat
the same argument as previously, simplified by the fact that there is no central
factor M’, hence F no longer appears, use Proposition 2.6.5 instead of 2.6.6, and
get the same estimate. O

Corollary 2.7.2. Let p be a geodesic ray such that p(c0) is opposite to & and let
U = U(p). The subset EU is open and dense in & G, it can be identified with U and
thus equipped with a measure induced from the measure on U, which we denote by
vy,. Let Q be a relatively compact open subset of €U and let T > 0. For every open
subset O of Q, we denote by N, (k, O) the number of horoballs Hby ,y € T,
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with basepoints &y € O and such that the oriented distance odist (Hb(p), Hby)
isin[kT, (k+ 1DT). Forany T > To(G, p, ) we have that

K" VT2, (0) < N, (k, O)
< KoM DT2, (), for every k > ko(O, p, Hb),

where K; = K; (G, T, p, Q2) fori =1, 2.

Proof. Let & be a geodesic line such that &(+00) = &, &(—0o0) = p(c0) and
®(0) € H(p). Let Qy be the relatively compact open subset of U such that
EQpy = Q. The set (0)Qy is a relatlvely compact subset of H(p) of dlam—
eter D. We choose a point x in it. Let H Hb be a horoball with basepoint 5 in
2 and such that odist (H b(p), H b) is positive and large enough. We have that
dist (x Hb) > odist (Hb(,o) Hb)

Letu € Qp be such that Su = S and let & = 7. Let ¢ > 0 be such that (’5(t)
is the entrance point of & into Hb. Then odist (Hb(p), H b) =1.

We have that dist (x, Hb) < dist (x, (‘5(t)) < t + dist (x, (‘5(0)) =t +
dist (x, &(0)u) < ¢t + D. Overall we obtain

odist (Hb(p), Hb) < dist (x, Hb) < odist (Hb(p), Hb) + D .

This inequality, together with Proposition 2.7.1 and the fact that on €2 the two
measures v, and 6, are equivalent implies the desired conclusion. O

3. Symmetric spaces of positive definite quadratic forms

3.1. The ambient space

Throughout the paper we shall identify a quadratic form Q on R* with its matrix
My in the canonical basis of R*. The matrix of Q in some other basis B of R’
shall be denoted by M S . We shall denote by b the bilinear form associated to Q.

Let Py = SO(s)\SL(s, R). This space can be identified with the space of
positive definite quadratic forms of determinant one on R* by associating to each
right coset SO (s) Y the quadratic form Qy whose matrix in the canonical basis
isMy=YT.Y.

We recall that P is equipped with a canonical metric defined as follows. Given
01, O, € Py, there exists an orthonormal basis with respect to Q; in which Q;
becomes diagonal with coefficients A1, ..., Ay € R’ . We define

d(Q1, 02) = (18)
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Let Q, be the space of quadratic forms on R* and P Q; the space of positive
definite quadratic forms. The group G L(s, R) acts on the right on Q; by

®:GL(Gs,R)x Q; > Q,, ®(B,M)=B"MB .

This action can be written in terms of quadratic forms as (B, Q) = Q[B] =

Qo B.

The space PQ; is a cone over P;. It is composed of strata of the form
Ps(6) ={Q : R* - R ; Q positive definite quadratic form, det My = 6},

where § € R’. We endow each of these strata with a metric defined as in (18).
For each § € R}, any B € GL(s, R) with det B = b induces an isometry from
P, (8) to Py (b*8). In particular, each P;(8) is an orbit of SL(s, R).

The subgroup A = {diag(e"!, 2, ..., e") ; 1+ +---+1; = 0} is amaximal
@-split torus as well as a maximal R-split torus. A Q-Weyl chamber (as well as an
R-Weyl chamber) is <A = {diag(e", e?,...,e¢"); ti+tHr+ -+t =0, t; >
==t}

Let Q¢ be the quadratic form of matrix /d;. The maximal flat Fy = Q¢[A]isthe
set of positive definite quadratic forms {diag (e, ™, ..., e") ; t1y+tr+---+1; =
0}. The Weyl chamber Wy = Qy[<A]is the subset of quadratic forms whose matri-
ces moreover satisfy t; >, > -+ > t,.

The dimension 1 walls (singular rays) of W, parameterized with respect to
the arc length, are the sets of quadratic forms

ri = {diag (e™', ... eM M ey t e Ry}, (19)

s—i times i times

where A; = /S(Si_i) andui:,/ss—_ii,i e{l,2,...s —1}.

The parabolic group of r; is the group

P(r;) = {(A]{; 182) € SL(s,R) ;

My € GL(s —i,R), M, € GL(i,R), N € Mx—(R)} .

The horospherical subgroup is

0.\ €M1 0 X
P (rl) - {( N EMz) 9’
MyeSL(s —i,R), My € SL(i,R), e€{£l}, N € Mix;-»(R)}.

The opposite unipotent group is

Uy(r)) = {(Id(;i I]Z) ; N e M(s—i)xi(R)} . (20)
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The boundary at infinity d,,P; can be identified with the spherical building of
flags in R®. Via this identification, r1(0c0) = (e,) and more generally r; (c0) is the
subspace (es_;+1, ..., es),fori € {1,2,...5—1}. The spherical chamber Wy (c0)
is identified with the flag (e;) C --- C (€5—jt1, ..., €5) C - C (€2, ..., €s).

According to Section 2.4, we can define a projection sl : 0, Py — Wy(00)
and thus define the slope of a point in d,,P; and of a ray in Py. In particular a
maximal singular ray r has slope r;(co) if and only if r(c0) is a linear subspace
of dimension i.

Givenaflag F : Vy C --- C V; inR® and a matrix M € GL(s, R) we denote
by MF the flag M(V}) C --- C M(V}).

Remark 3.1.1. The isometric action to the right ® of SL(s, R) on Py induces the
action to the right ® on d.,P; identified with the spherical building of flags in R?,
defined by ® (B, F) = B~'F, where F is an arbitrary flag.

3.2. The Busemann functions in the ambient space

By means of Lemma 2.3.1 we can deduce the Busemann function f,,.

Lemma 3.2.1. Let Q be a positive definite quadratic form of determinant 1 on
RS, let Q; be its restriction to (es—iy1, - - ., €s) and let det Q; be the determinant
of Q; in the basis {e5_j+1, ..., es}. Then

£(Q) = |——Indet 0, .
(s —1i)i

Proof. According to Lemma 2.3.1, it is enough to prove that the function ® :
P, — R, ®(Q) = /——1Indet Q;, is invariant with respect to P°(r;) and

G—Di
coincides with the Busemann function on the geodesic line &; containing r;. The
second property is obvious.

It suffices to show that the function W(Q) = det Q; is P°(r;)-invariant. The
symmetric matrix My of Q can be written as

E F
Mo = (FT H) ’
EeM,_(R), E=E", HeMi(R), H=H", F € Ms_j.i[R) .
We have W(Q) = det H. Let B € P(r;),
. €M1 0
B_( N €M2> ’
M, e SL(s —i,R), My € SL(i,R), € € {+1}, N € My, (;_y(R) .

The quadratic form Qo B restricted to {(e;_;+1, - . . , €5) has the matrix M2T HM,
in the basis {e;_i 11, - . . , es}. It follows that W (Q o B) = det MT HM, = det H =
v(Q). O
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In particular we have

fr(@ = [—— 1 Q(ey) and f,_ (Q) = /]—— InQ%(er),
s—1 s —1

where Q* is the “dual quadratic form”, that is the quadratic form whose matrix
in the canonical basis is My, if M is the matrix of Q.

Lemma 3.2.2. Let d be a line in RS and let v be a non-zero vector on d.

(i) The function f, : Py — R,

f(Q) = [—— I QW),
s —1

is a Busemann function of basepoint d.
(ii) Every Busemann function of basepoint d is of the form f,, where w € d,
w # 0.

Proof. (i) We can write v = Be; for some B € SL(s,R). Then f,(Q) =
/=5 In Q(Bes) = f,,(p(B)(Q)) = fy)-1-,(Q). According to Remark 3.1.1,

¢(B~Hri(o0) = Bri(00) = B{e;) = (v).
(i1) Let g be a Busemann function of basepoint d. Then g — f,, is a constant

function c. This implies that g = f, + ¢ = f,, where w = eV ‘T v, O
A similar argument gives the following.

Lemma 3.2.3. Let H be a linear hyperplane in R® and let v be a non-zero vector
orthogonal to it.

(i) The function f; : Py — R,

s
s—1

Q)= In 0*(v),
is a Busemann function of basepoint 'H.

(ii) Every Busemann function of basepoint H is of the form f;, where w # 0 is
orthogonal to 'H.

We have that f,, = f, and f,,_, = f;.
Notation: Given a non-zero vector v € R" we denote by Hb{ and H the horo-
ball and horosphere defined respectively by f, < a and f, = a. We denote by
Hbj. and HJ. the horoball and horosphere defined respectively by f* < a and
fi=a.
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3.3. Totally geodesic symmetric subspaces of P

For details on the discussion contained in this paragraph, see [Bo, §/.5]. Let
L : R® — R be a non-degenerate quadratic form of signature (a, b), a + b = s.
Following [Bo, Chapter I, §5], we denote by P, (L) the set of positive definite
quadratic forms Q such that |L(x)| < Q(x), Vx € R?, and such that Q is mini-
mal in the partially ordered set of positive definite quadratic forms, verifying the
previous inequality.

