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PhysicsNeMo Case-Studies: Physics AI across different applications

Sub surface simulations

Resource: Link

RTX 4090 heat sink design

Demo: Link

Carbon capture and storage

Demo: Link, Blog: Link

Data Center Digital Twin

Blog: Link, GTC Session: Link

Electro-thermal cooling

Blog: Link

Design optimization
Additive Manufacturing: Lattice Simulation

Blog: Link

Brain Aneurysm Simulation

Demo: Link

HRSG Digital Twin

Blog: Link, GTC Session: Link
Cardiovascular Simulation

Blog: Link

Additive Manufacturing: 3D Printing

Blog: Link

https://arxiv.org/abs/2404.14447
https://www.youtube.com/watch?v=Oq2Mpi5pF1w
https://www.youtube.com/watch?v=bH08wv60Kvg&t=1s
https://developer.nvidia.com/blog/using-carbon-capture-and-storage-digital-twins-for-net-zero-strategies/
https://blogs.nvidia.com/blog/digital-twins-modulus-wistron/
https://www.nvidia.com/en-us/on-demand/session/gtc24-s62600/
https://blogs.nvidia.com/blog/ansys-omniverse-modulus-accelerate-simulation/
https://developer.nvidia.com/blog/using-graph-neural-networks-for-additive-manufacturing/
https://www.youtube.com/watch?v=QjY_8xFjsgE
https://developer.nvidia.com/blog/spotlight-siemens-energy-accelerates-power-grid-asset-simulation-10000x-using-nvidia-modulus/
https://www.nvidia.com/en-us/on-demand/session/gtc24-s62524/
https://developer.nvidia.com/blog/enabling-greater-patient-specific-cardiovascular-care-with-ai-surrogates/
https://developer.nvidia.com/blog/reducing-power-plant-greenhouse-gasses-using-ai-and-digital-twins/
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NVIDIA SOFTWARE FOR PHYSICS ACCELERATION
Libraries, APIs, and microservices to facilitate the acceleration of physics workflows
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NVIDIA Warp
Purpose-built framework for accelerated simulation and AI

Accelerated Python for physical computing

• Warp is a Python DSL and framework for writing GPU-accelerated 
and differentiable kernels

• Kernel-based programming is often a more natural fit for routines 
found in simulation and geometry processing

Broad adoption across the CAE and Robotics ecosystem

• Autodesk, Amazon, Google/DeepMind, Siemens
• Applicable to every stage of the CAE/EDA workflow: 

 design → simulation → analysis & AI training
• Applicable across robotics workflows and 3-computer system: simulation 
→ training → Inference on edge 

Create scalable physical simulations and AI training pipelines

• Multi-GPU acceleration
• Integrated with PhysicsNeMo, Newton, Omniverse, and CUDA-X
• Native simulation data structure & algorithms and FEM module 

Distributed and Differentiable Fluid Dynamics with 
Accelerated Python

MuJoCo-Warp & Newton

Open Source

• Links:
• Repo: https://github.com/NVIDIA/warp
• Docs: https://nvidia.github.io/warp/

pip install warp-lang 

https://github.com/NVIDIA/warp
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Accelerated Numerical Solvers
NVIDIA Warp

Accelerated physical computing
• A developer framework for high-performance simulation, 

rendering, and data processing
• Enables physics-informed machine-learning pipelines

Broad adoption across the CAE ecosystem
• Autodesk, Amazon, Google/Deepmind, Siemens
• Applicable to every stage of the CAE/EDA workflow: design 
→ simulation → analysis & AI training

Create scalable physical simulations and AI training 
pipelines
• Multi-GPU acceleration
• Integrated into Modulus, Omniverse, and CUDA-X
• Accelerated rendering and NanoVDB integration
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Simulations are a critical for engineering design
Simulations via numerical methods are computationally expensive 

How can we expand use of simulations to create better product 

designs or better operational digital twins?

- Require near real time and high-fidelity simulation capabilities

- Require ability to ingest data coming from sensors or prior 

simulations

Problem Size

Geometry Details

Number of Designs

Complexity in Physics
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Using AI for simulations?

