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Abstract

We introduce a concept of tree-graded metric space and we use it to show quasi-isometry invariance of certain
classes of relatively hyperbolic groups, to obtain a characterization of relatively hyperbolic groups in terms of their
asymptotic cones, to find geometric properties of Cayley graphs of relatively hyperbolic groups, and to construct
the first example of a finitely generated group with a continuum of meaguivalent asymptotic cones. Note that
by a result of Kramer, Shelah, Tent and Thomas, continuum is the maximal possible number of different asymptotic
cones of a finitely generated group, provided that the Continuum Hypothesis is true.
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1. Introduction

An asymptotic cone of a metric space is, roughly speaking, what one sees when one looks at the space
from infinitely far away. More precisely, any asymptotic cone of a metric sp&Ecdist) corresponds to
an ultrafilterw, a sequence of observation poiats (e, ),y from X and a sequence of scaling constants
d = (dy),en diverging tooco. The cone Co(X; e, d) corresponding t@ andd is the w-limit of the
sequence of spaces with basepoii¥sdist/d,, ¢,,) (see Section 3 for precise definitions).

In particular, if X is the Cayley graph of a grou with a word metric then the asymptotic cones of
X are called asymptotic cones 6f

The concept of asymptotic cone was essentially used by Gronj@8jmand then formally introduced
by van den Dries and Wilkif54].
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Asymptotic cones have been used to characterize important classes of groups:

o A finitely generated group is virtually Abelian if and only if its asymptotic cones are isometric to the
Euclidean spaci” [28,44]

o Afinitely generated group is virtually nilpotent if and only if its asymptotic cones are locally compact
[28,54,25]

e A finitely generated group is hyperbolic if and only if its asymptotic conesRatrees[30].

In[20] itis shown moreover that asymptotic cones of non-elementary hyperbolic groups are allisometric
to the complete homogeneoRstree of valence continuum. The asymptotic cones of elementary groups
are isometric to either a ling (if the group is infinite) or to a point. In particular, every hyperbolic group
has only one asymptotic cone up to isometry.

Asymptotic cones of quasi-isometric spaces are bi-Lipschitz equivalent. Thus the topology of an asymp-
totic cone of a finitely generated group does not depend on the choice of the generating set. This was
used in[33,34] to prove rigidity results for fundamental groups of Haken manifold§3ij to prove
rigidity for cocompact lattices in higher rank semisimple groups, arf@3hto provide an alternative
proof of the rigidity for non-cocompact lattices in higher rank semisimple groups. For a survey of results
on quasi-isometry invariants and their relations to asymptotic cond25ge

The power of asymptotic cones stems from the fact that they capture both geometric and logical
properties of the group, since a large subgroup of the ultrapGfesf the groupG acts transitively by
isometries on the asymptotic cone C@6'; ¢, d). Logical aspects of asymptotic cones are studied and
used in the recent papers by Kramer e{28,39]

One of the main properties of asymptotic cones of a metric sgaisghat geometry of finite config-
urations of points in the asymptotic cone reflects the “coarse” geometry of similar finite configurations
in X. This is the spirit of Gromov—Delzant's approximation statenjé8t and of the applications of
R-trees to Rips—Sela theory of equations in hyperbolic groups and homomorphisms of hyperbolic groups
[48]. This was also used in Diuis proof of hyperbolicity of groups with sub-quadratic isoperimetric
inequality[24].

By a result of Gromoy30] if all asymptotic cones of a finitely presented group are simply connected
then the group has polynomial isoperimetric function and linear isodiametric function. Papasoglu proved
in [45] that groups having quadratic isoperimetric functions have simply connected asymptotic cones. In
general, asymptotic cones of groups are not necessarily simply confte®}da fact, if a groupG is not
finitely presented then its asymptotic cones cannot all be simply conri@8ée&]. A higher-dimensional
version of this result is obtained by Ril¢§7]. Examples of finitely presented groups with non-simply
connected asymptotic cones can be found.(h49]

Although asymptotic cones can be completely described in some cases, the general perception is
nevertheless that asymptotic cones are usually large and “undescribable”. This might be the reason of
uncharacteristically “mild” questions by Grom{R0]:

Problem 1.1. Which groups can appear as subgroups in fundamental groups of asymptotic cones of
finitely generated groups?

Problem 1.2. Is it true that the fundamental group of an asymptotic cone of a group is either trivial or
uncountable?
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In [30], Gromov also asked the following question.
Problem 1.3. How many non-isometric asymptotic cones can a finitely generated group have?

A solution of Problem 1.1 was given by Erschler and Q2. They proved that every metric space
satisfying some weak properties can/e and isometrically embedded into the asymptotic cone of a
finitely generated group. This implies that every countable group is a subgroup of the fundamental group
of an asymptotic cone of a finitely generated group.

Notice that since asymptotic cones tend to have fundamental groups of order continuum, this result
does not give information about the structure of the whole fundamental group of an asymptotic cone, or
about how large the class of different asymptotic cones is: there exist groups of cardinality continuum (for
example, the group of all permutations of a countable set) that contain all countable groups as subgroups.
One of the goals of this paper is to get more precise information about fundamental groups of asymptotic
cones, and about the whole set of different asymptotic cones of a finitely generated group.

Problem 1.3 turned out to be related to the Continuum Hypothesis (i.e. the question of whether there
exists a set of cardinality strictly betwesg and 2°0). Namely, in[38], it is proved that if the Continuum
Hypothesis is not true then any uniform lattice in,$R) has 2" non-isometric asymptotic cones, but
if the Continuum Hypothesis is true then any uniform lattice i @) has exactly one asymptotic cone
up to isometry; moreover the maximal theoretically possible number of non-isometric asymptotic cones
of a finitely generated group is continuum. Recall that the Continuum Hypothesis is independent of the
usual axioms of set theory (ZFC).

It is known, however, that even if the Continuum Hypothesis is true, there exist groups with more
than one non-homeomorphic asymptotic cfid]. Nevertheless, it was not known whether there exists
a group with the maximal theoretically possible number of non-isometric asymptotic cones (continuum).

In [29], Gromov introduced a useful generalization of hyperbolic groups, namely the relatively hyper-
bolic groupst This class includes:

(1) geometrically finite Kleinian groups; these groups are hyperbolic relative to their cusp subgroups;

(2) fundamental groups of hyperbolic manifolds of finite volume (that is, non-uniform lattices in rank
one semisimple groups with trivial center); these are hyperbolic relative to their cusp subgroups;

(3) hyperbolic groups; these are hyperbolic relative to the trivial subgroup or more generally to collections
of quasi-convex subgroups satisfying some extra conditions;

(4) free products of groups; these are hyperbolic relative to their factors;

(5) fundamental groups of non-geometric Haken manifolds with at least one hyperbolic component; these
are hyperbolic relative to the fundamental groups of the maximal graph-manifold components and
to the fundamental groups of the tori and Klein bottles not contained in graph-manifold components
(8l;

(6) w-residually free groups (limit groups in another terminology); these are hyperbolic relative to the
collection of maximal Abelian non-cyclic subgroufds].

1 These groups are also callstiongly relatively hyperboliin order to distinguish them from weakly relatively hyperbolic
groups in the sense of Farb.
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There exist several characterizations of relatively hyperbolic groups which are in a sense parallel to the
well-known characterizations of hyperbolic groups (&27,43,17,56&nd references therein). But there
was no characterization in terms of asymptotic cones. Also, it was not known whether being relatively
hyperbolic with respect to any kind of subgroups is a quasi-isometry invariant, except for hyperbolic
groups when quasi-isometry invariance is true.

The following theorems are the main results of the paper (we formulate these results not in the most
general form).

The first theorem gives more information about the possible structure of fundamental groups of asymp-
totic cones.

Theorem 1.4(Theorem 7.33 and Corollary 7.32(1) For every countable group ,Ghe free product of
continuously many copies of C is the fundamental group of an asymptotic coregefreerated group.

(2) There exists @-generated group’ such that for every finitely presented grouptfe free product
of continuously many copies of G is the fundamental group of an asymptotic cbne of

The second theorem answers the question about the number of asymptotic cones of a finitely generatec
group.

Theorem 1.5(Theorem 7.3} Regardless of whether the Continuum Hypothesis is true grthete
exists a finitely generated group G with continuously many pairwisemeaquivalent asymptotic cones.

The third theorem shows that large classes of relatively hyperbolic groups are closed under quasi-
isometry. We call a finitely generated grofipunconstrictedf one of its asymptotic cones has no global
cut-points.

Theorem 1.6(Corollary 5.22. Let G be a finitely generated group that is hyperbolic relative to uncon-
stricted subgroup$fs, ..., Hy,.

LetG’ be a group that is quasi-isometric @. ThenG’ is hyperbolic relative to subgrougé;, .. ., H,,
each of which is quasi-isometric to one®f, ..., Hy,.

The number of “parabolic” subgroup$H, };.; in Theorem 1.6 is not a quasi-isometry invariant. This
can be seen for instance for the fundamental groups of a finite-volume hyperbolic manifold and of a finite
covering of it.

There are previous results showing that some special classes of relatively hyperbolic groups are closed
under quasi-isometry: the class of fundamental groups of non-geometric Haken manifolds with at least
one hyperbolic componeii83,34] and the class of non-uniform lattices of isometries of a rank one
symmetric spacfb0]. The class of free products of groups with finite amalgamated subgroups is closed
under guasi-isometry by Stallings’ Ends Theorem (g for more general results about graphs of
groups with finite edge groups).

The main ingredient in the proof of Theorem 1.6 is the following result, interesting by itself.

Theorem 1.7(Corollary 5.8. LetG be afinitely generated group that is hyperbolic relative to subgroups
Hi, ..., H,,andletG’ be an unconstricted group. Then the imag&ofinder any(L, C)-quasi-isometry

G’ — G is in an M-tubular neighborhood of a cosetH;, g € G,i =1, ..., m, where M depends on
L,C, G and S only.
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Note that the hypothesis of Theorem 1.7 that the griGup unconstricted clearly cannot be removed.

For example, a relatively hyperbolic group itself is not in a bounded neighborhood of a coset of any of
its “parabolic” subgroup$i; providedH; are proper subgroups.

Theorem 1.7 does not apply in this case because relatively hyperbolic groups are csstificted
i.e. they have global cut-points in every asymptotic cone (see Theorem 1.11).

A result similar to Theorem 1.7 is obtained[#6, Section 3for G a fundamental group of a graph of
groups with finite edge groups aca one-ended group. We should note here that unconstricted groups
are 1-ended by Stallings’ Ends Theorem. The converse statement is most likely not true because the
asymptotic cones of any hyperbolic group &rees.

Theorem 1.7 in particular gives information about which unconstricted subgroups can appear as undis-
torted subgroups in a relatively hyperbolic group (see Remark 8.30(1)). The following theorem clarifies
even more the question of the structure of undistorted subgroups in relatively hyperbolic groups.

Theorem 1.8(Theorem 8.2P Let G = (S) be a finitely generated group that is hyperbolic relative to
subgroupsts, ..., H,. Let G’ be an undistorted finitely generated subgroup of G. TGérs relatively
hyperbolic with respect to subgroup, . . ., H,,, where eactH; is one of the intersectiorﬁ/mgng‘l,

g€G,je{l,2,...,n}.
We also obtain information about the automorphism group of a relatively hyperbolic group.

Theorem 1.9(Corollary 8.3)). Let G be a finitely generated group that is relatively hyperbolic with
respect to a unconstricted subgroup H. [Eex(H) be the subgroup of the automorphism group of G
consisting of the automorphisms that fix H as a set. Then

(1) Inn(G)Fix(H) = Aut(G).

(2) Inn(G) NFix(H) = Inng (G), wherelnng (G) is by definition{i;, € Inn(G) | h € H}.

(3) There exists a natural homomorphism fré@wit(G) to Out(H) given by¢ — iz, $ln, Whereg,,
is an element of G such that ¢ € Fix(H), andy/|y denotes the restriction of an automorphism
Y € Fix(H) to H.

We call a finitely generated growpide if none of its asymptotic cones has a global cut-point. Wide
groups are certainly unconstricted (the converse statement is most likely not true).
Here are examples of wide groups

e Non-virtually cyclic groups satisfying a law (see Corollary 6.13). Recall thatais a wordw in
n lettersx, ..., x, anda group satisfying the law is a groupG such thatw = 1 in G whenever
x1, ..., X, are replaced by an arbitrary setoélements irG. For instance Abelian groups are groups
with the laww = xlxzxilxgl. More generally, solvable groups are groups with a law, and so are
Burnside groups. Also, uniformly amenable groups are groups satisfying a law (see Corollary 6.16).
While for nilpotent groups the results of Theorems 1.6 and 1.7 are not surprising and were already
known in some particular cases of relatively hyperbolic grd6p$ for solvable non-nilpotent groups
and for Burnside groups the situation is different. For instance the group Sol has asymptotic cones
composed of continuously many Hawaiian earrifif3], so it is a priori not clear why such a group
should have a rigid behavior with respect to quasi-isometric embeddings into relatively hyperbolic
groups. Burnside groups display a similar picture.
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In the case of non-virtually cyclic groups with a law, the constdrih Theorem 1.7 depends only on
the law and not on the group(Corollary 6.14).

e Non-virtually cyclic groups with elements of infinite order in the center (see Theorem 6.5); the constant
M in Theorem 1.7 is the same for the whole class of such groups (Theorem 6.7 and Corollary 6.8).

e Groups of isometries acting properly discontinuously and with compact quotients on products of
symmetric spaces and Euclidean buildings, of rank at least two. The asymptotic cones of such groups
are Euclidean buildings of rank at least tf&¥]. Most likely the same is true for such groups of
isometries so that the quotients have finite volume, but the proof of this statement is not straightforward.

The main tool in this paper are tree-graded spaces.

Definition 1.10. Let F be a complete geodesic metric space anellbe a collection of closed geodesic
subsets (callegdiece$. Suppose that the following two properties are satisfied:

(T1) Every two different pieces have at most one common point.
(T2) Every simple geodesic triangle (a simple loop composed of three geodediégs)dontained in one
piece.

Then we say that the spakes tree-graded with respect t@.

The maininterestin the notion of tree-graded space resides in the following characterization of relatively
hyperbolic groups of which the converse part is proven in Section 8 and the direct part in the Appendix
written by Osin and Sapir.

Theorem 1.11(Theorem 8.h Afinitely generated group G is relatively hyperbolic with respect to finitely
generated subgroupds, ..., H, if and only if every asymptotic cor@orn’(G; e, d) is tree-graded with
respect tan-limits of sequences of cosets of the subgratdps

Section 2 contains many general properties of tree-graded spaces.

In particular, by Lemma 2.31 any complete homogeneous geodesic metric space with global cut-points
is tree-graded with respect to a certain uniquely defined collection of pieces which are either singletons
or without cut-points.

We prove in Proposition 2.17 that the properfg)(in the definition of tree-graded spaces can be
replaced by the assumption thatoversF and the following property which can be viewed as a extreme
version of the bounded coset penetration property:

(T;) For every topological are : [0,d] — F andr € [0,d], let¢[t — a,t + b] be a maximal
sub-arc ofc containinge(z) and contained in one piece. Then every other topological arc with the
same endpoints asnust contain the pointgr — a) andc(z + b).

Moreover, whenT>) is replaced byT,) the condition that the pieces are geodesic can be weakened to
the one that pieces are arc-connected. Here by arc-connected we mean the property that two points car
be joined by a topological arc. Thus, if we moreover replace the hypothesis of the space being geodesic
by the one that it is arc-connected, tree-graded spaces can be considered in a purely topological setting.
Most of the properties and arguments in Section 2 hold in this more general setting.



966 C. Drutu, M. Sapir / Topology 44 (2005) 959—-1058

Notice that there are similarities in the study of asymptotic cones of groups and that of boundaries
of groups. Boundaries of groups do not necessarily have a natural metric, and rarely are arc-connected
spaces, but they have a natural topology and they are also, in many interesting cases, homogeneous spac
with respect to actions by homeomorphisms. Thus, if the boundary of a group is homogeneous and has a
global cut-point then most likely it is tree-graded (in the topological sense) with respect to pieces that do
not have cut-points. Such a study of boundaries of groups with global cut-points appeared, for example,
in the work of Bowditch[6] on the Bestvina—Mess conjecture. Bowditch developed a general theory
appropriate for the study of topological homogeneous spaces with global cut-points that is related to the
study of tree-graded spaces that we do in this paper. Results related to Bowditch’s work in this general
setting can be found ifi].

As a byproduct of the arguments in Sections 4 and 8, we obtain many facts about the geometry of
Cayley graphs of relatively hyperbolic groups. Recall that given a finitely generated Greu) and a
finite collectionHs, . . ., H, of subgroups of it, one can consider the standard Cayley graph Caylsy
and the modified Cayley graph Cayl€y, S U #), wheres# = | |!_;(H;\{e}). The standard definition
of relative hyperbolicity of a grougg; with respect to subgroupHs, ..., H, is given in terms of the
modified Cayley graph Caylég, S U #). Theorem 1.11 and the results of Section 4 allow us to define
the relative hyperbolicity of5 with respect toH,, ..., H, in terms of CayleyG, S) only. This is an
important ingredient in our rigidity results.

Animportant partin studying tree-graded spaces is playeshhyrationof geodesics. 16 is relatively
hyperbolic with respect téf1, ..., H,, g is a geodesic in Caylé€g, S) andM is a positive number, then
the M-saturation ofg is the union ofy and all left cosets off; whoseM -tubular neighborhoods intersect
g. We show that in the study of relatively hyperbolic groups, saturations play the same role as the geodesics
in the study of hyperbolic groups.

More precisely, we use Bowditch’s characterization of hyperbolic griflheand show that tubular
neighborhoods of saturations of geodesics can play the role of “lines” in that characterization. In particular,
we show that for every geodesic triangle, B, C] in Cayley G, S) the M-tubular neighborhoods of the
saturations of its sides (for son¢ depending orG andS) have a common point which is at a bounded
distance from the sides of the triangle or a common left coset which is at a bounded distance from the
sides.

We also obtain the following analog for relatively hyperbolic groups of the Morse lemma for hyperbolic
spaces. Recall that the Morse lemma states that every quasi-geodesic in a hyperbolic space is at a bounde
distance from a geodesic joining its endpoints. In the relative hyperbolic version of the lemma we also
use the notion ofift p of a geodesig in CayleyG, S U ). Recall that the meaning of it is that
one replaces each edge pnlabelled by an element i’ by a geodesic in Caylé€w, S) (see also
Definition 8.26).

We again do not write the statements in the whole generality.

Notations. Throughout the paper)’s(A) denotes thé-tubular neighborhood of a subsétin a metric
spaceX, thatis{x e X | dist(x, A) < 5}. We denote by/"s5(A) its closure, that i$x | dist(x, A)<d}. In
the particular case wheti={x} we also use the notatio®x, §) andB(x, J) for the tubular neighborhood
and its closure.

Theorem 1.12Morse property for relatively hyperbolic groupsLetG=(S) be a group thatis hyperbolic
relative to the collection of subgroups, . . ., H,,. Then there exists a constant M depending only on the
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generating set S such that the following holds. 4 be a geodesic i€ayley(G, S), let g be an(L, C)-
quasi-geodesic iCayley G, S) and letp be an(L, C)-quasi-geodesic i€Cayley G, S U #). Suppose
thatg, g andp have the same endpoints. Then for sardepending only od., C, S:

(1) qis contained in the-tubular neighborhood of the M-saturation gf

(2) LetgH; andg’H; be two left cosets contained in the M-saturatiog.dfetq’ be a sub-quasi-geodesic
of g with endpoints: € ./"(gH;) andb € ./"(g'H;) which intersects/".(¢H;) and ./ (g'H;)
in sets of bounde(in terms ofk) diameter. Then a and b belong to theubular neighborhood aof,
whereé depends only o, C, k.

(3) Inthe Cayley graptCayley G, S U #), q is at Hausdorff distance at mosfrom p.

(4) In CayleyG, ), q is contained in the-tubular neighborhood of the-saturation of any liftp of p.
In its turn, p is contained in the-tubular neighborhood of the-saturation ofg.

The proof of this theorem and more facts about the geometry of relatively hyperbolic groups are
contained in Lemmas 4.25, 4.26 and 4.28, and Propositions 8.25 and 8.28.

Theorem 1.11 and statements about tree-graded spaces from Section 2 imply that for relatively hyper-
bolic groups, Problem 1.2 has a positive answer.

Corollary 1.13. The fundamental group of an asymptotic cone of a relatively hyperbolic group G is
either trivial or of order continuum.

Proof. Suppose that the fundamental group of an asymptotic cone of the grasmon-trivial. By
Theorem 1.11, the asymptotic cone®fis tree-graded with respect to a set of pieces that are isometric
copies of asymptotic cones of the parabolic subgradpwith the induced metric. The induced metric
on eachH,; is equivalent to the natural word metric by quasi-convexity (see Lemma 4.15). Moreover, in
that set, every piece appears together with continuously many copies.

The argument in the first part of the proof of Proposition 2.22 shows that at least one of the pieces has
non-trivial fundamental group.

The argument in the second part of the proof of Proposition 2.22 implies that the fundamental group
of the asymptotic cone d@i contains the free product of continuously many copies.of

The following statement is another straightforward consequence of Theorem 1.11.

Corollary 1.14. If a group G is hyperbolic relative toH1, .. ., Hy,}, and each; is hyperbolic relative
to a collection of subgroup{sHl.l, ..., H"} then G is hyperbolic relative t{)Hl.J lie{l,...,m}, je
{1,...,n;}}.

See Problem 1.21 below for a discussion of Corollary 1.14.

Note that in the alternative geometric definition of relatively hyperbolic groups given in Theorem 1.11
we do not need the hypothesis tl#atare finitely generated. This follows from the quasi-convexity of the
groupsH; seen as sets in Cayl@y, S) (Lemma 4.15). Moreover, this geometric definition makes sense
whenG is replaced by a geodesic metric spatand the collection of cosets of the subgroufisis
replaced by a collectiofy of subsets oK. A similar generalization can be considered for Farb’s definition
of relative hyperbolicity (including the BCP condition). Thus, both definitions allow to speak of geodesic
spaces hyperbolic relative to families of subsets. Such spaces, completely unrelated to groups, do appea
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naturally. For instance the complements of unions of disjoint open horoballs in rank one symmetric
spaces are hyperbolic with respect to the boundary horospheres. Also, the free product of two metric
spaces with basepointX, xp) and(Y, yo), as defined if46, Section 1]is hyperbolic with respect to
all the isometric copies ok andY. It might be interesting for instance to study actions of groups on
such spaces, hyperbolic with respect to collections of subsets. To some extent, this is already done in
the proof of our Theorem 5.13, where a particular case of action of a group by quasi-isometries on an
asymptotically tree-graded relatively hyperbolic) space is studied.

Bowditch’s characterization of hyperbolic graphs can be easily generalized to arbitrary geodesic metric
spaces. So one can expect that an analog of Theorem 1.11 is true for arbitrary geodesic metric spaces.

1.1. Open problems

Problem 1.15. Is it possible to drop the condition th&i; are unconstricted from the formulation of
Theorem 1.6?

An obvious candidate to a counterexample would be, for instance, the pair of gfeugsk Ax Ax A,
whereA = 72, andG’ = (A * A x A x A)xZ/4Z, whereZ /47 permutes the factors. The gro@pis
relatively hyperbolic with respecttd x A x 1x 1 and 1x 1 A x A. It is easy to check that the grodp is
not relatively hyperbolic with respect to any isomorphic copyaf A. Unfortunately this example does
not work. Indeed@’ is quasi-isometric tal x A by [46], soG’ is relatively hyperbolic with respect to a
subgroup that is quasi-isometric #ox A, namely itself. Moreover, it is most likely that’ is hyperbolic
relative to a proper subgroup isomorphicAa: Z which is also quasi-isometric td = A by [46].

Problem 1.16. Corollary 5.24 shows the following. L&t be a group, asymptotically tree-graded as a
metric space with respect to a family of subspaegesatisfying the following conditions:

(1) .« isuniformly unconstricted (see Definition 5.4 for the notion of collection of metric spaces uniformly
unconstricted);

(2) there exists a constansuch that every pointin every € .«7 is at distance at mostfrom a bi-infinite
geodesic iM;

(3) for afixedxp € G and everyR > 0 the ballB(xg, R) intersects only finitely many € .o7.

Then the grougs is relatively hyperbolic with respect to subgroufds, ..., H,, such that eveny; is
quasi-isometric to soma € 7.
Can one remove some of the conditions (1), (2), (3) from this statement?

Problem 1.17. Is every unconstricted group wide?

Problem 1.18. Is every constricted grou@ relatively hyperbolic with respect to a collection of proper
subgroupsHs, ..., H,}? Here are some more specific questions. Consider the canonical representation
of every asymptotic cone as a tree-graded space (with respect to maximal path-connected subsets tha
are either singletons or without global cut-points, as in Lemma 2.31). Is there a family of subeéts

G such that each piece in each asymptotic con€é &f an ultralimit of a sequence of sets frou? Can

one take« to be the set of all left cosets of a (finite) collection of subgroiis ..., H,}?
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Note that a positive answer to Problem 1.18 gives a positive answer to Problem 1.15, as being constricted
is a quasi-isometry invariant. Also, it would follow that the rigidity result Theorem 1.7 holds as soon as
G’ is not relatively hyperbolic.

Here is a related question.

Problem 1.19. Is every non-virtually cyclic group without free non-abelian subgroups wide (uncon-
stricted)? Is there a non-virtually cyclic constricted group with all proper subgroups cyclic?

It is easy to notice that in all examples of groups with different asymptotic cone$(Goam, d),
one of the cones corresponds to a very fast growing sequegrcé&d,). Equivalently, we can assume
thatd, = n but w contains some fast growing sequence of natural numhets{a1, a, . ..}. What if
we avoid such ultrafilters? For example, letbe the set of all complements of finite sets and of all
complements of sequencds= {a1,a2, ..., a,,...} (a1 <azx<---<a, <---) which grow faster than
linear i.e. lima,/n) = co. It is easy to see tha? is a filter. Letw be an ultrafilter containing?. Then
no set inw grows faster than linear. Let us call ultrafilters with that propstbyv. An asymptotic cone
Cor’(G, (n)) corresponding to a slow ultrafilter also will be callgldw.

Problem 1.20. Are there finitely generated groupswith two bi-Lipschitz non-equivalent slow asymp-
totic cones? Is it true that if a slow asymptotic conedhas (resp. has no) global cut-points then the
group is constricted (resp. wide)? Is it true that if a slow asymptotic codehas global cut-points then
G contains non-abelian free subgroups?

See Section 6.2 for further discussion of free subgroups of wide (unconstricted) groups.
The next problem is motivated by Corollary 1.14 above.

Problem 1.21. By Corollary 1.14, one can consider a “descending process”, finding smaller and smaller
subgroups of a (finitely generated) groGpwith respect to whiclG is relatively hyperbolic. Does this
process always stop? Does every gr@ugontain a finite collection of unconstricted subgroups with
respect to whiclG is relatively hyperbolic?

Problem 1.22. A group G = (S) is weakly hyperbolic relative to subgroups, ..., H, if the Cayley

graph CayleyG, SU.#) is hyperbolic. Itwould be interesting to investigate the behavior of weak relatively
hyperbolic groups up to quasi-isometry. In particular, it would be interesting to find out if an analog of
Theorem 1.6 holds. The arguments used in this paper for the (strong) relative hyperbolicity no longer
work. This can be seen on the exampleZéf That group is weakly hyperbolic relative @ 1. But a
quasi-isometry; : 7" — 7" can transform left cosets @~ into polyhedral or even more complicated
surfaces (sef87, Introductionjfor examples). Nevertheless it is not a real counter-example to a theorem
similar to Theorem 1.6 for weak hyperbolic groups, as every group quasi-isomeftigswirtually 7”.

1.2. Plan of the paper

In Section 2, we establish some basic properties of tree-graded spaces. In particular, we show that
tree-graded spaces behave “nicely” with respect to homeomorphisms.

In Section 3, we establish general properties of asymptotic cones and their ultralimits. We show that
the ultralimit of a sequence of asymptotic cones of a metric sFaisean asymptotic cone df itself.
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In Section 4, we give an “internal” characterizationasfymptotically tree-graded metric spacées.
pairs of a metric spack¥ and a collection of subsetg, such that every asymptotic cone CaX; e, d)
is tree-graded with respect é@limits of sequences of sets from.

In Section 5, we show that being asymptotically tree-graded with respect to a family of subsets is a
quasi-isometry invariant. This implies Theorem 1.6.

In Section 6, we show that asymptotic cones of a non-virtually cyclic group do not have cut-points
provided the group either has an infinite cyclic central subgroup, or satisfies a law.

In Section 7, we modify a construction from the pajp28] to prove, in particular, Theorems 1.4
and 1.5.

In Section 8 and in the Appendix (written by Osin and Sapir), we prove the characterization of rela-
tively hyperbolic groups in terms of their asymptotic cones given in Theorem 1.11. Theorem 1.8 about
undistorted subgroups of relatively hyperbolic groups is also proved in Section 8.

2. Tree-graded spaces
2.1. Properties of tree-graded spaces

Let us recall the definition of tree-graded spaces. We say that a stilo$et geodesic metric space
is ageodesic subsdtevery two points inA can be connected by a geodesic containedl.in

Definition 2.1 (tree-graded spacés Let F be a complete geodesic metric space ang?’lbe a collection
of closed geodesic subsets (calfgdces. Suppose that the following two properties are satisfied:

(T1) Every two different pieces have at most one common point.
(T») Every simple geodesic triangle (a simple loop composed of three geodedidésdontained in one
piece.

Then we say that the spates tree-graded with respect t@.

Remark 2.2 (degenerate trianglgs We assume that a point is a geodesic triangle composed of geodesics
of length 0. ThusT>) implies that the pieces covér

The next several lemmas establish some useful properties of tree-graded spaces. Until Proposition 2.17,
[ is a tree-graded space with respecto

Lemma 2.3. If all pieces inZ are R-trees therf is an R-tree.
Proof. Itis an immediate consequence(@b). O

Lemma 2.4. Let M be a piece amhx a pint outside M. If y and z are points in M such that there exist
geodesic$x, y] and[x, z], joining them to x which intersect M only in y angrespectivelytheny = z.

Proof. Suppose that # z. Joiny andz by ageodesity, z]in M. Letx’ be the farthest fromintersection
point of the geodesids, y]and[x, z]. The trianglex’yz is simple because by the assumpfieny]U[x, z]
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intersects witl y, z] only in y andz. Therefore that triangle is contained in one pid¢eby (72). Since
M N M’ containgy, z], M = M’ by (T1), sox’ € M, a contradiction since’ belongs both tdx, y] and
to [x, z] but cannot coincide with both andz at the same time. O

Lemma 2.5. Every simple quadranglé.e. a simple loop composed of four geodesics is contained
in one piece.

Proof. Let A1, Az, A3 and A4 be the vertices of the quadrangle. Suppose that each vertex is not on
a geodesic joining its neighbors, otherwise we have a geodesic triangle and the statement is trivial.
Let g be a geodesic joiningl1 and As. Let P be its last intersection point withd1, A2] U [A1, A4l.
Suppose thaP € [A1, A2] (the other case is symmetric). L@tbe the first intersection point gfwith

[A2, A3]U[A3, As)]. Replace the arc af betweend, and P with the arc offA1, A»] between these two
points, and the arc of betweenQ and A3z with the corresponding arc ¢fA», A3] U [A3, As]. Theng

thus modified cuts the quadrangle into two simple triangles having in common the gddtiegic Both
triangles are in the same piece ), and so is the quadrangled

Lemma 2.6. (1) Each piece is a convex subsetrof
(2) For every pointx € F and every pieced € 2, there exists a unique point € M such that
dist(x, M) = dist(x, y). Moreover every geodesic joining with a point of M contains y.

Proof. (1) Suppose that there exists a geodggaining two points ofM and not contained iM. Letz
be a point ing\ M. Thenz is on a sub-arg’ of g intersectingM only in its endpointsg, b. Lemma 2.4
impliesa = b =z € M, a contradiction.

(2) Lety, € M be such that lim, » dist(x, y,) = dist(x, M). SinceM is closed, we may suppose
that every geodesia, y,] intersectsV only in y,. It follows by Lemma 2.4 thapy = yo =--- = y.

Letz € M and letg be a geodesic joiningwith x. Letz’ be the last point og contained inM. Then
7 =y, bylLemma2.4. O

Definition 2.7. We call the pointy in part (2) of Lemma 2.@8he projection ofc onto the piecéV.

Lemma 2.8. Let M be a piece ashx a pint outside it withdist(x, M) = ¢, and let y be the projection of
x onto M. Then the projection of every poing B(x, 6) ontoM is equal to y.

Proof. Notice that by part (2) of Lemma 2.B(x, ) N M = {y}. Suppose that the projectian of
z € B(x, 6) onto M is different fromy. Thenz # y; hencez does not belong ta/.

Consider a geodesic quadrangle with vertices 7’ andy. By the definition of projection, the interiors
of [z, Z/]1U [x, y] and[y, z’] do not intersect.

If there is a common point of [x, y] and[z, z'] then we get a contradiction with Lemma 2.4 [s0y]
and[z, 7] are disjoint. In particulafz, z'1 U [z/, y] U [y, x] is a topological arc. Since € B(x, 9)\{y},
the side[x, z] of this quadrangle does not interséé¢t By part (1) of Lemma 2.6 it follows thdtx, z]
does not intersedty, z'].

We can replace if necessaryith the last intersection point ¢, x] with [z, z’'] andx with the last
intersection point of the geodesios y] and[x, z]. We get a simple geodesic quadrangite’y in which
the side[x, z] possibly reduces to a point. By Lemma 2.5, it belongs to one piece. Since[it,hakin
common withM, that piece isVf by (77). But this contradicts the fact that,z]N M =@. O
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Corollary 2.9. Every continuous path i which intersects a piece M in at most one point projects onto
M in a unique point.

Proof. If the path does not intersect the piece, it suffices to cover it with balls of radius less than the
distance from the path to the piece and use Lemma 2.8.

If the path intersectd/ in a pointx, we may suppose thatis one of its ends and that the interior
of the path does not pass throughlLet z be another point on the path and lebe its projection onto
M. By the previous argument every pombn the path; # x, has the same projectiononto M. Let
lim, s t, =x, t, # x. Then lim,_ » dist(z,,, M) = lim,,_, », dist(t,, y) = 0. Thereforex = y. O

Corollary 2.10. (1) Every topological arc irf joining two points in a piece is contained in the piece.
(2) Every non-empty intersection between a topological afc &amd a piece is a point or a sub-arc.

Proof. (1) If there exists a topological agcin [F joining two points of a piecé/ and not contained in
M, then a point in p\ M is on a sub-arg’ of p intersecting¥ only in its endpointsg, 5. Corollary 2.9
implies that bothz andb are projections of into M, contradiction.

(2) immediately follows from (1). O

Corollary 2.11. Let A be a connected subgpbssibly a poiritin F which intersects a piece M in at most
one point.

(1) The subset A projects onto M in a unique point X.
(2) Every path joining a point in A with a point in M contains x.

Notation. Letx € F. We denote by, the set of pointy € F which can be joined te by a topological
arc intersecting every piece in at most one point.

Lemma 2.12. Letx € Fandy € T, y # x. Then every topological arc with endpointsy intersects
each piece in at most one point. In particular the arc is containef,in

Proof. Suppose, by contradiction, that there exists atopologicaliarE connectinge, y and intersecting

a pieceM in more than one point. By Corollary 2.18] N p is a topological arc with endpoints# b.

By definition, there also exists an arconnectinge andy and touching each piece in at most one point.
Now consider the two paths connectingand M. The first pathy’ is a part ofp connectinge anda.

The second patif is the composition of the pathand a portion oh~* connectingy andb. By Corollary

2.11, the patly’ must pass through the pointSince the portioffiy, 4] of p~! does not contain, the path

q must contairz. But then there exists a part of ¢’ connectingz andb and intersecting/ in exactly

two points. This contradicts part (1) of Corollary 2.11, as a point’it{a, b} would project ontaV in

botha andb. 0O

Lemma 2.13. Letx e Fandy € T,. ThenT, =T,.
Proof. It suffices to provel, C 7. Letz € T,. By Lemma 2.12, any geodesic connectiyngvith x

or z intersects every piece in at most one point. Lbt the farthest frony intersection point between
two geodesice = [y, x] andq = [y, z]. Thenr = [x, t] U [z, z] is a topological arc. The arcintersects
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every piece in at most one point. Indeeds ihtersects a piec# in two pointsa, b then it intersects it
in a sub-arc by Corollary 2.10, so at least one of the two segnients [z, z] intersectsM in an arc, a
contradiction. Thug € 7,. O

Lemma 2.14. Letx € F.

(1) Every topological arc joining two distinct points ify is contained in7y.
(2) The subseT, is a real tree.

Proof. (1) is an immediate consequence of the two previous lemmas.

(2) First we prove that for every, z € T, there exists a unique geodesic joinipgand z, also
contained inT,. SinceF is a geodesic space, there exists a geodesit joining x and y. By the
first part of the lemma, this geodesic is containedlin Suppose there are two distinct geodesics
g, g in Ty joining y andz. A point ong which is not ong’ is contained in a simple bigon composed
of a sub-arc ofy and a sub-arc off. This bigon, by(7»), is contained in a piece. This contradicts
Lemma 2.12.