Proposition 3.3.1 ([Bo], Chapter I, Proposition 5.2). The following are equiva-
lent:

(i) Q € Ps(L);
(ii) There exists a basis B of R* with respect to which Mg = Id; and Mf =1,
(with the notation defined in Section 2.1).

Corollary 3.3.2. If det M = § then P;(L) C P,(|8]).

Proof. Let Q € Py(L). By Proposition 3.3.1, (ii), there exists P € GL(s, R)
such that M, = P"1,,P and My = PT P. O

We consider P, (L) with the metric induced from P, (|§]).

Remarks 3.3.3. (1) For every B € GL(s, R) we have Py(L[B]) = P;(L)[B].
(2) If L; and L, are two non-degenerate quadratic forms of the same signature
then P (L) and P, (L,) are isometric.

Proof. Statement (1) is obvious. Statement (2) is a consequence of (1) and of the
discussion in Section 3.1. O

Remark 3.3.4. If L is anon-degenerate quadratic form of determinant § then P, (L)
is a totally geodesic subspace of P;(|§]).

Proof. By the previous remarks it suffices to prove the statement for P (1, ) C
Ps. The geodesic symmetry of Py withrespectto Idyis Mg — M él . The fact that
1d; € Ps(1,) and that P (1, ;) is invariant with respect to the previous geodesic
symmetry, together with the homogeneity of Ps(1, ), imply that it is a totally
geodesic subspace of P. O

Notation: For every quadratic form L : R* — R we denote by Con/, the set of
vectors x in R* satisfying the equation L(x) = 0.

Proposition 3.3.5 ([Mo], §15, §16, [Wil, §4.G). The boundary at infinity, 05 Ps (L),
of Ps(L) can be identified with the spherical building of flags of R® composed of
subspaces totally isotropic with respect to L. In particular any line in Cony is a
maximal singular point in d5,P;(L).
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Remark 3.3.6. The action to the right of SO; (L) on d,,P, (L) seen as a set of flags,
which corresponds to the action to the right on Py(L) as defined in this paper, is
the same as the one given in Remark 3.1.1.

We study the geometry of P, (L) in more detail. By Remarks 3.3.3, it suffices
to study Ps(Lg), where
L() = 2X1)Cs + 2)62)(57] +---+ ZngX,H]
+e(xy + - +xi,), £ =min(a,b), € € {1} .
Let SO, (L) be the connected component of the identity of the stabilizer of
L. A maximal torus in it is [Bo, §11.16]

T ={diag(e™,...,e ", 1,...,1,€", ..., e"); (t1,...,1;) € R"},
S——

s—2¢

and a Weyl chamber is

W = {diag(e™,...,e ", 1,...,1,e"...e"); 1 >t > - >1;}.
——

s—2¢

Consider the one-parameter group A = (a,);cr , with
a, = diag (e—f/m, .1, e’/m) , 1)

and its sub-semigroup A1 = (a,),>¢. Let r be the geodesic ray defined by r (1) =
a’a,, Vt > 0. The parabolic group P = P(r) writes as

AN\T _

4 —a (MLE)X”b) —2L;(b)
P=11o0 X b
0 0 a!

€ SO/(Lo); aeR*, X e SO(Ly), be R},

where L6 R2 5 R s L6(X2, vy Xg—1) = 2X0X— 1 + -0 2xpXg_py1 +
e(xérl + -+ nge)- We note that P = {g € SO;(Ly) ; g '(Re;) = Re;}. For
this reason we also denote it by P,,.

The horospherical subgroup of r is

_1_ T € ;T
0 €€ (MLGX b) -3 _o(b)
P, = 0 ¥ 7
0 0 ¢
€ SO/(Lo); ee{£l}, X eSOy, be Rs72} ,
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and the unipotent subgroup of r is

N\T _
1 — (MLbb) RO i
J— - . S—
Uel — 0 Ids—Z b s belR
0 0 |

We call a geodesic ray p in the orbit »SO;(Lg) maximal singular ray of
type . The parabolic group corresponding to it, P(p), can be written as {g €
SO;(Lo) ; g '(Rv) = Rv}, wherev € Conp,\{0}. It follows that, with the iden-
tification of Proposition 3.3.5, p(0o0) = Ruv, that is a point in PCon;,,. Whence
the notation g, coming from “point”. We extend in the natural way the notion of
maximal singular ray of type g to the general case of a non-degenerate quadratic
form L.

Notation: Let d be a line in Cony. We denote by P(d) the parabolic group
corresponding to d seen as a point in PCony. We denote by U (d) the unipotent
radical of P(d).

Lemma 3.3.7. Let d| and d be two lines in Cony. If by (d, d») # O then d| and
d,, seen as maximal singular points in 0., Ps(L), are opposite.

Proof. We show that if by (d,, d») # O then there exists a maximal singular geo-
desic & such that &(—o0) = d; and &(+00) = dy. Let v € dy and w € d, be
two vectors such that b; (v, w) = 1. We consider V = ker by (v, -) Nker by (w, -)
of dimension s — 2. By the general theory of non-degenerate quadratic forms (see
[Be]) we may choose a basis {wy, ... w;_3} of V such that in the coordinates with
respect to the basis B = {v, wy, ... ws_», w} the form L writes as

L =2x1xg +2x2x51 + -+ + 2XpX5_g41
+e(xfy + - +x2,), £ =min(a,b), € € {1} . (22)

The geodesic & () = Q, with Mg, = diag (eﬁ, 1,...,1, efﬁ) satisfies
®B(—00) = dj and &(+00) = d>. O

Remark 3.3.8. Let dy and d; be two lines in Con, such that by (d,, d;) # 0 and
let H; be the hyperplane defined by b, (d;, -) = 0. The map

U(d)) - P(Cony \ Hy)
u - uld,

is a bijection.
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Proof. By Remarks 3.3.3 and the argument in the proof of Lemma 3.3.7, we may
suppose that L = Lo, di = Rey, d, = Res and H; = kere]. It follows that
U(d,) = U,,. Consider a unipotent element in U,,,

N\T 1 _

(1= (Myb) =3B
ub)=10 14, b
0o 0 1

To it corresponds the line d (b)in Cony, \ H containing the vector ( — %Lg(l;),

—b, 1) and this establishes a bijection between U,, and the set of lines in Con \'H;.
O

Notation: For every line d € P (Cony \ 'H;), we denote by u, the unipotent in
U (d,) corresponding to it by the previous bijection.

3.4. Horoballs in P;(L) and counting result

Lemma 3.4.1. Let d be a line in Cony, and let v be a non-zero vector on d.

(i) The function f, : P;(L) — R,

fo(Q) = vV2In Q(v),

is a Busemann function of basepoint d.

(ii) Every Busemann function of basepoint d is of the form f,,, where w € d,
w # 0.

(iii) Let v be a vector and r a geodesic ray such that f, = f,. Then f,, =
fr +24/21n .

Proof. (1) Since L is non-degenerate, there exists w € Cony suchthatby (v, w)=1.
We proceed as in the proof of Lemma 3.3.7 and consider a basis 5 with v
and w the first and respectively last vector, with respect to which L can be
written as in (22). We consider the geodesic & joining d and Rw, &) =
(H_I)Tdiag (e%, 1,...,1, e_ﬁ)l'[_l, where IT is the matrix having the vectors
of B as columns. The geodesic ray correspondingtod isr(t) = &(—t), t > 0,and
its horospherical subgroup is l'[P(?1 I1~!. For every p € l'IPé,O1 -, £,(0lp) =
V21n Q(p(v)) = V21n Q(v), since p(v) = v. Also, f,(&(r)) = t. Lemma 2.3.1
allows to conclude.

(ii) is proved as in Lemma 3.2.2 and (iii) follows immediately from the formula
of fy. O
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Notation: Forevery v € Conp\{0} we denote by H, HbS and Hbo! the horo-
sphere defined by f, = a, and the horoball and open horoball defined by f, < a
and f, < a, respectively. For a = 0 we simply write H,, Hb, and Hbo,.

Lemma 3.4.2. Let v, w be two vectors in Cony such that by (v, w) # 0. The
oriented distance between the horospheres Hb, and Hb,, is 24/21n |br (v, w)].

Proof. Letw; = %w with x = by (v, w). The Busemann function f,, is equal to
S, + 24/21n |by (v, w)|. Therefore it suffices to prove the statement of the lemma
when by (v, w) = 1. By Remark 3.3.3 we may suppose that L = L,. Moreover,
by Witt Theorem ([Be], [Wi, §4.G]), we may suppose that v = e} and w = e;.
A geodesic joining Re; and Rey is &(¢) = diag (e V2, 1,...,1,ev2). We have
that & N H,, = & N H,, = {Id,}, which finishes the proof. m|

Corollary 3.4.3. Let vog € Conyp \ {0} be fixed and let Hy be the hyperplane
defined by by (v, -) = 0. For every compact set K in P(Conp\'Hy), we have that
|odist (H by, Hb,,) — 2321n ||w| | is bounded uniformly in w € RK.

Corollary 3.4.3 and the counting result Corollary 2.7.2 give the following.