• AI has already disrupted the way we think of 

computation in other domains and mapping to AI 

unleashes parallelism

• Doing once vs repetitive – learn once and infer over 

and over

• Near-real time emulation

• Enable high fidelity simulations

• Representative of the high dimensional geometry 

and parameter design space
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Training: NVIDIA PhysicsNeMo
Open-Source Platform for Developing Physics-Based Machine Learning​

Training Neural Networks using both
Data and Governing Equations Advancing Scientific Discovery With PhysicsNeMo

Aneurysm

Climate Change
45,000X Faster extreme weather 

prediction with AI Weather Models

Healthcare
High-fidelity results faster for 

blood flow in inter-cranial aneurysm

Digital Twins
Kinetic Vision: Design optimization 

using parameterized models

Renewable Energy
Siemens Gamesa: 4000X Faster 
wind turbine wake optimization

Industrial HPC 
NETL: 10,000X Faster build of high-

fidelity surrogate models 

https://github.com/NVIDIA/physicsnemo

• Open-source Python toolkit for 

physics-driven ML

• State-of-the-art architectures and 

pre-trained weights

• Efficient data loading and 

preprocessing components

• Easily scalable to multi-GPU, multi-

node infrastructure

https://github.com/NVIDIA/physicsnemo


NVIDIA PhysicsNeMo

Developing AI models for engineering and science applications

• Tools to develop solutions that obey first principles / domain 
knowledge

• Performant AI stack for real-world problem scale
• Model architectures and training pipelines tuned for CAE to accelerate 

adoption of AI

NVIDIA’s AI framework for developing Physics-AI models

Unlocking accelerated simulations with AI

• AI models can run a simulation 1000x faster than traditional numerical 
solvers

• Design cycles reduced to seconds from hours
• Enabling more simulations for better designs.

External 
Aero

Data Center 
Cooling

Reservoir 
Sim

Optimal and Scalable training pipelines

• Memory optimized training pipelines and model architectures/layers
• Scale to multi-node systems out of the box – data and model parallel
• Reference AI enhanced sample applications



NVIDIA PhysicsNeMo
NVIDIA’s AI framework for developing Physics-AI models

PhysicsNeMo Framework

https://github.com/NVIDIA/PhysicsNeMo

GPU Optimized PyTorch 

Physics AI module

Geometric module
Distributed module (Model, Data 

and Domain parallel)

Model 
architectures

DALI Warp

NIMs Inference pipelines

Interfaces Training recipes

• Open-Source platform for Physics-ML innovation and development

• Stack for building vertical specific applications

• Platform  for training and inference pipeline 

https://github.com/NVIDIA/modulus


Open-Source AI Toolkit for Physics-based ML
Tailored for developing Physics AI models

The Problem

• Limited generalizability of off-the-shelf surrogate models

• Expensive, limited datasets for training

• Computer vision approaches insufficient due to convergence issues & 

spectral bias

• Need to satisfy governing principles for coupled PDEs and downstream 

applications

PhysicsNeMo

• Built-in Reference Samples: No more starting from scratch

• Modular Architecture: Abstracted ML layers as building blocks

• Point/block conv, spectral, graph, recurrence, attention, ect.

• Supported AI Architectures

• Graph Neural Networks (GNNs)

• Neural Operators

• Diffusion Models

• Physics-Informed Neural Networks (PINNs)
Physics

D
at

a

Fully data 
driven

Inductive 
bias

Physics 
constrained

Fully physics 
driven
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FNO Performance benchmarking vs PyTorch

• Key takeaways:

o PhysicsNeMo implemented FNO can accommodate a larger batch size for the same number of parameters. The training time per epoch is also 
better as compared to the Base FNO implementation.

o PhysicsNeMo FNO can accommodate 6x larger number of model parameters for the same memory utilization.

o Low level kernels (FFT kernels, Vectorized and elementwise kernels etc.) evaluation is optimized in PhysicsNeMo implemented FNO .

o Minimal tensor copying resulting in better memory utilization.