Now consider a geodesic triangter in T,. Deleting, if necessary, a common sub-arc we can suppose
that[y, z1N [y, t]1={y}. If y ¢ [z, t] then letz’ be the nearest tp point of [y, z] N [z, ] and letr’ be the
nearest toy point of [y, 7] N [z, ¢]. The triangleyz't" is simple; therefore it is contained in one piece by
(T»). This again contradicts Lemma 2.12. Thus [z,¢]. O

ConventionWe assume that a 1-point metric space has a cut-point.

Lemma 2.15. Let A be a patfconnected subset 6fwithout a cut-point. Then A is contained in a piece.
In particular every simple loop is contained in a piece.

Proof. By our conventionA contains at least two points. Fix a poing A. The setA cannot be contained
in the real tredl,, because otherwise it would have a cut-point. Therefore, a topological arc joining in
the pointx and some € A intersects a piec# in a sub-ar@. Suppose that ¢ M. Letz € A\M and

let z be the projection of onto M. Corollary 2.11 implies that every continuous path joining any
point o of p containsz’. In particularz’ € A, andz and« are in two distinct connected components of
F\{z}. Thus,7’ is a cut-point ofA4, a contradiction. O

Proposition 2.16. Let F and [’ be two tree-graded spaces with respect to the sets of piecasd
2', respectively. Let?:F — [ be a homeomorphism. Suppose that all piecegiand 2’ do not
have cut-points. Thet# sends any piece from onto a piece frony”’, and ¥(7y) = Ty, for every
x € F.

Proof. Indeed, for every piec@/ in F, ¥(M) is a path-connected subset Bf without cut-points.
Therefore¥ (M) is inside a pieceM’ of F' by Lemma 2.15. Applying the same argumentyo?,
we have that?—1(M’) is contained in a piec#!”. ThenM < ¥~1(M’) € M”; henceM = M” and
Y(M)y=M'. O
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Fig. 1. Property [).

Proposition 2.17. Condition(7») in the definition of tree-graded spaces can be replaced by the assump-
tion that pieces cover plus any one of the following conditians

(T;) For every topological are : [0,d] — Fandr € [0,d], let [t — a,t + b] be a maximal sub-arc
of ¢ containingc(r) and contained in one piece. Then every other topological arc with the same
endpoints as must contain the pointsz — a) andc(r + b) (Fig. 1).

(T5) Every simple loop irf is contained in one piece.

Proof. Obviously (1) and () imply (72). Therefore it is enough to establish the implications
(T)&(T)) = (Ty) and (T1)&(T2) = (T5). The second of these implications is given by Lemma
2.15.

Suppose thatf) and (7,) hold for some space with respect to some set of piecés

Letc : [0,d] — F be atopological ara, € [0, d], anda, b as in (). If ¢ : [0,d'] — F is another
topological arc with the same endpointscathenk = ¢1(¢'[0, d']) is a compact set containing 0 asd
Suppose that, say-a ¢ K . Leto be the supremum & N[0, r —a] andp be the infimum oK N[7 —a, d].
Thena <t — a < . Sincex, f € K, there exist/, B € [0, d'] such that'(«') = ¢(«), ¢ (B) = ¢(B). The
restriction ofc to [«, 5] and the restriction of to [¢/, '] form a simple loop which is contained in one
piece by (). In particulare([«, ) is contained in one piece. Sinfre- a, ¢ + b] is the maximal interval
containing such that the restriction eto that interval is contained in one piece, it follows thata # O.
Therefore the intersection of the interv@ds ] and[t — a, t + b] has a non-empty interior. Hence the
pieces containing([«, f]) andc([t — a, t + b]) must coincide by propertyrt). But this contradicts the
maximality of the intervalr —a,r + b]. O

Remark 2.18. If a collection of subsets’ of a geodesic metric spacesatisfy(71) and(7,'), and each
set inZ is path-connected then each sevins a geodesic subspace. Thus if one replaces progErty
by the stronger propert§r’)') in Definition 2.1 then one can weaken the conditiorzan

Proof. Let M € 2, letx, y be two points inM and letr be a topological arc joining andy in M.
Suppose that a geodegjconnectinge andy in X is not contained inV/. Letz € g\M. There exists a
simple non-trivial bigon with one side a sub-arciand the other a sub-arc incontainingz. Property
(T;) implies that this bigon is contained in a piece, and propgfty implies that this piece i8/. Hence
zisin M, a contradiction. [

Lemma 2.19. For everyx € [, T, is a closed subset 6t
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Proof. Let (y,) be a sequence ifi. converging to a poing. Suppose that the geodes§ic y] intersects

a pieceM in a maximal non-trivial sub-arfx, f]. We can assume that the geod€sig, y] intersects
[vn, x] Only in y,. Otherwise we can replagg with the farthest from it intersection point between these
two geodesics. By propertyy) the arclx, y,] U [y,, y] must contairix, ]. Sincey, € T, it follows by
Lemma 2.12 thaf«, 1 C [y., y] and so disty,, y) >dist(«, 8) > 0. This contradicts digy,, y) — O.

We conclude thaftx, y] intersects every piece in at most one point and that7,,. 0

Lemma 2.20. The projection of- onto any of the pieces is a metric retraction.

Proof. Let M be a piecey, y two points inF and[x, y] a geodesic joining them. [f, y] N M = @ then
[x, y] projects onto one point, by Corollary 2.9, and (x, y)>d(z, z) = 0.

If [x, y] N M = [«, B] thena is the projection ofc onto M and g is the projection ofy onto M, by
Corollary 2.9. Obviouslyl(x, y) >d(«, f). O

Lemma2.21. Letp: [0, /] — Fbeapathinatree-graded spakd.etU, be the union of open subintervals
(a, b) C [0, 1] such that the restriction af onto(a, ) belongs to one piedave include the trees, into
the set of piecgsThenU, is an open and dense subse{@f/].

Proof. Suppose thal/, is not dense. Then there exists a non-trivial intexval/) in the complement
[0, [1\U,. Suppose that the restrictiphof p on(c, d) intersects a pieck in two pointsy=p(r1), z=p(2).
We can assume thatis not in the image ofz1, t2] underp. Sincey ¢ U, there is a non-empty interval
(11, t3) such that the restriction af onto that interval does not interseBt Let s > 11 be the smallest
number in(z1, 2] such thaty’ = p(¢) is in P. Thenz’ # y. Applying Corollary 2.11 to the restriction
of p onto[r1, t], we get a contradiction. This means thaintersects every piece in at most one point.
Thereforep’ is contained in a tre&, for somex, a contradiction. O

Proposition 2.22. Let [F be a tree-graded space with the set of piegedf the pieces inZ are locally
uniformly contractible ther1(F) is the free product oty (M), M € 2.

Proof. We include all treed’, into 2. Fix a base poink in F and for every piecé/; € 2 let y; be
the projection ofc onto M;, and letg; be a geodesic connectingandy;. We identifyz1(M;) with the
subgroupG; = g;n1(M;, yi)gi_l of n1(F, x). Consider an arbitrary loop [0, /] — Fin F based ak. Let
v’ be the image op. Let 2, be the set of pieces from which are intersected by in more than one
point. By Lemma 2.21 the set, is countable.

LetM € 2,. The projectiorp,, of p’ ontoM is a loop containing the intersectiphn M. Let us prove
thatp,, = p’ N M. If there exists a point € p,,\p’ thenz is a projection of some point € p’\ M onto
M. By Corollary 2.11, a sub-path ofjoining y with a point inp’ N P must contair, a contradiction.

Thereforep’ is a union of at most countably many loops i € N, contained in pieces frore,.
By uniform local contractibility of the pieces, all but finitely many loogsare contractible inside the
corresponding pieces. Consequently, in the fundamental gr@@p, p is a product of finitely many loops
from G;. Hencery (F, x) is generated by the subgrou@s.

It remains to prove that for every finite sequence of lopps G;,i =1,...,k, if M; # M, for
i # j, and if the loopg; are not null-homotopic i/;, then the loopqps . .. p, is not null-homotopic
in F. Suppose thap is null-homotopic, and that : + — p(¢) is the homotopyp(0) = p, p(1) is a
point. Letr; be the projection of onto M;. Lemma 2.20 implies that; o y : t — p’(¢) is a homotopy
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which continuously deforms’ in M; into a point. Hence each of the loops is null-homotopic, a
contradiction. O

2.2. Modifying the set of pieces

Lemma 2.23(gluing pieces togethgr Let F be a space which is tree-graded with respectAgV; |
k € K}.

(1) Let Y = Uyer My be a finite connected union of pieces. THeis tree-graded with respect to
P ={My | ke K\F}U{Y}.

(2) Letc be atopological arc irf (possibly a pointand letY (¢) be a set of the formu Ujej M;,where
J is a subset of K such that evely; with j € J has a non-empty intersection withand J contains
all i € K such thatM; N ¢ is a non-trivial arc.

ThenF is tree-graded with respect t@' = {M; | k € K\J} U {Y(¢)}.

(3) Let{¢;; i € F} be a finite collection of topological arcs ihand letY (¢;) = ¢; U Ujeji M; be sets
defined as in2). If Y = ;. Y (¢;) is connected thef is tree-graded with respect t&¢’ = {M |
ke K\U;cp i} U LT}

Remark 2.24. In particular all properties on projections on pieces obtained till now hold forsets
defined as in (1)—(3). We shall call sets of the farif) sets of type’.

Proof. (1) We first prove thatr is convex. Everyy, y’ € Y can be joined by a topological arc:
[0,d] — Y. By Corollary 2.10, we may write[0, d] = (U, [¢[0, d] N Mi], where F’ C F and
[0, d] N My is a point or an arc. Propert§fy) implies that every two such arcs have at most one
point in common. Therefore there exists a finite sequeeed <1 <o <--- <t,_1 <t, =d such that
c[ti, tix1]l = [0, d1 N My, k(i) € F', foreveryi € {0,1,...,n — 1}. Property(T,) implies that every
geodesic between and y’ must containc(t1), c(z2), ..., ¢(t,—1). Hence every such geodesic is of the
form [y, c(¢1)]1 U [¢(21), c(22)TU - - - U [¢(¢,—1), y], SO by Corollary 2.10 it is contained in.

For everyk € K\F, M, NY, if non-empty, is a convex set composed of finitely many points. Hence
it is a point. This and the previous discussion imply thét tree-graded with respect .

(2) In order to prove that is convex, lety be a geodesic joining two points y € Y. We show that
is insideY.

Casel. Suppose that, y € ¢. Consider a point = g(z) in g. Take the maximal intervdt — a, t + b]
such thaty([r — a, ¢ + b]) is contained in one piecd.. If  + b # 0 then by property7,) the path- must
pass througly(r — @) andg(r + b). By part (1) of Corollary 2.10 the (non-trivial) sub-arc ofoining
g(t —a) andg(r + b) is contained inM. ThenM is one of the pieces contained¥n Thereforez; € Y. If
a + b = 0 then again by7;) the curvec must pass through, soz € Y. We conclude that in both cases
zeY.

Casell. Suppose that € candy € M\¢, whereM is a piece inY. By the definition ofY, M has a
non-trivial intersection with.. If x € M, we can use the convexity @f (Corollary 2.10). So suppose
thatx ¢ M.

Let o be the projection af ontoM. By Corollary 2.11(2)« € ¢. Then the sub-ar€ of ¢ with endpoints
x ando forms together with the geodediz, y] € M a topological arc. Propertyl,) implies thatx € g.
Corollary 2.10(1) implies that the portion gbetween: andy is contained irt'. For the remaining part
of g we apply the result in Case | of the proof (since both endpoints of that pafielbng toc).
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Caselll. Suppose that € M1\c and thaty € M>\¢. Let« be the projection of onto M. As before,
we obtain that: € ¢, « € g and that the portion of betweenx andy is contained inM2, hence inY. For
the remaining part of we apply the result of Case IlI.

(3) We argue by induction on the siZzeof the setF. The statement is true far = 1 by part
(2) of this proposition. Suppose it is true for sorhe 1. Let us prove it fork + 1. We have two
cases.

Casel. Suppose that there existj € F,i # j, such that the intersectiafn N Y (¢;) is not empty.
According to part (2) of the proposition and Corollary 2.10(2), the intersection is a sub-ar€,iand
tree-graded with respectwj ={My | ke K\J;}U{Y(cj)}. LetY'(¢;) =Y (¢;) UY (¢cj). ThenY'(¢;) is
a set defined as in part (2) of the proposition but witheplaced bw/j. Thus we can writd = Y'(¢;) U
User\i,jy Y (¢5) and use the induction hypothesis.

Casell. For everyi, j € F,i # j, we have;; N Y (¢;) =0.

Then there are no pieces that appear in Both) andY (¢;) fori # j € F. Hence by(Ty), for every
k e J;,l € J;, M N M; consists of at most one point. By part (2) of the proposition and Corollary 2.11
that point must be equal to the projectioncpbntoY (¢ ;). ThereforeY (¢;) N Y (¢;) is either empty or one
point. This implies thak is tree-graded with respect ¥’ = {M; | k € K\, cp i} U{Y () | i € F}.

It remains to apply part (1) of the propositionJ

Definition 2.25. Let (M1, x1), (M2, x2), ..., (M}, x;) be finitely many metric spaces with fixed base-
points. Thebouquetof these spaces, denoted W‘:l(M,-, x;), is the metric space obtained from the
disjoint union of all M; by identifying all the pointsy;. We call the pointx thus obtainedhe cut-

point of the bouquetThe metric on\/f.‘zl(M,-,xi) is induced by the metrics on; in the obvious
way.

Clearly eachi; is a closed subset of the boquéf:l(M,-, x;). It is also clear that the bouquet is a
geodesic metric space if and only if &f; are geodesic metric spaces.

Lemma 2.26(cutting pieces by cut-points LetF be a space which is tree-graded with respectte{ M} |
k € K}.LetI C K be such that for every e I the pieceM; is the bouquet of finitely many subsets pf it
{M/};cF,, and its cut-point is;.

ThenF is tree-graded with respect to the set

P =My | ke K\IJU{M! | jeF,icl).

Proof. SinceM; N My C M; N My fori € I, k € K\I,andM; N M} C M; N M, fori #1,i,t € I,
property(Ty) for (F, #') is an immediate consequence of prop€&y) for (F, 2).

Let 4 be a simple geodesic triangle. Prope(ty) for (F, ) implies that eitherd C M; for some
k € K\I or 4 Cc M; for somei € I. We only need to consider the second case. Assumefthas a
point in Ml.’l and a point ian.JZ, with j1 # j2. Thenx; is a cut-point for4. This contradicts the fact

that4 is a simple loop. We conclude that there exists F; such thatMlj containsd. ThusZ’ satisfies
(T2). O

Lemma 2.13 implies that two treds andT, are either disjoint or coincident. L¢T; | i € I} be the
collection of all the tree$T, | x € [F}.
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Remark 2.27. The set?’ = 2 U {T; | i € I} also satisfies propertigds) and(7>). Therefore all the
properties and arguments done foand# up to now also hold fof and#”’. In this case7, = {x} for
everyx € F. The disadvantage of this point of view is that trégslways have cut-points.

2.3. Geodesics in tree-graded spaces
Notation. For every pathp in a metric space(, we denote the start @fby p_ and the end of by p, .

Lemma?2.28. Letg=g 95 . . . g2, e @acurve in atree-graded spaEe/hich is a composition of geodesics.
Suppose that all geodesigg, with k € {1,..., m — 1} are non-trivial and for every € {1, ..., m}
the geodesigy, is contained in a piecé/, while for everyk € {0,1,...,m — 1} the geodesigy,;
intersectsM; and M1 only in its respective endpoints. In addition assume thgg;if ; is empty then
My # My41. Theng is a geodesic.

Proof. Suppose thag is not simple. By(7,), any simple loop formed by a portion @fhas to be
contained in one piecd . On the other hand the loop must contain the whole neighborhood of one vertex
(8;)+ = (g;41)— in g. Letk be such thatg;, 9,1} = {a2. 921+1}- The intersection oM andM; contains
a sub-arc ofy,, whenceM = M. At the same time) contains a sub-arc @1 or (if g1 IS empty)
of gy, _». In all cases we immediately get a contradiction.
Thereforey is simple and has two distinct endpointsy. Consider any geodesigoining x andy. By
(T,) x contains all the endpoints of all geodesigsTherefore the length af coincides with the length
of r andg is itself a geodesic. O

Corollary 2.29. Let M andM’ be two distinct pieces in a tree-graded sp&c&uppose thatt’ projects
onto M in x and M projects oM’ iny. Let A be a set ift that projects onta\’ in z # y. Then A projects
onto M in x anddist(A, M) >dist(M’, M).

Proof. Leta € A and let[a, z], [z, y] and [y, x] be geodesics. Theg, = [a, z] U [z, y] U [y, x]
is a geodesic, according to Lemma 2.28. It cannot interd£dh a sub-geodesic, becauke y] U
[y, x] intersectsM in x. Henceg, N M = {x} andx is the projection otz onto M. Also dist(a, x) >
dist(y, x). O

2.4. Cut-points and tree-graded spaces

Remark 2.30 (about singletons Notice that ifF is tree-graded with respect # then we can always

add some or all one-point subsets (singleton$)tof2, andrF will be tree-graded with respect to a bigger

set of pieces. To avoid using extra pieces, we shall assume in this section that pieces cannot contain othel
pieces.

Property {1) guarantees that this only restricts using singletons as pieces.

Property(T,) implies that any tree-graded space containing more than one piece has a global cut-point.
Here we shall show that any geodesic metric space with cut-points has a uniquely determined collection
of pieces with respect to which it is tree-graded.

In order to do this, we need to define a partial order relation on the set of collections of subsets of a
space. If? and#’ are collections of subsets &f and a spac« is tree-graded with respect to both
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andZ’, we write2 < 2’ if for every setM € 2 there existdl’ € 2’ such thatM c M’. The relation<
is a partial order because by Remark 2.2, piece® (esp.#’) cannot contain each other.

Lemma 2.31. Let X be a complete geodesic metric space containing at least two points anthéeh
non-empty set of global cut-points in X.

(a) There exists the largest in the sense<afollection of subsets of X such that

e Xis tree-graded with respect t;
e any piece inZ is either a singleton or a set with no global cut-point fregm

Moreover the intersection of any two distinct pieces frans either empty or a point frora.

(b) Let X be a homogeneous space with a cut-point. Then every point in X is a cutsodigtts = X.
Let 2 be the set of pieces defined in pary. Then for everyM € 2 everyx € M is the projection
of a pointy € X\M onto M

Proof. (a) Let2 be the set of all maximal path-connected subsgtsith the property that eithén/| =1
or cut-points ofM do not belong tes. The existence of maximal subsets with this property immediately
follows from Zorn’s lemma.

Any M € 2is closed. Indeed, lei be the closure of/ in X and suppose tha # M. Leta € M\M.
There exists a sequence of poilitg) in M converging taz. Let M’ be the union of\f and geodesics
la,a,],n=1,2,... (one geodesic for eack). By construction, the se¥’ is path-connected. Let us
prove that cut-points a#7’ do not belong te. This will contradict the maximality oM.

Letc e 4N M', x,y € M'\{c}. We want to connect andy with a path avoiding:. If x, y € M\{c}
then we are done.

Suppose that € M\{c} andy € [a,, a] for somen. The pointx can be connected by some path
pr € M avoidingc with a; for everyk € N.

If ¢ ¢ [a,, y] then the patlp, U [a,, y] € M’ avoidsc and we are done.

If ¢ € [a,, y]then distc, a) > dist(y, a). In particularc is not in[a, a,,] for m large enough. Then we
join y with x by a pathy, a] U [a, a,,] U p,, avoidingc.

It remains to consider the case where [a,,,a] andy € [ay,, a] for somem, n. If ¢ ¢ [a,,, x] then
we can replace with a,, and use the previous argument. Likewise &[a,, y]. If ¢ € [ay,, x]1 N [ay, ¥]
then we joinx andy in X\{c} by [x, a] U [a, y].

Let M1, M> be distinct sets fron®, ¢ € . Suppose tha/; N M contains a point that is different
from c. Then any point; € M;, z; # ¢,i =1, 2, can be joined witlx by a path inM; avoidingc. Hence
71 andz, can be joined inf1 U M by a path avoiding. Consequently ifY; N M> contains more than
one point or contains a point not from, we get a contradiction with the maximality &f;. ThusZ
satisfieq T1) and the intersection of any two sets framis in € or empty.

To prove(T,) notice that every non-trivial simple loop is path-connected and does not have cut-points,
hence it is contained in sonié.

The fact that each piedd € 2 is a geodesic subset follows from Remark 2.18.

Suppose thak is tree-graded with respect to another collection of piegethat contains only sin-
gletons and pieces without a cut-points fremLet M’ € #'. Then M’ is contained in a maximal
path-connected subset which is either a singleton or without a cut-painttimt isM’ c M for some
M € 2. Thus?' < 2. Hence? is the largest in the sense afcollection of subsets oX satisfying the
conditions of part (a).
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(b) Let M € 2. SinceM # X it follows that one pointyg € M is the projection onV/ of a point
yo € X\M. If M is a point this ends the proof. Suppose in the sequel¥hdtas at least two points.
Let [yo, xo] be a geodesic joiningg andxg and let[xo, zo] be a geodesic iM. By the definition of the
projection,[yg, xo] N [xo0, zo] = {xo}. Letx be an arbitrary point inZ. Consider an isometry such that
g(xo) = x. Let[y, x] and[x, z] be the respective images [of, xo] and[xo, zo] underg. If g(M) =M
thenx is the projection ofy on M. Suppose (M) # M. Theng(M) N M = {x}; hence[x, z] C g(M)
intersectsM in x. Corollary 2.11 implies that projects onM in x. O

Remark 2.32. (1) In general not every point if is the intersection point of two distinct pieces. An
example is amR-tree without endpointX, ¥ = X, in which case? is the set of all singleton subsetsXf

(2) Lemma 2.31 implies that every asymptotic cone of a group which has a cut-point is tree-graded
with respect to a uniquely determined collection of pieces, each of which is either a singleton or a closed
geodesic subset without cut-points.

3. Ultralimits and asymptotic cones
3.1. Preliminaries

Most of the interesting examples of tree-graded spaces that we know are asymptotic cones of groups.
In this section, we start with giving the definitions of ultralimit, asymptotic cone and related objects
(most of these definitions are well known). We show that the collection of asymptotic cones of a space is
closed under ultralimits. We also show that simple geodesic triangles in ultralimits and asymptotic cones
can be approximated by ultralimits of polygons with certain properties. As a consequence we show that
the family of tree-graded spaces is also closed under ultralimits. These results play a central part in the
theorems obtained in Sections 4 and 7.

ConventionIn the sequel will denote an arbitrary countable set.

Definition 3.1 (ultrafilter). A (non-principaf) ultrafilter » over I is a set of subsets df satisfying the
following conditions:

1. IfA,B € wthenANB € .

2. fAew, AC BCI,thenB € w.

3. ForeveryA C [ eitherA e worI\A € w.
4. No finite subset of is in w.

Equivalentlyw is a finitely additive measure on the clagsl) of subsets of such that each subset
has measure either 0 or 1 and all finite sets have measure 0. If some stafgmemblds for alln from
a setX belonging to an ultrafiltety, we say thatP (n) holdsw-almost surely

Remark 3.2. By definition w has the property thai(|_|" ; A;) = 1 (hereu stands for disjoint union)
implies that there existg € {1, 2, ..., m} such thatw(A;,) =1 andw(A;) =0 for everyi # ig. This can
be reformulated as follows: 1@t (n), P2(n), ..., P,(n) be properties such that for anye I no two of

2We shall only use non-principal ultrafilters in this paper, so the word non-principal will be omitted.
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them can be true simultaneously. If the disjunction of these properties hedtiaost surely then there
existsi € {1, 2, ..., m} such thatw-almost surelyP; (n) holds and allP; (n) with j # i do not hold.

Definition 3.3 (w-limit). Let w be an ultrafilter over. For every sequence of points,),c; in a topo-
logical spaceX, its w-limit lim ,, x,, is a pointx in X such that for every neighborhoadof x the relation
x, € U holdsw-almost surely.

Remark 3.4. If w-limitlim , x,, exists thenitis unique, provided the spatis Hausdorff. Every sequence
of elements in a compact space haswalimit [4].

Definition 3.5(ultraproduc). Forevery sequence of s&fs,),,; theultraproducti1X,, /o corresponding
to an ultrafilterw consists of equivalence classes of sequencegs.;, x» € X,, where two sequences
(xn) and (y,) are identified ifx, = y, w-almost surely. The equivalence class of a sequé&ngein
11X, /wis denoted byx, ). In particular, if allX,, are equal to the san?, the ultraproduct is called the
ultrapowerof X and is denoted bx .

Recall that ifG,,, n > 1, are groups thelG, /w is again a group with the operatia@n,)” (y,)” =
(xnyn)w-

Definition 3.6 (w-limit of metric spaces Let (X, dist,), n € I, be a sequence of metric spaces and
let w be an ultrafilter over. Consider the ultraprodudi X, /o and anobservation point = (e,)® in
IIX, /. For every two points = (x,)“, y = (y,)“ In I1X,,/w let

D(x,y) = lim,, diStn(xny Yn).

The functionD is a pseudo-metric ol X,,/w (i.e. it satisfies the triangle inequality and the property
D(x, x) = 0, but for somex # y, the numberD(x, y) can be 0 oro). LetI1.X,,/» be the subset of
11X, /w consisting of elements which are finite distance frowith respect taD. Thew-limit lim®(X,,),

of the metric spaceéX,,, dist,) relative to the observation poirtis the metric space obtained from
I1.X, /o by identifying all pairs of points, y with D(x, y) = 0. The equivalence class of a sequence
(xp) InIM®(X,), is denoted by lirf¥ (x,,).

Remark 3.7 (changing the observation pojntlt is easy to see that i, ¢’ € I1X,,/w andD(e, ¢') < co
then lin”(X,), = Ilim“(X,), .

Definition 3.8 (asymptotic cone Let (X, dist) be a metric space;an ultrafilter over a sat, ande=(e;,)”
an observation point. Consider a sequence of numbetdd, ), ; calledscaling constantsatisfying
lim, d, = oc.

In the ultrapowerX” we define the subsety’ = I1. X, /w, where(X,, dist,) = (X, dist/d,). We call
it ultrapower of X with respect to the observation point e

The w-limit lim © (X, dist/d,), is called arasymptotic cone oX. It is denoted by Cot(X; e, d) (see
[28,30,54).

Definition 3.9. For a sequencéi,), n € I, of subsets of X, dist) we denote by lirff(A,) the subset of
Corf’(X; e, d) that consists of all the elements fittx,,) such thatr,, € A, w-almost surely. Notice that
if lim ,, (dist(e,,, A,,)/d,) = oo then the set liffi(A,,) is empty.
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Remark 3.10. It is proved in[54] that any asymptotic cone of a metric space is complete. The same
proof gives that linff (A, is always a closed subset of the asymptotic cone“CEne, d).

Definition 3.11 (quasi-isometrigs A quasi-isometric embeddingf a metric spacéX, disty) into a
metric spaceY, disty) is a mapg: X — Y such that

1 . . .
7 disty (x, x") — C <disty (q(x), q(x")) < L disty (x, x") + C forall x,x" € X.

In particular if (X, disty) is an interval of the real lin® then q is called aquasi-geodesior an
(L, C)-quasi-geodesic

A quasi-isometrys a quasi-isometric embeddingX — Y such that there exists a quasi-isometric
embeddingy: Y — X with the property thag o ¢ andq’ o q are at finite distance from the identity maps.

Remark 3.12 (quasi-injectivity. Although a quasi-isometric embedding is not necessarily injective, a
weaker version of injectivity holds: I§ is an (L, C)-quasi-isometric embedding then disty) > LC
implies dist{q(x), q(y)) > 0.

Definition 3.13 (Lipschitz mapps Let L >1. A mapq: (X, disty) — (Y, disty) is calledLipschitzif
disty (q(x), q(x")) <L disty (x, x)

for everyx, x’ € X. The mapy is calledbi-Lipschitzif it also satisfies
: , 1. ,
disty (q(x), q(x")) > 7 disty (x, x").

Remark 3.14. Let (X,) and(Y,) be sequences of metric spaces,c X,, e, € Y, (n € I). Then it
is easy to see that any sequengeX, — Y, of (L,, C,)-quasi-isometries withy,(e,) = e, n € I,
induces anL, C)-quasi-isometryy: im“(X,), — lim“(Y,), wheree = (e,)”, ¢’ = (e,)”, andL =
lim, L,, C =lim, C, providedL < oo, C < oco. Moreover, theo-limit of the imagesy,,(X,,) coincides
with the image ofy.

Remark 3.15. Letq,: [0, £,] — X be a sequence 6L, C)-quasi-geodesics in a geodesic metric space
(X, dist). Then thew-limit lim “(q, ([0, £,])) in any asymptotic cone C61X, e, d)is either empty, or a
bi-Lipschitz arc or a bi-Lipschitz ray or a bi-Lipschitz line. This immediately follows from Remark 3.14.

Remark 3.16. Any quasi-isometric embedding of (X, disty) into (Y, disty) induces a bi-Lipschitz
embedding of COR(X; e, d) into Cort’(Y; (¢ (ey,)), d) for everyw, e andd [30].

Every finitely generated grou@ = (X) can be considered a metric space where the distance between
two elements, b is the length of the shortest group wordirepresenting ~15. The asymptotic cones of
G corresponding to different observation points are isomgfg Thus when we consider an asymptotic
cone of a finitely generated group, we shall always assume that the observationipgibt’.

Let G,, n € I, be the metric spac& with metric disyd, for some sequence of scaling constants
(dn)per- The setll, G, /w denoted byGY is a subgroup of the ultrapowér®.
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Remark 3.17. Notice[30] that the groupsS’ acts on Cofi(G; e, d) by isometries:
(g)?lim®(x,) =1iMm®(gux,).

This action is transitive, so, in particular, every asymptotic cone of a group is homogeneous.
More generally if a groufis acts by isometries on a metric spaeg dist) and there exists a bounded
subsetB C X such thatX = G B then all asymptotic cones &f are homogeneous metric spaces.

Definition 3.18 (asymptotic propertids We say that a spadeas a certain property asymptoticalify
each of its asymptotic cones has this property. For example, a space may be asymptotically CAT(0),
asymptotically without cut-point, etc.

Definition 3.19 (asymptotically tree-graded spaged.et (X, dist) be a metric space and let = {A; |
i € I} beacollection of subsets &f. In every asymptotic cone C8(X; e, d), we consider the collection
of subsets

. dist(e,, A; .
oA = {Ilm“’(A,-n) | (i,)” € I such that the sequenc(e%) is bounde(} .
n

We say thaiX is asymptotically tree-graded with respectdoif every asymptotic cone C6%X; e, d)
is tree-graded with respect td,,.

This notion is a generalization, in the setting of metric spaces, of the usual notion of (strongly) relatively
hyperbolic group.

Corollary 4.30 will show that there is no need to vary the ultrafilter in Definition 3.19: if a space is
tree-graded with respect to a collection of subsets for one ultrafilter, it is tree-graded for any other with
respect to the same collection of subsets.

3.2. Ultralimits of asymptotic cones are asymptotic cones

Definition 3.20 (an ultraproduct of ultrafilters. Let » be an ultrafilter over and lety = (w,),c; be a
sequence of ultrafilters ovér We consider each, as a measure on the 4ef x I andw as a measure
on/.

For every subsett C I x I we setwu(A) equal to thes-measure of the set of all € I such that
(AN ({n} x 1)) =1.

In other words

ou(A) = f 1y (AN ({n} x 1)) do(n).

Notice that this is a generalization of the standard notion of product of ultrafilters (see
[51, Definition 3.2 in Chapter V)]

Lemma 3.21(cf. [51, Lemma 3.6 in Chapter V)] wu is an ultrafilter overl x I.

Proof. It suffices to prove thaby is finitely additive and that it takes the zero value on finite sets.
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Let A and B be two disjoint subsets of x 7. Then for everyn € I the setsA N ({n} x I) and
B N ({n} x I) are disjoint. Hence (by the additivity @f,) for everyn € I

1, ((AU B) N ({n} x 1)) = w, (AN ({n} x 1)) + p, (B N ({n} x I)).
Therefore (by the additivity ob)
ou(A U B) = ou(A) + ou(B).

Let now A be a finite subset of x 7. Then the set of numbersfor which 1, (AN ({n} x I)) =11is
empty. Sowu(A) = 0 by definition. O

Lemma 3.22(double ultralimit of sequencgsLetw, i, n € I, be asin DefinitiorB.ZO.Letr,E") be a
uniformly bounded double indexed sequence of real numbers= 7. Then

lim,, r” =lim, lim, r" 1)
(the internal limit is taken with respect tQ.k
Proof. Letr =lim,, r,ﬁ”). It follows that, for every > 0,
o, k) [ e r—er+el=1sonel |plk|ri e —er+e)=1=1
It follows that
o{nel|lim, r,ﬁ") elr—e,r+el} =1,
which implies that
lime,lim,, r” e [r—er+el.

Since this is true for every > 0 we conclude that ligglim r,ﬁ") =r. O

Lemma 3.22 immediately implies:

Proposition 3.23(double ultralimit of metric spacés Letw and u be as in Definitior8.20. Let (X,ﬁ”),
dist,((")) be a double indexed sequence of metric spacese I, and let e be a double indexed sequence

of pointse!” € X" We denote by™ the sequencee"),;.
The map

lim o, (x”) > lim,,(im,, (x™)) 2)
is an isometry froniim“)“(X,(c”))e ontolim® (lim*# (X,S"))em))g,, wheree!, = lim# (™).

Corollary 3.24 (ultralimits of cones are congsLet X be a metric space. Letand u be as above. For
everyn € I lete™ = (e(”),c; be an observation poinandd™ = (d""),; be a sequence of scaling
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constants satisfyingm,, d\"”’ = oo for everyn € I. Let Cont(X; ¢™,d™) be the corresponding
asymptotic cone of X. Then the map

lim o, (e > lim, (im,, (")) (3)
is an isometry fronCor**(X; e, d) onto

lim®(Cont (X; €™, d™)) i ().
wheree = (), 1erxs andd = (@) g yer -

Proof. Let us prove that lim, d\"’ = co. Let M > 0. For everyn € I we have that lim, d" = oo,
whencey, {k € I | d,ﬁ”) > M} = 1. Itfollows that{n € I | w,{k € I | d,ﬁ”) > M} = 1} = I; therefore its
w-measure is 1. We conclude thai{(n, k) | d,f”) >M}=1.

It remains to apply Proposition 3.23 to the sequence of metric spﬁce&ﬂ;/d,ﬁ”))dist) and toe. O

3.3. Another definition of asymptotic cones

In [30,54] and some other papers, a more restrictive definition of asymptotic cones is used. In that
definition, the sef is equal toN and the scaling constasif must be equal te for everyn. We shall call
these asymptotic conesstrictive

Itis easy to see that every restrictive asymptotic cone is an asymptotic cone in our sense. The converse
statement can well be false although we do not have any explicit examples.

Also for every ultrafilter over I and every sequence of scaling constahts (d,),;, there exists
an ultrafiltery over N such that the asymptotic cone CHiX; ¢, d) contains an isometric copy of the
restrictive asymptotic cone C6€X; e, (n)). Indeed, letp be a mapl — N such thaip(i) = [d;]. Now
define the ultrafilter. onN by u(A)=w(¢1(A)) forevery setd C N. The embedding CatiX; e, (n)) —
Cont’(X; e, d) is defined by linff(x,,) — lim®“(xgi))ie;s-

Remark 3.25. In the particular case when the séts= I | [d;] = k} are of uniformly bounded (finite)
size, this embedding is a surjective isomd#y].

The restrictive definition of asymptotic cones is, in our opinion, less natural becauselithé of
restrictive asymptotic cones is not canonically represented as a restrictive asymptotic cone (see Corollary
3.24). Conceivably, it may even not be a restrictive asymptotic cone in general. The next statement shows
that it is a restrictive asymptotic cone in some particular cases.

Proposition 3.26. Letv,, n € N, be a sequence of ultrafilters ovir. Let (1,) be sequence of pairwise
disjoint subsets df such thaw, (1,) =1.LetC, =Con’(X; ¢, (n)),n € N, be arestrictive asymptotic
cone of a metric space X. Then thdimit of asymptotic cone§), is a restrictive asymptotic cone.

Proof. Lety, be the restriction of, ontol,, n € N. ThenC, is isometric to Cott (X; ™, d™) where
d™ is sequence of all numbers frofp in increasing order. By Corollary 3.24, [1MAC 1) i in (e™) is the

asymptotic cone Cot(X; e, d) wheree = (e,E”))(n,k)eNxN andd = (d,f"))(n,k)eNxN. For every natural
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numbera the set of pairgn, k) such thatd,ﬁ”) = a contains at most one element because the subsets
I, € N are disjoint. It remains to apply Remark 3.25]

3.4. Simple triangles in ultralimits of metric spaces

Definition 3.27 (k-gong. We say that a metric spade is a geodesic (quasi-geodesicpon if it is a
union ofk geodesics (quasi-geodesias). . ., q; such thalq;) . = (q;,1)_ foreveryi =1,..., k (here
k + 1is identified with 1).

Foreveryi =1, ..., k, we denote the polygonal cur® (q; _, Ug;) by Oy, (P), wherex; = (q;,_1) 4 =
(q;)_. When there is no possibility of confusion we simply denote ithy

Lemma 3.28. (1) Let P,, n € N, be a sequence of geodesic k-gons in metric spakgsdist,). Let

o be an ultrafilter overN, such thatim®(P,) = P, where P is a simple geodesic k-gon in the metric
spacdim®(X,), with metricdist. Let 77, be the set of vertices @, in the clockwise order. Leb,, be
the supremum over all points x contained in two distinct edge, @ff the distanceslist(x, ¥,). Then
lim,, D, =0.