Proposition 3.4.4. Let " be an irreducible lattice in SO (L) and let ¥ be a maxi-
mal singular cusp ray in Ps(L)/ T such that if r is a lift of it in Py (L), thenr is of
type . Let r(00) = d € PCony and let v be a non-zero vector on d. Let Q2 be a
relatively compact open subset of PCony such that its closure does not intersect
Pker by (vo, -) for some vy € Cony \ {0}. Let a > 1. For every open subset O of
Q we denote by N (k ; O) the cardinal of the set of vectors

{vy ; vel, Ruy e O, vyl € [ak,akH)} .
For any a > ay(L, Q) and for any k > ko(O, @, v), we have that
Ka®“he=20(0) < Nk; 0) < Koa ™V 20(0),
where v is the canonical measure on PCony and K; = K; (L, T", Q).

Lemma 3.4.5. Let dy be a fixed line in Cony and let H be the hyperplane defined
by by (dy, -) = 0. With the notation following Remark 3.3.8, on every compact sub-
set IC of P(Cony \ Ho) the angle between two lines dy and d, in K is bi-Lipschitz
equivalent to the distance between ug, and ug, in U (dp).

Proof. Up to isometry, we can reduce to the case when L = Ly, dy = Re; and
Ho = ker e} In this case U (dy) = U,,. The Riemannian distance on U,, coming
from the Lie group isomorphism

R - U,

b+ u(b)
is invariant. With the notation in the proof of Remark 3.3.8, the angle between
two lines d(b) and d(b') is bi-Lipschitz equivalent to ||b — b'||, if b and b’ are in
a compact set of RS2, O
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3.5. Traces of horoballs on unipotent orbits

Throughout this section we fix vy a vector in Cony \ {0} and a geodesic & in
Py (L) with &(—o0) = dy, where dy = Rug, and &(0) in H,. Let H, be the
hyperplane ker by (vg, -), and let P(dp) be the parabolic group corresponding to
dp. This group has a Langlands decomposition, P(dy) = M AU such that & is an
orbit of A. We denote by r the geodesic ray & +o0)-

Let w be an arbitrary vector in Cony \’Hy and let D be the oriented distance
between the horoballs Hb,, and Hb,,. We wish to study the trace of the horoball
Hb,, on U identified with the orbit of r(¢) under U, that is the set

Tri(w)={ueU; r(t)[ul € Hb,} . (23)

We put the conditiont = D 41, t > 0, otherwise Tr,(w) is empty. We have
the following lemma.

Lemma 3.5.1. We consider the unipotent group U endowed with an invariant
metric and with the Haar measure v. For any vector w in Con\'Hy the following
holds. Let D = odist(Hb,,, Hb,,).

(1) Foranyt >0
__D_
Trpye(w) C B (uy, ko 27) (24)

wherew,, € U is such that &[u,,](+00) = Rw, and kg is a constant depending
on vy and on the metric chosen on U.
(2) If L has signature (a, b) with min(a, b) > 2 then

_ D=2+t _DG-2)+t
Ce 2 <v(Trpy(w)) =Cre 22,

where C| and C; are constants depending on vy.

Proof. Step 1. First we consider the particular case when L = Ly, vyp = e; and
. R - -

Bo(t) = 0, = diag (eﬁ, ... 1e ﬁ).Via the isometry b > u(b) we iden-

tify U,, to R*72, its Haar measure v is the Lebesgue measure, and we choose

as invariant metric the Euclidean metric. We take the vector w to be Aey, with

D
A = e2v2, for an arbitrary D > 0. Letr(¢) = Q, forr > 0.
(1) We have

Tri(he)) ={ue U, ; Q:lul € Hby} = {u € Ue, 5 Qilul(ey) < %}

i I . - —~ _ _D
= {u(b) €U, ; Zeﬁ[L@(b)]2+||b||§+e Vi<e ﬁ}
- 1 = D _ 2 D _ 2 T
- {u(b) €U s e’ [% (emb>] + ‘emb Lo Vi< 1} .
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We denote by O, the homothety in R*~2 of center the origin and of factor «.
_D
We identify Tr,(Aey) with O, (M), where n = e 2v2 and

- 1 = - - _ T
M, = {b eR™2; Zeﬁ[LE)(b)]2 + ||b||§ +e V2 < 1} .
The set M, is quasi-conformal to the set
1
4

M, = {15 eR“2; b2 <1—e V3, —ei[LyB)P < 1 —e‘ff} ,

in the sense that Ol/ﬁ(/\/l’r) C M, C M’.We have that M’ C B(0, 1). We
conclude that

D
Tri(he;) C B (O, efm) .
(2) We can rewrite M/, as O, (/\/l;/), where x = /2 <1 —e ﬁ)z ¢~ ™2 and
M = {13 eR2; |Ly(b)| < 1, |b| L (1 — eiz)‘l‘ efﬁ}
T ’ 0 = ’ e = ﬁ

Lemma 3.8 from [EMM] implies that

T(s—4)
V(M) ~Cle+? ast — o0,

where C’ is an absolute constant. Hence

v(M')NCe_fﬁasraoo,

T

and
__T_ __T_
Cie 22 <v(M;) < Cre 22,

where C; and C, are universal constants. This and the fact that Trp.,(Aes) is
isometric to O,_p,2 M- yields the conclusion.

Step 2. We place ourselves in the general case. There exists B € GL(n, R) such
that ®(B)(Lg) = L. Remark 3.3.3 implies that ®(B) is an isometry between
Ps(Lg) and P, (L). The fact that SO; (L) acts transitively on geodesics with both
points at infinity lines in Con, implies that we may suppose that ® (B) (&) = &.
Letu, € U be such that &[u,,](+00) = Rw. Since u,, acts by isometry on U to
the right, it suffices to prove the result in the particular case when u,, = id.

We then have that B~'U,, B = U and that B~'Tr,(Ae;)B = Tr;(w). The
conjugation by B transforms the Haar measure on U,, into the Haar measure on
U and the Euclidean metric on U,, into an invariant metric on U, bi-Lipschitz
equivalent to the one that was chosen. O
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3.6. Quotient spaces, equidistribution of rational vectors

Let P be the ambient symmetric space defined in Section 3.1. Let I" be the lattice
SL(s, Z). Its Q-rank r is equal to the R-rank of SL(s, R) and with s — 1.

Notation: 'We denote by 7; the quotient space P/ I'. In accordance with the
notation introduced in Section 2.5, we denote by proj the projection of P, onto 7.

The projection Wy = proj(Wp) is isometric to Wy. Moreover, 7; is at finite
Hausdorff distance of W. We denote by 7; the projection of the ray r; defined
in (19). According to Remark 2.5.1, (1), and to Lemma 3.2.2, for a < 0 with |a|
large enough, the projection of Hb is Hb, (i) and its pre-image is (o pzs HD;.
Likewise H b?f projects onto Hb,(rs_1) and its pre-image is | J,, epzs HbYs.

Let L be a non-degenerate rational quadratic form on R*. The group SOz(L)
is a lattice, which we denote by I'z. It has Q-rank r equal to the dimension of
the maximal rational linear subspace totally isotropic with respect to L (that is,
contained in Cony).

Notation: 'We denote by V), the quotient space Ps(L)/I';. We denote by proj,
the projection of Pg(L) onto Vy .

The manifold V), is a locally symmetric space of finite volume, at finite Haus-
dorff distance of a finite union of Euclidean sectors of dimension r, which are
projections of (Q-Weyl chambers in P;(L) ([BoS], [Le]). Let ry, 72, ..., 1y be
all the maximal singular cusp rays in V; such that their lifts r, 7, ..., r¢ in
P (L) are of type g . The set {r1(c0), r2(c0), ..., rx(c0)} can be identified with
the quotient under the action of I'y of the set of all rational lines in Cony. The
latter set can also be seen as the set (PZ° N Cony)/ £ 1 = PZ{ N Cony. Let
ri(00) = v; € PZ% N Cony. By the previous considerations, {vy, v2, ..., v} can
also be identified with (PZS, N Con;) /T,. By Lemma3.4.1, f,. = f3,,,, where
A € (0, 00).

According to Remark 2.5.1, (1), if a < 0 with |a| large enough then for any
ief{l,2,...,k}, proj; (Hbﬁi) coincides with Hb,, (r;), for some a; < 0, and the
Hb¢. Therefore the projection of Uf:] Hby,
is UY_, Hb,, (7;) and it has the pre-image Uverzs ncon, HDY-

The application of the Proposition 3.4.4 to each of the rays r; gives the fol-
lowing.

pre-image of itis Hb§ I'y = |J

vey; I'g

Proposition 3.6.1. Let Q2 be a relatively compact open subset of PCony, such that
its closure does not intersect Pker by (v, -) for some vy € Cony \ {0}. Leta > 1.
For every open subset O of Q we denote by N (k; O) the cardinal of the set of
vectors

[vePZ*NCon;; Rve O, |v| €ld,a*h}.
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For any a > ag(L, Q) we have that
K= 20(0) < Nk; 0) < Kpa*P20(0), for every k > ko(O, Q).

where v is the canonical measure on PCony and K; = K; (L, Q2).

A consequence of this proposition is Corollary 1.2 in the introduction.