Model (# of Parameters) Memory utilization(Gb) / Time taken(sec) per epoch

Batch size

1 2 3 4

PhysicsNeMo FNO (2.36m) 10.84/81.94 13.12/90.84 OOM OOM

PhysicsNeMo FNO (1.33m) 10.62/64.1 12.75/74.1 14.04/72.9 OOO

PhysicsNeMo FNO (0.5m) 9.89/43 11.09/51 12.01/49.1 13.17/47.1

Base FNO (699k) 12.44/101.8 OOM OOM OOM

Base FNO (393k) 11.62/75.26 14.41/83.15 OOM OOM

6X more 
params

2X batches with lower time

Optimized model architectures and ML layers
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Optimized model architectures and ML layers
MeshGraphNet Performance benchmarking

• Key takeaways:

o Base MeshGraphNet implementation is only data parallel. In PhysicsNeMo, an optimized, graph parallel GPU implementation is provided.

o The graph-parallel MeshGraphNet implementation in PhysicsNeMo scales to multiple nodes. The distributed message passing is optimized for 

memory and performance. 

o Gradient checkpointing, fused activation and low-level network improvements for improvement in memory utilization.

o Minimal tensor copying resulting in better memory utilization.

Model (Mesh size) Number of GPUs

1 2 4 8 16

Base MGN (0.5 mil) x x x x

PhysicsNeMo MGN (0.5 

mil)

PhysicsNeMo MGN (1 mil) x

PhysicsNeMo MGN (2 mil) x x x

PhysicsNeMo MGN (5 mil) x x x x
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Multi-level parallelism for enterprise engineering scale solutions
Domain, model, and data parallelisms.

• Parallelism in AI applications has several dimensions :

o Data (or batch) parallelism distributes a minibatch over several GPUs.  Ideal when the size of 

the data and number of model parameters are modest.  

o Model parallelism distributes model weights (and corresponding optimizer states) over 

GPUs.  Useful as the number of trainable parameters grows.  

o Pipeline parallelism distributes entire layers over GPUs, connecting the output of one GPU 

as the input to another GPU. 

• In scientific AI training, the driver of memory utilization is often the extremely 

high resolution data. 

• Generalized, domain parallelization techniques to enable generic, sharded 

computation.

• Enabling multi-level parallelism to compose domain, model, and data 

parallelisms.

Increasing Data resolution ...

… leads to 
exponential 

growth of GPU 
memory and 

compute usage.
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Multi-level parallelism for enterprise engineering scale solutions
PhysicsNeMo ShardTensor

• ShardTensor is a PhysicsNemo utility for building domain-

parallel applications.  

• ShardTensor:

o Combines the data, metadata, and device orchestration 

concepts into one object.

o Interoperates with Pytorch's FSDP framework to enable 

multilevel parallelism

o Leverages Pytorch support for a variety of operations (tensor 

ops, reshaping, reductions) with extensions in PhysicsNeMo 

to enable critical operations (ex: Convolutions, Attention, 

GroupNorm, etc).

Training a Diffusion Transformer Model

Decrease latency at high
resolution for both 
training and inference.

Train and evaluate 
significantly larger 
resolution data
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Surrogates for Aerodynamic Prediction
Goal : Accurate and efficient predictions of aerodynamic quantities (surface pressure, wall shear stress, volume fields)

X-MeshGraphNet - Multi-scale Graph Neural Network for Physics 
Simulation

• Scales effectively to large meshes

• Multi-Scale Graphs: Combines coarse and fine-resolution point 
clouds to capture local and long-range interactions

• Accurately predicts surface pressure and wall shear stresses

• Overcomes scalability and mesh preprocessing bottlenecks in 
traditional GNNs

DoMINO - Decomposable Multi-scale Iterative Neural Operator

• Point Cloud-Based: Uses local geometric features to predict flow 
fields on discrete surface and volume points

• Mesh-Independent: Trained on one mesh, transferable across 
discretisation without re-training

• Predicts both surface and volume flow fields, scales to large 
engineering simulations

X-MeshGraphNet - https://arxiv.org/abs/2411.17164 Demo - https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation

DoMINO - https://arxiv.org/abs/2501.13350

https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation
https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation
https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation
https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation
https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation
https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation
https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation
https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation
https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation
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DoMINO
Point cloud based neural operator for scalability, accuracy and generalizability

• DoMINO stands for Decomposable Multiscale Iterative Neural Operator

• Key features:

• Neural operator: Predicts point-wise volume and surface fields, infinitely scalable

• Decomposable: Learns local geometry representations in sub-regions to improve solution accuracy

• Multi-scale: Learns multi-scale point kernels to capture fine- and coarse-scale geometry features

• Iterative: Facilitates long-range interaction by propagating geometry features into computational domain

• Basis in traditional numerical methods: Builds dynamic computational stencils to learn non-linear basis functions

• Only STLs required at inference (no surface or volume meshes):  Insensitive to spatial structure and density of point cloud at 
inference

• DoMINO artifacts:

• Preprint https://arxiv.org/pdf/2501.13350 

• Source code: https://github.com/NVIDIA/physicsnemo/blob/domino/physicsnemo/models/domino/model.py

https://arxiv.org/pdf/2501.13350
https://github.com/NVIDIA/physicsnemo/blob/domino/physicsnemo/models/domino/model.py
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DOMINO MODEL ARCHITECTURE
Overview

Three components:
• Multi-res geometry NN: Transforms STLs to structured representations using multi-scale point convolutional kernels
• Local geometry representation: Extracts local geometry encodings in multi-res subdomains from global representations
• Aggregation NN: Dynamically constructs a finite-volume stencil and approximates solution on the cell center conditioned on the local geometry 

representation
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AI SURROGATE FOR DESIGN SPACE OPTIMIZATION
Real Time Digital Wind Tunnel for road vehicle aerodynamics

https://github.com/NVIDIA/modulus/tree/main/examples/cfd/external_aerodynamics/domino

Use Case

▪ Enabling real-time design exploration through AI-accelerated virtual 
wind tunnel simulations

▪ Allowing engineers to iterate on complex aerodynamic geometries with 
immediate feedback

Challenges 

▪ Traditional CFD simulations (RANS, LES) require significant 
computational resources and time — ranging from hours to months

▪ Limited number of design iterations due to the high cost and duration of 
conventional solvers

Solution

▪ AI surrogate model trained using solver-generated data to emulate flow 
physics at high fidelity and speed

▪ DoMINO architecture capable of handling varying geometries

Outcome

▪ ~1,200x speed-up in design iteration time

▪ Full real-time feedback loop for geometry modification and aerodynamic 
evaluation

▪ Model can be finetuned on new geometries to transfer to new domains, 
requiring smaller datasets

https://github.com/NVIDIA/modulus/tree/main/examples/cfd/external_aerodynamics/domino
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WORKFLOW DETAILS 
DoMINO AI model

Captures high-fidelity volume and surface flow fields on large meshes

Local geometry representation

Basis in traditional numerical methods

No mesh required at inference, non-uniform point cloud can be sampled

DoMINO model was trained on ~1500 OpenFOAM simulations (20-50 mil meshes), comprising 5 
vehicle classes (Sedans, SUVs, Pickups, Vans, Hatchbacks) for flow speeds ranging between 45 and 
135 mph.

Inputs to model:

Geometry STL (triangulated surface mesh), Inlet velocity, sampled point on volume and 
surface

Outputs of model

Surface fields: pressure, wall-shear vector and engineering metrics drag, lift forces.

Volume fields: pressure, velocity, turbulent viscosity and kinetic energy etc.

Compute details:

Data generation (~8 hrs per case on 64 CPUs and ~2 hrs on 8 H100s with partially accelerated 
GPU solver)

Training on 2 H100 nodes and took about 4 days

NIM optimized to run on a single GPU with H100, A100 and L40. 

Takes about ~4 seconds end-to-end to evaluate 0.5 million points (includes time taken for 
sending-receiving inference requests) 

DoMINO AI model

Pressure Wall-shear

Velocity-mag

Geometry 
STL

Parameters 
(Inlet velocity) Sampled 

points
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External Aerodynamics benchmarking
Utilities and workflows for benchmarking ML models for external aero 

• Developed utilities and workflows for benchmarking  to analyze ML models in a consistent and transparent manner using CAE specific 
metrics

o Users train their ML models with the OSS DrivAerML dataset (https://caemldatasets.org/drivaerml/) with a specified train and test split

o Trained models are used to predict on test set and written back into the VTPs and VTUs provided with the dataset

o Use our benchmarking utilities with these files to generate CAE specific results (few examples showed below)