(2) Let P be a simple k-gon i6X, dist). For everys > 0 we defineD; = Ds(P) to be the supremum
over all k-gonsP; in X that are at Hausdorff distance at mastrom P and over all points x contained
in two distinct edges oP; of the distanceslist(x, ¥'5), where s is the set of vertices aPs. Then
Iim(;_>0 Ds=0.

Proof. (1) Since thes-limit of the diameters oP, is the diameter oP, it follows that the diameters at,
are uniformly bounded-almost surely. In particulaD,, is uniformly bounded,-almost surely; therefore
its w-limit exists and it is finite. Suppose that linD, = 2D > 0. Thenw-almost surely there exists,
contained in two distinct edges &, such that dist(x,,, v",) > D. Without loss of generality we may
suppose that, € [A,, B,]N[B,, C,]for everyn, where[A,,, B,], [B,, C,] are two consecutive edges of
P, suchthatlin?([A,, B,])=[A, B], lim®(B,, C,])=[B, C],wherg A, B], [B, C]aretwo consecutive
edges ofP. Then lim’(x,) € [A, B] N [B, C], which by simplicity of P implies that lin¥’(x,) = B.
On the other hand we have that dist,, ¥*,) > D, which implies that distim®(x,,), B) > D. We have
obtained a contradiction.

(2) Assume that lin, o D; = 2D > 0. It follows that there exists a sequen@) of k-gons endowed
with metrics such that their Hausdorff distancePtdends to zero and such that there exigtsontained
in two distinct edges of,, and at distance at least of the vertices ofP,. According to[33], it follows
that lim®(P,) = P for every ultrafiltero. On the other han®, > D for all n € N. We thus obtain a
contradiction of (1). O

Proposition 3.29(limits of simple polygor)s Consider an ultrafiltern overN and a sequence of metric
spaces(X,, dist,), n € N. Lete € I1X, /o be an observation point. For every simple geodesic triangle
41inlim“(X,),, for every sufficiently sma#l > 0 there exist%o = ko(e) and a simple geodesic triangle
A, with the following properties

(a) The Hausdorff distance betwedrand 4, does not exceed
(b) 4, contains the midpoints of the edgestof
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(c) The triangle4, can be written asim®(P}), where eachP} is a geodesic k-gon iX,,, k<ko, P;
is simple and the lengths of all edgesRjf are O (1) w-almost surely.

Proof. Let A, B, C be the vertices oft, in the clockwise order, and |4z, Mpc and M ¢ be the
midpoints of[A, B], [B, C]and[A, C], respectively.

We constructd, in several steps.

Stepl. Constructing not necessarily simple geodesic triangdles

For every smalb > 0 we divide each of the halves of edgestaletermined by a vertex and a midpoint
into finitely many segments of length at leasénd at most & Let 7~ be the set of endpoints of all
these segments, endowed with the natural cyclic order. Wercalls-partition of 4. We assume that
{A,B,C, Mup, Mpc, Mac} C 7. Everyt € v can be written as=lim®(t,); hencey” = lim®(v",,),
where eachy”, is endowed with a cyclic order. Le®, be a geodesié-gon with verticesy”,,, where
k = |77]. The limit set4; = lim®(P,) is a geodesic triangle with vertices, B, C and at Hausdorff
distance at most from 4.

Notation. LetE, F be two points on an edge df. We denote the part of the geodesic sidd pbetween

E andF in 45 by [E, F];. If E, F are two points on an edge df we denote the part of the side of
betweenE and F by [E, F]. This is to avoid confusion between different geodesics joining two such
points.

Stepll. Making 4, simple.
For everys > 0, we consideDs = Ds(4) given by Lemma 3.28. Let

a2(4) = inf {dist(x, Ox(4)) | x € {A, B, C}}.

By Lemma 3.28 we have li;m, o Ds = 0. Therefore, fov small enough we have
1
2Ds + 46 < a(4) and Dy + 26 < 10 min {dist(A, B), dist(B, C), dist(C, A)}. (4)

Fix a ¢ satisfying (4), &-partition 7" of 4, and a corresponding trianghg = lim“(P,).

Let A; and A, be the nearest tol points of v"\./"p,+5(A) on the edgedA, B] and [A, C],
respectively. For an appropriate choice A4f, we may suppose that digt, A1) = dist(A, A2). We
note that distA, A1) € [Ds + d, Ds + 25]. Similarly we takeB; € [B,C1N %", B2 € [B,AlN YV
andCy € [C,A]lNy", Cr € [C, B] N v with dist(B, B1) = dist(B, By) € [Ds + 6, Ds + 25] and
dist(C, C1) = dist(C, C2) € [Ds + 6, Ds + 29].

Suppose thaltA1, Bo]s and[B1, C2]; have a pointE in common. The definition oDs implies that
E € /'ps;({A, B, C}). On the other han& € [A1, Bo]s impliesE ¢ A4"p,({A, B}) andE € [B1, C2l;
impliesE ¢ A4"p;({B, C}), a contradiction.

We conclude, by repeating the previous argument, that the segien®,];, [B1, C2]s and[C1, A2];
are pairwise disjoint. Since dist, A1), dist(B, B2)<Ds + 26< %dist(A, B), it follows that M4 is
contained in[A1, B2]s. Likewise, Mg and M, are contained in[B1, C2]; and [Cq, A2]s,
respectively.

Let d4y be the supremum of digE, A) for all E satisfying two conditionsE € [A1, A]l; and
dist(A», E)+dist(E, A)=dist(A2, A). Since these two conditions define a closed set, it follows that there
existsA’ € [A1, Als such that digtAo, A") +dist(A’, A) =dist(A», A) and distA, A") =d 4. Obviously
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A’ ¢{A1, Ao}. Inother wordsA’ is the farthest fromd pointin[A1, A]s which is contained in a geodesic
joining A2 andA. HenceA’ has the property that every geodesic joining it withintersectd A1, A'];
only in A’. Similarly we find pointsB’ € [B1, B]s andC’ € [C1, C];.

Recall that4; = lim®(P,). Let P be a sequence of polygonal lines M with endpointsA’, Bf,
having as limif A’, By];. Likewise letP8 andPnC be sequences of polygonal linesky, with endpoints
B}, C,f andCj,, A,Zl, having as limit§ B’, C2]s and[C’, A2]s, respectively. We consider the new sequence
of polygonsP, = PAU[B2, B,]JUPEU[C2, C/]U P U[A2, A/]. The limitsetlin?’(P,) is[A’, B2V
8,8 U B, Cals U geyer UC, A2ls U gy, aWheregp, pr = lim®([B2, B)]) is a geodesic and likewise
forac,cr, 8apar-

We have distC’, A)=dist(C’, Ap)+dist(A, A)=dist(C’, Ap)+dist(A,, A’)+dist(A’, A). Itfollows
that by joining the pairs of point€”’, A»), (A2, A’) and(A’, A) by geodesics we obtain a geodesic from
C’to A. In particular[C’, A2]s U g4,4 is @ geodesic. Likewis¢A’, B2ls U gp,p and[B’, C2]; U g,
are geodesics. Therefore lttoP,) is a geodesic triangle; with verticesA’, B’, C'. By construction the
Hausdorff distance betweef} and4; is at mostD; 4 26; hence the Hausdorff distance betwegrand
Ais at mostD;s + 30.

Suppose that two edges4f have a common poirft. Suppose the two edges &, Bz];Ugp, 5 and
[B’, C2ls Ugc,cr- If E € [A’, A1]; then distA, E) < Ds + 26. On the other hand € [B’, C2]; U g¢ ¢
impliesE € A p,+25([B, C1). Hence distA, [B, C]) <2D;s + 4 < a(4), a contradiction.

If E € g¢,c thendistC, E) < Ds+ 20 which together withE e [A’, B2]l;Ugp,pr C A pyr25([A, B])
implies dist{C, [A, B])<2D; + 4 < a(4), a contradiction.

If E € [A1, B2]sthenE ¢ [B1, Cz]s. Also since distB, E) >dist(B, By) = dist(B, Bj) it follows that
E ¢ [B’, B1]s, a contradiction.

If E € gp,p then an argument similar to the previous give# [ B, C2]s. We conclude thaE' e
[B’, B1]s. By the choice ofB’ we haveE = B’.

We conclude thatt; is a simple geodesic triangle, containing the midpoints of the edgess af
Hausdorff distance at mo#d; + 30 from 4, and4; = lim“(P,), where P, is a geodesi@:-gon, with
m<k+ 3.

Steplll . Making polygons simple.

Let D, be the supremum over all pointscontained in two distinct edges &, of the distances from
x to the vertices ofP,. Applying Lemma 3.28(1), toF,) and to4; = lim“(P,) we obtain thatD, tends
to zero a;1 — oo. Letv, be a vertex ofP,. We consider the farthest poinf in the ball B(v,, 2D,)
contained in both edges of endpoint the verigxCut the bigon of vertices,, v, from the polygon, and
repeat this operation for every vertexof P,. As a result, we obtain a new polygatj’ which is simple
and at Hausdorff distance at mogp2from P,. It follows that lim”(P,) =lim®“(P,) = 45. O

Theorem 3.30(being tree-graded is closed under ultralin)itd~or everyn € N let F,, be a complete
geodesic metric space which is tree-graded with respect to a colle@jarf closed geodesic subsets of
F.. Letw be an ultrafilter overN and lete € IIF,/w be an observation point. The ultralimlim“(F,,),

is tree-graded with respect to the collection of limit sets

2, ={im®“(M,) | M, € 2,, dist(e,, M,)) bounded uniformly im}.

Proof. Property (71). Let lim“(M,), lim“(M,) € 2, be such that there exist two distinct points
Xos Yo INIIM@ (M) NIim®(M)). It follows thatx,, =lim®(x,) =lim®(x],) andy, im®(y,) =lm®“(y,),
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Fig. 2. PropertiesK1) and (F).

wherex,, y, € My, x,,y, € M), dist(x,, x,) = o(1), dist(y,, y,) = o(1), while dist(x,, y,) = 0(1),
dist(x;, y,) = O(1).

By contradiction suppose thaf, # M, w-almost surely. Then propert{f>) of the spacer, and
Corollary 2.11 imply thatM, projects intoM, in a unique point, and thatz, € [x,, x;,1 0 [ya, y,1.

It follows that distx,, z,) = o(1) and disty,, z,) = o(1), and therefore that diét,, y,) = o(1). This
contradiction implies that,, = M, w-almost surely, so lifi(M,,) =lim®(M,).

Property (T2). Let 4 be a simple geodesic triangle in li(F,,),. Consider an arbitrary sufficiently
smalle > 0 and apply Proposition 3.29. We obtain a simple geodesic trianhglatisfying properties (a),
(b), (c) in the conclusion of the proposition. In particutar=lim“(P;), whereP; is a simple geodesic
polygon inF,. Property(T,) applied toF, implies thatP/ is contained in one piec#,,. Consequently
As C lim®(M,). Property (b) o4, implies that lim’(M,,) contains the three distinct middle points of the
edges of4. This and property71) already proven imply that all trianglet are contained in the same
lim®(M,). Property (a) and the fact that IingM,,) is closed imply thatt C lim®(M,). O

Definition 3.31. Let P be a polygon with quasi-geodesic edges and with a set of verticéxoints in
P\ 7" are callednterior points of P. Let p € P. Theinscribed radius inp with respect taP is either the
distance fronp to the set’,,, if p is a vertex, or the distance fromto the setP\q if p is contained in
the interior of the edge (Fig. 2).

Definition 3.32(fat polygon$. Letd > 0,s>1 andv>4s. We call ak-gon P with quasi-geodesic edges
(0, o, v)-fatif the following properties hold:

(F1) (large comparison angle$arge inscribed radii in interior pointsfor every edgey with endpoints
{x, vy} we have

dist(q\ A s ({x, y}), P\q) >7;
(F») (large edgeslarge inscribed radii in verticesfor every vertexx we have
dist(x, O,) >v0.
Remark 3.33. (1) For almost all applications, we can assume that that definition is equal to 2, so

the “fatness” really depends on two parametérandv. We needs to make fatness preserved under
quasi-isometry (see Theorem 5.1).
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(2) Property ¢1) implies that in each of the vertices y certain comparison angles are at legst 1
and that in the interior points @? outside./";y(7") the inscribed radius is at least

(3) Property §2) ensures that for every edgethe setq\./ ,9({x, y}) has diameter at least2, in
particular it is never empty. It also ensures that the inscribed radius in every vertex is at/least

Proposition 3.34(triangles in an asymptotic cone agelimits of fat polygons For every simple geodesic
triangle 4 in Corf’(X; e, d), for every sufficiently smadl > Othere exist&g=ko(s) and a simple geodesic
triangle 4. with the following properties

(a) The Hausdorff distance betwedrand 4, does not exceed

(b) 4. contains the midpoints of the edgestof

(c) For everyd > 0 andv>8, the triangle4, can be written adm®(P;), where eachP; is a geodesic
k-gonin X k <ko, and P} is (¢, 2, v)-fat w-almost surely.

Proof. Proposition 3.29 applied tQX, (1/d,)dist), o, e and4 implies that for every > 0 there exists
ko=ko(e) and4, satisfying (a) and (b) and such that=lim®(P,), whereP, are simple geodesicgons

in X, 3<k <k, such that the lengths of all edgesiy are O (d,)) w-almost surely. Remark 3.2 implies
that there exist&: € {3, ..., ko} such thatP, havem edgesw-almost surely. Lety > 0 andv>8. We
modify the sequence of polygoiig,) so that their limit set stays the same while the polygons become
(0, 2, v)-fat.

Let 7", = {v],v5, ..., v} be the set of vertices aP, in the clockwise order. We denote the limit
set lim”(v,,) by 7", and we endow it with the clockwise order dp. There existe > 0 such that for
everyv € ¥, the distance betweanand®,(4,) is at least g, where®,(4,) is taken in4, considered
as a polygon with verticeg". It follows that w-almost surely for every € {1,2,..., m} we have
dist(v?, Oy (Pn)) >od,. In particular,w-almost surely all the edges &f; have length at leasgtd, .

Convention In what follows we use the notatidn;', v}’ ;] for a generic edge of,,, wherei + 1 is
taken modulan.

Lete, be the supremum of distances dist7",) forall x € [v}, v;’H]ﬂA/'Wg([v;’, v;?H]),i *j,i,] €
{1,2,...,m}.Supposethatlim(e, /d,)=2yn > 0. Thenthere exist, € [v}, v/’ 1 INA"yy([V}, V] 1D, i #
j.i,j€{l, 2, ...,m},with dist(x,, ¥",) >nd, o-almost surely. Taking the-limit, we get a contradic-
tion with the fact thatd, is simple. Therefore limg(e, /d,) = 0.

Notation. We denote bydt the set of alln € N such that for every € {1,2,...,m} we have
dist(v?, @U;«) >od, and such thatd,, > 2¢, + 2 + (2v + 1)9. Obviouslyf € w.

Let [v]_y, vi'] and[v}, v}’ ;] be two consecutive edges &. Let v} be the farthest point of;' in
[V 4, v 1N A, 11(v]!) contained in thew-tubular neighborhood of a different edgef P,. The edge
p has to be at a distance at megst- 1 + v fromv?'. It follows that for every: € 9t the edgep must be
[vi', v 1]. Thereforev is the farthest from}" pointin [vi'_, vi'] contained inA"yy([v}, v’ 4]). Let oy
be the farthest fromy’ pointz, € [v}, v} ;] such that dis}, 7,) <v?.It follows that distv;’, v;') = vd.
We modify P, by replacind v, vi']U [v}, v}'] with a geodesi¢v!, v!']. We repeat the argument for each
of the vertices ofP,, and in the end we obtain a sequence of polygBhsvith at most 2. edges each.
As the Hausdorff distance betweén and P, is at most, + 1+ vd, lim®(P,) =1lim®(P,).

Let us show that fon € 9%, P, is (9, 2, v)-fat.
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Verification of property(F1) for n € %.

There are two types of edges #tj: edges of the forniw}’, v7', , ], which we shall caltestricted edges
and edges of the forrfv?, v'], which we shall caladded edgesie denote byRE, the union of the
restricted edges af, and byAE,, the union of the added edges BYf.

Let [}, v} 1] be a restricted edge. We first show that/foe 9,

dist([3;', v 1 \A"20 ({0}, V1 D), RENID], V74 ]) 2.

Suppose there existsin [v!, v \A 20 ({07, v 4 D) contained mMﬁ([ v, 0% 1) which is inside
/1/19([ /+1D with j # i. Theny € A, a({v}, v} 1}). The choice ofv '\, implies thaty €

Sn+1(v”) Therefore dist!', [ /+1])<gn + 1+ 9. The previous inequality implies thgt=i — 1
for neMN. ‘

Hence there existse [v}"_,, v] such that digt, y) <. By the definition ofv!’ we haver = v}'. This
contradicts the choice af’.

Now let us show that for € 9%,

dist([a}, o7 \AN 20 (5], 77,1))s AE,) 0.

Suppose there existsin [}, v}, ]\ A 29 ({V], v}, 1}) contained |nmg([v” N”]) It follows that z
belongs to thés,, + v + 1)- neighborhood of)" andthatdls(tv [v?, l+1])<s,, +w9+1 Forn € 9t this
implies thatj € {i,i + 1}. Suppose =i (the other case is S|m|Iar) Lete [v, 0] with dist(z, z) <9.
Then distv?, 1) >dist(v}', z) — dist(z, z) > 29 — 9 >dist(z, z). It follows that dis'(v 7) <dist(v}, 1) +
dist(z, z) <d|st(v” 1)+ dlst(f)l’?, ndist(v!, v') = vd. This contradicts the choice ﬁf.

Now consider an added edge’, v'] C B(v!,e; + 1+ vJ). Letn € 9. If there existsu <
(v, 0P \A"29 ({0}, ¥'}) contained |WV19([UJ J.]) with j #£ i thenu € AQWH(‘,HW(U;?). It follows
that distv', 7) <dist(v?, u) + dist(u, v") <2¢, + 2+ (2v 4+ 1)9. This contradicts the fact thate 9.

If there exists € [}, v} ]\ A 29 ({V], ~"}) contained in th&-tubular neighborhood qﬁ" v ]then
S JV(V_t_]_)q)_t_zn_t_l([U +1]) which together with the hypothesise 9% implies that; € {z -1}
The fact that digts, 17")>219 together with the choice o' implies that dists, [v}', v}’ ;1) >20. The
fact that dists, 17")>219 together with the choice af |mpI|es that dists, [0 ,, v']) >20. Therefore
jéf{i—1,i},a contradiction.

Verification of property(F>) for n € 9.

Letv = v be a vertex of?, and letv = v'. We have that/;(P,) = (RE,\[?_;, v]) U (AE,\[v, 0]']).
The setREn\[v V] is composed ofv!, v; +1] and of a partRE, contained in¢,(P,). By con-
struction we have dist, [0}, v}, 4]1) > vd. On theother hand di&t, RE,) >dist(v, RE,) — dist(v, v) >
dist(v, Oy (P,)) — &y — 1> 0d, — ¢, — 1, which is larger thaty for n € N.

SinceAE,\[v, V'] C A, 1149 (7 \{v}) it follows that

dist(v, AE,\[v, v/']) >dist(v, 7", \{v}) — &, — 1 — (en + L+ v0) >0d, — (26, + 24 vI) =0

forn e N.

Now letv = 0! be a vertex ofP,. We have that);(P,) = (RE,\[? , 0 1D U (AE,\[v, v]). As before,
we show that dIS(ii) AE,\[v, 1] )>m9 forn e N.

The setRE,\[v, v}, ;] is composed of?}_,, v] and of RE,. As above, digi, RE,) > v for n € 9.
The distance digb, [v]'_,, v]) is at least) by the choice ob.

We conclude that for € 9t the polygonP, is (9, 2, v)-fat. [
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Fig. 3. Property45).

4. A characterization of asymptotically tree-graded spaces

In this section, we find metric conditions for a metric space to be asymptotically tree-graded with
respect to a family of subsets.

Theorem 4.1 (a characterization of asymptotically tree-graded spacést (X, dist) be a geodesic
metric space and le¥ ={A; | i € 1} be a collection of subsets of X. The metric space X is asymptotically
tree-graded with respect te if and only if the following properties are satisfied

(«1) Foreverys > 0the diameters of the intersectionss(A;) N ./"s(A ;) are uniformly bounded for all
i #j.

(ap) For everyd from[O, %) there exists a numbew > 0 such that for every geodesiof length¢ and
everyA e .o with g(0), q(£) € A9 (A) we havey([0, £]) N A"y (A) # B.

(x3) For everyk >2 there exist) > 0, v>8 andy > 0 such that every k-gon P in X with geodesic edges
which is(¥, 2, v)-fat satisfies? C .17, (A) for someA e .« (Fig. 3).

Remark 4.2. (1) If the spacé&is asymptotically uniquely geodesic (for instance asymptotica#y(0))
then in(«g) it is enough to consider = 3 (only triangles).

(2) From the proof of Theorem 4.1, it will be clear that conditigns), (x3) can be replaced by the
following stronger conditions:

(«) ForeveryL>1,C >0, andf€[0, %) there exists\ >0 such that for everyL, C) -quasi-geodesig
defined o0, ¢] and everyAe.«7 such that(0), q(£)e A g¢/1 (A) We haveq([0, £]) N A"y (A)F£D.

(«) ForeveryL>1,C >0 andk>2, and for every > 1 andv > 4o, there existlg > 0 such that for every
¥ =19 everyk-gonP with (L, C)-quasi-geodesic edges which(is o, v)-fat is contained in/", (A)
for someA e .o/, wherey = o L?9 + ¢ with ¢ a constant independent 6f

(3) Also from the proof of Theorem 4.1, it will be clear that for eveg/% the condition(ap) can be
replaced by the following weaker condition:

(o) For every) from [0, ¢) there exists a numbed > 0 such that for every geodesjof length¢ and
everyA € .7 with q(0), q(£) € A9 (A) we haveq([0, £]) N A"y (A) #£ @.

(Notice that conditior(e2) is the same as the conditicjasa%/z).)
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@) If oz ={A; | i € I} satisfies condition&:1), (x2), (a:3), then the family V" (/) ={AV"(A;) | i € I}
also satisfies these conditions, for every O.

Proof of Theorem 4.1. First we show that condition&y), («5) (for an arbitrarye < %) and (a3) imply
thatX is asymptotically tree-graded with respect#o

Lemma 4.3((«1) and («5) imply uniform quasi-convexity Let (X, d) be a geodesic metric space and
let.«z = {A; | i € 1} be a collection of subsets of X satisfying properties and («5) for somes. Let
Mo = Mo(0) be the number from property:) corresponding td = %g.

There exists > 0 such that for evernA € o/, M >Mp andx, y € /"y (A), every geodesic joining X
andy in X is contained in", 37 (A).

Proof. Suppose, by contradiction, that for everye N there existM, > Mo, x,, y,» € A/ m,(A,) and a
geodesidx,, y,] not contained int",y, (A,). For everyn >1 let D, be the infimum of the distances
between points, y € /7y, (A) for someA e <7 such thaix, y] ¢ 4",um, (A) for some geodesicx, y].
We note thaD,, >2(n — 1) M, >2(n — 1) Mo; hence limy_, .c D, =00. For everyn > 1, choose,, y, €
N um,(Ap) such that disty,, y,) = D, + 1. Also chooseu,, b, € [xp, y,] such that dist,, a,) =
dist(y,, by)=0(D,+1)/2. Thendista,, A,) <dist(a,, x,) +dist(x,, A,) <O0(D,+1)/2+ M, <0(D, +
1)/2 + (D, + 1)/2(n — 1). Likewise distb,, A,) <0(D, + 1)/2 + (D, + 1)/2(n — 1). On the other
hand dista,, b,) >dist(x,, y,) — dist(x,, a,) — dist(y,, b,) > (1 — 0)(D,, + 1). For n large enough
we haved/2 + 1/2(n — 1)< 30. We apply (o) with 0 = 3¢ to [a,, b,] and we deduce that there ex-
istsz, € l[an, bp]l N N mo(An). We have that eithelx,, z,] ¢ A um, (An)Or (20, Yol & N um, (An),
while dist(x,, z,), dist(z,, y,) <(1—0/2)(D, + 1) < D,, for nlarge enough. This contradicts the choice
of D,. O

Lemma 4.4. Let (X, d) be a geodesic metric space and.lgt={A; | i € I} be a collection of subsets
of X satisfying propertiesx;) and («5) for somee. Then in every asymptotic co@ort’(X; e, d), every
setlim®(A,,) is connected and a geodesic subspace

Proof. Indeed, consider any two poinis= lim®(x,), y = lim®(y,) in lim“(A,), and geodesics,
connectingx,, y, in X. Then by Lemma 4.3g, is inside./"y/(A,) for some fixedM. Therefore the
geodesic linf(q,,) is inside lim’ (/"3 (A,)) =lim®(A,). O

Lemma 4.5. Let (X, d) be a geodesic metric space and.lgt={A; | i € I} be a collection of subsets
of X satisfying propertiesx;) and («5). Then in every asymptotic coli®n®(X; e, d) the collection of
subsetsv, satisfieq7T7).

Proof. Suppose that, in an asymptotic cone €QXi; e, d) of X, the intersection lirfi(A;,) Nlim®“ (A, )
contains two distinct points liffi(x,), lim“(y,) but A;, # A;, w-almost surely. For every>1 con-
sider a geodesigx,, y,1. Its length¢, is O(d,) while ¢, defined as the maximum of the distances
dist(x,, A;,), dist(x,, A;,), dist(y,, A;,), dist(y,, A;,), is o(d,). According to Lemma 4.3[x,, y,] is
contained inA"s, (A;,) N A5,(Aj,) for somer > 0.

Considemw,, b, € [x,, y,] at distance &, fromx, andy,, respectively. Properts5) can be applied
twice, to[x,, a,] C [x,, y.] and A;, (resp.A;,) for n large enough. It implies that there exist €
(X, an] VAN Mo (Aj,) @ndz, € [x,, an] N A 1 (Aj,) (WhereMg is the same as in Lemma 4.3). A similar

In
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argument folb,, y,1 C [x,, yo] andA;, (resp.A;,) implies that there exist, € [b,, y,]1 N A my(Ai,)
andu,, € [by, yol N N po(Aj,). Hencela,, b,] C [zn, un] C N '1mo(Ai,) andla,, b,1 C [z, u,] C
./V,MO(Ajn). It follows that[a,, b,] C —/VtMo(Ain) N JVtMo(Aj,,)a while dist(a,, b,) = O(d,). This
contradicts propertyx). O

Lemma 4.6(asymptotiq7y) and(«3) implies asymptoti¢7y)). Let(X, dist) be a geodesic metric space
and leto = {A; | i € I} be a collection of subsets of X. Suppose that propegyholds. Then every
simple geodesic triangle in any asymptotic c@wt’(X; e, d) is contained in one of the sets fram,,.

Proof. Let 4 be a simple geodesic triangle in CiX; ¢, d). Letg,, = 1/2™ be fixed, for every large
enough integem. By Proposition 3.34, we can finkh and a simple trianglet,, = 4,,, = lim“(P.")
satisfying properties (a),(b) and (c) férandv>8 given by (x3) for kg(e;;). It follows that w-almost
surely, P)* are contained in/",(A,) for someA, e .. We conclude thatt,, C A, =I1lim®“(A,). By
property (b) all triangles,, have at least 3 distinct points in common (e.g. the midpoints of the edges of
A). This and propertyT;) of the collection<,, imply that the se#4,, is independent afn. Since4 is a
Hausdorff limit of4,, andA,, is closed (see Remark 3.10), we deduce that A,,. 0

Lemmas 4.4, 4.5 and 4.6 show thai), («5) and(x3) imply that the spac& is asymptotically tree-
graded. Now we prove the (stronger version of the) converse statement.

Lemma 4.7 (asymptotic(Ty) implies («1)). Let (X, dist) be a geodesic metric space asymptotically
satisfying(Ty) with respect taeZ. Then X satisfieéx1) with respect tae.

Proof. By contradiction, suppos¥ asymptotically satisfieé77) but for somed > 0 there exists a se-
quence of pairs of points,, y, in .A4"5(A;,) N .A"s(Aj,), whereA;, andA ;, are distinct sets in7, with
lim,,_, o dist(x,, y,) =00. Set the observation poiato be(x,)“, and letd, =dist(x,, y,) for everyn > 1.
ThenM; =1im®“(4;,) andM, =1im“(A;,) are not empty, so these are distinct pieces in‘Gan e, d).
The limitsx = lim®(x,) andy = lim®(y,) are distinct points in Col(X; ¢, d) that belong to bottdz;
andMo>. This contradict§71). O

Definition 4.8 (almost closest poinfs Letx € X, A, B € X. A pointy € A is called aralmost closest
to x pointin Aif dist(x, y) <dist(x, A)+ 1. Pointsa € A, b € B are callecalmost closest representatives
of A and Bif dist(a, b) <dist(A, B) + 1.

Definition 4.9 (almost projectioh Letx be a pointinXandA c X. Thealmost projection of x on #s
the set of almost closest xpoints inA. For every subsé of X we define th@lmost projectiorproj, (B)
of BontoA asl| J,.z Proj, (b).

Remark 4.10. Ifall A € .« were closed sets and the spxoeas proper (i.e. all balls iX compact) then
we could use closest points and usual projections instead of almost closest points and almost projections.

Lemma 4.11. If the space X is asymptotically tree-graded with respect/itdhen for everyx € X,
A € o, withdist(x, A) =2d

diam(proj4 (A g(x)) = o(d).
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Proof. Suppose there exists> 0andx, € X, A, € .« withdist(x,, A,)=2d,, lim,_, - d, =00, and the
projection proj (.44, (x,)) is of diameter at leasid, . Lete = (x,,) andd = (d,). In the asymptotic cone
Cor’(X; e, d), we have the point =lim®(x,) at distance 2 oA =lim“(A,,), two pointsy, z € A4"1(x),
and two points/’, 7/ in Asuch thaty’, 7’ are the respective projections afz ontoA, but disty’, ') >«.
This contradicts Lemma 2.8.0

Lemma 4.12(asymptotically tree-graded impligs’)). Let (X, dist) be a geodesic metric space which
is asymptotically tree-graded with respect4a Then X satisfiess).

Proof. Fix L>1, C >0. By contradiction, suppose that for some fixed [0, %) there exists a sequence
of (L, C)-quasi-geodesics,: [0, ¢,] — X and a sequence of sets, € .«Z, such thaty,(0), q,(¢,) €
JV‘HZ,,/L(AH) and diS(qn([O, gn])a An) = 2Dna Ilmn—)oo D, = oc. Since disiqn([O, En])7 An)gLen +
0¢, /L this implies lim,_, £, = 00.

Letro=0<1t1 <+ <ty_1<ty=4_, besuchthatD, —C)/2L <dist(#;, t;11) < (D, —C)/Lforalli
{0,1,...,m—1}. We haven <3L¢, /D, for large enougin. Let y; be an almost projection @f, (z;) onto
A,.Accordingto Lemma4.11, digt;, yi+1)=0(D,). Consequently dist, (0), g, (£,)) <dist(q,,(0), yo)
+Z§“:_01 dist(y;, yi+1) +dist(yn, q,,(€4)) <20¢,, /L +m-o(D,)<20¢, /L +3Lo(1)¢,. On the other hand
dist(q,, (0), 9, (¢4)) > £,/L — C. This is a contradiction with < 3. [

It remains to prove that being asymptotically tree-graded impligs

Definition 4.13(almost geodesi¢s If an (L, C)-quasi-geodesig is L-Lipschitz theny will be called an
(L, C)-almost geodesic

Remark 4.14. Every (L, C)-quasi-geodesic in a geodesic metric space is at bounded (in tedfm&)f
distance from aiL + C, C)-almost geodesic with the same endpo[d®, Proposition 8.3.4]

Lemma 4.15(.«# is uniformly quasi-convex with respect to quasi-geodésicst X be a geodesic metric
space which is asymptotically tree-graded with respect to a collection of sulgs&ts everyL >1 and

C >0, there existg >1 such that for every/>1 and for everyA € ./, every(L, C)-quasi-geodesic
joining two points in4";(A) is contained int";;(A).

Proof. Suppose by contradiction that there exists a sequencg, ¢,] — X of (L, C)-quasi-geodesics
with endpointsc,, y, € 474, (A,) such thatthere exists € g, ([0, £,]) with k, =dist(z,, A,) >nd, >n.

By Remark 4.14, we can assume that egcts an(L + C, C)-almost geodesic. This allows us to choose
Zn € q,([0, £,]) sothatdistz,, A,) is maximal. In Cof (X; (z,), (k,)), the limitsety=lim“(q,,) is either

a topological arc with endpoints in Ii{A,,) and not contained in lifi(A,,), or a bi-Lipschitz ray with
originin lim®(A,,) or a bi-Lipschitz line (Remark 3.15). Notice also thas contained in/ 1 (lim®(A,,)).

In all three cases we obtain a contradiction with Corollary 2.

Let (X, dist) be a geodesic space that is asymptotically tree-graded with respect to the collection of
subsets.

Notation. For everyL>1, C >0, we denote by (L, C) the constant given bg,) for 0 = % We also
denote by dist the distance function in any of the asymptotic con¥s of
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ConventionsTo simplify the notations and statements, in the sequel we shall not mention the constants
L>1andC >0 for each quasi-geodesic anymore. We assume that all constants provided by the following
lemmas in the section depend bandC.

Lemma 4.16. Let q,: [0, ¢,] — X, n>1, be a sequence gL, C)-quasi-geodesics in X and let,,
n>1, be a sequence of sets .. Suppose thatlist(q,(0), A,) = o(£,), dist(q,,(£n), Ap) = 0(£y,) w-
almost surely. Then there exisfse [0, 3¢,1, 12 € [5¢,. £,] such thaty, (}) € A y(Ay), i =1, 2,where
M = M(L, C), w-almost surely

Proof. By Lemma 4.15, the quasi-geodesjgcis inside./",, (A,) for t, = o(£,). It remains to applya5)
to the quasi-geodesiag ([0, 3¢,1) anda, (3¢, £,]). O

Lemma 4.17(linear divergencg For everye > 0 and everyM > M (L, C) there exists, > 0 such that
if A € .o/, qis aquasi-geodesic with origi € .43 (A), such thaty N A"y (A) = {a} andz > ¢, then

dist(q(r), A) > (1 — e)dist(q(?), a).

Proof. We suppose that for somae- O there exists a sequenadg € .«7, a sequence, of quasi-geodesics
with origina, € A"y (A,) such that, N 4"y (A,) ={a,}, and a sequence of numbeys— oo with the

property
diSt(qn (tn), Ap) <A — 8)diSt(qn (tn), an).

In Cort’(X; (an), (t,)), we obtain the pointa = lim®(a,) € lim“(A,) andb = lim®(q,(t,)), joined
by the bi-Lipschitz arg([0, 1]) = lim“(q,, ([0, #,])), such that

dist(b, im®(A,)) < (1 — &)dist(b, a).

It follows that the projection ob on lim®(A,,) is a pointc # a. Corollary 2.11 implies thag([0, 1])
containsc and Corollary 2.10 implies that a sub-ar@0, 25]) of ([0, 1]) is contained in linff(A,).

We apply Lemma 4.16 to the sub-quasi-geodesi¢O, #,]) and obtain that this sub-quasi-geodesics
intersects/ s (A,,) in a point different fromy,,, a contradiction. O

Lemma 4.18. For everye > 0,6 >0and M > M (L, C) there existsD > 0 such that for everyi € ./
and every two quasi-geodesigs|0, ¢;] — X,i =1, 2,thatconnect: € ./ (A) with two points; and
by, respectivelyif the diameter ofy; N .47/ (A) does not exceedl b, € A"y (A), anddist(a, bp) > D
then

dist(by, bo) >

l £2).

L+ 8( 1+ £2)
Proof. Suppose there exist sequenqé’é : [0, EE”)] — X,i=12,n>1, of pairs of quasi-geodesics
joining a™ e 4"y (A,) to bf") such thatg!” N .1"31(A,) has diameter at most by” € A"y (A,),
lim,,_ « dist(@™, b3") = oo, but

. n n 1 n n
dist(6y", b3") < 7 e +e3). (5)

+¢
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by

Fig. 4. Lemma 4.19.

Denote dista™, b\") by f, and dista™, b3") by d,,. Sincet” <L(f, + C), £5" <L(d, + C), for
every large enough the inequality (5) implies that

dist(6y", b") < (X = 1) (fn + do) (6)

for somey > 0.
Casel. Suppose that lifi( f,, /d,,) < oo. In the asymptotic cone CO&0X; (a,), (d,)), the two points
Iim‘”(bi(”)), i =1, 2, are joined by the Lipschitz arc I'ﬁ’r@qg")) U Iim‘“(qé")) (it is Lipschitz as any union

of two Lipschitz arcs). Lemma 4.17 implies that
im®(af”) N1im®(g3”) = lim®(@™)

(here we use the fact that the diameters of the interseodiﬁﬁhwith N m(Ay) are uniformly bounded,
S0 we can cut a comparatively little piece of eaﬁ;’H to make it satisfy the conditions of Lemma 4.17).
Thus the points Iirﬁ(bf”)) are joined by the simple arc Ii‘ﬁ(q(l”)) ] Iim‘”(q(z”)). This and propertyT?)

imply that every geodesic joining litib{") and lin”(b3") contains lin?’(a™). Therefore

dist(lim® ("), im®BYY)) = distlim® (b{), lim®(@"™)) + dist(im®(@™), limG3")).