4. Diophantine approximation on a rational quadric

4.1. Some preliminary considerations

Letq : R" — R be anon-degenerate quadratic form with rational coefficients and
let Q4 be the quadric defined by g = 1. Before beginning the proof of Theorem 1.1,
we wish to point out that an argument with a projection on a rational hyperplane
does not work. This can be illustrated on the example of Q4 = S"(0, 1) C R+,
For simplicity we replace Q4 by S"(e,41, 1), which we denote in what follows
by TS". We recall that the stereographic projection with respect to 2e,,; is

pr : TS" —> R”
X 2 = 2Xp+1

X e .
2—Xp41 2—Xp+1 n+l

Its inverse is

inv:R" — TS"
- 4 = 21512
Y P Y ' mpeett -
‘We have that
o pr (S (TS") C Sy—e(R"), for any « and € ;
o inv (S,(R") C S%_G(TS"), for any « and €.
It follows that

inv (Si12012(R")) C Su(TS") C inv (Sue(R™) . (25)

On the other hand, by Jarnik Theorem, dimy S, (R") = % for all @ > %
This and relation (25) imply that

1 1
Pt dimy S, sy < 2 (26)
2+ 1) a+1
For n = 1 we obtain dimy S, (TS') > 1%“, which together with the inequal-

ity of Melnichuk, dimy S, (TS') < ﬁ [DD,], imply the result of H. Dickinson
and M.M. Dodson. For n > 1 both bounds given by (26) are not sharp.
The first step in the proof of Theorem 1.1 is the following Lemma.
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Lemma 4.1.1. Let  be an approximating function such thatlim,_, o, x ¥ (x) = 0.
Letx € Qq and let 37]3 € Q" be such that

1
xX——p| < V) . (27)
q q
If q is large enough then éﬁ € Qq.
Proof. We have q(x)= Zliisjfn a;jxixj=1, where x = (x, ..., x,) and a;; €
Q, Vi, j. Relation (27) implies that gx; = p; + &;, where p = (p1, p2,..., Pn)

ande; = O (¥ (q)).Itfollows that g>= Zliisjén aijqx; gx;= Zliisjén a;j(pi+
e)(pj+ej) = AP)+D1<icjen Gij(Pi€j+DPjENFD 1 ic j<p Gij€i€j- We have that
Di<icj<n @ij(pigj + pje) = O (q¥(¢) and 3y, ;, aijeie; = O (v (@)?).
Both sums tend to 0 when ¢ — o0. Since g has rational coefficients, q(Z") C %Z
for some N e N. It follows that ¢> — q(p) € ﬁZ. On the other hand, for ¢ large

enough |g°> — q(p)| < % We conclude that g (éﬁ) = 1 for g large enough. 0O

The previous lemma implies in particular that if Qq N Q" = ¢ then Sy (Qq) =
¢ for i such that lim,_, o Xt (x) = 0. In what follows we work under the hypoth-
esis that Q, N Q" # 0.

4.2. Generalized notion of Hausdorff measure, Hausdorff dimension

Definitions 4.2.1. (1) A dimension function is a function ¢ : R, — R which is

increasing and continuous and such that lim,_,¢ ¢(x) = 0.

(2) We say that a dimension function ¢ dominates the function x° for some § > 0,
if
—x = x%p(x) is a decreasing function;
—lim,_ox?p(x) = co.

Let (M, d) be a metric space and F a non-empty subset of M. For ¢ > 0 we
call e-cover of F a countable collection of balls {B;};c; of radii r; at most € for
every j € J,suchthat ¥ C ., B;. Define

H?(F) = inf Z(p(rj) : {Bj}jes ane€ — cover of F
jeJ

The Hausdorff measure of F with respect to the dimension function ¢ is defined
by

HY(F) = lin})Hf(F) =sup H?(F).
€~ e>0
Remark 4.2.2. When ¢(x) = x*, H? becomes the usual Hausdorff measure H?".
Recall that one defines the Hausdorff dimension dimy F by

dimy F =inf{s > 0; H'(F) =0} =sup{s > 0; H(F) = o0o}.
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4.3. Ubiquitous systems

We need the notion of ubiquitous system as introduced in [BDV;], and one of its
main properties, which we recall in the sequel. We shall not need the notion in its
most general form, as the resonant sets we work with are points. See [BDV;] for
a more general and detailed presentation, as well as for proofs. We note that in the
particular case when the compact metric space considered below (M, dist) is a
bounded subset of R” with the Euclidean metric, and m is the Lebesgue measure,
the notion of ubiquitous system and a weaker version of Theorem 4.3.2 were for-
mulated in [DRV;] (see also [BD]). In the case when the resonant sets are points
this notion coincides with the notion of regular system from [BaS]. Also, a variant
of the notion has been defined and used in [Bu].

Let (M, dist, m) be a compact metric space with a probability measure.
Assume that the measure m satisfies the following condition.

(M) There exists § > 0 and Ry > 0 such that for any x € M and R < R,
aR® <m(B(x, R)) <bR’.
The constants a and b are independent of the ball and can be assumed to satisfy
O<a<l1l<b.

Remark 4.3.1. The condition (M) implies that the Hausdorff dimension
dimH M =36.

Let I be an infinite countable family of indices and let @ : I — R, be a
weight function on it. Assume that for every M > 0, theset{i € I ; @ (i) < M}
is finite. Let X = {p; ; i € I} be a collection of points in M, called resonant
points.

Let p : R, — R, be a function such that lim,_, o, p(x) = 0. It will be called
the ubiquitous function. Let u = (u,),eN be an increasing sequence of positive
real numbers such that lim,,_, o, u, = 0o . We assume that the function p is u-reg-
ular, that is there exists a constant 0 < A < 1 such that for n € N sufficiently
large,

p(un+l) = )‘p(un) .

The pair (N, @) is said to be a local m-ubiquitous system relative to (p, u)
if the following condition is satisfied. There exists R; > 0 such that an arbitrary
ball B in M of radius R < R; satisfies

m(BN |J B, o) |=rcm®),

@ (i)<un

for every n > ny(B), where ¥ > 0 is an absolute constant.
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We consider the lim-sup set
A, ¥) ={x e M ; dist(x, p;) < ¥ (o (i)) for infinitely many i € 1} .

Theorem 4.3.2 ([BDV;], Theorem 3). Let (M, dist, m) be a compact metric
space equipped with a measure satisfying the property (M). Let p and u be a
function and respectively a sequence as above. Let (R, @) be a local m-ubiqui-
tous system relative to (p, u), let W be an approximating function and let ¢ be a
dimension function dominating x°.

I Y02 oW (un)) p(un) =" = 00 then
H? (A, ) = oo.
Corollary 4.3.3 ([BDV;], §1.4.2). Let (M, dist,m), p, u, (N, @) be as above.
Let s € [0, ).
(D) IF W (u,)* p(uy) ™ = oo then H' (AR, ¥)) = o0
(2) If lim,, _, % = 0 then
dimH AN, ]ﬂ) >0,

In p (un)
In v (up)”

Moreover, if lim inf LU — 50 then HS (AR, ¥)) = oc.

n—oo w(un )(r

where o = limsup,_, .,

4.4. A geometric definition of Sy (Qq)

We proceed with the proof of Theorem 1.1. With a countable covering argument,
we reduce the problem to the study of Sy (£2), where Q is a relatively compact
open subset of ), such that its closure does not intersect 75,4 for some Xy € L.
Let Ly : R"*! — R be defined as in the Introduction.

Convention: In what follows we shall drop the index of the form L4 and we
shall adopt for it all the notation introduced in the Sections 3.3 to 3.6.

We note that y € Qg if and only if (y, 1) € Con,. Thus we may identify
Q2 to an open subset of PCony, and consider RQ2. We denote by vy the vec-
tor (X9, 1) € Cony and by Hj the hyperplane ker by (v, ). The condition that
the closure of € does not intersect 7%, is equivalent to the condition that the
closure of RQ does not intersect Hy. Let dy = Ruvy. Let P(dp) be the para-
bolic subgroup corresponding to dy in SO;(L) and let MyAyUy be a Langlands
decomposition of P(dp). In this case the group Uy is Abelian and Ay is a maxi-
mal singular torus (a,);cr. We take its parametrization such that Uy = U (AaL ),
where Ag = (a;);>0. Let & be the maximal singular geodesic in P, (L) which
is an orbit of Ag, such that &(0) € H,, and &(—o0) = dy. The geodesic ray
ro = &[0, +00) has U, (ro) = Up.

According to Remark 3.3.8, to every d € P (Cony \'Hy) corresponds a unique
u, € Up such that d = ry(co)u,. By means of this, we identify 2 to a relatively
compact open subset of U.
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Convention: 'We also denote by Q the open subset of PCon, to which Q C Q4
is identified via the map y € Qq — (9, 1) € Con.. We likewise denote by
the subset in Uy to which the previous subset in PCon/ is identified via the map
defined above.

We want to study the set of vectors y € €2 such that ||y — é pll < # for infi-
nitely many é p € QqNQ". Without loss of generality we may suppose moreover
that gﬁ eQNQ.

Let ¥, y' be points in 2 and let d , d’ be the lines in Cony, containing (y, 1)
and (3, 1), respectively. Lemma 3.4.5 implies that the distance in U between uy

and u, is bi-Lipschitz equivalent to the angle between d and d’, which in its turn
is bi-Lipschitz equivalent to ||y — y’|| for y, " € Q. Corollary 3.4.3 implies that
(P, q)l is bi-Lipschitz equivalent to e®%st (Hbug Hb(j.4)/22 Also, since éﬁ € Q,
and 2 is relatively compact, ||(p, ¢)||. is bi-Lipschitz equivalent to g.