▪ L2 error metrics, drag force R2 coefficients and design trends, comparisons of surface and volume contours, centerline plot on surface, line plots in 
different volume regions such as wake, underbody etc. for different field variables

Surface contours

Volume contours

Drag and lift force 
design trends

Centerline surface

https://caemldatasets.org/drivaerml/
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NVIDIA Omniverse
Development platform for building digital twins

DESIGN 
DIGITAL TWIN

PERFORMANCE 
DIGITAL TWIN

AV 
DIGITAL TWIN

FACTORY 
DIGITAL TWIN

ROBOTICS 
DIGITAL TWIN

WAREHOUSE 
DIGITAL TWIN

NETWORK
DIGITAL TWIN

CLIMATE
DIGITAL TWIN

NVIDIA 
Omniverse
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NVIDIA Omniverse 
Turbocharges

Self-Driving Car

Development
NVIDIA Omniverse Cloud APIs deliver

large-scale, high-fidelity sensor simulation,

paving the path to autonomous driving.

By bringing together a rich ecosystem of 

simulation tools, applications, and sensors, these

APIs let developers safely explore the wide

variety of real-world scenarios autonomous

systems will encounter. This enables vehicles to

drive millions of miles in a wide range of

simulated scenarios, so they hit the road running

safely.
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Foxconn’s Robotic 
Factory Ecosystem Runs

on NVIDIA
Foxconn, one of the world’s largest makers of

electronics, uses Omniverse to build their robotic

factories. This lets them orchestrate robots

running on NVIDIA Isaac to build NVIDIA AI

supercomputers, which in turn train Foxconn’s

robots.

Omniverse Digital Twin Real Factory
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Amazon Robotics 
Builds Digital Twins of

Warehouses in NVIDIA
Omniverse

Amazon has over 200 robotics facilities that

handle millions of packages each day. Using

NVIDIA Omniverse and Isaac Sim, Amazon

Robotics is building AI- enabled digital twins

of its warehouses to better optimize

warehouse design and flow, and train more

intelligent robotic solutions.

Amazon Robotics
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Digital Twin: Actionable Results an Actionable Time

Environment
Decision making 

system
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Keeping the twin in sync with Reality

Source of 
Truth

Environment
Decision making 

system
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Digital twin at realistic complexity

Virtual
Environment

Process model

Virtual Sensor

Virtual Actor

Data 
Harvesting

Surrogate 

Process model

Process model

Surrogate 

Process model

…

…

Source of 
Truth

Human in 
the Loop

Decision making 
system
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Omniverse: Platform for Building digital Twins

Virtual
Environment

Process
Models

Virtual Sensor

Virtual Actor

Data 
Harvesting

Surrogate
Process model

Process
Models

Surrogate
Process model

…

…

Human in 
the Loop

Decision making 
system
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Advanced Tools and technologies
Foundational Platform Components

Source of truth

Coupling
Application API

User experience
Virtual Actor

Virtual Sensor



36 



37 

PhysicsNeMo Surrogate Models for Transient CFD Initialization

• Many high-fidelity automotive aerodynamics simulations require transient 
CFD:

• LES/DDES turbulence modeling

• Massively separated flows, base drag prediction

• Traditional initializations either:
• Slow (steady RANS) → 2-40 hours additional compute

• Inaccurate (uniform / potential flow) → much slower transient convergence

• ML-Enhanced workflow:
• ~2x faster convergence vs. uniform/potential flow

• Uses existing solvers for the subsequent transient solve – no need to redo 
costly validation studies

• Fast initialization (1-10 minutes)

Q-criterion isosurfaces on DrivAer geometry with RANS (top) and DDES (bottom).
Figure reproduced from DrMesh using Star-CCM+, CC-BY-SA.