This contradicts inequality (6).

Casell. Suppose that lim(f,,/d,) = co. In the asymptotic cone C&1GX; (a™), (f,)), we denote
a=1lim®@™)=lim®»3") € lim®(A,) andb=1lim®(b{"). Then inequality (6) implies that digt, b) <
(1 — y)dist(a, b), a contradiction.

Lemma 4.19. For everyM > M (L, C), ¢ > 0 andé > 0 there existsD’ > 0 such that for every € .7,
and every two quasi-geodesigs [0, ¢;] — X, i =1, 2, joining a in A"y (A) with b;, if the diameter
of g1 N A"y (A) does not exceed bo € A"y (A), dist(a, bp) > D', then the uniony; U g, of these two
quasi-geodesics is ail. + ¢, K)-quasi-geodesiavhereK = 2D’ (Fig. 4).
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Proof. Letq=qq U qgy:[0, €1 + £2] — X. For everyjry, 2] C [0, £1 + £2] we have
dist(q(r1), q(t2)) <L(t2 — 11) + 2C

by the triangular inequality. This implies digtt1), q(2)) <(L + ¢)(t2 — t1) + K, for K >2C. We need
to prove that for some well-chosé&hwe have

Itz (12 — 1) — K <dist(q(r1), q(12)). (7)

We consider the constabtgiven by Lemma 4.18 and sé&t' = 2L.%(D + C) + C andK = 2D’. The
hypothesis distz, b2) > D’ implies that¢o >2L(D + C).

Let[r1, 2] C [0, £1 + £2]. If t2 — t1 is smaller than 2(D + C) then (7) obviously holds. Suppose that
tp —t122L(D + C). If [r1, 2] N [£1, L1+ £2] is an interval of length at lea&t(D + C) then the distance
betweem(£1) andq(#2) is bigger tharD. Lemma 4.18 implies (7).

The same inequality is true {1, r2) does not contairf;. Suppose thalr1, 1] N [€1, €1 + £2] is a
non-trivial interval of length at mogt (D + C). Then

dist(q(r1), q(t2)) >dist(q(t1), q(£1)) — dist(q(t2), q(£1))
1 1
>Z(51 —n)—D'> z(tz —11) —2D'

and (7) holds. O

Definition 4.20(saturation3. For every(L, C)-quasi-geodesigin X we define thesaturationSatq) as
the union ofg and allA € .« with 4"y (A) N g # @.

Lemma 4.21. Let g,, be a sequence af’, C)-quasi-geodesics in X. In every asymptotic c@uat’

(X; e, d) ifthe limitlim®(Saf(,)) is not empty then it is either a pieten“(A,,) from </, or the union

of p =1lim®(q,,) and a collection of pieces fron¥,, such that each piece intersetit®(q,,) in at least

one point and all pieces fronv, that intersectim®(q,,) in a non-trivial sub-arc are in the collection
(recall that by Corollary2.10if a piece in a tree-graded space intersects an arc in more than two points
then it intersects the arc by a sub-arc

Proof. Casel. Suppose that lig(dist(e,, q,)/d,) < oco. Letu, € g, be an almost closest point &g
inq,.

Suppose that a piecé = lim®“(A,) intersectsy = lim®(q,,) in an arcq([z1, t2]), t1 <t2. This arc is
a limit of sub-quasi-geodesieg of g, defined on intervals of lengtéiz — 71)d,. The ends ofy, are at
distancen(d,,) from A,, w-almost surely. Lemma 4.16 implies thatalmost surelyA, € Safg,) since
diam(A"y (Ay) N q,) = O(dy).

SupposeA is such thatA,, € Satlg,) and lim,(dist(e,, A,)/d,) < co. Leta, be an almost nearest
point tou, in q, N A p(A,). Lemma 4.15 implies that the sub-aycof q, with endpoints:, anda, is
contained»-almost surely int", (A,) for some numbes, = O(d,). If lim ,(dist(u,, a,)/d,) = oo then
by applying Lemma 4.16 we obtaim{almost surely) a point ig, N .43 (A,) nearer tas, thana, by
a distance0 (d,), a contradiction. Hence ligdist(u«,,, a,)/d,, < oc. Thena = lim®(a,) exists and is an
intersection point oA with q.
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Casell. Suppose that lim(dist(e,, q,)/d,) = co. Let A, C Sai(q,) be such that lim(dist(e,, A,)/
dy) < 00.We haved =lim®(A,) C lim®(Saf(g,)). Suppose there exists=1lim®(B,) C lim“(Safg,))
with B # A whenceB,, # A, w-almost surely.

For everyn>1, lety, be an almost closest g pointin A,. Also pickb, = q,(t,) € N/ ym(By). If
dist(z,, qn—l(,A/M(An))) = 0 then we se$, = 1,,. Otherwise lets,, be the almost closest t) number
in q;l(,A/M(An)). We assume that, <7, otherwise we can reverse the orientationgpf Then the
diameter of the intersection af,([sy, ,]) with 4" (A,) is bounded in terms ofL, C. By Lemma
4.19,v, = [yYn, 9,,(52)]1 YUg,, ([sn, t,]) is an(L + ¢, K)-quasi-geodesic whefe,, q,(s,)] is any geodesic
connectingy, andg,,(s,) in X.

Notice that disty,, B,) < O(dy,), q,(t,) € B,. Then by Lemma 4.15;,, € 4 ¢(4,)(B,) w-almost
surely. Applying Lemma 4.16 we find, a/, in [yn, g, (s,)] with dist(y,, a,,) = O(d,) which belong to
both 4"y (A,,) and.A" s (B,). This contradicts propertgss).

Thus we can conclude that there is no sequabce Saft(g,) with B, # A, w-almost surely, such
that lim,, (dist(e,, B,)/d,) < co. Hence in this case lif(Satq,)) = A. O

Lemma 4.22. For everyd > 0, every(L, C)-quasi-geodesig and everyA € .7, A"y (A) N q =@, the
diameter of /" ;(A) N .A"4(Salg)) is bounded in terms af, L, C.

Proof. Suppose that for someé> 0 and somédL, C) there exist sequences @f, C)-quasi-geodesics
q,, Of setsA4,, € &/, A, ¢ Saiq,), and of points;,,, y, € 4 "4(A,) NN 4(Salq,)) such that the sequence
dist(x,, y») = p» is unbounded. Consider the corresponding asymptotic con&@orix,), (p,)). The
limit sets lim“(A,) and lim”’(Saft(g,)) contain pointsx = lim®(x,) andy = lim“(y,) in common,
dist(x, y) = 1. By Lemma 4.21, either liff{Sat(q,)) is lim®“(A}) with A], € </, A], # A, w-almost
surely, or linf’(Saft(g,)) is equal toY (q) whereq is the arc lin¥(q,,), and lin’(A,) ¢ lim®(Satg,,)). In

the first case we get a contradiction with propefy) (for <. In the second case we get a contradiction
with Lemma 2.23(2). O

Lemma 4.23(uniform variant of Lemma 4.11 for saturationg=or everyx € X and every(L, C)-quasi-
geodesigy in X with dist(x, Sat(q)) = 2d,

diam(projsagg (' (x)) = ().

Proof. By contradiction, suppose that there exists a sequence of quasi-geagesntspointsx, with
lim,, dist(x,, Sat(q,)) = 2d, such that lim, d, = co, and the almost projection of 4, (x,) on Satq,) has
diameter at leastd,, for some fixed. In the asymptotic cone CoX, (x,), (d,)) we have, according to
Lemma 4.21, that lifi(Sat(q,,)) is either one piece or a set of ty[geWe apply Lemma 2.23(2), and get
a contradiction. O

Lemma 4.24(uniform property(«,) for saturation3. For every.i>1,x>0andd € [0, %) there exists

R such that for every/, k)-quasi-geodesic: [0, £] — X joining two points inA g1 (Sat(q)), whereq

is a quasi-geodesjeve have([0, £]) N A g(Satq)) # @ (in particular, the constant R does not depend
ongq).

Proof. One can simply repeat the argument of Lemma 4.12 but use Lemma 4.23 instead of
Lemma4.11. O
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Lemma 4.25(uniform quasi-convexity of saturationsFor everyi>1, k>0, there exists such that
for everyR > 1, for every quasi-geodesig, the saturationSatq) has the property that ever¢, x)-

quasi-geodesicjoining two points in its R-tubular neighborhood is entirely contained irt Rstubular
neighborhood

Proof. By Remark 4.14, itis enough to prove the statement.fok)-almost geodesics Suppose there
exists a sequence of quasi-geodesjgsa sequence of numbefs, >1, a sequence, of (4, k)-almost
geodesics joining the pointg, y, in the R, -tubular neighborhood of S@j,) such that,, is not contained
in then R,,-tubular neighborhood of Sa,).

Let z, € ¢, be such thatl, = dist(z,, Satlg,)) is maximal. By Lemma 4.21, in the asymptotic cone
Corf’(X; (zn), (dn)), we have that = lim®(Saf(g,)) is either one piece or a s&{q) of typeY. On the
other hand by Remark 3.15 lifc,, ) is either a topological arc with endpoints$and not contained in it,
or a bi-Lipschitz ray with origin irSor a bi-Lipschitz line. In addition, liffi(c,,) is contained in/1(S).

In all three cases Lemma 2.23(2) and Corollary 2.9 give a contradictian.

Lemma 4.26(saturations of polygonal lings Let X be a geodesic metric space. Then the following is
true for everyk > 1.

(1) Foreveryn>1,let|J/_; qg”) be a polygonal line composed @f, C)-quasi-geodesiwl(”). Thenin

every asymptotic cone the limit dien ‘“(Uf-‘:1 Sai(ql("))) = Uf-‘zl Iim‘”(Sa(qE”))) is either a piece or
a connected union of sets of typéas in Lemm&.23(3)).

(2) Theresultsin Lemmak23, 4.24, 4.2%re true if we replac&at(q) with Uf-‘zl Sat(q;), WhereUf-‘:1 q;
is a polygonal line composed ¢f., C)-quasi-geodesics

(3) For everyd > 0, for every polygonal IinQJf-;l q; composed ofL, C)-quasi-geodesi¢aind every
A € o/ such thatA ¢ Uf-‘zl Saf(g;), the intersection/’s(A) N ,/V(;(Uf-‘:l Saf(g;)) has a uniformly
bounded diameter in terms of &y, . .., ;.-

Proof. We prove simultaneously (1), (2) and (3) by induction lonFor k = 1 all three statements
are true. Suppose they are true fatk. We prove them fork + 1. We note that (1) implies (2) in
the same way as Lemma 4.21 implies the cited lemmas, and the implicaties (B8) follows from
Lemma 2.23(3) (the argument is essentially the same as in Lemma 4.22). Thus it is enough to prove
part (1).

Let Cort’(X; e, d) be an asymptotic cone. We suppose that

dist(e,, |} satg™)) e
dy

lim,,

(otherwise then-limit is empty). There are two possible situations.
Casel. Suppose that there exists an integbetween 2 ané such that

dist(e,, Saq;"))
<X
d;

lim,,
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By the inductive hypothesis |If’f(Uj 1 Sal(q(”))) is a set of typéy, and so is the set

k+1

U Sai(q")

These two sets have a common non-empty subsé’t(ﬁm'(ql(”))). Since a connected union of two sets
of typeY is again a set of typ¥, statement (1) follows.
Casell. Suppose that for everybetween 2 an#t, we have

dist(e,. Satq")) _
dy B

If the same is true either far= 1 or fori = k 4+ 1 one can apply Lemma 4.21. Thus suppose that for
i=1k+1,we have

(]

dist(e, . Sai(q{"))
<X
d,

I (&)

By Lemma 4.21, foi =1, k + 1, for the limit set Iim"(Sa(qf”))) one of the following two possibilities
OCCuUrs:

(A;) itis equal to lin?’(A,), whereA,, € 7, A,, C Sa(q("))'

(B;) itis equal toY (q;) as in Lemma 2.23(2), wherg = Ilm("(q(”))

It remains to show that the union Iih(lSal(q("))) U Ilm‘“(Sa(q,E’Ql)) is connected.

Suppose that we are in the situati@y). Let u, € ql) be an almost nearest point frogp. Then
dist(uy, e;) = 0(d,). Letv, € Uk+1 Sa(q(”)) be an almost nearest point ¢p. By our assumption,
w-almost surely,, € Sa(qli'fgl) and distv,, ¢,) = 0(d,). Hence distu,,, v,) = O(d,). Let R, be the

constant given by the variant of Lemma 4.24 for polygonal lines composkedlafC)-quasi-geodesics
with (4, x) = (L, C), 0 = % (that Ry exists by the induction hypothesis). L&t be an almost nearest

point fromu,, in q(l”) N JVRk(Uk—H' Sai(q(”))) Letp™ be the sub-quasi- geodesmcé‘f) with endpoints
u, anda,. According to part (2) of the proposition (which by the induction assumption is truk) for
p™ C N 1a, (U"Jrl Sai(q(”))) for somet independent on. If dist(u,,, a,) > d, then according to Lemma
4.24 there exists another point pf) N /VRk(U"+1 Sai(q("))) whose distance from,, is smaller than
dist(a,, u,) by O(d,), a contradiction. Therefore dist,, a,) < O(d,) and the limit point lin¥(a,) is a
common point ofy; and lim”(_3 Satq™)) = Iim‘“(Sal(q,({’fgl)).

The same argument works if we are in the situaiiBp,.1). Therefore we suppose that we are in the
situations(A1) and (A4 1). We have that Iirﬁ(Sat(q(”))) i =1k+ 1, is equal to Iim”(A(”)) where
A(”) € o, A(”) - Sai(q(")) Suppose thaA(”) £ A(”)1 w-almost surely. Le'v(”) € Sa(q(”)) be an
almost nearest point from),. By hypothesm)l.(”) € Al(”).

The two assumptions

dist(e,, Satq;")
dy B

lim,,
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i €{2,...,k},and
lim®(Satq}";)) = lim“(A{" )

imply thatA{" ¢ |'*2 Satq"”) w-almost surely.

Suppose thdD, E(”) ] is the domain oﬁ(") The following two cases may occur.

Casel. If the distance fromﬁ(”) to the pre- |mage§q(”)) l(A(”)) is at mostLC + 1 then we denote

i (¢ by a,. We have that digt,, ai” N A{”) <L2C + L + C, which implies by Lemma 4.15 that a

geodesip, = [v(") a,] is contained in the(L2C + L + C)-tubular neighborhood oi(l”).

Casedll. If the distance frome(”) to (q(”)) l(A(l”)) is larger than.C + 1, then we considey, < [0, E(l")]
at distance.C + 1 of (q(”)) 1(A(”)) such that all points ir,,, E&”)] are at distance at leastC + 1 of
(q (")) 1(A(”)) We denote by, the pOIntq(")(t,,). According to Lemma 4.15 we have that a geodesic
[vi”), ay] is contained in the(L2C + L + C)-tubular neighborhood of{".

By our assumption, Ilm(dlst(v(”) ap)/d,)=00.Lemmad4.19implies tha’o(”) a,] and the restriction

of q(”) to [¢,, E(l”)] form an(L + ¢, K)-quasi-geodesie-almost surely. We denote it hy, .

Both in Case | and in Case Il we have obtained(an+ ¢, K)-quasi-geodesie,, with one of the
endpomtSv(”) and the other one contained qﬁ”) The distance from)“‘) to Uk+1 Sai(q(")) does not
exceed digw{", v",); hence it is at mosO (d,). It follows thatp, C 40w, (U3 Sai(qf”))) In

particular[vi”), a,] is contained in the same tubular neighborhood. Since the lehgtf [vi”), an]

satisfies lim,(4,/d,) = oo, by applying Lemmas 4.24 and 4.25 we obtain that a sub-segmgrt, ]

of [v an] of length 4,,/2 is contained mA/“R(U"Jrl Sal(qn)) whereR is a universal constant. On the
other hand we havey,, f,] C ./Vt(LzCJrHC)(Al ). This contradicts the inductive hypothesis (3). We
conclude that if we are in situatiod() then lim,, (dist(e,, Sat(*t1))/d,) = co. O

Corollary 4.27. Let4 be a quasi-geodesic triangle. Then every edlgé4 is contained in an M-tubular
neighborhood o$atb) U Sat(¢), whereb and¢ are the two other edges d@fand M is a universal constant

Lemma 4.28. For everyR >0, k € N andé > 0 there exist > 0 such that ifo:l q; IS a polygonal
line composed of quasi-geodesics ahdB € «/, AU B C Uf:l Sat(q;), A # B, the following holds.
Leta € 4 'g(A) andb € A 'gr(B) be two points that can be joined by a quasi-geodessuch that
pN A g(A) andp N A "g(B) has diameter at most Then{a, b} C /I/%(Uf:l a;)-

Proo_f. Supposey; is defined on the intervdD, ¢;]. Letr : [0, Zf-;l ¢;1 — X be the map defined by
r(Zl!;lle,- +1)=q;@),forallz € [0,¢;]and allj € {2,..., k}. It satisfies

dist(x(¢), v(s)) < L|t — s| + kC. (8)

Letx be a pointinc N .4y (B) andt, € [0, Zle £;] such that:(z,) = x. We have two cases.

(a) If the distance fronr, to the pre-image—1(4")(A)) does not exceed.C + 1 thenx €
N yar2c+r+xc(A) by (8). By Lemma 4.19, if distz, x) is larger thanD’ then the union op and a
geodesi¢a, x]forman(L+z¢, K)-quasi-geodesic, with endpointsiriz. 4 (B). It follows that this quasi-
geodesic and in particulda, x] are contained in’; 4y (B). On the other hanfl, x] is contained in
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N 1 (m+R+120+L+k0)(A). I dist(a, x) is larger than the diameter given by) for 6=¢(M + R + L2C +
L + kC) then we obtain a contradiction with).

(a) Suppose that the distance fregrto r~1(47y(A)) is larger thanLC + 1. Considesy at distance
LC + 1 from (1731 (A)) such that eveng betweensy andr, is at distance at leagtC + 1 from
(A (A)). It follows thatr([so, 7, ]) or r([zy, sol) is disjoint of /"3 (A). Let y = r(so). The restriction
v/ of v to [so, £, ] Or [£;, so] can be written aQJ’j“?:l q/j, wherem <k and each(j coincides with one of the
q;'s or a restriction of it. We note that ¢ Saft’).

Ifthe distance fronatoyis larger than the constabt given by Lemma 4.19 thenand a geodesia, y]
form an(L + ¢, K)-quasi-geodesic. Lemma 4.26(2) implies that this quasi-geodesic, and in particular
[a, y], is contained in the R-tubular neighborhood of Sat). On the other handg, y] is contained in
thet(R + M + L?C + L + kC)-tubular neighborhood d&. For dis{a, y) larger than the diameter given
by Lemma 4.26(3), fod = max(t(R + M + L2C + L + kC), tR) we obtain a contradiction. O

Lemma 4.29. Suppose that a metric space X is asymptotically tree-graded with respectTaen X
satisfies(«5).

Proof. Letk>2,05>1 andv>4s. Fix a sufficiently large numbet (it will be clear later in the proof how
largev should be). LeP be ak-gon with quasi-geodesic edges thatisa, v)-fat. Changing if necessary
the polygon by a finite Hausdorff distance, we may suppose that its edgdsia¢e C)-almost geodesics.

Letq: [0, £] — X be an edge with endpoingg0) = x, q(£) = y. We denoteyq, q», . . ., q;_1 the other
edges in the clockwise order. By Lemma 4.26(2),

k—1
qC AR (U Sa(m)) :

i=1

We taked > tR. Then for every point € q\./ s9({x, y}) there existsA C Safly;),i € {1,2,...,k—1}
such thatz € A4";g(A). If such a pointz is contained in/";g(A) N A":r(B), A # B, then Lemma
4.28 implies that € :A/M(Uf;ll q;), Wwherex depends orR andk. If we choose’ > x then this gives a
contradiction.

Letz, be the supremum of the numbers [0, £] contained i~ 59 (X)). Lets, be theinfimum ofthe
numbers irz,, £] contained i~ L (A o9 (). Leta, = q(ty) andb, = q(s,). We note that digt,, x) = 0¥
and distb,, y) = 0. According to the argument in the paragraph abewg,, s,1) is covered by the
family of open sets/"g(A), with A C Satq;),i € {1,2,...,k — 1}, and the traces of these sets on
q([t4, sq]) are pairwise disjoint. The connectedness®f;., s,1) implies that there exist& as above such
thatqqtq, Sq]) C N '2r(A).

Thus, for every edge a sub-aray’ : [1,, sq] — X with endpointsag, b, is contained in4";z(A) for
someA C Saf(g;),i € {1,2,...,k — 1} (Amay depend or). We note that, and¢ — s, are less than
oUL + C; hencelio.,) € A gyr241c+c(@q) ANal[s,.e € N gyr2; Lo (ba)-

Suppose that we have two consecutive edges, with endpointsc, y andy, z, respectively, such that
q; C A :r(A)anda, C A:r(B), A # B.Wedenotes, qq, .. ., q; the other edges in the clockwise order.
We havey; : [1,,, sq,] — X with endpointsz,, by, . SUPPOSS,, = g5 N A 59(¥) andag, = g5 N A 59 (y).

Let q; be the restriction ofy} to [z,,,%,, + 3LtR] and q; = [x, ay,] U g;. We note that since
dist(ay, , by,) >dist(x, y) — 260 >vi) — 201 > 201, we haves,, —t,, >209/L — C, so ford large enough
we haves,, — t;, >10LtR and the restrictioq; makes sense.
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Likewise we construci, = g, U [bq,, z], Whereq, is the restriction ofy,, to the last sub-interval of
length 3.<R.

Let [a, b] be a geodesic joining the points= a,, andb = b,,. It has length at mosta®. Let
[@’,b'] C [a, b] be a sub-geodesic which intersectsg(A) in @’ and /" g(B) in b’ (eventually re-
duced to a point). Notice that € Sat(g;), B € Saftg,). Lemma 4.28 applied to the polygonal line
i, U U _30; U Gy and to the points’, b’ implies that{a’, b’} C 4",G, U ' _3q; U §y), wherex de-
pends orcR. Since disty, {a’, b'})is at most 2, it follows thaty € 4,1 259(go U Ufzs q; Uap) C
N yraograrzersc(Ur_s a:). On the other hand propertys) implies that disty, Jr_5 q;) = v > 400
Ford large enough this gives a contradiction.

We conclude that there exists € .«# such thauUf.‘:l q; C A:r(A). HenceP is inside the(zR +
o¥L? + LC + C)-tubular neighborhood k. [

The following corollary immediately follows from the proof of Theorem 4.1.

Corollary 4.30 (there is no need to vary the ultrafilter in Definition 3)19.et X be a metric spa¢and
let o7 be a collection of subsets in X. Letbe any ultrafilter oveN. Suppose that every asymptotic
coneCort’(X; e, d) is tree-graded with respect to the collection of dats”(A,,), A,, € «/. Then X is
asymptotically tree-graded with respectta

5. Quasi-isometric behavior

One of the main reasons we are interested in the property of being asymptotically tree-graded is the
rigid behavior of this property with respect to quasi-isometry.

5.1. Asymptotically tree-graded spaces

Theorem 5.1(being asymptotically tree-graded is a geometric propertyet X be a metric space and
let .=z be a collection of subsets of X. Lebe a quasi-isometrx — X’. Then

(1) If X satisfies propertieéx1) and (o) with respect to then X’ satisfies propertiegr;) and («3), for
a sufficiently smalt, with respect tay(.«7) = {q(A) | A € </}.

(2) If X satisfieg(o) with respect to thenX’ satisfies(«3) with respect tay(.«7).

(3) If Xis asymptotically tree-graded with respectdtthenX’ is asymptotically tree-graded with respect
to q(.«7).

Proof. (1) follows from Theorem 4.1 and Remark 4.2.

(2) Assume that is an(L, C)-quasi-isometry and that: X’ — X is an(L, C)-quasi-isometry so
thatq o g andq o q are at distance at mo€tfrom the respective identity maps.

Fix an arbitrary integek >2. Leto = 2L2 + 1 andv = 4o. Property(x3) in X implies that for the
constantd., C of the quasi-isometries, for the givéne andv there existe)g such that for every >1g a
k-gon with (L, C)-quasi-geodesic edgesXwhich is (v, o, v)-fat is contained in/",(A), whereA € .o/
andy=y(L,C,k,a,v,).
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Let¥1 =max(Wo, 2L2C + C) and let) = L (91 + C). Let P be a geodesik-gon inX’ which is(0, 2, v)-
fat. Theng(P) is ak-gon in X with (L, C)-quasi-geodesic edges which(i%, o, v)-fat. Consequently,
q(P) C A4 (A), whereA € o7 andy = (L, C,k,a,v,971). It follows that P C A "c(qo §q(P)) C
N Lyr2c(q(A)).

(3) The statement follows from (1) and (2). It also follows immediately from the definition of asymp-
totically tree-graded spaces. Indeed, it is easy to seesthiatits of sequences of subsets commute with
quasi-isometries. Since quasi-isometric spaces have bi-Lipschitz equivalent asymptotic cones (Remark
3.16) it remains to note that a metric space that is bi-Lipschitz equivalent to a space that is tree-graded
with respect taz, is itself tree-graded with respect to the images of the se#sunder the bi-Lipschitz
map. O

Definition 5.2. Let B be a geodesic metric space. We say & wide if every asymptotic cone d8
does not have global cut-points.

We say thaB is constrictedf every asymptotic cone d8 has a global cut-point.

We say thaB is unconstrictedf there exists an ultrafiltap and a sequencé=(d,) of scaling constants
satisfying lim, d, = oo such that for every observation point (e,,)” the asymptotic cone C61B; e, d)
has no cut-points.

Remark 5.3. (1) Note that “unconstricted” is in general more than the negation of “constricted”, as the
latter only means that there exists one asymptotic cone without cut-points. The two notions coincide for
finitely generated groups, according to the comment following Remark 3.16.

(2) Note also that most probably “wide” is stronger than “unconstricted”, but we do not have an example
of an unconstricted group which is not wide (see Problem 1.17).

Definition 5.2 has the following uniform version.

Definition 5.4. Let % be a family of geodesic metric spaces. We say theguniformly wideif for every
sequence,, of metric spaces i@ with metrics dist and basepoints, € B,, for every ultrafilter» and
for every sequence of scaling constagatg) with lim, d,, = oo, the ultralimit lim”(B,,, (1/d,)dist,), is
without cut-points.

We say that# is uniformly unconstrictedf for every sequence,, of metric spaces i with metrics
dist,, there exists an ultrafiltes and a sequence of scaling constaiis(d,,) with lim, d,, = co such that
for every sequence of basepoinhise B, the ultralimit lim”(B,,, (1/d,)dist,), is without cut-points.

Remark 5.5.

(a) Allmetric spacesinafamily thatis uniformly wide (uniformly unconstricted) are wide (unconstricted).

(b) If % is a family of wide metric spaces containing only finitely many pairwise non-isometric spaces
then# is uniformly wide.

(c) For examples of groups that are wide or unconstricted and of families of groups that are uniformly
wide or unconstricted, see Section 6.

Proposition 5.6. Let metric space X be asymptotically tree-graded with respect to a collection of subsets
o/ . Let# be a family of metric spaces which is uniformly unconstricted. Suppose that for some constant
C, every point in every spacB € % is at distance at most ¢ from an infinite geodesic in B. Then for
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every(L, C) there exists¥ = M (L, C, %) such that for everys € % and every(L, C)-quasi-isometric
embedding;: B — X there existsA € .7 such thaty(B) C A4 "y (A).

Proof. We argue by contradiction and assume that there is a sequence of metric Bpaceg and
a sequence ofL, C)-quasi-isometric embeddings : B, — X such thaty,(B,) ¢ 4, (A) for all
A € /. By definition there exists an ultrafilterand a sequencé= (d,) with lim, d, = oo such that for
every sequence of basepoinise B, the ultralimit lim®”(B,,, (1/d,)dist,), is without cut-points. Fix a
pointb, € B,. Lete = (q,,(by)). In Cort’(X; e, d), the limit set lint’(q, (B,)) is a bi-Lipschitz image of
lim® (B, (1/d,)dist,),; therefore it is without cut-points. Lemma 2.15 implies that

lim®(q,(By)) C lim“(A,), whereA, € . 9)

Consider a sequeneg € B, such that lim,(dist, (b,, u,)/d,) < co. Eachu, is contained in/".(g,,),
whereg, is a bi-infinite geodesic iB,. Suppose thai, is parameterized with respect to the arc-length
in (B,, (1/d,)dist,) and so that digt(u,, g,(0)) < c¢. The inclusion in (9) implies that for everye R,
lim,(dist, (g, (s,()), Ay)/d,) = 0. Therefore for every < we havew-a.s. that the image by, of
the segment,, ([s, t]) contains a point inf/"y;,(A,), where Mg is the constant given by5), for L
and C. By taking firsts <t <0 then O<s <, we may deduce that there exist< 0 < 8, such that
0, (8, (o)), 0,(8,(Br)) € NV my(A,). We conclude thad,, (g,(0)) € A p(Ar), by Lemma 4.15. Hence
a,(w,) € N p(Ap)w-almost surely, wherd? = Mo+ Lc + C.

Letx, € B, be such tha, (x,) € q,,(B,)\-/»(A,) and let[b,, x,] be a geodesic iB,. The previous
argument implies that ligy(dist, (b, x,)/d,) = oo and that for every the pointb, (t) on [b,, x,] at
distanced, of b, has the image by, contained in/t"y;(A,) w-almost surely. Let, be the farthest point
from b,, in the closure ofb,, x, 1N q;l(./VM(A,,)). We have that lim (dist, (b, y,)/n) =oo. Also, y, €

[bn, xn]ﬂqgl(JVM(An)) implies that for every > 0 the distance fron, (y,)t0 A, isatmostM + Le+C.
Hencey, (v1) € 4 m+c+1(A,). Onthe otherhand,, € .4y (A,) w-almost surely. According to Lemma
4.15,q, ([bu> yn]) C A ym+c+1)(Ap).In Cort’(X; (a,(yn)), d), g =lim®(q,, ([bn, y])) is a bi-Lipschitz
ray contained imA = lim“(A,) and in linf’(q,,(B,)). Since lint’(q, (B,)) is the image of a bi-Lipschitz
embedding of the ultralimit lifi(B,,, (1/d,)dist,),, it is without cut-points; therefore it is contained in a
pieceA’ =1im“(A;). Property(T1) implies thatA = A’. In particular lint’(q,, ([y., x»1)) C A. The same
argument as before yields that every sequance B, such that lim,(dist,(v,, v,)/d,) < oo satisfies
a,(vn) € N m(A,) w-almost surely. Hence, didm®(q,,(y»)), lim®(q,(x,))) = oo and there exists
Vn € [yn, x,] such that distim®(q,,(y»)), lim®(q,,(v,))) > 0 andq,, (v,) € A"y (A,), which contradicts
the choice ofy,,. O

Remark 5.7. The condition that every point is contained in tiyubular neighborhood of a bi-infinite
geodesic is satisfied for instanceBifs a geodesic complete locally compact homogeneous metric space
of infinite diameter. In particular it is true for Cayley graphs of infinite finitely generated groups.

Corollary 5.8. Let X be asymptotically tree-graded with respect to a collection of subget®t B be
an unconstricted metric space. Then ev@ry C)-quasi-isometric embedding B — X maps B into an
M-neighborhood of a piecg € .o/, where M depends only on C and B

Notation. We shall denote the Hausdorff distance between twofs& a metric space by hdicd, B).
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5.2. Asymptotically tree-graded groups

Definition 5.9. We say that a finitely generated groBjps asymptotically tree-graded with respect to the
family of subgroup$H1, Ho, . .., Hy} if the Cayley graph Cayldgys) with respect to some (and hence
every) finite set of generators is asymptotically tree-graded with respect to the collection of left cosets
{gH, |ge€G,i=12,... k}.

Remark 5.10. If {Hy, Ho, ..., H;} # {G} and if everyH; is infinite then everyH; has infinite index
in G.

Proof. Indeed, afinite index subgroup is at bounded distance of the whole group, which would contradict
(21). O

Proposition 5.11. Let G = (S) be a group that is asymptotically tree-graded with respect to subgroups
Hi, ..., H,. Then each of the subgroups is finitely generated

Proof. Takeh € H; and consider a geodesicin Cayley(G, S) connecting 1 andh. By Lemma 4.15
there exists a constaM > 0 such thaty is in theM-tubular neighborhood off;. Let vy, ..., v, be the
consecutive vertices of Foreachj =1, ..., k consider a vertew; in H; at distance< M fromv;. Then

the distance betweean; andw; jisatmosta/ +1,j=1,...,k — 1. Hence each elemewtj‘leﬂ
belongs toH; and is of length at most™ + 1. Sinceh is a product of these elements, we can conclude
that H; is generated by all its elements of length at mogt2 1. O

Remark 5.12. Corollary 5.8 gives certain restrictions on the groups that can be quasi-isometrically
embedded into asymptotically tree-graded groups. For instanézjdfa group asymptotically tree-
graded with respect to a finite family of free Abelian groups of rank at moxt free Abelian group of
rank at least + 1 can be quasi-isometrically embedded iGto

Theorem 5.13. Let X be a space that is asymptotically tree-graded with respect to a collection of sub-
spaces«. Assume that

(1) o is uniformly unconstricted

(2) for some constant c every point in evetye <7 is at distance at most ¢ from a bi-infinite geodesic
in A

(3) for afixedxp € X and everyR > 0 the ball B(xg, R) intersects finitely manyt € .«7.

Let G be afinitely generated group which is quasi-isometric to X. Then there exist séipsets A, €
o/ and subgroup#{s, ..., H, of G such that

() everyA e .« is quasi-isometric t4; for somei € {1, 2, ..., m};
(I H; is quasi-isometric tA; for everyi € {1, 2, ..., m};
(I G is asymptotically tree-graded with respect to the family of subgrétpsHo, ..., H,;,}.

Proof. First we show (in the next lemma) that there is a natural quasi-transitive quasi-acomnX
by quasi-isometries.
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Notation. Letg € G. We denote by the multiplication on the left bg in G.

Lemma5.14. Letq: G — X andg: X — G be (Lo, Cp)-quasi-isometries such thato g is at distance
Cop from the identity map on X and the same is truedorg with respect to the identity map on G

(1) For everyg € G the mapg, =qogoq X — X is an(L, C)-quasi-isometrywhereL = L% and
C = LoCo + Cp.

(2) For g, h € G the mapy, o q, is at distance at most C from the mayp,.

(3) For everyg € G the mapy, o q,-1 is at distance at most + Co from the identity

(4) Foreveryx, y € X there existg € G such thadist(x, q,(y)) < Co.

Proof. Statement (1) follows from the fact th@acts as an isometry @dh Statement (2) is a consequence
of the fact thaf; o q is at distance at mosly from the identity map oie. For (3) we use (2) and the fact
thatq o g is at distance at mosly from the identity map oix.

(4) Let g = q(x) andh = q(y). Then qhgfl(x) = q(h) = q(gq(y)), which is at distance at mosly
fromy. O

Notation. LetH be a subgroup i® and letx € X. We denote byx the sef{q, (x) | h € H}.

Proposition 5.6, Remark 5.7 and hypothesis (1) imply that there edists M (L, C) such that for
everyA € 7 and every(L, C)-quasi-isometric embedding: A — X there existsA’ € .«# such that
q(A) C N m(A).

Lemma5.15. (1) If A, A" € o7 satisfyA C 4" (A") for somer > 0thenA = A’.

(2) Letq : X — X andg be(L, C)-quasi-isometries such thato g andg o q are at distance at most
K from the identity map on X. i, A’ € .« are such thatj(A) c A4 (A") or A" C 4", (q(A)) for some
r>0theng(A) C A/ y(A)), §(A") C ¥y (A) andhdist(q(A), A), hdistG(A’), A)<SLM + C + K.

Proof. (1) follows from property(«1) and hypothesis (2) of Theorem 5.13.

(2) Supposed’ C A", (q(A)). By Proposition 5.6, there exist$ such thaty(A) C 43 (A). Then
A" C Ny m(A), which implies thatd’ = A. We may therefore reduce the problem to the case when
q(A) C N (A)).

The setg(A’) is contained int"y; (A”) for someA” € .o7. Also q o q(A) C N 1,1c(q(A)), which
implies thatA C A", cimrkx (A”). This and (1) imply thatt = A”. It follows thatg(A’) C A"y (A),
which implies thatA” C A" y1crk (q(A)).

Proposition 5.6 implies that there exists A such thati(A)C.4"y (A). HenceA' C.A (L 1 1ymc 1k (A),
soA’ = A. We conclude thai(4) c 4"y (A") and

hdist(q(A), A", hdist(§(A"), A)SLM + C + K. g
Notation. We denote the constahtM + 2C + Cq by D.
Definition 5.16. For everyr > 0 and everyA € .«# we define the-stabilizer of Aas

St-(A) = {g € G | hdist(q, (A), A)<r}.



C. Drutu, M. Sapir / Topology 44 (2005) 959—-1058 1009

Corollary 5.17. (a) For everyg € G and A, A’ € .« such thatg, (A) C A" (A") or A" C A", (q,(A)),
wherer > 0, we havehdist(q,(A), A") < D.
(b) For everyA e .7 and for every > D, St.(A) = Stp(A). Consequentlty (A) is a subgroup of G
(c)LetA, B € o/ andg € G be such thahdist(q, (A), B) is finite. Then

Stp(A) = g *Stp(B)g.