Thus we have

l eOdist (Hbyy . Hb(5.0)) /232 g<L podist (Hva,Hb(,;,q))/zﬁ’
I =q =

for some L > 1 depending on £2.
Let us denote by Sg, (£2) the following subset of Uy.
SY(Q) = {ueQ; disty,(u,ug,)
< W (odist (Hby,, Hb.4)))
for infinitely many

(P.q) € PZ N Cony}. (28)
The previous considerations imply that for some L; > 1 we have the inclusions

S5, () € Sy(2) ¢ 8, (), where
ex/Z\/E
v ()

W (Lexﬁﬁ)
eX/2V2

v = — =
1(x) Lo

and W, (x) = L, (29)

Therefore we may replace in our study the set Sy, (€2) by the set §8, (2) for
some approximating function W.

LetI';, V, and {v;, va, ..., v} C PZ’}:’I N Cony be defined as in Sec-
tion 3.6. Every (p, q) € PZTI N Cony, is in the 'z -orbit of one of the vectors
{vi, va, ..., v }. Wefixavectorv € {vy, vy, ..., vx} and we consider the set
of vectors Csp = vl'y.

We restrict our attention to a subset of §$(§2) defined as follows.
g\y(Q) = {u € Q; disty, (u, uy)
< W (odist (Hby,, Hby))
for infinitely many w € C sp} . (30)
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Since the set LSN’S,(Q) is the union of the sets g\p(Q) defined as in (30) for
i € {1,2,...,k}, without loss of generality we may replace in our argument
Sy () by Sy(R).

Notation: In the particular case when W (x) = e_“;jf» , with @ > 0, in all the
previous notation the index W is replaced by the index «.

If the quadratic form g is positive definite or of signature (1, n — 1), P,(L) is
amodel of the n-dimensional hyperbolic space. Viathe map x — (X, 1), Q4 canbe
identified with P (Con t\kere; | ) If qis positive definite then P (C onp\kere, | )
= P (Conp), which is the whole boundary at infinity of the hyperbolic space
Ps(L). If q has signature (1,n — 1) then P (ConL\ker e;';H) is an open
Zariski dense subset of the boundary at infinity of the hyperbolic space. We change
the model P, (L) with the half-space model H" of the hyperbolic space, and we
suppose that 0o = .

The set Sy () can be identified with the set of points ¥ € Q C R*~! C 3, H"

such that there are infinitely many & € Csp satisfying the inequality

disty,(uy , ug) < W (odist (Hbys , Hbg)) .

The term on the left is |8 — &||. and the term on the right is, up to some
insignificant changes of the function W, W(—In&¢), where h¢ is the Euclidean
height of the horoball Hb;. The set Sy (£2) becomes the set of points ¥ € 2 such
that the inequality

¢ —&lle = W (—Inhg)

has an infinity of solutions £ € Csp. The equality dimy ga(Q) = 'er;; is in this
case a consequence of a more general result of R. Hill and S. L. Velani [HV].
Moreover, all the results stated in this paper are proved in this particular case in
[BDV,].

From now on we may therefore suppose that the form L = L is of signature
(a, b), with min(a, b) > 2.

Notation: 'We denote dim U by A.
Sinces =a+b >4, wehave A =5 — 2 > 2.

4.5. Sets of points on a quadric very well approximable by cusp points

Let L be a non-degenerate quadratic form of signature (a, b), with min(a, b) >
2, a+b = s, and let I be an irreducible lattice in SO, (L). Let V' be the quotient
Ps(L)/ I' and let proj denote the projection of Ps(L) onto V. As in Section 3.6,
we consider the set {ry, 7,, ..., i} of all the maximal singular cusp rays in ¥V
such that their lifts {r;, rp, ..., r¢} in Py(L) are of type g. Let v; be a vector
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on the line r;(c0), i = 1,2, ..., k. The choice of v; shall be made more precise
later. We fix a vector v € {v;, vy, ..., v;} and we consider the set of vectors
Csp =l

Consider the set €2, the vector vy € Cony \ {0}, the geodesic &, the ray rg
and all the notation and properties as in Section 4.4. We define the projection
o : SO (L) — Ps(L), mp(g) = &(0)g and the projection : SO;(L)/ T — V
induced by .

Identified with a subset of Uy, Q2 can be equipped with the restrictions of a
left-invariant metric dist and of the Haar measure v. The space (€2, dist, v) satis-
fies the condition (M) with § = A, provided that 2 is a ball in Uy. Without loss
of generality we assume that €2 is indeed a ball.

We consider Csp N RS2 as a countable family of indices and we define

w:CspNRQ - R, @(w)=odist(Hb,,, Hb,).

Notation: We denote the oriented distance odist (Hb,,, , Hb,,) by d,,.

For each w € Csp let u,, be the unipotent in Uy such that ry[u,](co0) = Ru.
We consider the collection of resonant points i = {u,,; w € Csp NRQ}. Finally
we consider the sequence u = (4,)neN, U, = nT, where T > 0 is large enough,

and the ubiquitous function p : Ry — Ry, p(x) = e 2v2, where » is a constant
to be chosen later. The function p is u-regular.

Proposition 4.5.1. The pair (N, @) is a local v-ubiquitous system relative to
(0, u).

Proof. We need to prove that for any ball B in 2 of radius at most R, for some
R, > 0, we have

_ T
v|BN U B(uw,%e 2ﬁ> >k v(B),
weCspNRQ, dyy<nT

for n > no(B) and k an absolute constant. Without loss of generality we may
suppose that B is an open ball in Uy which is entirely contained in 2. We denote
by 2B the ball with same center as B and with double radius.

According to Lemma 3.4.1, (iii), multiplying the vector v with a large positive
constant n means adding to f, a large positive constant 24/21In n. Thus Hb,, =
Hb; 2v2lnn, Suppose that v has been re-scaled so that Remark 2.5.1, (1), applies
to Hb,.Let f : V — R be a C*°-function taking values in [0, 1], such that f = 1
on proj(Hb,,) for some A > 1 and close to 1, and f = 0 outside proj(Hb,).
According to Proposition 2.6.5, for any go € SO;(L)/ T,

f f om(augy) dv(u) — fomduast - +oo, 3D
B $01(L)/T
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where p is the measure on SO;(L)/T" induced by the Haar measure on SO;(L).
We take gg = id. The convergence in (31) implies that for t > #,(v, 1),

1 _
L f Lyrojcrts,) © 7 (@rug0) dv(w) = (1 — )e(L)Vol, |
v(B) Jg

where c(L) is the total measure of every maximal compact subgroup of SO, (L),
Vol, is the volume of proj(Hb,) and € is a small positive constant such that
limy_, 1 ¢ = 0. We choose and fix A such that € = i. The inequality above is
equivalent to

v u € B; my(au) € U Hb,, >
weCsp

v(B)c(L)Vol, . (32)

AW

In (32) it is enough to take the subset of vectors w from CspNRQ withd,, < t.
We note that my(a,u) = ro(¢)[u] for + > 0. In accordance with the notation in
(23), let us denote

Tri(w)={ueUy; ro(t)[u]l € Hb,}.

We may then write

ue B r)lu] € U Hb, } = BN U Tr(w).
weCspNRQ, dy, <t weCspNRQ, dy <t

Consider now the subset corresponding to horoballs at distance less thant — ¢
for some 7 > 0 to be chosen later, that is

BN U Tr(w). (33)

weCspNRQ, dyy <t—1
Suppose that t — t = kT for some k € N. Then we can write

k

U Tr(w) = |_| U Tr(w).

weCspNRQ, dy <t—1 Jj=—ko weCspNRQ, dye[(j—1DT,jT)
We have that

k

v BN |_| U Tri(w)

j=—ko weCspNRQ, dyel(j—DT,jT)
k

< Z Z v (BN Tr(w)) .
j=

—ko weCspNRQ, dyel(j—1T,jT)
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dy
AccordingtoLemma3.5.1,(1), Tr,(w) C B <uw, Koefm),where/co depends

on vy and on the metric dist. Hence there exists Jy = Jy(B, k) such that for
J = Jo the intersection B N Tr;(w) is non-empty only for w € Csp with
u, € 2B. To designate the property that w € Csp with u,, € 2B we use
the notation w € Csp N R(2B). Thus for j > Jy the sum is taken over the
we CspNR2B), dy, € [(j — DT, jT). Lemma 3.5.1, (2), implies that

Z v(BNTr(w))
weCspNR2B), dyel(j—DT,jT)
_G=DTAL T
- 3 P )

weCspNR(2B), dyel(j—DT,jT)

where C is a constant depending on vg. Corollary 2.7.2 now gives that for any
T > Ty(L, vy, 2), the term in (34) is smaller than

_ (j=DTA+1—jT jTA TA+jT—t

N
Ke 22 e¢2iv@2B)=K'e 2 v(B),

for every j > J;, where J; = J1(B, v, vp) and K' = K'(L, T, vg, 2).
Let J, = max(Jy, J1). The considerations above and Lemma 3.5.1, (2), imply
that the measure of the set in (33) is at most

k X Jr .
TA—t iT 7t+(A71)(. T
Ke3v(B)) eiitC Y ) e . (35)

j=h j=—ko weCspNRQ,dye[(j—1DT,jT)

The set of w € Csp N RQ with d,, < J,T is finite, of cardinal N. Hence the
second term in the sum above is less than