RANS

DDES

https://commons.wikimedia.org/wiki/File:DrivAer_SST-URANS-DDES_Comparison.png
https://commons.wikimedia.org/wiki/File:DrivAer_SST-URANS-DDES_Comparison.png
https://commons.wikimedia.org/wiki/File:DrivAer_SST-URANS-DDES_Comparison.png
https://commons.wikimedia.org/wiki/File:DrivAer_SST-URANS-DDES_Comparison.png
https://commons.wikimedia.org/wiki/File:DrivAer_SST-URANS-DDES_Comparison.png
https://commons.wikimedia.org/wiki/File:DrivAer_SST-URANS-DDES_Comparison.png
https://commons.wikimedia.org/wiki/File:DrivAer_SST-URANS-DDES_Comparison.png
https://commons.wikimedia.org/wiki/File:DrivAer_SST-URANS-DDES_Comparison.png
https://commons.wikimedia.org/wiki/File:DrivAer_SST-URANS-DDES_Comparison.png
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PhysicsNeMo Surrogate Models for Transient CFD Initialization
Problem Setup

• Various initialization strategies tested:

• Traditional, fast: uniform flow, potential flow

• Traditional, slow: steady RANS, DDES snapshot

• ML-based: DoMINO via NVIDIA PhysicsNeMo

• Various strategies used to extend prediction range from the near-field ML domain to the larger CFD domain

Traditional Potential Flow Initialization DoMINO-based Initialization

Paper: “Accelerating Transient CFD through ML-based Flow Initialization”, ArXiv, 2025

https://arxiv.org/abs/2503.15766
https://arxiv.org/abs/2503.15766
https://arxiv.org/abs/2503.15766
https://arxiv.org/abs/2503.15766
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PhysicsNeMo Surrogate Models for Transient CFD Initialization
Problem Setup

• Geometry & Mesh:

• Sample from public DrivAerML automotive CFD dataset

• 16.7M cells, hex-dominant, via SnappyHexMesh

• ML Model for Initialization:

• DoMINO architecture via NVIDIA PhysicsNeMo

• Training data:

• DriveSim dataset, an in-house automotive CFD dataset that 
includes sedans, pickup trucks, hatchbacks, etc.

• Notably: does not include any DrivAerML samples – the 
geometry for this case is out-of-distribution.

• Transient CFD Solver:

• OpenFOAM

• Incompressible, URANS with 𝑘-𝜔 SST turbulence

• 39 m/s freestream, mixed ground boundary conditions

Paper: “Accelerating Transient CFD through ML-based Flow Initialization”, ArXiv, 2025

https://arxiv.org/abs/2503.15766
https://arxiv.org/abs/2503.15766
https://arxiv.org/abs/2503.15766
https://arxiv.org/abs/2503.15766
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PhysicsNeMo Surrogate Models for Transient CFD Initialization
Key Results

• Developed two strategies (DoMINO + Uniform, DoMINO + Potential) that yield substantial speedups over traditional methods.

• ~2x faster convergence of the subsequent transient solve, relative to traditional initialization methods with comparable cost

• With LES instead of URANS, wall-clock speedup becomes even more important

Transient solver: OpenFOAM

Paper: “Accelerating Transient CFD through ML-based Flow Initialization”, ArXiv, 2025

https://arxiv.org/abs/2503.15766
https://arxiv.org/abs/2503.15766
https://arxiv.org/abs/2503.15766
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Wind Turbine Wake Optimization — Siemens Gamesa

Use Case

▪ Developing optimal engineering wake models to optimize 
wind farm layouts 

▪ Simulating the effect that a turbine might have on another 
when placed in close proximity

Challenges 

▪ Generating high-fidelity simulation data from Reynolds-
averaged Navier-Stokes (RANS) or Large Eddy Simulations 
(LES) can take over a month to run, even on a 100-CPU 
cluster.

Solution

▪ NVIDIA Omniverse and PhysicsNeMo enable accurate, high-
fidelity simulations of the wake of the turbines, using low-
resolution simulations as inputs and applying super 
resolution using AI. 

Outcome

▪ ~4,000x speedup for high-fidelity simulation

▪ Optimizing wind farm layouts in real-time increases overall 
production while reducing loads and operating costs.