Proof. Statement (a) is a reformulation in this particular case of part 2 of Lemma 5.15, and (b) is a
consequence of (a).
(c) For everyr > 0 there exist® large enough so that we have &) c gStg(A)g ™.
Applying the previous result again fgri, B, A, together with (b), we obtain the desired equaliti

Let# ={A4, ..., A} be the collection of all the sets i that intersectB(xg, M + Cp). We show
that this set satisfies (l). L&t be an arbitrary set in7 and leta € A. There existg € G such that
qg(a) € B(xo, Co), by Lemma 5.14(4). On the other hand, there existss .o/ such thatq, (A) C
N u(A'). It follows that A” intersectsB(xg, Co + M); hence it is in#. Corollary 5.17(a) implies that
hdist(q, (A), A") < D; consequenthp is quasi-isometric tol’.

Foreveryi € {1, 2, ..., k} define

I1(A)={j €{1,2,...,k} | there existg € G such that hdigty,(A;), A;) < D}.

For everyj e I(A;) we fix g; € G such that hdis{’qngi, Aj)<D. LetI'(A) ={gj}jera) and let
K (A;) = maXxjes(a,)dist(g;q(xo), q(x0)).

We define the constalf = LomaXc(1.2,...x} K (A;) + (2Lo + 1)d0, Wheredg = LoCop + 2Co.

The following argument uses an idea fr¢84, Section 5.1]

Lemma 5.18. For everyA e o7 the D-stabilizer of A acts K-transitively on fat is A is contained in
the K-tubular neighborhood of every orl8tp (A)a, wherea € A.

Proof. Let a andb be two arbitrary points ii\. Lemma 5.14(4) implies that there exjsty € G such
thatq,(a), q,(b) € B(xo, Co). This implies that

dist(g o q(a), a(x0)) <do,  dist(y o q(b), q(x0)) < Jo. (10)

There exist, j € {1,2, ..., k} such that hdisty, (A), A;), hdist(q,(A), A;) < D. Thenq},gfl(Ai) is at
finite Hausdorff distance from ;, whichimplies that hdisty, . -1(A;), Aj) <D andthayj € 1(A;). Letg;
be such that hdisdzgj (A;), Aj)<D.Itfollows thatgy—lgj € Stp(A;). Therelation hdigiy, (A), A;) <D
and Corollary 5.17(c) imply tha)t_lgjg € Stp(A). We have that

dist(q,-1, , (@), b) < Lodist(y " g;gd(a), (b)) + Co + LoCo< Lodist(g;gd(a), 73(h)) + do.
This and inequalities (10) imply that
dist(q,-14 4 (@), b) < Lodist(g;d(x0), 3(x0) + (Lo + Ddo<K. [

Corollary 5.19. For everyA € .7 the normalizer o5tp(A) in G is Stp(A).
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Proof. Let g € G be such that $§(A) = g~ 1Stp(A)g. Let B € .« be such that hdist,(A), B) < D.
Corollary 5.17(c) implies that $t(A) = Stp(B) = S. Leta € A andb € B. We have hdigiSa, Sb) <
Ldist(a,b) + C and also hdistA, Sa) <K and hdistB, Sh)<K; therefore hdistA, B)<2K +
Ldist(a, b) + C. Lemma 5.15(1) implies tha® = A andg € Stp(A). O

Lemma 5.20. For everyi € {1, 2, ..., m} we have
hdist(q(A;), Stp(A;)) <x,
wherex is a constant depending dry, Co, M anddist(q(1), xo).

Proof. Letx; € A; N B(xo, M + Co). For everyg € Stp(A;) we have distg, (x;), A;)<D; hence
dist(g o q(x;), q(A;))< LoD + 2Co. It follows that distg, q(A;))<LoD + 2Co + dist(1, g(x;)). Or
dist(1, §(x;)) < Lodist(q(1), x;) + (Lo + 1)Co<LoM + (2Lg + 1)Co + Lodist(q(1), xo).

Letq(b) € q(A;). According to Lemma 5.18, there exists Sty (A;) such that

dist(b, q,(x;)) < K.
Hence distq(b), g o q(x;)) < LoK + 2Cq and distq(b), g) <LoK + 2Co + dist(1, gq(x;)). O

Corollary 5.21. LetA € .«/. There existg € G andi € {1, 2, ..., m} such that
hdist(q(A), gStp(A:)) <x + LoD + 2Co.

We continue theroof of Theorenb.13. Consider the minimal subge’y, ..., B, } of {A1, ..., A}
such that for eacld; there existsB;, andy; such that hdistA;, a, (Bj)<D.Let#={B1,..., Bn}. We
denoteS; = Stp(B;),i € {1, 2, ..., m}. Let us show thaG is asymptotically tree-graded with respect to
S1, ..., S

Indeed, by Theorem 5.1, Cayl@y) is asymptotically tree-graded with respect{tgA), A € .o/}.
Corollary 5.21 implies that eaditA) is at uniformly bounded Hausdorff distance fras8tp(A;) for
somei € {1,2,...,k}andg € G. Corollary 5.17(c) implies that $t(A;) = ViSjiVi_l, with the notations
thatg(A) is at uniformly bounded Hausdorff distance fr@m S, . ThusG is asymptotically tree-graded
with respect taSy, ..., S,;,. O

Corollary5.22. Let G be agroupthatisasymptotically tree-graded with respect to the family of subgroups
{H1, Ho, ..., H}, where H; is an unconstricted infinite group for everye {1, 2,...,k}. LetG’' be a
finitely generated group which is quasi-isometric to G. TGérs asymptotically tree-graded with respect

to a finite collection of subgrougss, .. ., S,,} such that eacls; is quasi-isometric to one of thé;.

Remark 5.23. If the groupsH; in Corollary 5.22 are contained in classes of groups stable with respect
to quasi-isometries (for instance the class of virtually nilpotent groups of a fixed degree, some classes of
virtually solvable groups) the§i; are in the same classes.

Corollary 5.24. If a group is asymptotically tree-graded with respect to a family of subgetatisfying
conditions(1), (2), (3)in Theorenb.13,then it is asymptotically tree-graded with respect to subgroups
Hi, ..., H, such that every; is quasi-isometric to somé € .o7.
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Remark 5.25. (a) If in Theorem 5.13 we have that the cardinality.«fis at least two then for every
i €{1,2,...,m}, H; has infinite index irG.

(b) If in Corollary 5.22 we hav§H, ..., H} # {G} then for everyj € {1, 2, ..., m}, S; has infinite
index inG’.

Proof. (a) Suppose thdtH1, ..., Hi} = {G}. According to the proof of Theorem 5.13, it follows that
G = Stp(B) for someB € /. Lemma 5.20 then implies that hdigtB), G) <k, whence hdistB, X) <
3Co + Lok. This contradicts the property;) satisfied by</.

Therefore{Hy, ..., H;} # {G}. Now the statement follows from Remark 5.10.

Statement (b) follows from (a). O

6. Cut-points in asymptotic cones of groups

Theorem 5.13 shows that we need to study unconstricted groups. In this section we provide two classes
of examples of such groups. We begin with some general remark& heta finitely generated group
such that an asymptotic cone Ci&; e, d) has a cut-point, where= (1), d =(d,)). Lemma 2.31 implies
that Cor’(G; e, d) is a tree-graded space with respect to a set of pigcasch that each piece is either
a point or a geodesic subset without cut-point. In particular, if all the pieces are points then the cone is a
tree. By homogeneity in this case it can be either a line or a tree in which every point is a branching point
with the same degree.

The case when one asymptotic cone is a line turns out to be quite particular. More precisely, we have
the following general results.

Proposition 6.1. Let% be afamily of finitely generated non-virtually cyclic groups. Then for any sequence
of groupsG,, € % endowed with word metriafist,, any sequencg.,,) of positive numbers with liri, =0,
anye € I1G, and any ultrafilterw, the ultralimitlim®(G,, 4, dist,), is neither a point nor greal) line.

Proof. We may assume withoutloss of generality that1 for everyn. Ifan ultralimitlim® (G, 4, dist,),
is a point therG,, are finitew-almost surely, which is a contradiction.

Suppose that an ultralimit lithG ., 4, dist,), is a line. Since5,, are all infinite, it follows that for any
n € N, there exists in Cayldg¥s,) a geodesic ling,, through 1. Then lirfi(g,) = lim“(G,). Suppose
by contradiction that»-almost surelyG, ¢ .4"1/,,(g,). Thenw-almost surely there exists € G, at
distance at least/%, of g,. Letl, be a geodesic joining, to z,, € g, and of length dist(z,, g,). For
every pointr € I, we have dist(z, z,,) = dist, (7, g,). By homogeneity we may suppose that= 1.

In the ultralimit lim®“(G,, 4, dist,),, I, = lim“(l,,) is either a geodesic segment of length at least
1 with one endpoint lirfi(1), or a geodesic ray of origin lif(1). If 1, has a point in common with
lim®(g,) that is different from lin?(1), thenw-almost surely there exists € 1, at distance of order
1/4, of 1 and at distance(1/4,) of g,. This contradicts the equality djst,, 1) = dist,(¢,, g,)). Hence
I, Nlim®(g,) = {lim®(1)}. But in this case lif{(G,) # lim“(g,), a contradiction.

It follows thatw-almost surelyG, C .A4"1/;,(g,), which implies thaiG, is hyperbolic with boundary
of cardinality 2, and consequently virtually cyclic. We have obtained a contradictian.

Corollary 6.2. A finitely generated group with one asymptotic cone a point or a line is virtually cyclic
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6.1. Groups with central infinite cyclic subgroups

Let G be a finitely generated group containing a central infinite cyclic subgfup (a). We fix a
finite set of generatorX of G and the corresponding word metric distGn

Lemma 6.3. For every asymptotic con€or’(G; e, d) of G and every > 0, there exists an element
h=(h,)” in GY N H® which acts isometrically o@orf’(G; e, d), such that for every € Cort’(G; e, d),
dist(hx, x) = .

Proof. Let w be a word inX representing in G. It is obvious that for every > 0 there existg: =

a" € H such thati| is in the interval[r — |w|, r + |w|]. For everyn>1 we considet, € H such
that |h,| € [ed, — |wl|, ed, + |w|]. According to Remark 3.17, the elemént= (h,)” in G¢ acts
as an isometry on C61G; e, d). Moreover, for everyg = lim®(g,) € Con’(G; e, d) we have that
dist(hg, g) = lim,(dist(h, gu, g1)/dn) = lim, (dist(guhn, gn)/dn) =limy,(|hyl/dy) =e. O

Lemma 6.4. If an asymptotic cone C of G has a cut-point then C is isometric to a poini(i@ad) line.

Proof. LetC =Corf’(G; e, d) be an asymptotic cone that has a cut-point, wlaetg1), d = (d,). Then
C is tree-graded with respect to a collectignof pieces that are either points or geodesic sets without
cut-points. Lehin G N H” be as in Lemma 6.3 far= 1.

If all sets in2 are points thel is anR-tree. If this tree contains a vertex of degre@, then it does
not admit an isometri such that dist:(x), x) = 1 for everyx. Thus in this cas€ is isometric toR or
to a point.

So we may suppose thatcontains pieces that are not points. Mebe such a piece.

Casel. Supposé: (M) = M. Letxbe an arbitrary point iM. By Lemma 2.31(b), there existse C\M
such thakis the projection of onM. Leté=dist(x, y). Sincehacts as an isometry, it follows thelt=1(y)
projects orM in x’ = h(x) and that = dist(x’, y'). We have distx, x’) = dist(y, y") = 1. On the other
hand Lemma 2.28 implies that, x] U [x, x']U [x’, y'] is a geodesic. Consequently disty’) = 1+ 29,

a contradiction.

Casell. Supposei(M) # M. Thenh(M) is another piece of the tree-graded sp&cby Proposition
2.16. Letx be the projection ok (M) onM and lety be the projection oM onh(M). Letz € M\{x} and
7/ = h(z). By movingz a little, for instance along the geodesic x], we can ensure that # y. Every
geodesic joining andz’ containsx andy, by Lemma 2.6. Letbe a point inC\ M that projects oM in z
(it exists by Lemma 2.31(b)). The projectioniot= h(z) ontoh(M) is thenz’. Lemma 2.28 implies that
[t,z1U[z, x]U[x, y]U[y, Z'1U[Z/, t'] is a geodesic, whence distt") = 1+ 2 dist(z, z). This contradicts
the fact that distt, /') =1. O

Theorem 6.5. Let G be a non-virtually cyclic finitely generated group that has a central infinite cyclic
subgroup H. Then G is wide

Proof. By contradiction suppose th&tis not wide. Lemma 6.4 implies that one of the asymptotic cones
of Gis aline or a point. Corollary 6.2 implies th@tis virtually cyclic, a contradiction. O

Corollary 6.6. Let G be a non-virtually cyclic groyphat is asymptotically tree-graded with respect to
certain proper subgroups. Then every finitely generated subgroup in the ¢&t@ris finite
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Theorem 6.5 has the following uniform version.

Theorem 6.7. Let ¥ be the family of all finitely generated non-virtually cyclic groups with a central
infinite cyclic subgroup. The famity is uniformly unconstricted

Proof. ConsidelG, a sequence of groupsd dist, a word metric orG,, andH,, = (a,) a central infinite
cyclic subgroup oG,,. Letd, >n dist, (1, a,) for all n. An argument as in the proof of Lemma 6.3 implies
that for every sequence of observation poaasid for every > 0, the ultralimit lint’(G,,, dist, /d,), has

as isometryh moving every point by.. With an argument analogous to the one in the proof of Lemma
6.4 we deduce that it G, dist, /d,), is a line or a point. This contradicts Proposition 6.1

Corollary 6.8. Let X be a metric space asymptotically tree-graded with respect to a collection of subsets
o/ . For every(L, C) there exists = M (L, C) such that for everyL, C)-quasi-isometric embedding

q. G — X of a finitely generated non-virtually cyclic group G with a central infinite cyclic subgroup
there existsA € o7 such thaty(G) C 4"y (A).

6.2. Groups satisfying a law

Proposition 6.9. Let spacer be tree-graded with respect to a collectighof proper subsets. Suppose
thatF is not anR-tree and let G be a group acting transitively 8nThen G contains a neabelian free
subgroup

Remark. If F is anR-tree,G may contain no non-abelian free subgroups even if it acts transitively on
Indeed letG be the group of upper triangular22-matrices with determinant 1 acting by isometries on
the hyperbolic planéi?. The action is transitive.

Therefore the (solvable) grou@? acts transitively on an asymptotic conetéf which is anR-tree.

Proof of Proposition 6.9. By Lemma 2.31 we can assume that every piecé is either a point or does
not have a cut-point.
Sincer is not anR-tree.

Lemma 6.10. Let a and b be two distinct points in M. There exists an isomgtey G such that the
following property holds

e a # g(b), the projection ofg (M) onto M is a and the projection of M onad M) is g(b).
We shall denote this property of g B(a, b, M).
Proof. There are two cases:

(A) There exist two distinct pieces # that intersect.
(B) Any two distinct pieces i are disjoint.

By homogeneity, in case (A), every point is contained in two distinct pieces. In case (B)lée two
distinct points inM. There exists an isometgye G such thafg(x) = y. Sinceg(M) intersectdM in y it
follows thatg (M) = M. We conclude that in this case the stabilizeMbin G acts transitively oM.
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Suppose we are in case (A). Then we can construct a geag¢8jc] — F such thats =) >, s,
with 0 <, <1/n? and al> o si, Z?i& s;] € M, for some piecedM,,, whereM, # M, for all
n € N U {0}. Heresg = 0. Such a geodesic exists by Lemma 2.28. We call such a geddadial at
the arrival point By gluing together two geodesics fractal at their respective arrival pejntsy’, and
making sure that the two respective initial pieck, and M, are distinct, we obtain a geodesiactal
at the departure and arrival pointsr bifractal. By homogeneity, every point ifi is the endpoint of a
bifractal geodesic.

Let [a, c] be a bifractal geodesic. Corollary 2.10(b) implies thatc] can intersecM in a or in a
non-trivial sub-geodesif, ¢’]. Sincela, c] is fractal at the departure point the latter case cannot occur.
It follows that the intersection df:, ¢] andM is {a}. There exists an isometgye G such thalg (b) = c.
Sincela, c] is fractal at the arrival point also, it follows thit, ¢c] N g(M) = {c}. For everyx € g(M) we
have thafa, c] U [c, x] is a geodesic, by Lemma 2.28. In particudds the projection og (M) on M. A
symmetric argument gives that= g(b) is the projection oM on g(M).

Now suppose that case (B) holds. Lemma 2.31(b) impliesaigthe projection of a point € F\ M.
Let g be an isometry irG such thatg (b) = x. If [a, x] intersects (M) in X then we repeat the previous
argument. Assumier, x] N g(M) = [x’, x]. By the hypothesis in case (BY, # a. We havex’ = g(¥’) for
someb’ € M. Since the stabilizer dfl in G acts transitively oM, there existg’ in it such thatg’ (b) =b'.
We have thagg' (M) = g(M) projects ontdV in a andM projects ontqgg’ (M) in x’ = gg’(b). O

Notation. For everyr € M let I1,(M) be the set of pointsin F\ M that project ontdM in t.

Lemma 6.11. Let g satisfy property? (a, b, M). Then

(a) the isometry; —! satisfies property? (b, a, M);
(b) for everyr # b we haveg(I1,(M)) C I1,(M).

Proof. (a) We apply the isometry~! to the situation inP (a, b, M).
(b) The sefg(I1,(M)) projects ong(M) in g(¢) # g(b). This, propertyP (a, b, M) and Corollary 2.29
imply thatg(I1,(M)) projects ontdM in a and that distg (11, (M)), M) >dist(g(M), M) >0. O

We now finish theproof of Proposition6.9. Leta, b, ¢, d be four pairwise distinct elements M.
Lemma 6.10 implies that there exjgte G satisfyingP (a, b, M) andh satisfyingP(c, d, M).

Theng—1 is satisfyingP (b, a, M) andh~1 is satisfying P(d, ¢, M) by Lemma 6.11. In particular
g(M) C I, (M), g~H(M) C Iy(M), h(M) C II.(M), h=*(M) C I14(M) (Fig.5).

Sinceb ¢ {a, ¢, d}, Lemma 6.11(b) implies that(11,(M) U I, (M) U I1;(M)) C I1,(M). The isome-
triesg~1, h, h~1 satisfy similar properties. The Tits ping-pong argument allows one to concludg that
andh generate a free group..J

Theorem 6.12. Let% be a family of finitely generated non-virtually cyclic groups satisfying a law. Then
% is uniformly wide

Proof. Suppose that an ultralimit lithG,,, (1/d,)dist,), has a cut-point, where lignd,, = co. Then by
Lemma 2.31 and Proposition 6.1, GG, (1/d,)dist,), is a tree-graded space, not reduced to a point
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Fig. 5. Action of the elements, g1, 7, h 1.

nor isometric taR. The group? =11.(G,,, (1/d,)dist,) /w acts transitively og' lim®(G,,, (1/d,)dist,),.
If % is not anR-tree then Proposition 6.9 implies th@t= 11, (G,, (1/d,)dist,)/® contains a non-abelian
free subgroup, and so it cannot satisfy a non-trivial law, a contradiction.

Suppose that is anR-tree. By [L5, Proposition 3.7, p. 11if ¢ does not fix an end of, ¢ contains a
non-abelian free subgroup, a contradiction. Therefore we can assuraditkes an end of. This means
that% asymptotically fixes a ray(z), ¢ € [0, co), starting at. We shall now show that this assumption
leads to a contradiction.

Since the action o# on % is transitive, the ball of radius 1 i&# arounde contains at least 9 disjoint
isometric copies of the ball of radius 1/4 (of course, here 9 can be replaced by any positive integer). This
implies thatw-almost surely for alh, the number of elements in the ball of radif4sin the Cayley graph
of G, is at least 9 times bigger than the number of elements in the ball of rdgdids

Forx € {1,1.25 15,175 let s(x) = (u,(x))”, for someu,(x) € G,. Take anyg = (g,)” € ¢
such that dist(g,, 1) <d,. Then distg - 1, ¢)<1. Note that the image - s is a ray which must be
asymptotically equal te. Therefore the intersectiog - s ands contains the subray(r), t € [1, c0).
Sinceg acts asymptotically on this ray by translation, eitper (1) or g~1 - s(1) belongs to the interval
s(1),t € [1,2] of this subray. Therefore either- s(1) or g~1 - s(1) is within distance 1/4 frons(x)
for somex € {1, 1.25, 1.5, 1.75}. This implies thaw-almost surely for any, and anyg, € G, with
dist,(g,, 1) <d,, for somex e {1, 1.25, 1.5, 1.75}, and a choice of € {1, —1}, we have

dist, (u, (x) "tglun (1), 1) <d,/4.

This implies thatw-almost surely for every the ball of radiusi, in the Cayley graph o&,, contains
at most 8 times more elements than the ball of radjifgl, a contradiction with the statement from the
previous paragraph.O

Examples. Solvable groups of a given degree, Burnside groups of a fixed exponent and uniformly
amenable groups (see Corollary 6.16) are examples of groups satisfying a law.

Corollary 6.13. Let G be afinitely generated non-virtually cyclic group satisfying a law. Then G is wide
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Corollary 6.14. Let metric space X be asymptotically tree-graded with respect to a collection of subsets
/. For every non-trivial group law and evely., C) there exists a constant M depending(@n C) and

on the law such that the following holds. A@ly, C)-quasi-isometric embedding of a finitely generated
non-virtually cyclic group satisfying the law into X has the imageli; (A) for someA € .o7.

The following statement is probably well known but we did not find a proper reference.

Lemma6.15. Letw be any ultrafilter G any group. The group G satisfies a law if and only if its ultrapower
I1G /w does not contain free non-abelian subgroups

Proof. Clearly, if[1G/w contains a free non-abelian subgroup t@atoes not satisfy any law. Conversely

assume thaG does not satisfy any law. Let us list all words in two variables:uo, ..., and form a
sequence of words; = u1, vo = [u1, uz2], vz = [u1, u2, uzl, ... (iterated commutators). We can choose
the sequences, u», ... in such a way that none of the wordsis equal to 1 in the free group. Since

G does not satisfy a law, for eveiythere exists a paitx;, y;) in G such that; (x;, y;) is not 1 inG.
Let x = (x;)”, y = (y))® be elements in the ultrapower. Suppose that the subgtoup of I1G/w
has a relation. That relation is some wardn two variables. Hence; (x;, y;) = 1 w-almost surely. In
particular, since» is a non-principal ultrafilter, for somg> i, u; (x;, y;) = 1. Butthemv;(x;, y;) =1
sinceu; is a factor in the commutatar;, a contradiction. [

Recall that a discrete growpis (FoIner)Jamenablef for every finite subse of Gand every € (0, 1)
there exists a finite subsét C G satisfying

|KF| < (1+¢)|F|.

The groupG is uniformly amenabld, in addition, one can bound the size®in terms of: and| K|,
i.e. there exists a functiogh : (0, 1) x N — N such that

|FI< ¢ |K]).

For details on the latter notion sg86,9,55] The following result has also been obtained in
[36, Corollary 5.9] we give a proof here for the sake of completeness.

Corollary 6.16. A uniformly amenable finitely generated group satisfies a law and so it is wide if it is
not virtually cyclic

Proof. Indeed, by55], if Gis uniformly amenable then any ultrapowe6 /» is FOlner amenable. Hence
we can apply Lemma 6.15 if we prove that any subgrBub an arbitrary Félner amenable grokpis
Folner amenable.

The argument is fairly standard and well known; we present it here only for the sake of complete-
ness. Take an arbitrary smal- 0. TakeK a finite subset ir&. There exists a subsg&tin H such that
|[KF| < (1+ ¢)|F|. Consider a graph whose vertices are the elements of the, setd whose edges
correspond to the pairs of pointg:, f2) € F x F suchthatf,=kf,, wherek € K. LetCbe a connected
component of this graph with set of vertice% . ThenK 7" ¢ does not intersect the sets of vertices of other
connected components. Hence there exists a connected comgbsech thal K v ¢| < (1 + ¢)| 7 ¢|
(otherwise if all these inequalities have to be reversed, the sum of them gives a contradiction with the
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choice ofF). Without loss of generality, we can assume that contains 1. Otherwise we can shift it to
1 by multiplying on the right by~ for somec € 7"¢. Then7 ¢ can be identified with a finite subset of
S ThereforeScontains a subset'c suchthalK 7 '¢c| < (1 +¢)|¥¢|. O

Remark 6.17. The amenability defined by the existence of a left invariant mean on the set of functions
uniformly continuous to the left is not inherited by subgroups in genera¥ lis a separable infinite
dimensional Hilbert space amé= U (.#) is the group of unitary operators ofi endowed with the weak
operator topology, the@ is amenable in the above seif$8]. On the other hand, if we take = ¢2(F»),

with [F2 the free group of two generators, thércontainsr, [3, Remark G.3.7]

7. Fundamental groups of asymptotic cones

In [26], Erschler and Osin constructed (modifying an idea fid2y), for every “sufficiently good”
metric spaceM, a two-generated grou with the property thaM =;-embeds isometrically into an
asymptotic cone CAhG). Thus any countable group is a subgroup of the fundamental group of some
asymptotic cone of a finitely generated group. In this section we modify, in turn, the construction from
[26] to show that the fundamental group of an asymptotic cone can be isomorphic to the uncountable free
power of any countable group. Moreover, that asymptotic cone can be completely described as a tree-
graded space. In particular, if, sé¥,is compact and locally contractible then there exists a 2-generated
group, one of whose asymptotic cones is tree-graded with respect to pieces isombtrigVim also
construct a 2-generated recursively presented group with the maximal possible (under the continuum
hypothesis) number of non-homeomorphic asymptotic cones.

7.1. Preliminaries on nets

Let (X, dist) be a metric space. We recall some notions and results [Baimn

Definition 7.1. A §-separated set M X is a set such that for evemy, x> € A, dist(x1, x2) > 4. A é-net
in Xis a seB such thatX € 4 5(B).

Remark 7.2. A maximal 5-separated set iK is ad-net inX.

Proof. Let N be a maximab-separated set iX. For everyx € X\N, the setN U {x} is no longer
d-separated, by maximality ™. Hence there exists € N such that digtx, y) <é6. O

Definition 7.3. We call a maximab-separated set iK a 5-snet
Note that ifX is compact then every snet is finite; hence every separated set is finite.

Remark 7.4. Let (X, dist) be a metric space and Ie¥,,), ., be an increasing sequence of subses. of
Let (6,),cn be a decreasing sequence of positive numbers converging to zero. There exists an increasing
sequence

NiCN,C---CN,C---,

such thatv,, is ad,,-snet in(M,,, dist).
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Proof. There exists a&1-snet in M1, which we denoteVv;. It is a d1-separated set in,. Let No be a
d2-shet inM» containingN1. ThenNs is ado-separated set i3. Inductively we construct an increasing
sequenceénN,),cn. O

Notation. LetAbe a subset in a metric space. We denot& i) the metric graph with set of vertices
A and set of edges

{(a1,a2) | a1, a2 € A, 0 <dist(ay, ap) <k},
such that the edg@1, a) is of length dista1, a2). We shall denote the length of every edgeay |e|. We

endowr.(A) with its length metric.

Notation. Let (X, dist) be a proper geodesic metric space Qdie a fixed pointin it and let € (0, 1).
We denote byB,, = B(0, n) the closed ball of radius aroundO. We consider an increasing sequence of
subsets irX,

{Oyc NyCN2C---CN,C---,
such thatv, is an{"-snet inB,. Let I';, be the finite graph" i,z (N,), endowed with its length metric
dist, (here[n/2] is the integer part ot /2). )

We recall that two metric spaces with fixed basepo(itsdisty, x) and (Y, disty, y) are said to be
isometricif there exists an isometry : X — Y such thatp(x) = y.

Lemma 7.5. In the notation as above
(1) for everyn>2,for everyx, y € N, we have
dist(x, y) <dist, (x, y) < (1 + 65 (dist(x, y) + 2¢%) + 2¢%, (12)

wherek = [n/2];

(2) for every observation poine € IIN,/w», the spacedim®(N,, dist,),, lim®(r,, dist,), and
lim®(B,, dist), with the basepointsm®(e) are isometri¢

(3) the spacedim®(N,, dist,), lim® (I, dist,) with the basepointim®(0) and (X, dist) with the
basepoint O are isometric

Proof. (1) Letx, y be two fixed points inV,. If dist(x, y) <("*/? then by construction digt, y) =
dist, (x, y) and both inequalities in (11) are true. Let us suppose thatdist > (/2.

The distance dig(x, y) in I',, is the length of some path composed of the edges. .. e;, where
x = (e1)_ andy = (ey) .. It follows that

S
dist,(x, ) =) _ lei| >dist(x, y).
i=1
We conclude that

dist, (x, y) >dist(x, y).
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We also note that
dist, (x, y) >dist, (x, y) foreverym>n, (12)

sinceN,, € N,,.

The distance digk, y) is the length of a geodesic[O0, dist(x, y)] — X. Sincex,y € N, C B(O, n),
the image of this geodesic is entirely containeditO, 2n). Letro =0, 11, 2, ..., t,, = dist(x, y) be a
sequence of numbers i, dist(x, y)] such that O< ;11 —¢; <("/2, foreveryi € {1,2,...,m — 1} and
m<2dist(x, y)/¢" +1. Since distx, y) > ("/?1 > " we can writen <3dist(x, y)/{". Letx; =c(t;), i €
{0,1,2,...,m}. Foreveryi € {0,1,2,...,m} there existaw; € N, such that dig;, wi)ggzn. We
note thatwg = x, w,, = y. We can write

m—1 m—1 m—1
distCe, y) = ) distxi, xi20)> Y [dist(w;, wise) — 2021 ) dist(wi, wir1) —2m{?'. (13)
i=0 i=0 i=0

We have distw;, w; 1) <dist(x;, w;) 4+ dist(x;, x; 1) + dist(x; 11, wi+1) < 2C2n + " /2" for nlarge
enough. Therefore;, w;+1 are connected iy, by an edge of length diéb;, w;+1). We conclude that

m—1 m—1
Y dist(wi, wi1) = ) diste, (wi, wi1) > distas (wo, wy) = distz, (x. ).
i=0 i=0

This and (13) implies that
dist(x, y) >disty, (x, y) — 6 dist(x, y){".
We have obtained that

1 . . .
TGC” dist, (x, y) <dist(x, y) <dist,(x, y) forall x,y € N,,. (14)

Let againx, y be two points inN,,, k = [n/2]. There existx’, y € Ny C N, such that distr, x’),
dist(y, y) < k. This implies that distx, x") = dist, (x, x’) < ¥ and likewise disty, y') =dist, (v, y) <k
Hence dist(x, y) <dist, (x’, y') + 2¢*.

Inequalities (12) and (14) imply

dist, (x', y') <disty (x', y) < (1 + 65 dist(x’, y) < (1 + 67%) (dist(x, y) + 2¢5).

This gives (11).

(2)We havey,, C I',, C N n2) (Np). Therefore lin? (I, dist,), =lim”(N,, dist,),.. Thus itis enough
to prove that lin? (N, dist,), and lim”(B,,, dist), with the basepoints liffi(e) are isometric.

We define the map

Y lim®(x,) — lim®(x,) (15)

from lim®(N,, dist,), to im®(B,, dist),.. Inequalities (11) imply that the map is well defined and that
it is an isometric embedding.

We prove that? is surjective. Let(y,)” € I.B,/w. For everyy, there existsx, € N, such
that distx,, y,) <{". Since the sequendé@ist(y,, ¢,)) is bounded, the sequenc¢dist(x,, ¢,)) is also
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bounded by the second inequality in (11), and so is the sequeistg(x,, ¢,)). We have lin¥(x,) €
lim®(N,, dist,), and P (lim®(x,)) = lim®(x,). As lim,, dist(x,,, y,) = 0 we conclude that lifi(x,) =
im® (y,).

(3) According to (2) it suffices to prove that litaB,,, dist) , with the basepoint lifi(0) andX with
the basepoinD are isometric. Lek € X. Fornlarge enoughy € B(O, n). We define the map

@ x > lim®(x) (16)

from X to lim”(B,) .

The mapo is clearly an isometric embedding. Let us show tha surjective. Letx, ), .y be such that
x, € B, and such that disO, x,,) is uniformly bounded by a consta@t It follows thatx,, € B(O, C)
for all n € N. Since the spacK is proper,B(0, C) is compact and there exists adlimit x of (x,). It
follows that lim,, dist(x,,, x) = 0, which implies that lirff (x,,) = lim®(x) = &#(x). O

Notation. We shall denote the point lifi{O) also byO. This should not cause any confusion.

Remark 7.6. The hypothesis thaX is proper is essential for the surjectivity &fin the proof of part (3)
of Lemma 7.5.

Definition 7.7. For every proper geodesic metric spdée dist) with a fixed basepoin®, and every
sequence of points = (e,)“, e, € B, = B(0O, n), we shall call the limit lin¥(B,), anultraball of X
with centerO and observation poirg

Remark 7.8. Notice that the ultraballs lifi(B,,), and lim”(B,,), with observation points = (e, )* and
¢’ =(e,)”, suchthat dige,, ¢,) is uniformly bounded»-almost surely, are the same spaces with different
basepoints (see Remark 3.7).

Remark 7.9. It is easy to prove, using results frd2, Section 1.3][33], that an ultraball of a complete
homogeneous locally compact CAT(0)-space is either the whole space or a horoball in it (for a definition
see[11]). In particular the ultraballs of the Euclidean sp&eareR” itself and all its half-spaces.

We are now going to construct a proper geodesic metric space with basépejnist, O) whose
fundamental group is any prescribed countable giGuand such that every ultraball with cent@rof
Y¢ either is isometric to the spadg itself or is simply connected.

Let C = (S | R) be a countable group. We assume that {s, | n € N} = C, and thatR is just the
multiplication table ofC, i.e. that all relations ifR are triangular. For every € N, considerX, the part
of the conez? = x2 + y2 in R® which is above the plane= n — 1. The intersection of this (truncated)
cone with the plane = »n — 1 will be called itsbase Cut a slit inX,, of lengthnr, in the intersection of
X, with the planez = 2n. This slit has simple closed curve boundary of lengik,Zame as the length
of the base o,,1. The resulting space is denoted By. The vertex of; is denoted byD.

Now consider the following construction. We start with the spBgeglue in the spac&, so that the
base hole of, is isometrically identified with the boundary of the slit cut¥p, glue inY3 so that the
base hole of’3 is identified with the boundary of the slit itp, etc. The resulting space with the natural
gluing metric is denoted by. Now enumerate all relations iR = {rq,r,...}. Foreverym =1, 2, ...,

r, has the formcixjxk_l. Choose a natural numbkt= k(m) such that the base holesXf Y;, Y, are at
the distance<k in Y and such that(m) > k(m — 1). Consider the circles;, y;, y, obtained by cutting
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Y, Y;, Y, by planes parallel to the base hole at distaké®m O, and connect these circles withby
geodesics. Glue in a Euclidean diBg; to the circlesy;, y;, yx and connecting geodesics such that the
boundary ofD,, is glued, locally isometrically, according to the relatign We supply the resulting space
Yc with the natural geodesic metric dist.

We keep the above notation for baBg = B(0O, n), and metric spaces, andr’, for this spac&’c.

The following properties of the spacg., dist) are obvious.

Lemma 7.10. (1) The spacé&’¢ is geodesic and proper

(2) For everyd > 0 there exists a number> 0 such that every ball of radius d ific, whose center is
outsideB(0O, r), is contractible

(3) The fundamental group af- is isomorphic to C

Lemma7.11. Theultraballim®(B,), of Y¢ with center O is simply connectedlist(e,,, O) is unbounded
w-almost surelyotherwise it is isometric t&'c.

Proof. Indeed, if a point = (e,,) from X“ is such that dist,,, O) is boundedy-almost surely then the
corresponding ultraball is isometric i by Remark 7.8. Suppose that

lim dist(e,, O) = oco.
(]

LetU be the corresponding ultraball. Then every closedBgalle, r) in U is thew-limit of By, (e,, r)NB,.
By Lemma 7.10, the ballBy,. (e, ) are contractible>-almost surely. ThereforBy (e, r) is contractible.
Since every loop itJ is contained in one of the balBy (e, r), U is simply connected. (J

7.2. Construction of the group

Let A be an alphabet andy a free group generated 8y For everyw € F4 we denote byw| the
length of the wordw.

Definition 7.12 (propertyC*(4)). A set" of reduced words ifff 4, that is closed under cyclic permuta-
tions and taking inverses, is said to satigfgpertyC*(1) if the following hold.

(1) If uis a subword in a wora € % so that|u| > i|w| thenu occurs only once im.
(2) If uis a subword in two distinct words1, wz € % then|u|</imin(jw1|, |wz|).

We need the following result froif26].

Proposition 7.13(Erschler and Osin26]). Let A = {a, b}. For every i > 0 there exists a se¥” of
reduced words inF,4, closed with respect to cyclic permutations and taking inversatsfying the
following properties

(1) w satisfiesC*(1);
(2) for everyn € N, the se{w € ¥ | |w|>n} satisfiesC*(/,) with lim,,_, o 4, = 0;
) lim,ccardw € # | |w| =n} = oo.