L asngonr

_
CN > e 2  <Cle %,

where C' = C’(vg, v, dist, T, B).
On the whole, for 7 > 2+4/21n 2, the sum in (35) is at most

TA-t k

TA—t kT _ TA—t 1
2K'e V2 v(B)e>2 +C'e 22 < 2K'e 22 v(B) + C'e 27,
TA—t
We choose t such that 2K'e 2v2 = iVol,,c(L). Note that it depends on
L,T", 2, v,vpand T. Then for ¢t > t; the measure of the set in (33) is smaller than
%Volvc(L)v(B), where #; depends on L, vy, v, dist, T, B.
Let 1, = max(ty, t1). It follows that for r > 1, the set

BN U Tr(w)

weCspNRQ, t—t<d, <t
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has measure at least %Volvc(L)v(B). By Lemma 3.5.1, (1), this set is included in
_dw
BN U B(uw,Koe Zﬁ)
weCspNRQ, r—t<d,, <t

Tt
C Bn U B <uw, KoeV2e 2ﬁ) .
weCspNRQ, t—t<dy <t

We choose the constant s¢ = kge2v2 and t = nT. We have obtained that

_ T 1
v BN U B <uw, e Zﬁ) > ZVOZUC(L)V(B),
weCspNRQ, dyy<nT

for n > ng, with no depending on the data of the ubiquitous system and on B.
This finishes the proof. O

For an approximating function i we can define the set

gw(Q) = {u € Q; disty,(u, w,) < ¥(d,) for infinitely many w € Csp} . (36)

(1+a)x

When ¥/ (x) = e 2v2 , with @ > 0, we replace the index by the index «.
Theorem 4.3.2 implies the following.

Theorem 4.5.2. Let ¢ be a dimension function dominating x2. The measure

H? (S,p (Q)) is +oo if and only if for some/for every T > 0 large enough
nTA

Yot 9(W(nT))eV2 = oo.

Remark 4.5.3. The significance of the alternative use of the conditions “for some/for
every” is the following: the “if” part holds under the weaker condition that the
sum is 4-oo for some 7" > 0 large enough, while in the “only if”” part we obtain
that the sum is +oo for every 7 > 0 large enough.

Proof. The “if” part follows from Theorem 4.3.2. We show that if for some 7 > 0
nTA ~
large enough Yo | (¥ (nT))e>? < oo then H? (Sy (Q)) < oo.
The set Sy, (2) is covered by

U B, v@).

weCspNRN,(RQ)
We have
o0
Y ey =) > ¢ (¥ (dw))
weCspNRN; () n=1 weCspNRN:(RQ), dye[nT,(n+1)T)
o0
AnT
<Y oW nT)) e,

n=1

The last inequality follows from Corollary 2.7.2. O
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Corollary 4.5.4. (1) Let s € [0, A). We have 'H* (§1/, (Q)) = o0 if and only if for
some/for every T > 0 large enough

S very e = oo

n=1

T
(2) If for some T > 0 large enough lim,,_, o, ¥ (nT)e2v2 = 0 then

dimy Sy (Q) =0 A,

13 —nT
where o = lim Sup, 00 m

T ~
Moreover; if limsup,,_, . 22y (nT)° > 0 then H°* (SI/,(Q)) = 00

Proof. Statement (1) follows from Theorem 4.5.2 applied to ¢(x) = x*.
(2) The definition of ¢ implies that for any € > 0 the following holds.

_ nT
(a) For n large enough, ¢ (nT) < e 2V20+o;
_ nT
(b) For infinitely many n, ¢ (nT) > e 2V2c-o.

nTA
According to (a), for every s > A(oc + €), Z;‘;l Yy(nT)evr K
nT (A s ~
Yoo en? (4=7%) - 400, Statement (1) implies that H* (S (Q)) < oo.
nT

Property (b) implies that ¢ (nT)e 2v/20-e) > 1 for infinitely many #. Statement
(1) implies that HA€~9 (S5, (Q)) =

We thus obtain that A(o — €) < dimpy Sy () < A(o + ¢€), for any € > 0,
which implies that dimy Sy () = Ao

The last statement in (2) follows from (1) applied to s = o A. O

Corollary 4.5.5. (i) The set Sy () has Hausdorff dimension d = dlm UO for every
a >0, and H(S,(Q)) = o0, _ N
(ii) Both statements hold also for £5,(R2) = S,(2) \ Uﬂ>a Sp(R2).

Proof. (i)isa consequence of Corollary 454, (2)
(ii) We can write SS (Q) = S D\ U, en Sy 1 (£2). According to (i) we

have, for d = %, that Hd(S (R)) = oo and Hd < 1(9)) = 0. Hence
HY(ES,(R)) = oo. O

Remark 4.5.6 (possible generalizations). One might work in the general setting,
that is when instead of P, (L) and SO; (L) there is a general symmetric space of
non-compact type X and the connected component of the identity of its group
of isometries G, and when I is an irreducible lattice in G. One can consider a
maximal singular cusp ray 7 in X/ I', alift 7 in X, Csp = r(oco)I" and for every
& € Csp the horoball Hb; of basepoint £ projecting onto Hb(r).
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For an arbitrary ray p in the orbit rG and U, = U, (p), the set p(oco)U
is open and Zariski dense in r(c0)G and contains infinitely many § € Csp to
which therefore one can associate unipotents u; € U,. A set Sy, can be defined
as before, that is as the set

Sy ={ueU,; disty, (u, ug)
<Y (odist (Hby, Hbg)) for infinitely many & € Csp} ,
where H by is the horoball determined by the ray opposite to p.

Let (a;);cr be the maximal singular torus such that p(f) = p(0)a, and suppose
that u — a,ua_, is a homothety of U, of factor ¢*’, A > 0. In order to prove that

~ ~ —anT
d =dimy 8, =dimU, o and H4(S,) = 0o, for o = limsup ———
nsoo MY (nT)’
the following conditions are sufficient:

e the equidistribution results given in Propositions 2.6.5 and 2.6.6 and the count-
ing result Corollary 2.7.2; these hold in general;
e for Trp, as defined in (23), a formula of the measure of the form

v(Trpys) = e~ PAAmUL—f(1) \ith lim f(t) =00;
T—>00

e the inclusion Trpy,; C B(ug, Ce™*P), with C an absolute constant.

A consequence of Theorem 4.5.2 is the following.

Theorem 4.5.7. Let q : R" — R be a non-degenerate quadratic form with
rational coefficients, let Qg be the quadric defined by q = 1 and let y be an
approximating function such that lim,_, ., xy(x) = 0. Let ¢ be a dimension
function dominating x™~". Then H*(Sy(Qq)) = oo if and only if for some/for

every T > 0 large enough Y > | ¢ (‘/’(""T)) nT(m=1) — s,
Corollaries 4.5.4 and 4.5.5 applied in this setting yield Theorem 1.1.

Remark 4.5.8. The results in Corollary 4.5.5 and in Theorem 1.1 concerning the
sets £S,, of vectors for which the exact order of approximation is known, can
be formulated in the more general context of approximating functions. See for
example [BDV,, §8.8] and [BDV3] for such results. For the sake of simplicity we
have not done it here.

5. Sets of geodesic rays moving away into the cusp

5.1. The case of Ps(L) and of the geodesic rays of type &

We consider L, I", V, proj, r;, r; and v;, i € {1, 2, ..., k}, with the same signifi-
cance as in the beginning of Section 4.5, with the only difference that the condition
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min(a, b) > 2 is replaced by min(a, b) > 1. Without loss of generality we may
suppose that the vector v; is such that f,, = f,,. Let o be an arbitrary geodesic
ray of type g in Ps(L) and let Uy = U, (o). We denote dim Uj by A.

Consider a function ¢ : [a, +00) — [b, +00), a, b € R, and define the set
of unipotents

Ry ={ueUy: —f; (proj (o(t)w))
> t — ¢(¢) infinitely many times as ¢t — oo} . (37)

Remark 5.1.1. The maximal possible depth for proj (o (¢#)u), measured with respect
to the ray r;, is t 4+ ¢, where c is a constant. Such a depth can occur infinitely many
times if and only if the ray proj (o(¢)u) is asymptotic to 7; (see Corollary 5.1.5,
(c)). Therefore, it makes sense to put t — ¢ (¢) with ¢ a function bounded below
near +00, in the definition of R:P

In the particular case when t — ¢ (t) = Bt, with 8 € [0, 1], we replace in our
notation in (37) the index ¢ by the index .

Theorem 5.1.2. Suppose that ¢ and id — ¢ are increasing functions, and that ¢
is a bijection.

(1) Lets € [0, A). 'H* (Rfj)) = oo if and only if for some/for every T > 0 large
enough,

X AnT—s¢~ )

ZeTzoo.

n=1

(2) If for some T > 0 large enough, lim,_, ,o[nT — ¢~ '(nT)] = —oo then

) T
d= dimHR; =0 - A, whereo = limsup?—.
nsoo @1 (nT)

If moreover limsup,_, . [nT —o¢~'(nT)] > —o0 then Hd(R;)) = o0.