Demo

Enabling high resolution simulation

https://www.youtube.com/watch?v=mQuvYQmdbtw




Weather Prediction is Integral to Modern Society
Simulations and forecasts drive planning and decision-making

Agriculture & Forestry Transport & Logistics Energy

Risk management Land development Recreation



Extreme Weather Events
Extreme weather events have become more frequent and more severe

https://commons.wikimedia.org/w/index.php?curid=123606695 https://commons.wikimedia.org/wiki/File:Flood_in_Pakistan_2022.pnghttps://commons.wikimedia.org/wiki/File:Hochwasser_in_Altenahr_Altenburg.jpg

Hurricane IanAhr Valley Flood: Pakistan Floods



Our future climate will be very different from the past

www.ipcc.chGlobal Mean Surface Temperatures (0°C – 6°C)

Will the Horn of Africa struggle with unending drought?​

Will the hurricane season in North America intensify?​

Will billions in South Asia suffer a failed summer monsoon?​

Will southeastern Australia burn worse than in previous years?​

Will Europe be submerged under incessant rain and heavy flooding?



Compelling skill, resource requirements, and accessibility

Advantages of AI Weather Models

Rasp, Stephan (2024). AI-Weather SotA vs. Time.
https://doi.org/10.6084/m9.figshare.28083515.v1

Less hardware

Faster inference

More accessible

High skill





AI Could Side-Step Moore’s Law With Implications for Weather Forecasts​
Current PDE solvers will take 40 years to achieve meter-scale resolutions needed for local planning​​

Can Breakthroughs in AI for Atmospheric Simulation Unlock Bigger Ensembles & Higher Resolution?​



High Resolution

Details like land-sea breeze, topography, or small-scale physics 
have a huge impact on the atmosphere, e.g. the track of a 
hurricane. High-resolution simulations are required to capture such 
small features.

Massive Number of Forecasts

Extreme events like floods are rare. Predicting rare extremes with 
high confidence requires a huge set (ensemble) of forecasts 
(~10,000 forecasts).

Under computational constraints, the number of forecasts 
must be balanced against their resolution.

Which Requirements must Simulations fulfil to 
Predict Severe Weather Events? 



Imagine you could Select a Region of the Planet...



… Answer Questions about Climate Change's Impacts

On Food, Health, Infrastructure, Energy systems, and more...



To Explore Consequences of Actions
And Optimize for Desired Outcomes



Research Areas
Mission: Seed New AI Tech Across Earth System Simulation & Informatics Stack

Hybrid Physics-ML Climate Simulation
Accelerating multi-scale predictions to capture storm physics

Global AI Weather Prediction
Probabilistic Calibration for Tail Risk Use Cases

Ocean-Coupled Earth System Prediction
Learning Subseasonal, Seasonal & Climate Physics

Generative Data Fusion
In-filling & multi-modal atmospheric state estimation

Km-Scale Weather Forecasting
Learning to Predict Fundamental Storm Physics

Climate Foundation Modeling
Planetary Diffusion Models For Generative Informatics



• Scalable training framework for weather models

• SOTA architectures for weather applications optimized for GPUs

• Training pipelines to train on peta byte scale datasets like ERA5

• Scaling to multi-GPU and multi-node training

• Training recipes for:

• CorrDiff: Downscaling model for custom region

• StormCast, ReGen, ….

https://github.com/NVIDIA/PhysicsNeMo-launch/tree/main/examples/weather

NVIDIA Earth-2 Libraries and Tools

PhysicsNeMo: Training framework for foundational scale 
models

https://github.com/NVIDIA/modulus-launch/tree/main/examples/weather
https://github.com/NVIDIA/modulus-launch/tree/main/examples/weather
https://github.com/NVIDIA/modulus-launch/tree/main/examples/weather
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Two-Phase Life Cycle of AI Weather Models
Once trained, AI models make rapid predictions

Prognostic model

Training
Learn from historical data

Additional 
variables

Diagnostic 
model

Inference
Make new predictions

Historical 
states

Model 
predictions

t1

t2

t0

… …

t0

t1

t2

Model
forecasts

… …



Inference: Earth2Studio

• Easy: Open-source Python library for accessible AI weather model 
inference

• Modular: Combine data sources, perturbations, models, and IO utilities 
into workflows

• Model agnostic: Get immediately started with pretrained models or 
bring your own model

High-level API for rapid experimentation and deployment

https://github.com/NVIDIA/earth2studio

Forecasting

• FourCastNet (AFNO/SFNO)