Notation. Let us fix1 = 5—%)0, and a set of word%" provided by Proposition 7.13.
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Letx(n) =cardw € % | l[w| =n}. We have that lim_, o x(n) = oco.

Fix a number € (0, 1). For everyn € N, let I',, be a finite metric graph with edges of length at least
" and at most™/?l and diameter at most &0or n large enough. We endow, with the length metric
dist,. Let N,, be the set of vertices df, and letO,, be a fixed vertex inv,. Let E,, be the number of
edges of,.

Definition 7.14 (fast increasing sequengesAn increasing sequendd,) of positive numbers is called
fast increasing with respect to the sequence of graphsif it satisfies the following:

(1) foreveryi >[{"d,], k(i) > Ey;
Od,

(2) lim, - a1 = oQ;

(3) lim, o0 74 =0.

Fast increasing sequences of numbers clearly exist.
Let us fix a fast increasing sequente- (d,,) with respect to the sequence of grapghs).
To every edge = (x, y) in I, we attach a wordv,, (¢) in " of length[d,,|e|] such that

(1) wn(e_l) = wn(e)_l;

(2) wn(e) # wa(e) if e # e,

We can choose these words because for every edgér, y) in I',,, we haveld, dist(x, y)]1>[{"d,]
and because we have enough wordirof any given length (part (1) of Definition 7.14).

Definition 7.15 (the presentation of the group)GWe define the set of relatior, as follows: for every
loop p =e1e2...¢5 Iin I, we include inR, the free reduction of the word

wy(p) = wy(er)wy(e2) - - - wy(ey).

LetR =J,.n Rs @and letG = (a, b | R).

neN
Notation. We denote by Cayldyy) the left invariant Cayley graph @ with respect to the presentation
G = (a,b | R), that is the vertices are elements®fand the (oriented) edges afg, gx) for every

x € {a,b,a”t,b~1}. The edge(g, gx) in CayleyG) is usually labelled by, so CayleyG) can be
viewed as a labelled graph. Every path in Cayléy is labelled by a word ira andb. The length of a
pathpin Cayley(G) is denoted byp|. The distance function in Caylé§) is denoted by dist; it coincides
with the word metric orG.

Notation. For every wordw in the free groupFi, ,, we denote by, the element inG represented
by w.

As in [26,41], we introduce the following types of words.
Definitions 7.16(words of rank f. Every freely reduced product

w = wy(en)wp(e2) - - wy(em), (17)
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wherees, ..., e, are edges i, is called avord of rank n The wordsw, (¢;) will be called theblocks
of w.
Every freely reduced product

Wy (p) = wyp(en)wy(e2) - - - wylen),

wherep = e1es. .. ey, is a path inl,, is called anet word of rank n

Remark 7.17. The wordsw, (¢) have length at lea§t"d,, 1> [d,—11>d1/" 1 — 1>n for nlarge enough.
This and the small cancellation assumptions from Proposition 7.13 imply that at mast the length
of the blockw, (¢) can cancel in the product (17) provided none of its neighbor factars 8~ 1). In
particular, if a pattp in I, has no backtracking, at most,2of the length of any factow, (¢) cancels in
the wordw, (p).

Notation. For every patipin I', starting atO,, let p be the path in Caylgy;) labelled byw, (p) starting
at 1. We denote bsg, c Cayley(G) the union of all these paths. It is easy to see thag,, consists of
all prefixes of all net wordsy, (p), wherep is a path inl",, starting ato,,.

Definition 7.18 (cells of rank ). By definition of the set of relationB, the boundary label of every cell
in a van Kampen diagram overR is a net word. Therefore a cell ihis called acell of rank nif its
boundary label is a net word of ramk

Definition 7.19 (minimal diagram¥ A van Kampen diagram ovek is calledminimalif it contains the
minimal number of cells among all van Kampen diagrams &ith the same boundary label, and the

sum of perimeters of the cells is minimal among all diagrams with the same number of cells and the same
boundary label.

Notation. The boundary of any van Kampen diagram (celis denoted by 4.

Lemma 7.20. (1) Every minimal van Kampen diagrafover R satisfies the small cancellation property
C’(1/10) (that is the length of any path contained in the boundaries of any two distinct cellsamnot
be bigger tharil/10 of the length of the boundary of any of these gells

(2) Every cellz in a minimal van Kampen diagram over R satisfiefr| <2|04].

Proof. (1) is Lemma 4.2 irj26].

(2) We prove the statement by induction on the numbef cells in 4. If n = 1 then the statement
is obviously true. Suppose it is true for someWe consider a minimal van Kampen diagranwith
n + 1 cells. By Greendlinger’s lemnid0] and Part (1) there exists a celnd a common path of or
ando4 whose length is bigger thai%|an|. It follows that|or| < 2|04|. Removingp and the interior oft,
we obtain a minimal diagramt’ with boundary length smaller thad4| and with fewer cells than. It
remains to apply the induction assumptiordto I

Notation. We shall denote the graphical equality of wordsshy

Lemma7.21. Letu = ujuous be aword of rank n and’ = uuou; be aword of rank nv >m. Suppose
lup| is at leasts times the maximal length of a blockin Thenm = n. In addition, if u = w,(p) and
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u' =wy(g) are net words then the paths p and ginhave a common edge g= p1ep,, ¢ = q1eq», and
uy (resp.uf) is a prefix ofw, (p1e) (resp.wy,(g1e)), uz (resp.uy) is a suffix ofw, (ep,) (resp.wy, (eqy)).

Proof. Indeed, the conditions of the lemma imply that one of the blockstbét either containg, or is
contained ini2 has in common with one of the blocks@gfat leasti of its length. The small cancellation
conditionC* (/) implies that the blocks coincide, 80=n. The rest of the statement follows immediately
from the definition of net words and Remark 7.171

Lemma 7.22. Let u andv be two words ifa, b} that are equal in GSuppose that u is @nef) word of
rank n andv is a shortest word that is equal to u in G. Thers also a(nef word of rank n. In addition
if uis anetwordu = w,(p), thenv = w,(¢) for some simple path q ifi, having the same initial and
terminal vertices as.p

Proof. Consider a van Kampen diagrafrover R with boundaryo4 = st whereu labelss, v—1 labelst.

By the Greendlinger lemma, propeid/(1/10) implies that there exists a cellin 4 such thabr and
04 have a common sub-pattof Iengthllo|an|. Sincev is a shortest word that is equaludn G, no more
than% of on is a sub-path of. Thereforgr Ns| > %|an|. Notice that the label dfz is the reduced form of
a product of at least two blocks. Therefore the label 0fs contains at leastl — 44) /5 of a block indx.
Lemma 7.21 implies that is a cell of rankn. After we remove the celt from 4 we obtain a diagram’
corresponding to an equality = v of the same type as= v, that isu’ is a word of rankn representing
the same element i6 asu andv, and ifu = w,(p) thenu’ = w,(p’), wherep’ is a path inI",, with
p_ = p_, p/. = p;. Sinced’ has fewer cells than, it remains to use induction on the number of cells
in4. O

7.3. Tree-graded asymptotic cones

Recall that we consider any sequence of metric grajphs > 1, satisfying the properties listed before
Definition 7.14, that the set of vertices Bf is denoted by,,, and that we fix basepoint3, in N,,. For
everyx € N, let p, be a path fronD,, to xin I';,. We define

DNy — Ry, Dp(x) = wy(py) inG

(see notation before Definition 7.18).
The value®, (x) does not depend on the choice of the pathbecausev, (¢) is equal to 1 inG for
every loopq in I', by the definition of the presentation &f Hence®, is a map.

Remark 7.23. Notice that every point ik, is at distance at mogt"/?'d, (1 + 4,) from @, (N,,).

The sequence of mage®,) clearly defines a map
(xn)” = (Py(x))”

from IIN, /o to IR, /w.

Remark 7.24. Leta = &,(x), x € N,,, and letb € G be such thaa andb can be joined in Cayldyy)
by a path labelled by, (¢), whereqis a path in", with g_ =x andg, = y. Thenb = @,/ (y) € @,,(N,).
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Lemma7.25. Lete=(e,)“€lIN,/w,e'=(P,(e,))”. The mapb,,:lim“(N,, dist,),—lim® (R, dist/d,)
such that

qu(limw(xn)) = |im‘“(45n (x1))
is a surjective isometry

Proof. For everyx,y € N,, let p = e1e2...¢; be a shortest path fromtoy in I',,. Then®, (x) and
@, (y) are joined in CaylegG) by a path labelled bw, (p). It follows that

dist(®, (x), B, ()< Y fwalen)|<dp Y lei] = dy dist, (x, ).
i=1 i=1

By Lemma 7.22, for every, y € N, there exists a geodesic joinirg, (x) to @, (y) labelled by a net
word w;, (q) of rankn. If g = ejez. .. ¢; then
wn(q) = wy(e1) - - - wpler).

Therefore

t
dist(®,, (x), Pn () = [wn(g)| > Z(l — 2n)|wn(ei)|
i=1

t
>(1—2/) Y (dnleil — 1) > (1= 22,)(dy, dist, (x, y) — 1)
i=1
> (1 — 2/,)(dy dist, (x, y) — Ep).
Thus for everyr, y € Ny,
11— 24,)(dy diStn(x» y) — En)gdiSt(én(x)a D, (y)) <dy diStn(x» y). (18)
According to (18), for every lifi(x,), im®(y,) € lim“(N,, dist,), we have that
n . [ dj}’l nl» cIjl’l n
lim., dist, Gy y) — limy, 2 <lim,, 3ISEPaCn): @a ()
dn dn
Since(d,),cn is a fast increasing sequence we have tha, iRy, /d,) = 0. This implies thaw,, is

well defined and that it is an isometry.
Remark 7.23 implies the surjectivity of the map. O

<limg, dist, (xn, yn). (19)

Notation. We denote by the elementl)® € G*.

Proposition 7.26. Let (I',),,cn be a sequence of metric graphs satisfying the properties listed before
Definition7.14,let (d,),cn be a fast increasing sequence with respectip), . and letG = (a, b | R)

be the group constructed as above. For every ultrafilbethe asymptotic con€orf’(G; e, d) is tree-
graded with respect to the set of pieces

(20)

. . dist(e, g, R
P = {Ilm“’(gniRn) | (g,)® € G“ such that lim, diste, %) < oo} ,

dy

in particular different elementé&,, ) correspond to different pieces frash



1026 C. Drutu, M. Sapir / Topology 44 (2005) 959—-1058

Fig. 6. Diagramu,,.

Proof. Property (71). Suppose that lifi(g,R,) N lim® (g, R,) contains at least two distinct points,
where(g,)”, (g,)” € G”. We may suppose thag,,)” = (1)“. Let

lim®“(ay,), lim®(b,) € im®(g,R,) NliM?(R,), lim?a,) # lim®®b,).
The inclusion lin¥ (a,,), lim®(b,) € lim®(R,,) implies that
Ilmw(an) = Iimw(¢n(xn))v Iimw(bn) = Iimw(¢n(Yn))a

wherex,, y, € Ny, lim®(x;) # lim®(y,). The inclusion lin¥ (a,,), lim®(b,) € lim®(g,NR,) implies that
lIm®(a,) = lim® (g, @, (x))), im®(b,) =lim® (g, ®,(y,)), wherex,, y, € N, lim®(x,) # lim®(y,).
By Lemma 7.22, for every > 1, there exists a geodes:ig’) in Cayley(G) joining &, (x,,) with @, (y,)

labelled by a net Word),,(pi")), Wherepi") is a simple path from,, to y,, in I',,.. It follows thatp(l”) C R,.

Similarly, there exists a geodesig’) joining g, @, (x,) to g, ®,(y,) contained ing,R,,. The label of this

geodesicis a net wond, (pé")). Letq, be ageodesicjoining, (x,) to g, @, (x,) andq), a geodesic joining
@, (yy) t0 g, P, (y;,) in CayleyG). Bothq, andq), have lengthv(d,). The geodesics(l’” andp(z’” on the

other hand have lengtf (d,,). We consider the geodesic quadrilateral composeé"dfqn, p(z"), q, and

a minimal van Kampen diagram, whose boundary label coincides with the label of this quadrangle.
Thend4, is a product of four segments which we shall dengte,, s,, 1, (the labels of these paths
coincide with the labels of the patlpé?”), i pg’), q,, respectively).

There exists a unique (covering) mafsom 4 to Cayley(G) that maps the initial vertex af, to 1 and
preserves the labels of the edges. The magapss,, to p(l") C R, ands, to p(z") C gN,.

Let 4} be the maximal (connected) sub-diagramigthat contains, and whose-image is contained
in R,,. Likewise, let12 be the maximal sub-diagram af, that contains’ and whose-image is contained
in gR,,. The complementl,,\ (41 U 42) has several connected components.

Suppose that the complement contains cells, an@ jdbe one of the non-trivial components of the
complement. The boundary 6f, is contained id4} U, U942 U t/. By Greendlinger's lemma, there
exists a cellr in ©, such thator N 06,, contains a path,, of length at Ieastllo|an|. Suppose thai,,
has more than 150f its length in common witldA%. Then the labels ofiz andd4} contain a common
sub-word of length at leasti%f the length of a block participating in the label@®f. By Lemma 7.21,
= has rankn and they-image of 4! U z is in %, a contradiction with the maximality of!. Hence
|u, N3AL|<154|u,|.A similar argument applies ta? (Fig. 6).
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Thereforgu, N (aA% U@Aﬁ)l <30/|u,|. It follows thatu,, has more thaq%|an| in common withy, Uz, .
Sincey(r,) andy(z,) are both geodesics, mustintersect both of them. We haug| <302 |u, |+ |2, |+]1,[;
hencelu,| = o(d,). Therefore

dist(®, (), P (yn)) <lttn| + 1| + |1, ] = 0(dn),

a contradiction.

Property (7). According to Proposition 3.29, it suffices to study sequences of geoklgsins P, in
CayleyG) with all lengths of edges of ordet,, k fixed and lint’(P,) a simple geodesic triangle. We
need to show that lifi(P,) is contained in one piece.

We fix such asequenc@,), .y Of k-gonsin CayleyG). Let7 ", be the set of vertices d@f,. We consider
minimal van Kampen diagrams”™ and covering maps,: 4™ — Cayley(G) such that,, (04™) is P,.

We can consider the boundary #f" also as &-gon whose vertices and sides correspond to the vertices
and sides of,.

(a) Properties of the diagrams . By Lemma 7.20, each cell fron(”” has boundary lengtk O (d,,).

On the other hand, the cells of rakk:n + 1 have boundary of length at ledst*d,1]. Property (2)
of the fast increasing sequengg,) implies that fom large enough all cells from the diagra#ft”’ are of
rankk <n.

Suppose thab-almost surely there exists a cellof rankm <n — 1 in 4", the boundary of which
intersects two edgds, y], [z, ] without a common endpoint. Recall that the diameter of a cell of rank
mis at most 1&d,, <10(n — 1)d,,—1. Then there exist two points iy [x, y] and iny, [z, ], respectively,
which are at distance at most(k0- 1)d,, 1 of each other. In the-limit of P, we obtain that two edges
without a common endpoint intersect in a point. This contradicts the fact thatim is a simple loop.

We conclude that»-almost surely all cells whose boundaries intersect two edges without a common
endpoint are of rank.

Suppose that the boundary of one of the ceth§ rankmin 4 is not a simple path. Then by applying
the Greendlinger lemma to any hole formedday we get a celk’ whose boundary has a common sub-
pathu with 3z such thatu| > {5[07'|. Then there exists a bloak in 97’ such thafw N ar| > 45|w|. We
apply Lemma 7.21 tér anddr’ and we obtain that the ranks efind=’ coincide and that the boundary
label of the uniont U 7’ is a net word of rankn corresponding to a loop ifi,,. Hence the union of the
cellsz andn’ can be replaced by one cell corresponding to a relation fRoma contradiction with the
minimality of 4. Hence the boundary of each cellAf" is a simple path.

Suppose that the boundaries of two ceis 7o, in 4™, of rankm1 andmo, respectively, intersect
in several connected components. We apply the Greendlinger lemma to a hole forémad ¥, and
we get a cellr”’ whose boundary has a common sub-path, of length at %@&H, with 971 U 0.
Thereforeor’ has a common sub-path with ode;, i € {1, 2}, of length at Ieastzlo|an/|. Lemma 7.21
implies that the ranks af; and=’ coincide and that the boundary label®sfu =’ is a net word of rank
m; corresponding to a loop ifl,,. Hencer; U n’ can be replaced by one cell, a contradiction with the
minimality of 4. Weconclude that the intersection of the boundaries of two cells, if non-empty, is
connected.

Suppose that the boundary of a celin 4? of rankm intersects one sidgx, y] of 34 in several
connected components. We consider a hole formetkhy[x, y] and we apply the Greendlinger lemma
to it. We obtain a celt’ whose boundary has a common sub-pathth 0z U|[x, y], such thafu|> 110|an’|.
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Sincey, [x, y]is a geodesia) cannot have more tha?1u| in common withx, y]. HencguNon| > %|6n’|,
which implies that there exists a blogkin o=’ such thatw Nor| > %|w|. We apply Lemma 7.21 toand
7 and as previously we obtain a contradiction of the minimalityi&f. Consequently, the intersection
of the boundary of a cell in™ with a side 0fo4™, if non-empty, is connected.

(b) Existence of a celt,, of rank n in4™ such thatist(P,, 7,(0m,)) = o(dy,). Take any vertex = v,
of thek-gona4™. Let[x, v], [v, y] be the two consecutive sides of tkgondaa ™. Letx!, € [x, v] be
such thaty, (x,) is the last point oriy, (v), , (x)] (counting fromy,, (v)) for which there exists a poirt
on [y, ), y,(y)] with dist(y, (x/), z) not exceeding"/?d,,. Sincel"/?d, = o(d,), lim®(x) =lim®(y,v)
(recall that the triangle lifi( P,) is simple). Therefore digt;,, y,,v) = o(dy).

Similarly lety;, € [y, v] be such that,(y)) is the last point otiy, (v), 7, (y)] for which there exists a
pointzon [y, (v), 7, (x)] with dist(y, (), z) <{"/?d,. Then disty’,, y,v) = o(dy).

Consider the sefl, of cellsz in 4" whose boundaries have common points with bjathv] and
[v, ¥]. The boundary ofc naturally splits into four parts: a sub-arclaf, v], a sub-arc ofv, y], and two
arcsc(n), ¢/(m) which connect points ofx, v] with points on[v, y] and such that(r) andc¢’(x) do not
have any common points wiflx, v] U [v, y] other than their respective endpoints. We assume-that
is closer tov thanc(n).

The cells fromil, are ordered in a natural way by their distance froriake the celk € 17, which
is the farthest from among all cells inT, satisfying

dist(y, (c(n)_), 7, (c(n) 1)) <["?d,].

Let us cut off the corner o™ bounded by the triangl®, = c¢(n) U [¢(n)_, v] U [v, c(n), ]. Notice that
by the definition ofx/,, y;, we havec(n)_ € [x], v], ¢(n), € [v, y,]. Therefore the lengths of the sides
of &, areo(d,). Also notice thats-almost surely®, contains all cells of ranki{n — 1 from I1,. This
follows from the fact that the diameter of;, k<n — 1, does not exceed 10 — 1)d,_1; hence fom
large enough it does not excegt/2d, | by property (2) of the definition of a fast increasing sequence.
Let us do this operation for every vertexof the k-gon 4. As a result, we get a minimal diagram

A" such that, (47") is a Z-gon P, with k sides which are sub-arcs of the sidesPaf(we shall call
themlong side¥ andk sides which are curves of typér) whose lengths are(d,) (short sidey Some
of the short sides may have length 0. Tbimit lim “(P,) coincides with lin¥(P,). We shall consider

aA<1”) as a 2-gon with long and short sides corresponding to the side, of

Notice that by constructiom(l”) does not have cells of rankn — 1 which have common points with
two long sides of thegon aA<1") (Fig. 7).

Let n1, mo, ..., m, be all Greendlinge%-cells in A(l”), i.e. for everyi =1, ..., m, the intersection
om; N aA(l”) contains a sub-path of length at Ieas%mni |. Letr; betherank of thecelt;,i=1, ..., m.

The pathy; cannot have more th%of its length in common with a long side of the-gond4 (1”) because
they,-images of these sides are geodesics. By Lemma #;258nnot have a sub-path of length bigger

than 5 times the length of a block of rank in common with a short side (ﬁA(l”). Since short sides
and long sides iﬂA(l") alternaten-almost surelyy; must have points in common with two long sides of

aAg”). Therefore the numbenis at mosk and the rank; isnfor everyi =1, ..., m (w-almost surely).
Let us cut off all cellsry, ..., n, from the diagramdg"). The resulting diagraml(zn) has a form of a

polygon where each side is either a part of a long sidﬁ(l’Bf(we call it againong) or a part ofor; (we
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Fig. 7. Diagrama ™.

call it specia) or a part of a short side oj(l”) (we call itshorf). Notice that by the definition m’l;’”, the
length of any special side of<2") cannot be smaller thaif"/2d,,] w-almost surely.

Suppose that the diagrazr;”) contains cellsp-almost surely. Consider a Greendling&%r:cell n Of
rankmin A(Z”) and the corresponding pathc oz N GA(Z”). This path cannot have more thélmf its length
in common with a long side of$”, more than 5 times the length of a block @frz in common with a
special or short side. Therefaneannot contain a whole special sidezté‘”f). Henceu has a sub-path’ of
length at Ieas(%) — 104)|ox| that intersects only long and short sidesaéT). Hencer is a Greendlinger
B-cellin A(l”). This contradicts the fact that all such cells were removed when we constmg,‘)[ed

ThusAg”) contains no cells-almost surely. In particular, all cells Lm(l”) are of rankn and all of them
are Greendlinge«%-cells. For each celt;, i =1, ..., m, consider the decompositidn; = u;u;. Any
two arcsu’, u/] (i # j) have at most one maximal sub-arc in common. The length of this sub-arc is at

most 5. times the length of a maximal block of ramk(by Lemma 7.21 and the minimality of™).
Hence (o-almost surely) the length of any aug is at most %.[("/2d,]. Therefore lim, (lu;|/dy) = 0.
Since lim’(P)) is a simple triangle, we can conclude thaalmost surely for all but onee {1, ..., m}
the length ofor; is o(d,). Indeed otherwise we would have two points Bhat distanceO (d,,) along
the boundary o, but at distance(d,) in Cayley(G). Thew-limits of these two points would give us a
self-intersection point of lifi(P,).

Let us call this exceptionalby i,. Then lim”(P,) coincides with lin¥(y,(0x;,)). Sincey, (r;,) is
contained irg, R, for someg,, lim®”(P,) is contained in one piece litt{g,R,). O

Proposition 7.27 (description of the set of piedesConsider the following two collections of metric
spaces

(21)

. . dist(e, g, R
{hmw(g,,mn)e | (20)® € G, lim,, distee. gn%) _ oo}

dn
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and
{lim?®(N,, dist,), | x € [IN, /w}. (22)

We consider eachm®(N,, dist,), as a space with basepoihin®(x,) and eachim®(g,%R,), as a
space with basepoifim®(y,), wherelim®(y,) is the projection ofim®(e) ontolim®(g,R,,).

Then every space in one of these collections is isomesia metric space with basepaitd a space
in the other collection. Moreover every space in the second collection is isometric to continuously many
spaces in the first collection

Proof. Lety, :g,,‘lyn, nz=1.Lety=(y,)” andt=(t,)”. Thenlint’(g,R,), is isometric to lin? (g, R,),
which, in turn, is isometric to lifi(R,),. Notice that;, € R,, w-almost surely. Remark 7.23 implies
that there exists a,, € @,(N,) such that lim,(dist(u,, t,)/d,) = 0. Letu = (u,)”. For everyn>1,
letx, € N, be such that;,, = @, (x,), x = (x,)”. Then by Lemma 7.25, lif\(g,R,,), is isometric to
IMm®(N,),.

The fact that every limit set lifi(N,, dist,), is isometric to a set lifi(R,, dist/d,), follows from
Lemma 7.25. We writg as lim’(g; 1) for someg; ! € &,(N,). The set lint (g, R,, dist/d,), contains
lim® (1) and with respect to this basepoint it is isometric toitw,,, dist,), .

We consider an arbitrary elemén})” in G¢ such thatlim, (dist(1, y,,)/d,,)=0. The setlinf (, g, Rx).
isdistinctfrom the setlifi(g, R,)., as the argumentin Proposition 7.26 shows. On the other hand, the met-
ric space lin? (y,,g» M), With basepoint lirff (y,,) =lim“ (1) is isometric to the metric space lifg, R,).
with basepoint linff (1), and hence to liM(N,,, dist,), with basepoint linff (x,,). We complete the proof
by noting that there are continuously many elemépjs” with lim,,(dist(1, y,,)/d,) =0. O

7.4. Free products appearing as fundamental groups of asymptotic cones

The following lemma is obvious.
Lemma 7.28. The collection of set2*N + 2¢~1 | k e N} is a partition of N.

Notation. We denote the set‘& + 2¥=1 by Ny, for everyk e N. We denote byk(n) the element
2%n + 281 of Ny.

Let (My, disty),cn be a sequence of proper geodesic locally uniformly contractible spacéx, beta
point in M; and let{ be a real number if0, 1). Fix £ € N. We apply Remark 7.4 to the sequence of sets

(B,(lk))neNU{o}, WhereBék) ={0} andB,(lk) = B(Og, n), n € N, and to the sequence of numbéfs), .-
We obtain an increasing sequence

foyc N cNPc...cN® ..., (23)
such thatN,Ek) is a("-snet in(B,(lk), dist;). We consider the sequence of gram}s/a (N,ﬁk)) endowed

with the length metric dié’f). We denoterg[n/a (N,Ek)) by F,(f‘).

Remark 7.29. Note thatthe diameter ()N,Ek), disty) isatmost 2, so by (11) the diameter ()f,(,k), distﬁ,k))

is at most 1@, for n large enough. Hence the graplﬂék) satisfy the conditions listed before
Definition 7.14.



C. Drutu, M. Sapir / Topology 44 (2005) 959—-1058 1031

Now consider the sequencg,, dist,, O,) of finite metric graphs endowed with length metrics and
with distinguished basepoints defined as follows;, dist,, 0,) = (F},k), dis (,k), Or) whenn € Np.
We consider a sequencé,) of positive numbers which is fast increasing with respect to the sequence
of graphs(I',). We construct a grou = (a, b | R) as in Section 7.2, associated to the seque(ices
and(d,).

For everyk € N let w, be an ultrafilter with the property that (Ng) = 1.

Proposition 7.30. The asymptotic con€on's(G; e, d) is tree-graded with respect to a set of pieces
2 that are isometric to ultraballs oM; with centerO,. Ultraballs with different observation points
correspond to different pieces fragy.

Proof. By Proposition 7.26, CafA(G; e, d) is tree-graded with respect to
dist(e, g, R,) }
—_— < X

n

P = {Iim“k (gnRn) | (g)"* € G" such that lim, (24)

By Proposition 7.27, the collection of representatives up to isometry of the set of pieces (24) coin-
cides with the collection of representatives up to isometry of the set of ultralimits (livp, dist,) .,
x € IIN, /. The hypothesis that, (N;) = 1 and the definition of the sequence of graghs) im-
plies that lim% (N,,, dist,), = lim#(N®, dist’)) .« for somex® e IN® /. It remains to apply
Lemma7.5. O

Corollary 7.31. Suppose that the spadé; is compact and locally uniformly contractible. Then the
asymptotic con€ornt (G; e, d) istree-graded with respect to pieces isometri¢fg and the fundamental
group of this asymptotic cone is the free product of continuously many copte&\sf).

Proof. Itis a consequence of Propositions 7.30 and 2.22.

Corollary 7.32. There exists 2-generated groug” such that for every finitely presented groupttze
free product of continuously many copies of G is the fundamental group of an asymptotic ¢one of

Theorem 7.33. For every countable group @here exists a finitely generated group G and an asymptotic
cone T of G such that; (7') is isomorphic to an uncountable free power of C. MoreopVas tree-graded
and each piece in it is isometric either to a fixed proper metric spaceith n1(Y¢) = C or to a simply
connected ultraball of¢.

Proof. Let C be a countable group. By Lemma 7.1Dis the fundamental group of a geodesic, proper,
and locally uniformly contractible spadg& . Moreover, by Lemma 7.11, there exists a pdhin Y¢

such that every ultraball dfc with centerO either is isometric td¢ or is simply connected. It is easy

to see that the cardinality of the set of different ultraball¥@fwith centerO, that are isometric t&c,

is continuum. Consider the 2-generated gréug G(Y¢) obtained by applying the above construction

to My =Yc and O, = O, k>1. Then by Proposition 7.30 there exists an asymptotic coiie tbht is
tree-graded with respect to a set of piegesuch that the collection of representatives up to isometry of
the pieces in? coincides with the collection of representatives up to isometry of the set of ultraballs of
Y with centerO. By Proposition 2.22, the fundamental group of that asymptotic cone is isomorphic to
the free power o€ of cardinality continuum. O
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7.5. Groups with continuously many non-homeomorphic asymptotic cones

We use the construction in Section 7.2 to obtain a 2-generated recursively presented group which has
continuously many nom1-equivalent (and thus non-homeomorphic) asymptotic cones. Let us enumerate
the set of non-empty finite subsetsiofstarting with{1} and{1, 2}, then listing all subsets dfL, 2, 3}
containing 3, all subsets ¢1, 2, 3, 4} containing 4, etc. LeFy, k € N, be thekth set in the sequence of
subsets.

Foreveryr > 1let7™" be then-dimensional toru&” /7" with its natural geodesic metric and a basepoint
0=(0,0,...,0.

For everyk > 1 consider the bouquet of to#;, = \/neFk (7", 0). This is a compact locally uniformly
contractible geodesic metric space with a metric;distiuced by the canonical metrics on the tori and
with the basepoin®; = O.

We repeat the construction of a grotp= (a, b | R) in Section 7.4 for the sequence of proper geodesic
spaces with basepoint®y, disty, Op)en-

Since all%; are bouquets of tori, we can choose the sméfé coming from the same regular tilings
of the tori of different dimensions, and from their regular sub-divisions. There is a recursive way to
enumerate the snellxsg(‘;). For an appropriate choice of the set of wordsn Proposition 7.13, we obtain
a recursively presented gro@ The group has the following property.

Proposition 7.34. The asymptotic con€ont* (G; e, d) is tree-graded with respect to a set of piecas
such that every piece is isometric to one of the tofi, n € F.

Proof. Proposition 7.30 implies that the asymptotic cone €0@; ¢, d) is tree-graded with respect to a
set of pieces?; such that all pieces are isometric#. It remains to use Lemma 2.26]

Notation. We denote Coft (G; e, d) by ;. and lim (e) by e.

Let| be an arbitrary infinite subset &f, I = {i1, i2, ..., i,, ...}. We consider the increasing sequence
of finite sets

Foy CF,C---CFg, C---

defined byF, ={i1. i2, . .., i,}. Correspondingly we consider the sequence of asymptotic ¢oROs -
We consider an ultrafiltap. The ultralimit im”(%%,) ¢, ),.,, IS also an asymptotic cone & according
to Corollary 3.24. We denote it by, (1).

Lemma 7.35. Let (7%) be a sequence of to* = Rk /7% with canonical flat metrics. Suppose
thatlim®(k;) = oo for some ultrafilterw. Let 7 = lim® (7)), for some e. Thei contains isometric
n1-embedded copies of all ta#i™”, n>1.

Proof. Since tori are homogeneous spaces, we can assunegtiae sequence of poings, 0, .. .). For
everyn > 1 the torus7” isometrically embeds intg i for w-almost alli by the mapp,: (x1, ..., x,) —
(x1,...,x,,0,0,...). Consequently " isometrically embeds intg” by ¢,: x > lim®(¢;(x)).Letc be

a non-0-homotopic loop ir”. Suppose thap,,(¢) is 0-homotopic in7 . Then there exists a continuous
mapy: D? — 7 with y(0D?) = ¢,,(c). For every small positive, there exists a triangulation & such
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that if eis an edge in the triangulation, the imagesybgf the endpoints o€ are at distance at most

Let 7", be the set of vertices of such a triangulation. The restricted ynép,-, is anw-limit of maps

Y. 7. — 7. For everyi and for every edge in the considered triangulation @f?> we join with a
geodesic irT'* the images byy; of the endpoints oé. The length of this geodesic is-almost surely

less than 2. To each triangle of the triangulation thus corresponds a geodesic triarigieahperimeter
smaller than 6, w-almost surely. Fos small enough all these geodesic triangles are 0-homotopic in some
Tk But thenc is 0-homotopic inT'*, a contradiction. O

Lemma 7.36. The asymptotic coné, (1) is tree-graded with respect to a set of piegegl) such that

(1) All pieces are either isometric to one of the teff, i € I, or they have the property that for every
n € N they contain an isometrig;-embedded copy of”.
(2) The fundamental group of every piece is Abelian

Proof. Proposition 7.34 implies that for everye N, %}, is tree-graded with respect to a set of pieces
2, such that every piece is isometric to one of the ferit, 72, ..., 7'}. Theorem 3.30 implies that
Co(l) = Iim“’((gkn)(ek” )y 1S tree-graded with respect to the set of pieces

Po(l) = {im®(M,) | M, € Zy,, dist(e,, M,,) bounded uniformly im} . (25)
Let Iima’(Mn) be_ one of these pieces. Sinkk, < i’kn, it follows thatM,, is isometric to one of the tori
{71, 72 ..., 7'}, Leti(M,) be the dimension of the torud,, and let dis} be the geodesic metric
onM,.

(1) We have two possibilities.

I. im®@{(M,)) = oco. In this case we can imply Lemma 7.35 and conclude thdt (i¥),) contains
isometric andr;-injective copies of torz V for everyN.

I Iim®(i(M,)) < oco. It follows that there exists a finitm such thai (M,,) € {i1, io, ..., i,,} w-almost
surely. Remark 3.2 implies that there exigts= {1, 2, ..., m} such thati(M,) = i; »w-almost surely.
Hencew-almost surelyM,, is isometric toa7'/ and lim”(M,,) is isometric ta7 /.

(2) Every torus7" is a topological group, so it admits a continuous binary operation and a continuous
unary operation satisfying the standard group axioms. It is not difficult to seejihaits of tori also
are topological groups. Now the statement follows from the fact that the fundamental group of every
topological group is Abeliaf32]. O

Theorem 7.37. The2-generated recursively presented group G has continuously mamy femyuivalent
(and in particular non-homeomorphiasymptotic cones

Proof. Indeed, by Lemma 7.36 and Proposition 2.22 the fundamental grodp @ is a free product
of 7', i e I, and infinite dimensional Abelian groups. By Kurosh’s theofd8y, if j ¢ I thenz/ cannot
be a free factor of that fundamental group. Hence the asymptotic ¢@$ for different subsets of
N have different fundamental groups

Remark 7.38. Each of the continuously many asymptotic cones from Theorem 7.37 is a restrictive
asymptotic cone in the sense of Section 3.3. Indeed by Remark 3.25, each of the cone€ Com) is
isometric to a restrictive asymptotic cone Cdi@; ¢, (rn)). The mapp defined in Section 3.3 just before
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Remark 3.25 is in this case injective. The images of thefsgtsnder this map are pairwise disjoint and
v (¢(Ng)) = 1. It remains to use Proposition 3.26.

8. Asymptotically tree-graded groups are relatively hyperbolic

Let G be a finitely generated group and {é{1, . .., H,} be a collection of subgroups &. Let She
a finite generating set @ closed with respect to taking inverses.

We denote by# the set |/ ; (H;\{e}). We note that Cayleys, S) is a subgraph of Caylég, SU %),
with the same set of vertices but a smaller set of edges. We have thatdist v) <dists(u, v), for every
two verticesu, v.

For every continuous pathin a metric spac& we endow the image of with a pseudo-ordex,
(possibly not anti-symmetric, but transitive and reflexive relation) induced by the order on the interval of
definition of p. For every two points, y we denote by[x, y] the sub-path of composed of pointg
such thatr <,z <,y.

Definition 8.1. Let p be a path in Cayleys, S U #). An s#-componendf p is a maximal sub-path of
p contained in a left cosetH;, i € {1,2,...,m}, g € G (i.e. this is a maximal sub-path with all labels
of edges belonging téf; for somei).

The pathp is said to bewithout backtrackingf it does not have two distinc#’-components in the
same left coset H;.

There are two notions of relative hyperbolicity. The weak relative hyperbolicity has been introduced
by Farb in[27]. We use a slightly different but equivalent definition. The proof of the equivalence can be
found in[43].

Definition 8.2. The groupG is weakly hyperbolic relative t¢Hi, ..., H,} if and only if the graph
Cayley G, S U ) is hyperbolic.

The strong relative hyperbolicity has several equivalent definitions provided by several authors. The
definition that we consider here uses the following property.

Definition 8.3. The pair(G, {H1, ..., H,}) satisfies théounded Coset Penetration (BCP) propdfty
for everyi> 1 there exista = a(1) such that the following holds. Letandqg be twoA-bi-Lipschitz paths
without backtracking in Caylay;, S U ') suchthap_ =q_ and disg(p, q,)<1.

(1) Suppose thad is an #-component of such that dis{(s_, s;+) >a. Thenq has an#’-component
contained in the same left cosetsas

(2) Suppose thatandt are two#-components op andgq, respectively, contained in the same left coset.
Then disg(s_, r_) <a and dis§ (s, 1) <a.