Proof. We denote by Csp the set v;I". We may restrict our study to a set Rﬁp (Q) =
R;S N 2, where €2 is an open relatively compact subset of Uy. Let dj be the line in
Cony which appears as point at infinity of the geodesic ray ¢°” opposite to 0. We
choose the vector vy on dj so that f,r = f,. For every vector v € Cony such
that by (v, vg) # 0, we denote by u, the element in Uy such that the geodesic ray
ou, has as point at infinity the line Rv. _

I. We show that be(Q) C So,(£2), where Sg, (2) is defined as in (30) for the

— 7¢7l (x) . . .
approximating function @, (x) = kpe 2v2 . Here «j is the constant appearing in

the inclusion (24).
Letu e RQ)(Q). It follows that the inequality

fwe®w) = =1 — ¢(1)) (38)
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has infinitely many solutions w € Csp and ¢t € (0, +00). Let w and ¢ be two such
solutions. Then, with the notation d,, = odist (Hb,,, Hb,,), we have

dy <t —|fule@W| < ¢(t) = ¢~'(dy) <t . (39)
The fact that o(t)u € Hb,,"~?@) implies by Lemma 3.5.1 that

1
1 —=(dy+t—¢
dlStUO (u, uy) < kpe zﬁ( 1=¢(1) .

_¢~ )
The last term of the inequality is by (39) smaller than xge  2v2 . We conclude

that Ri,(Q) C So, ().

) ~ _o” et
II. We show that T\’,ﬁb(Q) conteEns So,(2), where ®5(x) = ce 2¥2  for an

appropriate constantc. Letu € Sg,(€2). Letw € Csp be such thatdisty, (u, u,) <
_ o7 dy+D)

ce. 22 . Weconsidert = ¢~'(d,, + 1). We have that

| fuw (0(H)w) — fi, (0(H)uy,)| < dist (o(t)u, o(t)u,)
< 3 dist (o(O)u, o(O)u,) < 1,

if we choose the constant ¢ properly, depending on ¢ (0) and on the metric chosen
on Uy. Since f,, (o(t)uy) = d, —t = ¢ (t) — 1 —t, this implies that f,, (o(#)u) <
¢ () — t. We conclude that

— f7 (proj(o(¢)u)) > t — ¢ (¢) infinitely many times as t — 00 .
We have obtained that
S0,(2) C RL(Q) C So, (),
) ¢~ D)

where ®(x) = kpe 22 and ®,(x) = ce 22 . We apply Corollary 4.5.4
and we obtain the desired conclusion. m]

Remark 5.1.3. When defining the set pr, one can replace ¢ by ¢, = ¢ — ¢, where
c is a constant, and Theorem 5.1.2 still holds. In order to see this it suffices to
show, using the monotonicity of ¢, that all the conditions in Theorem 5.1.2 are
satisfied by ¢ if and only if they are satisfied by ¢.. We leave this as an exercise
to the reader. See also Remark 5.2.2 where a similar statement is proved in full
detail.

Remark 5.1.4. The set P(o)Uy is open Zariski dense in G, hence the projection
of Uy is open Zariski dense in P(0)\G. We note that P(0)\G is the stratum g,
in the terminology of the Introduction. We also note that if a geodesic ray has
a projection on V moving away into the cusp infinitely many times with depth
measured by the function id — ¢ with respect to the ray r;, then any geodesic ray
asymptotic to it has the same property, up to a bounded perturbation of the depth.
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The previous Theorem therefore gives the formula of the Hausdorff dimension
of the set of points of type g in the boundary at infinity corresponding to rays
moving away into the cusp at depth at least id — ¢ with respect to r;, infinitely
many times.

Corollary 5.1.5. Consider the set

R’ﬂ ={u e Uy; —f; (proj (o(H)w) > Bt infinitely many times ast — oo} .
(40)

(a) For any B € (0, 1) the set Rk has Hausdorff dimension d = A(1 — B) and
H4 (R;S) = o0.
(b) Both statements in (a) also hold for the set

SR;S :ng\ U Ri/ — {u c R%, limsup _ffi (proj (Q(t)u)) :,3} )

B'=B t—+00 t

(c) The set 7?,6 coincides with Uy and the set R’l is contained in {u,, ; w € Csp}.

Proof. (a) follows from Theorem 5.1.2, (2), and (b) immediately follows from
(a).

(c) For 8 = 0 it is a consequence of the logarithm law [KM;]. Suppose that
B = 1. Letu € RY. Then for infinitely many w € Csp and ¢ € (0, +00) the
following inequality holds:

Jw @(Ou) < —1.

As in (39) we obtain that for every such w we have d,, < 0. The inclusion
o(t)u € Hb,' implies by Lemma 3.5.1 that

1
) ——L_(dy
disty, (u, wy,) < kpe AL

(41)
Thus for ¢ large enough we may suppose that the corresponding w € Csp satisfies
u, € B(u, 1). On the other hand, the number of w € Csp with u,, € B(u, 1)
and d,, < 0 is finite. Hence, by eventually taking a subsequence we may sup-
pose that w is fixed. By letting t — oo in (41) we obtain that u = u,,. Thus
R C{u, ; we Csp}. O

Remark 5.1.6. Both Theorem 5.1.2 and Corollary 5.1.5 follow from Corollary
4.5.4 and inclusion (24). Consequently the conditions in Remark 4.5.6 are suffi-
cient also for the generalization of these two results.
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5.2. The symmetric space P, and the rays of slope ri(00),i = 1,n

Consider the symmetric space P,y , with group of isometries SL(n + 1, R), and
the lattice SL(n + 1,2Z). Let 7,11 = P,+1/SL(n + 1,7Z) and let proj be the
projection of P, onto 7,41 .

Let r; and r,, be the geodesic rays in P, defined as in (19). The ray r;, i =
1, n, projects onto a maximal singular cusp ray in 7, which we denote by r;.
The point at infinity r;(oc0) is the projective point (e,). The point at infinity
r,(00) is the hyperplane in P"R defined by x; = 0. We denote it by ej.

The set Sy, (R") can be related to sets of geodesic rays similar to pr from (37).
The formula (1) will then imply a result similar to Theorem 5.1.2. More precisely,
define

Ry ={ueUs(r) s —fr (proj (1 (Hw)
t — ¢ (¢t) infinitely many times as t — oo} . 42)

\Y

One can define a similar set for the ray r,, that is

Ry ={u € Uy(ra) ; —f, (proj (ra(tH)u))
> t — ¢(¢) infinitely many times as t — oo} . (43)
A remark similar to Remark 5.1.1 justifies the way R;), i = 1, n, are defined.

In the case when t — ¢ (t) = Bt we replace in (42) and in (43) the index ¢ by .

To simplify the formulas, we use the notation 7,, for the constant ”nil

Theorem 5.2.1. Let ¢ : [a, +00) — [b, +00) be a bijective function such that ¢
and n?id — ¢ are increasing functions. Then fori = 1, n,

j _ 9 1
H (Rz) _ 0, if Y o k" E 67 @mInk) _ o o
¢ 00, if Y o ke 2o7 @naink) — 5

Proof. Consider Sfp (R") the set defined as Sy (R"), but with the max-norm
replaced by the Euclidean norm. We have that S Ly R™ C Sfp (R™") C Sy (R").
This easily implies that (1) holds with Sy, (R") replaced by Sj (R").

Step 1. We first consider the set R.}) We recall that according to (20),

Ui(n) = {u,;: (Ig")f> : )EG]R”} .

We may therefore identify R” with U () and thus identify Sfp (R™) to a subset

of U, (r1), which we denote by gw.
I. We prove that

R;) C gl//p where ¥ (x) = xe~#¢T @minx) (45)
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Letu; € R;S Infinitely many times as t — oo we have that

— & (proj (ri(Duz)) =1 — (). (46)

By the discussion in the beginning of Section 3.6, this is equivalent to the state-
ment that for infinitely many ¢ as t — oo and infinitely many (p, g) € PZ"*!,

fop.pri®ug) < @(t) —1t.

The last inequality is equivalent to 7 (¢) ouz(p, g) < e ™ , which in its turn
writes as

0]
emllp+qxl| +e «/"("Jrl q <e 7’7111

$0—1 , . .
The inequality e ~Zro g> < e m isequivalent by monotonicity of ¢ with

1> ¢ (2, 11161) (47)

st
The 1nequa11ty ev"("“ lp + qxll2 < e m then implies that || p + qxll2
)
em !. This, inequality (47) and the fact that the function n?id — ¢ is increasing,

imply that

P+ qxlle < ¥i(q).
II. We prove that

Sy, CRL, where y(x) = xe~ ¥ GmIn/20) (48)
Letug € S,,. Then for infinitely many (j, ¢) € PZ"*!,

P+ gxlle < ¥2(q) .
We take t = ¢~ ' (21, ln(«/_q)) and consider

nt

e |+ |2 + e T g

) ) Bt
By the choice of ¢, the second term of the sum is equal to %e m ., The first
term is at most
' 5 ' 2 i 1 ¢m—t
e Vnn+1) 1//-2 (q) —e /n(n+1) q e Mt — Ee m

‘We conclude that
Pt

emllp+qx|| +e Wq <e m

This implies inequality (46) for the chosen ¢ = #(g). Hence inequality (46) is
satisfied infinitely many times as  — 00, consequently uz € Ry.

The double inclusion Sm - Rl C Swl and (1) with Sy (R") replaced by
Se (R™) imply the conclusion. Note that in the divergence part, what appears is
the sum in (1) for the function yr,. The function 1, differs from | by a factor V2
in front of the variable, in the argument of In. Nevertheless, it is easy to eliminate
this factor from the sum with an argument as in the proof of Remark 5.2.2.
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Step 2. We now consider the set Rj,. By (20),

1" .z n
U+(rn)—{ux—<01dn) ,XER}.