Definition 8.4. The groupG is (strongly) hyperbolic relative td Hy, . . ., H,,} if it is weakly hyperbolic
relative to{Hy, ..., H,} and if (G, {H1, ..., Hy,}) satisfies the BCP property.
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We are going to prove the following theorem.

Theorem 8.5. A finitely generated group G is asymptotically tree-graded with respect to subgroups
{H1, ..., Hy,} if and only if G is(strongly) hyperbolic relative tq Hy, ..., H,} and eachH; is finitely
generated

This section is devoted to the proof of the “only if” statement. Note that the fact thatrédsliinitely
generated has been proved before (Proposition 5.11).
The “if” statement is proved in the Appendix.

8.1. Weak relative hyperbolicity
The most difficult part of Theorem 8.5 is the following statement.

Theorem 8.6. If G is asymptotically tree-graded with respect{id,, . .., H,,} then G is weakly hyper-
bolic relative to{Hx, ..., Hy}.

The main tool is a characterization of hyperbolicity due to Bowd[ithSection 3] For the sake of
completeness we recall the results of Bowditch here.

8.1.1. A characterization of hyperbolicity

Let ¢ be a connected graph, with vertex gétand distance function dist, such that every edge has
length 1.

We assume that to every paiyv € 7~ we have associated a subggt, of 7. Assume that eachl,,,
is endowed with a relatior: ,,, such that the following properties are satisfied.

(l1) <. is reflexive and transitive;
(I2) for everyx,y € Ay, eitherx <,,y or y < ,ux;
(I3) for everyu,v € v we haved,, = Ay, and <, = > 4.

We note that the relations ,,, may not be anti-symmetric.

Notation. Forx, y € A,, with x <,,y, we write

Aylx, Y] = Aply, x1=1{z € Aup | x <2<y}

We also assume that we have a funcifon?” x 7~ x ¥~ — 7~ with the following properties.

(c1) (symmetry)¢ o ¢ = ¢ for every 3-permutatios;
(c2) ¢p(u,u,v)y=uforallu,ve v,
(63) P, v, w) € Ayy N Ayyw N Ayp.

Suppose moreover that there exists a constantO such that the following conditions are satisfied.

() For every u,v,w € v, the Hausdorff distance between the sets [u, ¢(u, v, w)] and
Aywlu, ¢(u, v, w)] is at mostK.
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(I If p,q € v are such that digp, ¢) <1 then diam,,,[¢(u, v, p), ¢p(u, v, g)] is at mosK.
(my If w e A,, then diam,,,[w, ¢(u, v, w)] is at mosiK.

We call(4,,, <,) aline from u tov. We call¢(u, v, w) thecenter ofu, v, w.

Proposition 8.7 (Bowditch[7, Proposition 3.1). If the graph% admits a system of lines and centers
satisfying the conditions above th@nis hyperbolic with the hyperbolicity constant depending only on
K. Moreover for everyu, v € 77, the line 4,, is at uniformly bounded Hausdorff distance from any
geodesic joining u t@, where the previous bound depends only on K

8.1.2. Generalizations of already proven results and new results

Lemma 8.8. Letq : [0, f] — X be an(L, C)-quasi-geodesic. Let x be a point in its image and:lgi
be its endpoints. Then

dist(a. b) > Li[dist(a, x) + dist(x, b)] — C, (26)
1
whereL; = L2 andC1 = C (2 +1).

Proof. Let s € [0, t] be such thaty(s) = x. We have that di$b,b)>%t — C. On the other hand
s> 1dist(a, x) — C andt — s> 1dist(x, b) — C imply thats > 1[dist(a, x) + dist(x, b)] — 2C. O

Let (X, dist) be a metric space asymptotically tree-graded with respect to a collection of suhsets
GivenL >1 andC >0 we denote by (L, C) the constant given bg,) for 0 = %

Definition 8.9 (parameterized saturatiops Givenq an (L, C)-quasi-geodesic ang> 0, we define the
p-saturationSat'(q) as the union ofy and allA € .7 with 47, (A) N q # @.

Notice that if a metric spacéis asymptotically tree-graded with respectto acollectioa{A; | i € I}
thenXis also asymptotically tree-graded with respectitQ(.«) = {./",(A;) | i € I} for every number
> 0. This immediately follows from the definition of asymptotically tree-graded spaces. One can also
easily see that propertig€s1), (x2), (23) are preserved. Hence the following two lemmas follow from
Lemmas 4.21, 4.26 and 4.28.

Lemma 8.10(uniform quasi-convexity of parameterized saturatjorr everyL >1, C >0 and u>

M(L, C), and for everyl>1, k >0, there exists = t(L, C, u, 4, k) such that for every > 1, for every
(L, C)-quasi-geodesig, the saturatiorSat'(q) has the property that every, «)-quasi-geodesicjoining
two points in its R-tubular neighborhood is entirely contained irt Rstubular neighborhood

Lemma 8.11(parameterized saturations of polygonal lipe§ he statements in Lemméf6and4.28
remain true if we replace the saturations gsaturationsfor everyu > 0.

Lemma 8.12. Letq=q; U g U --- U g, be such that

(1) q; isan(L, C)-almost-geodesic in X far=1,2, ..., n;
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(2) a; Na; 11 = {x;} Is an endpoint of; and ofq; ., fori =1,...,n -1,
(3) x;—_1 andx; are the two endpoints @f fori =2,...,n — 1,
(4) eachq; satisfies one of the following two properties

(i) the endpoints od; are in a setA; € <7 or
(i) q; has length at most, where( is a fixed constant

(5) A; # A;ifi # j.

Then there exists., > L, C,, >C depending om, £ and (L, C), such thatq is an (L,, C,)-almost-
geodesic

Proof. Clearly q is an L-Lipschitz map. We prove by induction on that distq(z), q(s))>
(1/L)|t — s| — C, forsomeL,, > L andC, >C.

The statement is true for = 1. Assume it is true for some. Letq=q; Uqy U---Uq, Uq, 1 be
as in the statement of the lemma. leét= g1 U qo U - - - U q,, which, by the induction hypothesis, is an
(L, Cy)-almost-geodesic.

Suppose that, , ; satisfies (4)(ii). Them is an(L,, 2(¢ + C,))-almost-geodesic.

Suppose that, , satisfies (4)(i). LetA = A,11. We takeM,, = M(L,, C,). Lety be the farthest
point from x,, in the intersectiont "y, (A) N ¢'. Considerq, a sub-almost-geodesic of of endpoints
y andx,. By Lemma 4.15¢, is contained in the, M,,-tubular neighborhood o&. On the other hand,
qy = q: Ua;p 1 U--- Ugq,, Whereq. is a sub-almost-geodesic of. Again Lemma 4.15 implies that
everyq; satisfying (4)(i) is contained ini";(A;) for some uniform constant Therefore, every suchy
composingq, has endpoints at distance at most the diameter'ofA;) N .4, m,(A), hence at most
D,, for someD,, = D, (z,M,). It follows that the distance di&t, x,,) is at mostu(¢ + D,). Lemma
4.19 implies that if the endpoints of,,, are at distance at lea&?’ = D'(L,, C,, D,),thenq is an
(L, + 1, 2D")-almost-geodesic.

If the endpoints of,, ; are at distance at most’ then the length of,,, ; is at mostL D’ + C andq is
an(L,,2(LD’' + C + C,))-almost-geodesic. O

Lemma8.13. ForeveryL>1,C>0,M > M (L, C) andé > Othere existdg > 0 such that the following
holds. LetA € .« and letq;: [0, ¢;] — X, i =1, 2, be two(L, C)-quasi-geodesics with one common
endpoint b and the other two respective endpaifts ./ 3, (A), such that the diameter af N ./ 3, (A)
does not exceedlfor i = 1, 2. Then one of two situations occurs

(a) eitherdist(ay, az) < Do or
(b) b e /y(A)ande; <L+ C.

Proof. Letdist(a1, a2) = D. We show that iD is large enough then we are in situation (b). Remark 4.14
implies that we may suppose thatare(L + C, C)-almost geodesics.

According to Lemma 4.19, there exidds such that ifD > D’ thenqgq U [a1, a2l isan(L +C + 1, 2D’)-
guasi-geodesic. Suppose tiat D’.

Suppose thdtis not contained ini"y; (A). Lett € [0, £2] be suchthai,(r) € 47y (A) andgs|o,;; does
notintersect/"ys (A). The sub-ar@s|(;.¢,; has endpoints at distance at mégtence it has length at most
Lé+C. Itfollows thatqy Ula1, a2]lUqs|(r.e,) IS @an(L +C +1, C1)-quasi-geodesic, whet&y =C1(D’, ).
Lemma 4.25 implies tha Li[a1, a2]Uas|[: e, IS contained in the-tubular neighborhood of S@ib|(0.11),
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Fig. 8. Corollary 8.14 and Lemma 8.15.

wherer=1(L, C, D', §). Thisimplies that/"y (A)N.4"-(Satq;|[0.1))) has diameter atleabt By Lemma
4.22, forD large enough we must have thatC Sat(q,|i0,11). This contradicts the choice tf
It follows thatb is contained in/"y; (A), which implies that; < L dist(a;, b) + C<L5+ C. O

Corollary 8.14. ForeveryL>1,C>0,M > M (L, C) ands > Othere existd1 > 0 such that the follow-
ing holds. LetA € <7 and letq;: [0, ¢;] — X,i =1, 2,be two(L, C)-quasi-geodesics with one common
endpoint b and the other two respective endpaints .13, (A), such that the diameter af N .47y (A)
does not exceedl Thendist(as, az) < D1 (Fig. 8).

Lemma 8.15. For everyL>1,C>0and M >M(L, C) there existd = d(L, C, M) > 0 such that the
following holds. LetA € .o/ and letq: [0, £] — X be an(L, C)-almost-geodesic with endpoints x and
y € A/ (A). There exists a sub-arg¢ of g with one endpoint x and the second endpointi; (A) such
that the diameter of N .47, (A) is at mosb.

Proof. If x € /"y (A) then we takey = {x}. Suppose that ¢ 1"y (A). Letr = inf{t' € [0, £] |
1" € NNy (A)}). Thenq(r) € ¥y (A). Lets; € [0, ¢] be such thati(s;) € V/y(A), i =1,2. If
|s1 — 52| >3L(M + 1) then property(«,) implies thatq([s1, s21) N A" (A) # @. This contradicts the
choice oft. Thereforels; — s2| <3L(M + 1). We deduce thai([0, t]) N .4 3 (A) has diameter at most
3L%(M +1).

The definition ot implies that there exists > r with 11— < % andq(r1) € A m(A). We takey'=ql[0,11]-
The diameter o N 1"y (A) is at most =3L2(M + 1) +1. O

8.1.3. Hyperbolicity of Cayldgy;, S U #)

Let G be afinitely generated group that is asymptotically tree-graded with respect to the finite collection
of subgroupd Hs, ..., H,}. This means that Caylég, S) is asymptotically tree-graded with respect
to the collection of subsets = {gH; | ¢ € G,i =1,2,...,m}. We prove that Cayleys, S U ) is
hyperbolic, using Proposition 8.7. The following result is central in the argument.

Proposition 8.16. LetL>1, C >0,letu>M(L, C) and letqy, g, q3 be three(L, C)-almost-geodesics
composing a triangle ilCayley(G, S). We consider the set

%ﬁ(ql, q2, Q3) = -/Vic(satl(Q1)) N '/VK(Sa#(QZ)) N —A/K(SaP(QS))-

(1) There existso = xo(L, C, u) such that for every > o the seté}(qy, g, q3) intersects each of the
almost-geodesias, g5, 3. In particular it is non-empty
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(2) For everyx > kg there existsD,. such that the set’(q1, 95, q3) has diameter at mosb,. in Cayley
(G, SU).

Proof of (1). Let {i, j, k} = {1, 2, 3}. According to Lemma 8.11, the result in Lemma 4.25 is true
if we replace Sat) by Sat'(q;) U Sat'(q;). In particular there exists = <(L, C, ) such thaty, C

A o(Sat'(q;)) U .A"-(Sat'(q;)). The traces om; of the two sets/”;(Sat'(q;)) and./";(Sat'(q;)) com-
pose a cover of two open sets, none of them empty. Sjpde an almost geodesic, it is connected;
henceq, N /":(Sat'(q;)) and q N ./"-(Sat'(q;)) intersect. The intersection is it (91, a2, q3) for
everyk>t. U

We need several intermediate results before proving (2). In the sequel we work with the data given in
the statement of Proposition 8.16, without mentioning it anymore.

Lemma 8.17. There exist positive constantsp depending only o, C, u andx such that every point
x € %%(q1, a2, q3) is in one of two situations

(i) the ball B(x, «) intersects each of the three almost-geodesics,, qs;
(i) x € #(A) and./"g(A) intersects each of the three almost-geodesjcs;, 3.

Proof. Let x be an arbitrary point ir¢}(q;, g0, q3). The inclusionx € . (Sat'(q;)), i € {1,2,3},
implies that there are two possibilities:

(Ii) x € N x(q;) or
(I;) x € /(A), whereA € .o/, /", (A) Nq; # V.

If we are in case (I) for the three edges then this means that (i) is satisfied with

Suppose that only one edge is in case (ll). Supposeg.i$henx € 4"(q1) N A "(q2) and there
existsA e .o/ with 4", (A) N q3 # ¥ such thatr € ./"(A). It follows that.4"4(A) intersects the three
edges forp = max(u, 2«), so (i) is satisfied.

Suppose that two edges are in case (ll), for instapc@nd q3. Consequentlyy € ./7(q;) andx €
N (A2) NN (A3), With 47, (A;) Na; # ¥, wherei =2, 3.1f Ao=A3z=Athen./"g(A) intersects the three
edges fors = max(y, 2x), so (i) is satisfied. IA2 # A3z then, according to Lemma 8.11 (more precisely
to Lemma 4.28 which also holds farsaturations); we have thate .17, (q> U q3), wherex = »(u, k).
Suppose that € .17, (q2). Then./"g(A3z) intersects the three edges o= max(y, 2«, k + »), so (ii) is
satisfied.

Suppose that the three edges are in case (ll). It followsdkat) . (A1) N A" (A2) N A" (A3), with
N u(Ai) Na; # ¥, wherei =1, 2, 3.

If the cardinality of the sefA1, Az, A3} is 1 then we are in situation (ii) witlf = u. Suppose the
cardinality of the set is 2. Suppose th&t = A> # Asz. Lemma 4.28 foru-saturations implies that
x € Ny(a2Uqz) NN (q1Uag). If x € A7 (q3) thenA = A1 = A, has the property that's(A) intersects
the three edges fgt = max(u, k 4+ »), and we are in case (ii). Otherwises .1",(q7) N .4 (q5); hence
A (A3) intersects the three edges fo= max(y, k + x).

Assume that the cardinality of the sfet1, A2, A3} is 3. Thenx € A7, (q1 U q2) N A % (g2 U q3) N
A (91U q3). It follows thatx is in thex-tubular neighborhood of at least two edges. Suppose these edges
areq; andq,. Then/"g(Az) intersects the three edges for= max(y, k +%). O
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Lemma 8.18. For everyr > 0 there existy = o(r, L, C) such that the following holds. Let # B be
such thatA, B € .«7, and both.4".(A) and ./, (B) intersect each of the three almost-geodesic edges of
the triangle. Then there exists x such tiBdl, o) intersects each of the edges of the triangle

Proof. Lety € 4 (A) andz € 4/ (B). Lemma 8.15 implies that up to taking a sub-segmeiiiy of],
we may suppose that the diametergofz]N.4".(A) and of[y, z]N .47 (B) are at mosd, whered=2(r).
We apply Lemma 4.28 for-saturations and for each, i € {1, 2, 3}, and we obtain that botB(y, ¢)
andB(z, o) intersecly;, whereg = o(r). O

Lemma 8.19. There exist® = R(L, C) such that for every triangle wit(L, C)-almost-geodesic edges
one of the following two situations holds

(C) There exists x such th&(x, R) intersects each of the three edges of the triangle
(P) There exists a uniqué € .o such that/"g(A) intersects each of the three edges of the triangle

Proof. Letqs, g5, q3 be the three edges. For= M (L, C) andxg = ko(L, C) we have tha®’ (a1, q2, 93)
is non-empty. It remains to apply Lemmas 8.17 and 8.18.

Notation. We denote the vertices of the triangle By, 02, O3, such that; is opposite ta0;.

Lemma 8.20. For everyr > 0 there existeD = D(r, L, C) such that the following holds. Let x be such
that B(x, r) intersects the three edges of the triangle

(a) Ifyis such thatB(y, r) intersects the three edges thaistsy» (x, y) < D.
(b) If A € .7 is such that/",(A) intersects the three edges theistgy»(x, A) < D.

Proof. Letx; be nearest points toin q;, i =1, 2, 3.

(a) We denote dist,» (x, y) byD. Lety; be nearestpointstan g;, i=1, 2, 3. Thendis§u, (x;, y;) >
D —2r foreveryi, j € {1, 2, 3}. Suppose thab > 2r. Without loss of generality we may assume that
q1lx1, O3]. We have disf(x1, x2) <2r, henceqq[x1, O3] C A 2, (Salgo[x2, O3])), wherer = (L, C).
In particulary; is contained either int 2, (q,[x2, O3]) or in A2, (B) for B € o/ such that/"y(B)
intersectsy,[x2, O3].

Case(a)l. Suppose that, € g,[x2, O1].

Case(a)l.1. Suppose that;s € A2, (q2[x2, O3]). Then there exist& € qy[x2, O3] such that
dists(y1, u) <2zr. It follows that disk (u, x2) >distsy» (1, x2) > D — 2r — 2¢r. Inequality (26) implies
that

dists(u, y2) > Li[dist(u, x2) + dist(xz, y2)] — C1> Li(ZD —4r — 2tr) — C1.
1 1

On the other hand digt, y2) <2t + 2r. HenceD <2r + wr + L1(r + wr + C1/2).
Case(a)l.2. Assume thaty € .12, (B), whereB € .«7 is such that/"; (B) intersectsy,[x2, O3]. Let
w2 be a pointinA”y;(B) N qo[x2, O3].
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Suppose that,[x2, y2]1N.A 2., (B) # #. Letz, be a point in the previous intersection. Thefwz, z2]
has its endpoints in/",(B), with y = max(M, 2t + 1). Consequentlyyy[wz, z2] C A7 (B). In
particular xz is contained in/",(B) and disgux (y1, x2) <t(2r + z) + 1; henceD<t(2r + ) +
2r + 1.

Suppose that,[x2, y2] N A2, (B) = @. We have thatry is in gy[wsz, y2]. Also, qy[wa, y2] has
its endpoints inA",(B), with y = max(M, 2r(t + 1)). Consequently,[wp, y2] C A, (B). In par-
ticular xo is contained in./",(B) and disku (y1, x2)<t(2r + x) + 1; henceD<t(2r + y) +
2r + 1.

Case(a)ll. Suppose thags € qo[x2, O3]. If y3 € qg3[x3, O1] then we repeat the previous argument
with y; replaced bys. If y3 € q3[x3, O2] then we repeat the previous argument with, y,) replaced
by (y3, y1)-

(b) We denote dist,»(x, A) by D. We note that for every pointin A4".(A) N (q1 U g2 U q3) we
have that disf(x;, y) >distsu» (x;, y) > D — 2r fori =1, 2, 3. We choose; € /" (A)Ng;, i =1, 2, 3.
Suppose1 € qq[x1, O3]. Like in case (a), we have that is contained either int"2;, (go[x2, O3]) orin
N 2.+ (B) for someB € .o such that/"y;(B) intersectsy,[x2, O3].

Case(b)l. Suppose thats € go[x2, O1].

Case (b)l.1. Assume thaty1 € A2 (q0[x2, O3]). Then there exists € go[x2, O3] such that
dists(y1, u) <2zr. It follows thatu € 47,1427 (A), which together withy, € 47.(A) implies that
aolu, y21 € N or1420 (A). In particularxy € A 1421 (A); thereforeD <r + tr (1 + 27).

Case(b)l.2. Suppose1 € 472, (B), with B € <7 such that/"y;(B) intersectsy,[x2, O3]. Letwy be
a pointinA"y(B) N qo[x2, O3].

Suppose thaty,[x2, y2] N A2, (B) # §. As in the proof of part (a), Case 1.2, we obtain that
distsu (y1, x2) <t(2r + ) + 1, whenceD <t(2r + ) + 2r + 1.

Suppose that,[x2, y2] N A 2., (B) = . Thenxz is in go[wz, y2]. On the other hand,[w>, y2] has its
endpoints in thé-tubular neighborhood of S%{f([yl, y2]). Itfollows thatg,[wa, y2], in particularxy, is
in thetM-tubular neighborhood of S%{f([yl, y2]). In Cayley G, SU.¥), Salz"([yl, y2]) is contained in
the (2tr + 1)-tubular neighborhood dfy1, y»]. Since in CayleyG, S) we have thafyi, y2] C A7 (A),
we deduce that in Cayl€g, S U ), xp is in the(tM + 3tr 4+ 1)-tubular neighborhood oA. Hence
D<tM + (3t + 1)r + 1.

Case(b)ll. Suppose thay, € qo[x2, O3]. Then we can use the same argument as in Case Il of
part (a). O

Proof of Proposition 8.16(2). By Lemma 8.19 we are either in case (C) or in case (P).

Case(C). Lety € %%(q1, 92, q3). According to Lemma 8.17 we have either (i) or (ii). Suppose that (i)
is satisfied. Then, by Lemma 8.20(a), disk (x, y) <D, whereD = D(«, R, L, C).

Suppose that (ii) is satisfied, thatyse ./".(B) and./"4(B) intersects each of the three almost-
geodesicsg, g, 3. Lemma8.20(b) implies that digt» (x, B) < D,whereD=D(f, R, L, C). Therefore
distsur(x, y)<D + k + 1.

Case (P). Lety € %%(q1, 92, q3). Suppose thay satisfies (i). Lemma 8.20(b) implies that
distsux (v, A)< D, with D = D(«, R, L, C).

If y satisfies (ii) of Lemma 8.17, then the unicity stated in (P) implies that/".(A), and hence that
diStSU%()’, A) <K.

We may conclude that in all cases the diameter of thez4éid, -, g3) in the metric dis§y ., is
uniformly bounded. O
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u

Fig. 9. Projection of a point onto the saturation.

We now define a system of lines and centers in Cayleys U »#) such that the properties in Section
8.1.1 are satisfied.

First of all, for every pair of vertices, v in Cayley G, S U #) we choose and fix a geodesic v] in
Cayley(G, S) joining the two points. LeMy = M (1, 0) and letxg be the constant given by Proposition
8.16 foru = Mop. We may suppose that > My. For every pair of vertices, v in Cayley G, SU ), we
define4,, as.A",(Sat[u, v])). The relation on it is defined as follows: to every= 4", (Sa[u, v]))
we associate one nearest point (projectiohx [u, v] and we putx <,y if x" is betweeru and y’'.
Propertiesiy), (I2), (I3) are obviously satisfied.

We define the functiop by choosing, for every three verticesv, w in Cayley(G, S) a pointCy,,
in %%0 [u, v], [u, w], [v, w]) and definingp(u, v, w) = ¢ o a(u, v, w) = Cyyy fOr every 3-permutation
o. We choos&”,,,, = u.

Propertiesd1), (c2), (c3) are satisfied. Before proceeding further, we prove some intermediate results.

Lemma 8.21. For everyx > 0 there exists. = A(«) such that the following holds. Lgt, v] be a geodesic
and letA € .7 be such that/",(A) N [u, v] # @. Let x be a point in/",(A) and letx” € [u, v] be a
projection of x. Then’ € .47, (A) (Fig. 9).

Proof. Suppose that’ ¢ .1",(A). Lemma 8.15 implies that there existe [u, v] N .A4"y(A) ands €
[x’, x] N .4 ,(A) such that the sefs’, 1] N 4 ",(A) and[x’, s]N 4", (A) have diameters at mostwhere
d = d(«). Corollary 8.14 implies that diét, 1) < D1. On the other hand, since dist x") <dist(x, 1),
it follows that dists, x’) <dist(s, t) < D1. We conclude that digtx’, A)< D1 +oa. O

Corollary 8.22. Let x be a point in./"(Sat'([u, v])) and letx" € [u,v] be a projection of x.
Thendistgu» (x, x") <y, wherey = x(x, p).

Proof. Sincex € /" (Sat'([u, v])) itfollows that eitherx € A", ([u, v]) orx € A"(A), where/ ,(A)N
[u, v] # @. In the first case it follows that digt » (x, x") <k, while in the second case we may apply
Lemma 8.21. O

Corollary 8.23. Letu, v be a pair of vertices ifCayley G, S U #) and letx, y € 4,, andx’, y’ their
chosenrespective projectionsfon v]. Thenin Cayle G, SU#), Ay[x, y1=A4u[y, x]is at Hausdorff
distancey of [x’, y'] C [u, v], wherey = ¥(G).
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Before proving properties (1), (I1), (1), we make some remarks and introduce some notations.

Remark 8.24. (1) For every quasi-geodesidn Cayley(G, S), we have that Séfq) is in the (u + 1)-
tubular neighborhood af in Cayley(G, S U ).

(2) Lemma 8.17 implies that there exist two constantndc such that for every three geodesics
[u, v], [v, w], [u, w] in Cayley\G, S) every pointx € %KMOO([u, v], [v, w], [u, w]) satisfies one of the
following two properties:

() the ball B(x, ) intersects each of the three geodes$ica], [v, w], [u, w];
(i) x € #,(A) and.A"-(A) intersects each of the three geodesica ], [v, w], [u, w].

We note that the constanjsandc depend on/g andxg, so they depend only oB. We may suppose
without loss of generality that> Mj.

(3) Lemma 8.21 implies that there exigtsuch that ifiu, v] is a geodesicA € .«7 is such that/".(A)
intersectgu, v] andxis a pointin./“,(A), then any projection ofon[u, v]isin.4":(A). The constanf
depends on max, xp), SO it depends only 06. Without loss of generality we may suppose thatMj.

(4) In the sequel we denote the constait, O, ¢) provided by Lemma 8.15 simply by

Proof of properties (1), (1), (I1). (). Let x = ¢(u, v, w) and letx; andx, be the chosen projections
of x on [u, v] and on[u, w], respectively. According to Corollary 8.23, it suffices to prove fhat1]
and[u, x2] are at uniformly bounded Hausdorff distance in Cayley S U #). The pointx = ¢(u, v, w)
satisfies either (i) or (ii) from Remark 8.24(2).

Supposex is in case (ii). Thenw € ./7,(A) such that/'.(A) intersects the three geodesic edges.
Lemma 8.21 implies thaty, xo € ./7¢:(A). The geodesi¢u, x1] has its endpoints im/C;(Satf[u, x2]).
Lemma 8.10 implies thdt:, x1] is entirely contained imfri(Sati[u, x2]). It follows that[u, x1] is in the
[(r 4+ 1)¢+ 1]-tubular neighborhood gft, x2] in Cayley G, SU .#). A similar argument done fdi, x2]
allows one to conclude that (1) is satisfied.

Supposeiis in case (i). Then disi(x, x;) <y fori =1, 2. Hence disf(x1, x2) <2y and[u, x;] has its
endpoints in/",(Salu, x;1), for {i, j} = {1, 2}. We repeat the previous argument.

(I The fact that dis§u»(p, ¢) <1 means that either digtp, g) <1 orp, g € Ag, whereAg € /. Let
x = ¢(u,v, p) andy = ¢(u, v, g). We have to show that,,[x, y] has uniformly bounded diameter in
Cayley G, SU.#). Letxg andyg be the respective projectionsxa@ndy on[u, v]. Corollary 8.23 implies
that it suffices to prove thdikg, yo] has uniformly bounded diameter in Cayl€y S U #), where by
[x0, yo] we denote the sub-arc ff, v] of endpointsxg, yo.

Suppose that botk andy are in case (i). We have thay € 4"2,[u, p] N A2 [v, p] and thatyg €
N oylu, g1 OV N 4[v, ql. Sincelu, p] C A (Salu, q]) and[v, p] C A" (Safv, g]), we conclude that
X0, Y0 € €5, (I, g1, v, q1, [u, v]), and hence thdto, yol C %3, . ([, q1. [v, g1, [u, v]). We com-
plete the proof by applying Proposition 8.16.

Supposex is in case (i) andy is in case (ii). The case whenis in case (ii) andy is in case (i)
is discussed similarly. As above we have that € %g,ﬁr([u,q], [v, q], [u, v]). We have thaty <
N 1o (A) such thatt . (A) intersectqu, g1, [v, g1, [u, v]. Lemma 8.21 implies thatp € ./":(A). Then
yo € €5([u, q1, [v, q1, [u, v]). As previously we obtain thdko, yol C 7, ([u, q1, [v, g1, [u, v]), where
r=max2q + 1, &), s = maxMop, ¢) and ¢ = 7/(s). Proposition 8.16 allows one to complete the
argument.
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Suppose that botkandy are in case (ii). Them € 4", (A) such that/".(A) intersectg p, u], [p, v],
[u, v]. Let p1 € [u, p] N N (A) and p; € [v, p] N AN (A) be such thalp, p;]1 N A .(A) has diameter
at mostd, i = 1, 2. Likewise we considen; € [u,v] N A -(A) anduz € [u, p] N A (A) so that
[u,u;] N A +(A) has diameter at most andvy € [p, v] N A (A) andvs € [u, v] N A +(A) so that
[v, v;] N A (A) has diameter at most Corollary 8.14 implies that digtp1, p2), dists(u1, up) and
distg(v1, v2) are at most, where{ = {(G).

We have that eitheA C Safu, g] or /".(A) N.A"(Salu, q]) has diameter at mogtwherey =y(G).
The latter case implies, together with the inclusjenp] c .4 (Salu, ¢1), that dist p1, u2) <y. Thus,
we have that eithed C Safu, g] or dist(p1, u2) <y. Likewise, we obtain that eithet c Safv, ¢] or
dist(p2, v1) <7.

Suppose that digps, u2) <y. Thendistp1, u1) <y+¢, and hencd(p1, y+{) intersectp, ul, [p, v],
[u, v]. We can argue similarly to the case above wkigrin case (i) ang is in case (ii), withx replaced by
p1andy by y+(. We obtain that ifp] is the chosen projection @h on[u, v] then[p], yol has the diameter
bounded in Cayle§G, S U #) by a constant depending @ Since[xo, yol C [xo0, p71 U [p7, yol, it
remains to prove thdto, pj] has bounded diameter in Cay(@y, S U #). Lemma 8.21 provides for
o = max(ko, ¢) a constant. We have thakg andpj are in./"5(A), and hence thdtwg, p;] C A" ;(A).
We conclude that the diameter [af, p7] in Cayley(G, S U ) is at most 2.+ 1. A similar argument
works if dist(p2, v1) <y.

Now suppose thad C Salu, g] N Safv, g]. Lemma 8.21 implies thaty € ./":(A). Sincey is
also in case (i), we have that € 1",(B) such that/".(B) intersects the three geodesic edges
lg,ul, g, v], [u, v] and thatyg € 4":(B). We have thatd U B C Sat|u, g] N Sat[v, ¢g] N Sat[u, v].
Lemma 8.10 implies thdtxg, yo] C %ié([q, ul, [g, v], [u, v]) and Proposition 8.16 allows one to finish
the argument.

(1) Let u, v, w be three vertices such thate .1, (Safu, v]). Letx = ¢(u, v, w). Letwg andxg be
the projections ofv andx, respectively off, v]. We bound the diameter pfp, wol in Cayley G, SU. 7).

We havex, w € %%"([u, v], [u, w], [v, w]). Suppose botlx andw are in case (i). Thenrg, wo €

fé%ﬂrﬂ([u, v], [u, w], [v, w]); consequentlyxo, wo] C (éffgo+”)([u, v], [u, w], [v, w]) and we apply
Proposition 8.16 to obtain the conclusion.

Suppose that is in case (i) andv in case (ii). The case whenis in case (ii) andw in case (i) is
similar. The ballB(x, ) intersects the three edges amde .1",(A) such that/'.(A) intersects the

three edges. Lemma 8.21 implies theg € 47:(A) C €([u, v], [u, w], [v, w]). The pointxg is in

%%Ko([u, v, [u, w], [v, w]). It follows that[xo, wo] C €, ([u, v], [u, w], [v, w]), wherer = max(n +
K0, &), s = max(Mo, ¢) andt’ = 7/(s). We apply Proposition 8.16.

Suppose that andw are both in case (ii). We have thate .1",(A) andw € ./",,(B) such that both
A (A) and./"(B) intersect the three edges. We also have that .1":(A) andwg € A"¢:(B); hence

[x0, wo] C féié([u, v], [u, w], [v, w]). We end the proof by applying Proposition 8.16.]

Proposition 8.7 implies that Cayley, SU #) is hyperbolic. Moreover we have thayf, is at bounded
Hausdorff distance from every geodesic connectilagdv in Cayley(G, S U #). Since in the previous
argument the choice of the geodedigsv] in CayleyG, S) was arbitrary, we have the following.

Proposition 8.25. Every geodesic i€ayley(G, S) joining two points u and is at bounded Hausdorff
distance inCayley(G, S U ) from any geodesic joining u andin CayleyG, S U ).



C. Drutu, M. Sapir / Topology 44 (2005) 959—-1058 1045
8.2. The BCP property

Given two verticesu, v in CayleyG, S U #), we denote byfu, v] a geodesic joining them in
Cayley G, S) and byg,, a geodesic joining them in Caylgy, S U #).

Definition 8.26. For a pathp in Cayley G, S U #), we denote by a path in CayleyG, S) obtained by
replacing every#’-componensin p by a geodesic in Cayl€y, S) connectings_ ands... We callp a
lift of p.

We now prove the following.

Proposition 8.27. If G is asymptotically tree-graded with respect {tf, ..., H,} and G is weakly
hyperbolic relative td H1, . . ., H,,} then the pain G, {H1, ..., H,}) satisfies the BCP property

Proof. Let 2>1. Letp andqg be two i-bi-Lipschitz paths without backtracking in Cayley, S U #)
such thap_ =q_ and disg(p, q,)<1.

(1) Letsbe an#-component op contained in a left coset € .«7, and let dis§(s—, s+) = D. We show
that if D is large enough themhas an#’-component contained i.

Notations. In this sectiorM denotesV (2, 0), the constant given bg) for 6 = % and(L, C) = (4, 0).

The graph Cayle§G, SU.#) is hyperbolic. Therefore for the givérthere exists=x(2) such that two
J-bi-Lipschitz pathsy andq in CayleyG, S U ) with distsu(p_, q_)<1 and distu, (p,, q,)<1
are at Hausdorff distance at most

Stepl. We show that foD > Do (G), some liftg of q intersectst”y, (A), whereM’ =M’ (G).We choose
u on the arg[p_, s_] such that either the length ofu, s_] is 24(x + 1) or, if the length ofp[p_, s_]
is less than 2(x 4 1), u = p_. Likewise we choose on the aro[s, p ] such that either the length of
plsy, v]is 24(v + 1) orv = p.. We have that dist)» (u, s_), distsux(s1, v) € [2(x + 1), 222(x + 1)),
in the first cases.

There existw andzon q such that digfy » (u, w) <x and disgu» (v, z) <x. We consideg,,,, andg,,
geodesics in Cayldy;, S U 7).

Let u” be the farthest fronu point ong,,, which is contained in the same left coggte .« as an
A -component of p[u, v]. Suppose that N p[s_, v] # @. We have that

1 1
distsu (u, u’) >distsuy(u, 04) — 1> 7Iength(p[u, o) —1> jlength(p[u, s_)—1>2x+ 1.

This contradicts the inequality digf (u, u") <x. Thereforeris contained im[u, s_]\{s_}. We choose
v’ the farthest fromv point ong,, contained in the same left coset as a compogsénf p[u, v]. In a
similar way we prove that' is contained im[s., v]\{s.}. Itis possible that’ =u, ¢={u} and/on’=v,
¢ = {v} (Fig. 10).

We consider the path in Cayley, S U #) defined as = g,,,» U g5, U plo, o TU gy o Ugys,
whereg,,,, andg, . are sub-geodesics af , andg,,, respectively, and,,, andg, ,» are composed of
one edge. The length ofis at mostNV = A(4x + 5) + 2x. It contains the componest We show that it
has no backtracking. By construction and the fact that geodesics do not have backtf&8klremma
2.23], we have that the sub-aregw, v'] andx[«’, z] do not have backtracking. Suppose tha}, and
9,7, have#’-components in the same left coset. It follows that there existsg,,,, andy € g,, with
distsu (x, y) <1. Then distu» (u, v) <2x + 1. By construction either lengifju, v]>2A(x +1) + 1 or
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Fig. 10. Proof of (1) in BCP property.

u =p_ andv = p,.. In the latter case, the geodesjg, is trivial, g, is an edgesin Cayley G, S), and
r=p U e has no backtracking. In the former case we have thagdistu, v) > 2»x + 2, which contradicts
the previous inequality.

We conclude that is without backtracking. A liff of it is composed oh consecutive sub-paths,

T=TU---UT,, (27)
with n < N, such that eact is either

(R1) aZ-bi-Lipschitz arc both in Cayley, S) and in CayleyG, S U #) of length at mosN or
(R2) ageodesic in Caylgys, S) with endpoints in some left cosd € .«7.

Sincer is without backtracking, we have that # A; wheni # j. Lemma 8.12 implies thatis an
(Ly, Cy)-almost geodesic.