We identify R"” with U, (r,,) and thereby Sfp (R™) toasubset of U, (r,), denoted
by 31/, .

The pre-image of Hbg(r,) is | cpzni1 HbS.. Also, for every v = (g, p) €
pzn+l ,

[ ra®ug) = n,y In [ (Dup)* (¢, p)]
= I (¢ T ¢ + T | — g 2).
An argument almost identical to the one of Step 1 gives that
Sy, CR, CSy,.
This together with (1) implies the conclusion. O

Remark 5.2.2. In the definition of the set Rﬁp one can replace ¢ by ¢, = ¢ — c,
where c is a constant, and the conclusion of Theorem 5.2.1 still holds.

Proof. Without loss of generality we may assume that ¢ > 0 (the case ¢ <
0 is obtained by intertwining ¢ with ¢.). Theorem 5.2.1 applied to the func-
tion ¢, gives (44) with ¢, instead of ¢. The sum appearing in (44) is X, =
J -1 nKk+c Shn -1 n In
Zlfil kne_inmb (22nn11 k+c) EZOZZ;(X;[ ke~ n¢ ;271 Ink)
Suppose that ¥y = oo. Let p > 0 such that eZn < 2P. There exists r €
Shn ! n In
{0,1,...,27 — 1} such that So(r) = Y ypnp,, ke~ 220
other hand

. If X < o0 then X, < o0.

= 00. On the

k=1
and the latter sum is +00 because Xy(r) = +00. O
Corollary 5.2.3. (i) For any B € (0, 1), the set R%, i = 1,n, has Hausdorff
dimension d = n(1 — B) and Hd(R;,) = 0.
(ii) Both statements remain true for the set

i i i T — fr (proj (ri(Hw))
SRﬁzRﬂ\URﬁ,:{ueRﬂ;hmsup , =Bt .
’ [—>0o0
B'>p
(iii) The set R}, coincides with U (r;). The set R} is contained in {u € U, (r1);
riu(oo) € PZ"'} and the set R is contained in {uw € Uy (r,) ; ryu(oo) €
(PZ""{‘I)*}

Proof. (i) follows from Theorem 5.2.1, (ii) follows from (i), (iii) is obtained as
Corollary 5.1.5, (c). O
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5.3. Case when the ray measuring the depth has a different slope

We now try torelate the set L, (R") to sets of geodesic rays similar to R;) i=1,n,
from (42) and (43), and to reformulate (4) in terms of their Hausdorff measure. It
turns out that the sets R to be considered in this case are a bit different from all
the sets considered before. More precisely, what has to be considered is either the
set of rays of slope r|(c0) and their divergence measured with respect to 7, or the
set of rays of slope r,, (00) and their divergence measured with respect to ;. Before
defining them, we remark that the maximal possible depth of proj (r; (#)u) mea-
sured withrespecttor;, when {i, j} = {1, n},is %t -+ ¢, where c 1s a constant. Such
a depth occurs infinitely many times if and only if the ray proj (r;u) is contained
in the projection of a Weyl chamber with a 1-dimensional face asymptotic to 7;
(see Corollary 5.3.4, (iii)). Hence in this case in the definitions of the sets of rays
moving away in the cusp one must put %t — ¢ (t) with ¢ : [a, +00) — [b, +00).
Thus we define

Ry = {u € Up(r) 5 — f;, (proj (ri ()w)
1 e .
> —t — ¢(¢) infinitely many times as t — oo} .
n
Similarly we define
Rnl = {ll € U+(rn) 5 _fﬁ (Proj (r,(H)u))
1 P .
> —t — ¢ (¢) infinitely many times as t — oo} .
n

Let £, (R") be the set defined as Ly, (R") but with the max-norm replaced by
the Euclidean norm. We need to replace in (4) £, (R") by ﬁfp (R™).

Lemma 5.3.1. Let  be an approximating function such that ¥, (x) = @ is a
decreasing function. Then (4) holds with L, (R") replaced by L, (R").

Proof. The hypothesis on ¥ implies that
ﬁﬁw(ﬁ-)(Rn) C Ly, (R") C L myRY).
This and (4) yield
0, if Yoo, k"yYik)* "V < 0,
oo, if Y 7o, k™Y (nk)* "D = o0

Let p € N be such that 27 > /n. The hypothesis Y -, k"¢ (k)* "D = 00
implies that there exists r € {0, 1, ..., 27 —1}suchthat Y, ,,5., k"¢ (k)*~ "D

H(Ly,RY) = { (49)
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= 00. We have that Y ;o k"¢ (k) =70 > 32 k" 2Pk + r)* 7,
which implies that

DK (k) D = o0,
k=1

Hence (49) can be re-written such that the sum Z,fil k" (k)*~=D also
appears on the second line. O

Theorem 5.3.2. Let ¢ : [a, +00) — [b, +00) be a bijective function such that ¢
and nﬁ id — ¢ are increasing functions. Then for {i, j} = {1, n},

o ('R,ij> _ 0, lf thil kne—(s—n+1)"7"¢_l(2n,, Ink) < 00,
¢ o0, lf Zlfil kne—(s—n+1)%¢7l(217n Ink) _ 00 .

Proof. We give a proof only fori = 1, j = n, the argument in the other case is
similar. As in Step 1 of the proof of Theorem 5.2.1, we can identify R" to U (r1)
and thus identify £ (R") to a subset of U (r1), which we denote by L. We prove
that

Ly, CRY C Ly, , (50)

where Y| and 1, are the functions defined in (45) and (48), respectively.
I. We prove the second inclusion in (50). Let u; € Ré”. Then for infinitely many

t>0andv = (p,q) € PZ"*" we have that

1 1
£ (n@us) <¢@) = —1 < n,In [(ri(u)* (P, )] < (1) — ~.

The inequality above is equivalent to

R _nt d@) t
e | B2 + 0T (5 % — q) < e o

t

I o) _ . .
The inequality e V7D || p[|2 < e ™ ~ V#0#1D is equivalent to

t>¢ ' CnaIn|ple) - (51)

o) t

_m . .
The inequality e V2D (p - X — q)?> < e ™ oD implies that

(0]
(p-X—qP=em ™. (52)

The hypothesis that 2 id — ¢ is an increasing function, together with (51) and
(52) imply that [p - ¥ — g| < Y1 (I1Plle)-
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II. We prove the first inclusion in (50). Let uz € EI/,Z. It follows that for infi-
nitely many (p, g) € PZ"*!, we have |p - X — gq| < ¥»(||p|l.). Consider t =

¢! (277,1 ln(ﬁ||13||e)) and the expression
¢V | B2+ e (5 & — ) (53)

.t o _
The choice of # implies that e Vr@+D ||p||§ = %e m Va1 We also have

nt t

nt _ 1 o0 _
T (5 = q)? < T (|l = e

o) _ t
Thus the expression in (53) is at most e ™  va@+D  which implies that

1
f(},q) (ri(®uz) < @) — ;l-

Since this holds for infinitely many (p, g) € PZ"*!, we obtain that u; € Ré,”.
The double inclusion (50) and Lemma 5.3.1 yield the conclusion. O

Remark 5.3.3. In the definition of the sets R;{ the function ¢ can be replaced by
¢. = ¢ — c, where c is a constant, and Theorem 5.3.2 still holds.

Proof. Similar to the one of Remark 5.2.2. O

Corollary 5.34. (i) Forany B € (O, %), the set Rigj, {i, j} = {1, n}, has Haus-

dorff dimension d = n(1 — B) and Hd(ngj) = Q.
(ii) Both statements remain true for the set

.. .. .. .. — f7 1 i (1
ERY =Ry \ U RZ/ = {ueRg ; lim sup Jr; (proj (ri(D)w) =,3} )

p=p t—00 t

(iii) The set Rf)j coincides with U (r;).
The set Rll” is a subset of the set of u € U, (r1) such that the projective point
riu(oo) is contained in one of the hyperplanes of equation x; = q, where
q€Zandi €{l1,2,...,n}
The set R’il is a subset of the set of u € Uy (r,) such that the hyperplane

r,u(oo) contains one of the vectors e; + qe,i1, where ¢ € Z and i €
{1,2,...,n}.

Proof. (i) follows from Theorem 5.3.2 and (ii) follows from (i).
The first statement in (iii) is again a consequence of the logarithm law [KM, ].
We prove the second statement. The proof of the third is similar.
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Letu; € R]l". As in the proof of Theorem 5.3.2, I, we deduce that there exist
infinitely many (p, ¢) € PZ"*! and ¢ > 0 such that

13

13 t
¢ VI | B2 4 Vi (p ¥ — q)2 < ¢ VD

It follows that || p[|> < 1 and that (p - X — ¢)> < e~ "™'. The first inequality
implies that p = ¢; € R" forsomei € {1, 2, ..., n}. We may suppose that for infi-
nitely many ¢ > 0 it is the same i. The second inequality gives (x; — g)> < ™™,
for infinitely many ¢, as t — oo. There are finitely many possibilities for ¢, so
again we may suppose that in the previous sequence of inequalities ¢ is fixed.
Then as t — oo, this gives x; = q. O
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