On the other hand, digt.»(w, z) <lengthr < N. Hence the length of[w, z] is at mostN1, where
N1 = N.As above, a lifj[w, z] decomposes intm consecutive sub-paths,

qlw,zl=q1 U ---Ugq,, (28)
with m < N1, such that each; is either

(Q1) a’-bi-Lipschitz arc both in Cayley, S) and CayleyG, S U #), of length at mosivy, or
(Q2) ageodesic in Caylgy;, S) with endpoints in some left cosd} € .«7.

Sinceq is without backtracking, we have thaf # B; wheni # j. Lemma 8.12 implies thafjw, z]
is an(Ly,, Cn,)-almost geodesic. We denaté = max(Ly, Ly;) andC’ = max(Cy, Cy,). We denote
M = M(L',C"). Lemma 4.25 implies that in Caylé¥, S) the patht is contained in the’-tubular
neighborhood of S&i[w, z]) = Sat’ (§[w, z]), wherer = 7(L’, C’). In particular the componesstis
contained in/ " (Safg[w, z])); hence the setV"(Satg[w, z])) N A has diameter at leafl. Lemma
4.22 implies that foD > Do(L’, C’, t')we must have that’",; (A) N §lw, z] # @.

Stepll. We show that there exist two points; andzy on g[w, z] such that disf(w1, s_)< D1 and
dists(z1, s+) < D1, whereD1 = D1(G). We do this by means of Corollary 8.14.

Lemma 8.15 implies that there exigt, z1 € qlw, z] N A 3 (A) such thatg[w, wi] and g[z1, z]
intersect/";/(A) in two sets of diameter at most, whered;, = d1(L', C’, M').

We show thaf[w, s_] andi[s.., z] intersect/ , (A) in two sets of bounded diameter. We prove it only
for T[w, s_]; the same argument works f&s_, z]. Letx € T[w, s_]1N A"y (A) and let disg(x, s_) = .
According to the decomposition (27), we have tiat s_] =% UTj41 U--- UT;, wherei <, i, j €
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{1,2,...,n}andt is eventually a restriction af such thak is an endpoint of it. If all the components are
of type (Ry), thent[x, s_] has length at mo$d ands < N. Suppose that at least one component is of type
(R2). We have at mod¥l such components. Then at least one compohenittype (R) has the distance
between its endpoints at leggt— N)/N. On the other hand since s— € 4"y11(A) andi[x, s_] is
an (L', C")-almost-geodesic, it follows thafx, s_1 C A vr41)(A). In particulart is contained in
the same tubular neighborhood; therefore the diametet,af 4" (311)(A) is at least(o — N)/N.
There exist$g = dg(L’, C’, N) such that ifé > g thenA, = A. This contradicts the fact thais without
backtracking. We conclude that do.

We apply Corollary 8.14 t@[w, w1] and tor[w, s_] and we obtain that digtwi, s_) < D1, where
D1 = D1(L', C’, 5p). With a similar argument we obtain that djgt1, s+ ) < Dj.

Steplll. We show thaty has a component iA.

We have that digt(w1, z1) > D —2D; and tha§[w1, z1] C A" p,(A). The decomposition (28) implies
thatglwi, za] = q, U qpp1 U -~ U §_1 U ), wherek <1, k,1 € {1,2, ..., N1} andg,, §; are eventually
restrictions ofq,, g;, respectively, with endpoint®; andzs. If D — 2D1 > N it follows thatg[wi, z1]
has at least a component of type>jQSince it has at mosV1 such components, we may moreover
say thatg[wi, z1] has at least a componeftwith endpoints at distance at lea® — 2D1 — N1)/N1.
Consequently the diameter 8f N 1" p,(A) is at leastD — 2Dy — N1)/Ny. For D large enough we
obtain thatB; = A. We conclude tha§ has a component iA.

(2) Suppose that andt are #-components of andq, respectively, contained in a left coséte .«7.
We show that disf(s_, 7_) and dist (s, ;) are bounded by a constant dependingon

We takeu € p[p_, s_] either such that the length eofu, s_]is 2i(x + 1) or, if the length ofp[p_, s_]
isless than 2(x + 1), u = p_. Likewise we take € p[s4, p. ] either such that the length ofs, v] is
2.(x+ 1) or, if the length ofp[s;, p, ] isless than 2(x + 1), v =p,..

Since distux (s—, r-)<1 and CayleyG, S U #) is hyperbolic, there exist® < qg[q_,¢_] such
that disky . (1, w) <. Similarly, disty»(sy, t+) <1 implies the existence af € q[t, g, ] such that
distsu (v, z) <x. We consider two geodesigg,, andg,.. As in Step 1 of the proof of (1), we show that
the pathg,,, U plu, v] U g,, can be modified to give a pathwith endpointsw andz and of length at
mostN, without backtracking, containing such that any of its lifts;, decomposes as in (27) and itis an
(L', C")-almost-geodesic. Again as in Step | of the proof of (1), we show that the lengftwof] is at
mostN; and that any liff[w, z] decomposes as in (28) and it is @i, C’)-almost-geodesic.

With an argument as in Step Il of the proof of (1), we show that s_] andi[s4, z] intersect/ y; (A)
in sets of diameter at mo&g. The same argument can be used to showgthats_] andg[z., z] intersect
A" w(A) in sets of diameter at mosf = 6p(L’, C’, N1). Corollary 8.14 implies that dists_, 7_) and
dists(sy, 1) are at mosiDy, whereDy = D1(L', C’, dg, 6p). O

8.3. The Morse lemma
Proposition 8.25 can be strengthened to the following statement.

Proposition 8.28. Letq : [0, £] — Cayley(G, S) be an(L, C)-quasi-geodesic and Igtbe a geodesic in
CayleyG, SU#) joining the endpoints af. In Cayley(G, S) the quasi-geodesic segmets contained
in the T-tubular neighborhood of the M-saturation of thejifof p. Converselythe lift § is contained in
the T-tubular neighborhood of the M-saturationqfThe constants T and M depend bnC and S
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Proof. According to Proposition 8.25, the Hausdorff distance frgimp in Cayley G, SU #) is at most

». We dividep into arcs of length 8¢+ 2), with the exception of the two arcs at the endpoints, which can
be shorter. Les be one of these arcs. Consideon the sub-arc of betweenp_ ands_ such that either
distsu (u, s—) =x+ 2 oru =p_. Likewise letv be a point on the sub-arc pfboetweerns andp, such
that either dis§y» (s+, v) =% + 2 orv =p . Letw andz be two points oy at distance at mostfrom

u andv, respectively, in CayleyG, S U #).

We repeat the argument from the proof of Proposition 8.27, Step I. Congjgeandg,, geodesics
in CayleyG, S U #). Consideru’ the farthest fromu point ong,,, contained in the same left coset
as ans’-components of p. Likewise letv’ be the farthest fromv point ong,, contained in the
same left coset as am’-components’ of p. Thens does not intersed, otherwise the distance from
u to s in CayleyG, S U #) would be at mostx + 1. Similarly, ¢ does not inter-
sects.

Consider the path in Cayle¢, S U #) defined ast = g,/ U g5, U plot, d_1 U gy v U gy,
whereg,,, andg,, are sub-geodesics @f,, and g, respectively, andy,,, andg, ,, are com-
posed of one edge. It has no backtracking and itstlit an (L', C’)-quasi-geodesic, wherg’ and
C’ depend on the length af and hence om. It has the same endpoints as a sub-quasi-geodesic of
q of endpointsw andz hence it is contained in th&tubular neighborhood of th&l-saturation of it,
whereM = M(L,C) andT = T (L, C, »). In particular this is true for the lift 0. Sinces is arbi-
trary, we have obtained that the liftis contained in thd-tubular neighborhood of th¥l-saturation
of q.

We now considet endowed with the order froii®, £]. We consider the pathin Cayley G, S U #)
obtained by deleting the part afbetween the first and the last point4ncontained in the same left
coset, replacing it with an edge, and performing this successively for every coset intergeatingre
than one point. Then, for a constddto be chosen later, we dividginto arcst such that, is the first
vertex ong (in the order inherited from) which is at distanc® of r_. We start constructing these arcs
from q_ and we end iny . by an arc which possibly has endpoints at distance smalle@h@onsidet
one of these arcs. Letbe a point ony betweeny_ andz_ with the property that it is at distanee+ 2
of t. If no such point exists, take = q_. Similarly, takev a point onq betweenr, andq, with the
property that it is at distance+ 2 of t, or v = q . There existw andz, respectively orp at distance
at mostx from u andv. Then disgu»(w, 2) <2x + 2(x + 2) + 6D. It follows that the liftp,,, of the
sub-geodesig,,, of p of endpointsw andzis an(L”, C”)-quasi-geodesic, whei€’ andC” depend on
andD.

As above we choos€ € g, ands an.#-component ofj in the same left class @$. The choice ofi
implies thats does not intersec¢t otherwisau would be at distance at most#- 1 of t. Likewise we choose
v" andq’, and we construct the path= g,,,» U 8,75, UGlo4, d_JU g, v U g, In CayleyG, S U )
of bounded length, witiRj[s,, ¢’_] containingt. As in the proof of Proposition 8.27, Step |, the sub-
arcst’[w, v'] andy'[«’, z] do not have backtracking. Suppose thg}, andg, . have #-components
in the same left coset. Lat’ andz’ be the nearest points td and, respectively’ contained in the
same left coset.Lemma 8.12 implies that g, , U g,y U 8y U 877y U 6y, Which has length
at most 2 + 3, lifts to an (L1, C1)-quasi-geodesic, wherd.1, C1) depends orx. It foIIowsNthat the
sub-arc ofq betweens, and¢’_ is contained in the-neighborhood of theé/’-saturation ofl, where
M' = M'(») andt = (%, L, C). It follows that the diameter o[, ¢’ ] is at most 2 + 2 + 2M' +
lengthl. HenceD <2(t + 1+ M’ + ») + 3. Thus, if we takeD = 2(t + 1+ M’ + ») + 4, we get a
contradiction.
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We conclude that’ has no backtracking, hence it lifts to a quasi-geodesic, by Lemma 8.12. We make
a slight change when lifting it to a pafh, in that the sub-arcs i§ are lifted to the corresponding
sub-arcs ofy. We obtain a quasi-geodesicwith the same endpoints @s,., hence contained in the
tubular neighborhood of thd-saturation of it, wherdf = M (L, C,») andT =T (L, C, »). In particular
this applies to the lift ot. Sincet was arbitrary, this allows one to obtain the desired statement for
andp. O

Proposition 8.28 together with Proposition 8.25 and Lemmas 4.25, 4.26, and 4.28 imply
Theorem 1.12.

8.4. Undistorted subgroups and outer automorphisms of relatively hyperbolic groups

Theorem 8.29.Let G = (S) be a finitely generated group that is hyperbolic relative to subgroups
Hi, ..., H,. Let G1 = (S1) be an undistorted finitely generated subgroup of G. Téens relatively
hyperbolic with respectto subgroups, . .., H,,, where eaclH/ is one of the intersectiorﬁlmgngfl,
geq.

Proof. Since G1 is undistorted, there exists a constdht=1 such that for every elemegt € G1,
lgls; <Dlg|s. Here by|g|s and |g|s, we denote the length af in G and G1, respectively. We can
assume thaf; C S so that the graph Caylég1, S1) is inside CayleyG, S). Then every geodesic in
CayleyG1, S1) is a(D, 0)-quasi-geodesic of Cayleg, S).

Stepl. Let us prove that for every cosgH; and every constard > O there exist€’ =C'(C, g, i) >0
such thatGy N A'c(gH;) € N ¢(G1 N gH;g~%). By contradiction, let(x;) jen be a sequence of
elements inG1 such thate; = gh;p; € G1, h; € H;, |pjls <C, and distx;, G1 N gH;g~Y>j for
everyj. Without loss of generality we can assume that= p is constant. Themjxl_1 €eGiNgH, g .
Hence distx;, G1 N gHigfl) <Jx1ls, a contradiction.

Stepll. Let R > 0 and letg H; be such that/"gr(gH;) N G1 # ?.

We prove that for everk > 0 there exist&’ = K’(K, R) such that

G1N Ng(gH;) C N x(G1N giyHiy™b)

for someg1 € G1 and some € G with |y|s < R.

Fix K >0 and defineK’ as the maximum of numbeKs'(K, y, i) defined in Step | taken over all
ie{l,2, ...,n}andally € G with |y|s<R.

Let ¢ € G be such thatG1 N A 'gr(gH;) # ¥. Let g1 be an element of the intersection. Then
g1 N r(gH;) = /' r(gy tgH;) contains 1; hencg; *gH; = yH; where|y|s <R.

Step | and the choice d&&’ imply that

G1N N k(H) C N (GLNyHy ™).
Multiplying this inclusion byg1 on the left, we obtain

G1N Nk (gH;) C NV /(G1NgiyHiy™ D).
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Steplll. Let R = M(D, 0O, %) be the constant given by the propertty;) satisfied by the left cosets
{gH; |g€G,i=12,...,n}inCayleyG,S).
For everyi € {1, ..., n} consider the following equivalence relation on the &1, R) in G:
iy it GuyH; = G1y'H;.

For each pairy, ;') of ~;-equivalent elements iB(1, R) we choose ong; € G such that € g1y’ H;.
Let C be the maximal length of these elemegis
Let.# be the collection of all non-trivial subgroups 6f in the set

{GiNyHy i e (L2 ...,n), [yls<R).

By Step Il this collection of subgroups has the property that for ekesy0 there existX'=K'(K, R)
such that for every € G with /"gr(gH;) N G1 # ¥, we have

G1NANk(gH;) C Ng(g1H) (29)

for someg1 € G1 andH € ..
We say that two non-trivial subgrougs, N yH;y~ L andG1 N gH; ~* from .« are equivalent if~; .

Let Hi, ..., H) be the set of representatives of equivalent classes.iff .# is empty, we sein = 1,
H; ={1}.

1

Notice that for evenyd € .# there existg € {1, ..., m} such thaH is at Hausdorff distance at most

C from a left coseg H'; from G1. Indeed H = yHiy" 1N G1. Let Hj = BH; 1 N G1 be equivalent to
H. Theny = gph for someg € G1, h € H;, where|g|<C. Then

H=gphHih g *NG1=gH g™,

from which we deduce tha is at Hausdorff distance at moStfrom gH’j.

Hence (29) remains true if we replace by the smaller seH;, ..., H,,} andK’ by K’ + C.
We shall prove thaG is relatively hyperbolic with respect tdH;, ..., H,, } by checking properties

(1), (oc%/GD), (x3) from Theorem 4.1 and Remark 4.2 for the collection of left co$g1ﬂj/. | g1 €
G1,j=1,2,...,m}.

Property (o1). ConsiderngJ/. # g1H,. We have that
N 5(g1LH}) NN 5(84HY) C N s(gryHyy ™) NN 5(89y Hi 7))
C Nsr(g17Hi;) N AN 51r(81) Hiy)-

Suppose thag1yH;; = g1 H,- Then(gly)‘lg/ly/ € H;; and henceg1yH;; = g1y H;;. We deduce
that H;; = H;,. Thereforegy = g1'h for someh € H;;. Hencey~;,;y’, soy = y'. We deduce that
g17Hi;y ™ = ¢iyHi;y~ "t Sog1H| = ¢} Hy, a contradiction.

Thus,g17H;; # g17 Hi,. Property(«;) satisfied by the left coselgH; | ¢ € G,i =1,2,...,n}
allows one to complete the proof.
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Property (oc%/GD). Let 01 € [0,1/6D). We may write61(6/D), with 6 < [0, %) Let g:[0, ¢] —
Cayley(G1, S1) be a geodesic of lengthin Cayley(G1, S1) with endpoints int"p,¢(g1H") C N 0y0+R
(g1yH;), wherely|s<R andi € {1, 2, ..., n}. Thengis a(D, 0)-quasi-geodesic in Cayf(a«}, S).

Suppose that <6DR. Theng is contained in thg3DR + R)-tubular neighborhood ong} in
CayleyG1, S1).

Suppose that > 6D R. Then the endpoints af are contained in"1/6¢/p(g17H;) C N (1/3)¢/D
(g17H,;) in Cayley(G, S). Since the propertyx,) is satisfied by the cosets &f; in G, it follows thatg
intersects/ g (g1yH;). Henceg intersectsG1 N A r(g1yH;) = g1[G1N N r(yH;)] C gle/(Hj() where
R’ = R'(R, R) is given by Step .

We conclude thag intersects/” (ngj/.) in Cayley(G1, S1), for M’ =supDR’, 3DR + R).

Property (x3). We use the property (29) ¢/, ..., H,,} and the propertyos) satisfied by the cosets
of groupsH;.

Fix an integerk > 2. LetP be a(¥, 2, 8D)-fat geodesik-gon in CayleyGi, S1) for somed. ThenP
has(D, 0)-quasi-geodesic sides in Cayly, S) and itis(¥/D, 2D, 8D)-fat. Consequently, fof large
enough, by property?) satisfied by the left cosetgH; | ¢ € G, i =1, ..., n}, thek-gonP s contained
in a tubular neighborhood”, (g H;) in Cayley G, S) for somex > 0.

Suppose that all edges Bthave lengths at mostr3« in Cayley(G1, S1). ThenP has diameter at most
3k D in the same Cayley graph.

Suppose that one edgeof P has length at least3«. The fact thatP C ./, (¢gH;) and property
(«5) is satisfied by the left cosefg H,} implies thatg intersects/'z(gH;); therefore/ r(gH;) N
G1 # 0.

Then by (29) there exists = »’(x, R) such that

Gin /Vu(gHi) C JV%’(ng]/')

forsomeg1 € G1andj € {1, 2, ..., m}. We conclude that in this cage C .A/%/(ngJ/.).
Thus we can také needed in(a3) to be the maximum ofBDx andx’. O

Remark 8.30. (1) If in Theorem 8.29 the subgroup, is unconstricted the'1 is inside a conjugate of
one of the subgroupH;.

(2) If the subgroupG intersects with all conjugates of the subgroups ..., H, by hyperbolic
subgroups theiw is hyperbolic.

Proof. (1) Indeed, Corollary 5.8 implies that; is contained in th&-tubular neighborhood of a left coset
gH;, whereK depends only on the non-distortion constants. For eyeky G1, G1 = g1G1 is contained
in the K-tubular neighborhoods gfi1gH; and ofgH,;. SinceG is infinite, property(«1) implies that
g1gH; = gH;. We conclude thaG1 is contained irg H; g L.

(2) By Theorem 8.2%5 is relatively hyperbolic with respect to hyperbolic subgroups, so every asymp-
totic cone ofG1 is tree-graded with respect t@-trees, whence it is aR-tree itself. Therefores is

hyperbolic[30]. O
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Corollary 8.31. Let G be afinitely generated group thatis relatively hyperbolic with respect to subgroups
Hi, ..., Hy. Suppose thaH; is unconstricted and that eadt;, i € {2, ..., m}, is infinite and either
unconstricted or does not contain a copyHf. Let Fix(H1) be the subgroup of the automorphism group
of G consisting of the automorphisms thatfix as a set. Then

(1) Inn(G)Fix(H1) hasindex atmost!in Aut(G) (in particular, if m=1,these two subgroups coincide

(2) Inn(G) NFix(H1) = Inny, (G), wherelnng, (G) is by definition{i;, € INnn(G) | h € Hy}.

(3) There exists a natural homomorphism from a subgroup of index atmidstOut(G) to Out(H1)
given by¢ — i, é|m,, Whereg, is an element of G such that, ¢ € Fix(Hi), and |y, denotes the
restriction of the automorphism tH;.

Proof. (1) Indeed, every automorphisthof G is a quasi-isometry of the Cayley graph ®f Hence
¢(H1) is an undistorted subgroup @ that is isomorphic toH;. By Remark 8.30(1), we have that
¢(H1) C gng_l forsomeg e Gandj € {1,2,...,m}.In particularig—1¢(H1) C H;. By hypothesis
H; is unconstricted. If we denote hythe automorphismg‘%, we have that~1(H;) C yHy™t, for
somey € G andk € {1,2,..., m}. Consequently, C yHyy~t. We deduce from the fact thal; is
infinite and from propertyxy) that Hy = yHyy~* andig—lcj)(Hl) = H;. In particular every automorphism
of G induces a permutation of the set

{H; | H; is isomorphic toH}.

Therefore we have an action of Adt) on a subset ofH1, ..., H,}. Let Sbe the kernel of this action.
Then|Aut(G) : S|<m!. The composition of any € S with an inner automorphisni;1 induced byg !
is in Fix(H1). ThereforeSis contained in In0G)Fix(Hy).

(2) Leti, be an element in Ini&) N Fix(H1). Theng normalizesH:; hence byf43], g € H;.

(3) This immediately follows from (1) and (2).0
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Appendix A. Relatively hyperbolic groups are asymptotically tree-graded. By Denis Osin and Mark
Sapir

Here we prove the “if” statement in Theorem 8.5.

Theorem A.1l. Let G be a group generated by a finite sett&t is relatively hyperbolic with respect
to finitely generated subgrougé,, ..., H,,. Then G is asymptotically tree-graded with respect to these
subgroups
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Throughout the rest of this section we assume &atf4, ..., H,,, an ultrafilterw, and a sequence of
numbersi = (d;) are fixed,G is generated by a finite s8tand is hyperbolic relative téf1, ..., H,. We
denote the asymptotic cone Cqid; e, d) by C.

If (gi), (h;) are sequences of numbers, we shall wejte ,i; instead of %; <h; w-almost surely”.
The signs=,, €., have similar meanings.

As before . # = (U;’;l H;)\{e}. Foreveryi=1, ..., m,ineverycosetofd; (i =1, ..., m)we choose
a smallest length representative. The set of these representatives is den@ed.dty7; be the set
{(g)” | lim®(|gi|s) < oo}. Foreachy=(g;)” € 7; we denote by, thew-limitlim “(g; H;),. We need
to show thalC is tree-graded with respectto all={M, | ye 7;,i =1,...,m}.

We use the notation digtand disguy for combinatorial metrics on Caylég, S) and CayleyG,

S U #). When speaking about geodesics in CagleyS U »#) we always assume them to be geodesic
with respect to disfuy .
The lemma below can be found 43, Theorem 3.23]

Lemma A.2. There exists a constamt> 0 such that the following condition holds. Laét= pgr be a
geodesic triangle irCayley(G, S U #) whose sides are geodegigith respect to the metridistsy ).
Then for any vertex on p there exists a vertex u on the unigru r such that

distg(u, v) <v.

LemmaA.3. Let p and q be paths i@ayley G, SU .#) suchthatp_ =¢q_, p+ =g+, and qis geodesic.
Then for any vertex € g, there exists a vertex € p such that

dists (u, v) < (1+ v)logy pl.

Proof. Let f : N — N be the smallest function such that the following condition holds.d.and
g be paths in Cayle{z, S U #) such thatp_ = ¢_, p+ = g+, q is geodesic, andlp| <n. Then for
any vertexv € g, there exists a vertex € p such that dist(u, v) < f(n). Clearly f(n) is finite for
each value of the argument. By dividipginto two parts and applying Lemma A.2, we obtgign +
n)<max{f(m), f(n)}+v.Inparticular,f(2n)< f(n) +vandf(n + 1< f(n) +v.

Suppose that

n=go+ 261+ + 2,
whereg; € {0, 1} ande; = 1. Then

fn)=feo+2(e1+ -+ 2ek-1+2)...))
<v+v+--+ v+ (D <2viog,n. O
—_——

2k times

The next lemma can be found [#3, Lemma 3.1]
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LemmaA.4. Thereis a constantsuch that for any cycle q iGayley G, SU #), and any set of isolated
J-components apy, ..., pi of g, we have

k
> dists((pi) . (p) ) <lql.

i=1

The following lemma holds for any (not necessarily relatively hyperbolic) finitely generated Group
and any subgrou@l <G.

LemmaAb. Foranyi=1,...,m, 0,06 € 7;,if 0 # o then the intersectioM, N M, consists of at
most1 point

Proof. Suppose that, y € My N M,. Suppose that = (f;)“, e = (g;)”. Then
x =lim®(fja;), y=Ilm®(fjs;)

for somea;, s; € H; and
x=1lim®“(g;b;), y=Iim®“(g;t;)

for someb;,1; € H;. Since the sequencegja;)” and (g;b;)” are equivalent, we havgja; =
gjbju;j, where|u;|s=,0(d;). Similarly f;s; = g;tjv;, where|v;|s=,0(d;). From these equalities
we have

-1

_ L -1
a;"sj=u; bj tjv;.

LetUj, V; be the shortest words ovBrepresenting ; andv;, respectively. Letalss; = a; Ls; and
kj= b;ltl,-. Then there exists a quadrangle

9’ = p1pyppy

in Cayley(G, S) such thatp(p{) = U;, qS(pé) = Vj‘1 andpé, pf,; are edges of Caylég, S) labelledn ;
andkj_l, respectively. Note that the cycle contains only two components, namqu\ andpﬁ, as the

labels of p; and p4 are words oveB. Let A C N be the set of alj such that the components, and p;,
are connected. There are two cases to consider.

Casel. w(A) = 1. Note thatq&(p{) represents an element &f in Gforanyj € A, i.e.s;e,H;. It
follows thatd = o. .

Case2. w(A) = 0. Note thatpé is an isolated component gf for any j € N\ A. Sincen(N\A) = 1,
applying Lemma A.4, we obtain

|hjls = dists((p2)—, (p2)+) <alq’ | <22+ 20(d;)) = 0(d,).
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This yields
. . 1 . . 1
dist(x, y) =lim? (—d|StS(fjaj, ijj)) =lim? (—lhj|s> =0,
dj dj

e.x=y. O

The following lemma does use the relative hyperbolicityzof

Lemma A.6. For everyi # i’ and eveny) € .7 ;, ¢ € 7 i1, the intersectionMy N M, consists of at most
1 point

Proof. Indeed, repeating the argument from the proof of Lemma A.5, we immediately get contradiction
with the BCP property. O

Lemmas A.5 and A.6 show that the asymptotic c@rsatisfies property71) with respect to the ser.
Now we are going to provérs).

LemmaA.7. Letgbe asimple loopin C. Suppose thatlim®(qg;) for certain loopsy; in Cayley(G, S),
lgj|<Cd; for some constant C. Then there exists= 1,...,m and 0 € J; such thatg
belongs taM,.

Proof. Leta # b be two arbitrary points of,
a:lim‘”(aj), b:lim‘”(bj),

wherea;, b; are vertices om;. For everyj, we consider a geodesic pathin CayleyG, S U #’) such
that(q;)_ =a;, (a;)+ =b;.

According to Lemma A.3, for every vertex € q;, there exist vertices; = x;(v) € g;la;, b;]
andy; = y;(v) € g;lbj,a;] (hereg;la;, bj]l andg;[b;, a;] are segments af; = g;la;, bjlg;[b;, a;l)
such that

dists(v, x;) <2vlogylg;la;, b;ll < 2v10gy(Cd ;) = o(d)) (30)
and similarly
dists (v, y;) <2vlogy|g;[b;, a;ll < 2vlogy(Cd ) = o(d)). (31)

Summing (30) and (31), we obtain
dists(x;, y;) <dists(x;, v) + dists(v, y;) = o(d;).

Thus for anyj, there are only two possibilities: either litox ;) =lim“(y;) =a or lim®(x ;) =lim®(y;) =b,
otherwise the loog is not simple.
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For everyj, we take two vertices;, w; € q; such that

lim®(x;(v;) =1lim“(y;(v;)) =a,
lim®(x;(w;)) =lim®“(y;(w;)) = b,

and disgun (v;, w;) = 1. Since lin?(x; (v;)) = a, we have dif(x;(v;), a)=,0(d;). Hence
dists(v;, a;) <dists(v;, x;(v;)) + dists(x; (v}), a;)=0(d;).

Similarly,
dists(w;, b)=0(d}).

This means that
lim®“(a;) =1lim®@w;) and linf’(b;) =lim“(w;). (32)

Foreveryi=1,...,m,setA; ={j € N | vj_le € H;}. Let us consider two cases.
Casel.w(A;)=1forsomd. Setd=(t;(v;))” € 7; wherer; (v;) is the representative of the cosegt;
chosen in the definition of ;. Thena, b, My. Indeed, this is obvious fasince lint’(a;) =lim“(v;) €
M,. Further, since:j_lw.,-ewH,-, we haver (w;)=t(v;). Hence lin¥’(b;) = lim“(w;) € My.
Case2. w(A;) = 0 for everyi. Recall that'l}j_lu)j € SU #. Thus we have)j‘leewS. This implies

|vj_1wj|5=w1 and linf’(v;) =lim®(w;). Taking into account (32), we obtain litga;) =1lim®(b,), i.e.
a=>h.
Sincea andb were arbitrary points of, the lemma is proved. O

Now property(72) immediately follows from Proposition 3.29 and Lemma A.7.

References

[1] S.A. Adeleke, P.M. Neumann, Relations related to betweenness: their structure and automorphisms, Mem. Amer. Math.
Soc. 131 (623) (1998).
[2] W. Ballmann, M. Gromov, V. Schroeder, Manifolds of Non-positive Curvature, Springer, 1999.
[3] B.Bekka, P. de la Harpe, A. Valette, Kazhdan’s propémy, preprint, 2002.
[4] N. Bourbaki, Topologie générale, quatrieme édition, Hermann, Paris, 1965.
[5] B. Bowditch, Relatively hyperbolic groups, preprint, Southampton, 1997.
[6] B. Bowditch, Treelike structures arising from continua and convergence groups, Memoirs Amer. Math. Soc. 662 (1999).
[7] B. Bowditch, Intersection numbers and the hyperbolicity of the curve complex, preprint, 2003.
[8] B. Bowditch, Private communications.
[9] M. Bozejko, Uniformly amenable discrete groups, Math. Ann. 251 (1980) 1-6.
[10] M. Bridson, Asymptotic cones and polynomial isoperimetric inequalities, Topology 38 (3) (1999) 543-554.
[11] M.R. Bridson, A. Haefliger, Metric Spaces of Non-positive Curvature, Springer, Berlin, 1999.
[12] D. Burago, Y. Burago, S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American
Mathematical Society, Providence, RI, 2001.
[13] J. Burillo, Dimension and fundamental groups of asymptotic cones, Ph.D. Thesis, University of Utah, June 1996.
[15] lan Chiswell, Introduction tot-trees, World Scientific, River Edge, NJ, 2001.
[16] F. Dahmani, Combination of convergence groups, Geometry Topol. 7 (2003) 933-963.
[17] F. Dahmani, Les groupes relativement hyperboliques et leurs bords, Ph.D. Thesis, University of Strasbourg.

Do m®I=Z2W



(18]

(19]
(20]

(23]

(24]

[52]
(53]

C. Drutu, M. Sapir / Topology 44 (2005) 959—-1058 1057

P. de la Harpe, Moyennabilité de quelques groupes topologiques de dimension infinie, C. R. Acad. Sci. Paris sér. | 277
(1973) 1037-1040.

T. Delzant, Sous-groupes distingués et quotients des groupes hyperboliques, Duke Math. J. 83 (3) (1996) 661—-682.

A. Dioubina, I. Polterovich, Explicit constructions of universal R-trees and asymptotic geometry of hyperbolic spaces,
preprint, math.DG/9904133.

C. Drutu, Quasi-isometric classification of non-uniform lattices in semisimple groups of higher rank, Geom. Funct. Anal.
10 (2) (2000) 327—-388.

C. Druu, Cdnes asymptotiques et invariants de quasi-isométrie pour des espaces métriques hyperboliques, Ann. Inst.
Fourier 51 (1) (2001) 81-97.

C. Druyu, Quasi-isometry invariants and asymptotic cones, Int. J. Algebra Comput. 12 (1 and 2) (2002) 99-135.

A. Erschler, D. Osin, Fundamental groups of asymptotic cones, Topology, to appear.

B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998) 810—840.

M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. IHES 53 (1981) 53-73.

M. Gromov, Hyperbolic groups. Essays in group theory, 75-263, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987.
M. Gromov, Asymptotic Invariants of Infinite Groups. Geometric Group Theory(vol. 2), G.A. Niblo, M.A. Roller (Eds.),
Proceedings of the Symposium held in Sussex, LMS Lecture Notes Series, vol. 181, Cambridge University Press, 1991.
M. Gromoyv, J. Lafontaine, P. Pansu, Structures métriques pour les variétés riemanniennes, Cedic/Fernand Nathan, Paris,
1981.

Allen Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.

M. Kapovich, B. Leeb, On asymptotic cones and quasi-isometry classes of fundamental groups of nonpositively curved
manifolds, Geom. Funct. Anal. 3 (5) (1995) 582—-603.

M. Kapovich, B. Leeb, Quasi-isometries preserve the geometric decomposition of Haken manifolds, Invent. Math. 128 (2)
(1997) 393-416.

G. Keller, Amenable groups and varieties of groups, lllinois J. Math. 16 (1972) 257-268.

B. Kleiner, B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Publ. Math. IHES 86
(1997) 115-197.

L. Kramer, S. Shelah, K. Tent, S. Thomas, Asymptotic cones of finitely presented groups, preprint, arXive,
math.GT/0306420.

L. Kramer, K. Tent, Asymptotic cones and ultrapowers of Lie groups, preprint, arXive, math.GT/0311101.

R. Lyndon, P. Schupp, Combinatorial Group Theory, Springer, Berlin, 1977.

A.Yu. Olshanskii, SQ-universality of hyperbolic groups, Mat. Sh. 186 (8) (1995) 119-132 (in Russian); translation in Sh.
Math. 186(8) (1995) 1199-1211.

A.Yu. Olshanskii, Distortion functions for subgroups, in: J. Cossey, C.F. Miller, W.D. Neumann, M. Shapiro (Eds.), Group
Theory Down Under, de Gruyter, Berlin, 1999, pp. 281-291.

D.V. Osin, Relatively hyperbolic groups, preprint, 2003.

P. Pansu, Croissance des boules et des géodésiques fermées dans les nilvariétés, Ergod. Th. Dynam. Syst. 3 (1983
415-445.

P. Papasoglu, On the asymptotic cone of groups satisfying a quadratic isoperimetric inequality, J. Differential Geom. 44
(4) (1996) 789-806.

P. Papasoglu, K. Whyte, Quasi-isometries between groups with infinitely many ends, Comment. Math. Helv. 77 (1) (2002)
133-144.

T.R. Riley, Higher connectedness of asymptotic cones, Topology 42 (6) (2003) 1289-1352.

E. Rips, Z. Sela, Canonical representatives and equations in hyperbolic groups, Invent. Math. 120 (3) (1995) 489-512.
M.V. Sapir, J.C. Birget, E. Rips, Isoperimetric and isodiametric functions of groups, Ann. Math. 157 (2) (2002) 345-466.
R.E. Schwartz, The quasi-isometry classification of rank one lattices, Inst. Hautes Etudes Sci. Publ. Math. 82 (1995)
133-168 (1996).

S. Shelah, Classification theory and the number of non-isomorphic models, Studies in Logic and the Foundations of
Mathematics, vol. 92, North-Holland Publishing Co., Amsterdam, New York, 1978.

S. Thomas, B. Velickovic, Asymptotic cones of finitely generated groups, Bull. London Math. Soc. 32 (2) (2000) 203—208.
V.1. Trofimov, Some asymptotic characteristics of groups, Mat. Zametki 46 (6) (1989) 85—-93 128 (in Russian); translation
in Math. Notes 46(5—6) (1989) 945-951 (1990).



1058 C. Drutu, M. Sapir / Topology 44 (2005) 959—-1058

[54] L. van den Dries, A.J. Wilkie, On Gromov’s theorem concerning groups of polynomial growth and elementary logic, J.

Algebra 89 (1984) 349-374.
[55] J.Wysoczanski, On uniformly amenable groups, Proc. Amer. Math. Soc. 102 (4) (1988) 933-938.
[56] A.Yaman, Atopological characterisation of relatively hyperbolic groups, Journal fur die reine und angewandte Mathematik

(Crelle’s Journal) 566 (2004) 41-89.

Further reading

[35] M. Kapovich, B. Leeb, 3-manifold groups and nonpositive curvature, Geom. Funct. Anal. 8 (5) (1998) 841-852.



	Tree-graded spaces and asymptotic cones of groups62626262
	Introduction
	Open problems
	Plan of the paper

	Tree-graded spaces
	Properties of tree-graded spaces
	Modifying the set of pieces
	Geodesics in tree-graded spaces
	Cut-points and tree-graded spaces

	Ultralimits and asymptotic cones
	Preliminaries
	Ultralimits of asymptotic cones are asymptotic cones
	Another definition of asymptotic cones
	Simple triangles in ultralimits of metric spaces

	A characterization of asymptotically tree-graded spaces
	Quasi-isometric behavior
	Asymptotically tree-graded spaces
	Asymptotically tree-graded groups

	Cut-points in asymptotic cones of groups
	Groups with central infinite cyclic subgroups
	Groups satisfying a law

	Fundamental groups of asymptotic cones
	Preliminaries on nets
	Construction of the group
	Tree-graded asymptotic cones
	Free products appearing as fundamental groups of asymptotic cones
	Groups with continuously many non-homeomorphic asymptotic cones

	Asymptotically tree-graded groups are relatively hyperbolic
	Weak relative hyperbolicity
	A characterization of hyperbolicity
	Generalizations of already proven results and new results
	Hyperbolicity of Cayley(G,S=2ptHHHH)

	The BCP property
	The Morse lemma
	Undistorted subgroups and outer automorphisms of relatively hyperbolic groups

	Acknowledgements
	Appendix A. Relatively hyperbolic groups are asymptotically tree-graded. By Denis Osin and Mark Sapir
	References
	Further reading