• FengWu (Transformer)

• FuXi (Transformer)

• PanguWeather (Transformer)

• Aurora (Transformer)

• DLWP (CNN)

• AIFS (GNN)

• GraphCast (GNN)

• Coming soon: DLWP HEALPix (CNN)

Downscaling

• CorrDiff (Diffusion)

• StormCast (Diffusion)

Diagnostics

• Precipitation (AFNO)

• Tropical cyclones (CNN)

• Atmospheric rivers (CNN)

• Temporal interpolation (AFNO)

• Solar irradiance (AFNO)

• More to come…

Publication

Publication

Publication

Publication

Publication

Publication

Publication

Publication

Publication

Publication

Publication

Publication

Publication

Publication

Publication

Publication

https://github.com/NVIDIA/earth2studio
https://arxiv.org/abs/2306.03838
https://arxiv.org/abs/2304.02948
https://arxiv.org/abs/2306.12873
https://www.nature.com/articles/s41586-023-06185-3
https://arxiv.org/abs/2405.13063
https://arxiv.org/abs/2102.05107
https://arxiv.org/abs/2311.06253
https://arxiv.org/abs/2309.15214
https://arxiv.org/abs/2408.10958
https://gmd.copernicus.org/articles/14/107/2021/
https://gmd.copernicus.org/articles/14/107/2021/
https://arxiv.org/abs/2410.18904
https://arxiv.org/abs/2411.08843
https://arxiv.org/abs/2411.08843






Produce an AI Weather Forecast with a few lines of code

from earth2studio.models.px import FCN
from earth2studio.data import GFS
from earth2studio.io import ZarrBackend
import earth2studio.run as run

# Load FourCastNet pretrained model
model = FCN.load_model(FCN.load_default_package())

# Create the data source
data = GFS()

# Create a Zarr IO Backend
io = ZarrBackend()

# Run 20 steps of inference
output_datastore = run.deterministic(["2024-01-01"], 20, model, data, io)

https://github.com/NVIDIA/earth2studio

Total column water vapour field at 
last time step of the forecast 



FourCastNet: Formulating Fourier Neural Operators on the Sphere​
Accounting for Geometry: Equivariant treatment of spherical geometry overcomes instabilities

Visualization by Boris Bonev

• Open-Source library under MIT license:

https://github.com/NVIDIA/torch-harmonics

• Efficient calls for forward and inverse 

spherical harmonic transformations

• Autograd support as differential layers in 

PyTorch

• Support for distributed computation across 

several GPUs

https://github.com/NVIDIA/torch-harmonics
https://github.com/NVIDIA/torch-harmonics
https://github.com/NVIDIA/torch-harmonics


FourCastNet v3
Bonev et al (2025) - A geometric approach to probabilistic machine-learning weather forecasting at scale



FourCastNet v3
Bonev et al (2025) - A geometric approach to probabilistic machine-learning weather forecasting at scale

Combines Local and Global Convolutions to capture large scales 
efficiently while capturing small scale processes  



FourCastNet v3
Bonev et al (2025) - A geometric approach to probabilistic machine-learning weather forecasting at scale

Domain parallelism to scale to 1024 GPUS



FourCastNet v3
Bonev et al (2025) - A geometric approach to probabilistic machine-learning weather forecasting at scale

Training Objective CRPS 

L = CRPSspatial + CRPSspectral

Composite Training Objective:

Retains realistic spectra, even at 
extended lead times of up to 60 days

60-day global forecast at 0.25°, 6-
hourly resolution in under 4 minute, 

60x faster than diffusion



FourCastNet v3
Bonev et al (2025) - A geometric approach to probabilistic machine-learning weather forecasting at scale



Huge Ensembles for Accurate Statistics

• Modern numerical systems produce 50-100 ensemble members

• AI pipelines can be easily scaled to 10,000+ ensemble members

• Improve statistics on extreme weather events like hurricanes

• Predict extremely rare events like once-in-a-century rainfalls

• Capture coincident extremes like high humidity during a heat wave

• Long stable rollouts enable creation of event sets for risk modeling

Probabilistic applications benefit from large event sets

FourCastNet validated to produce ensembles for low-likelihood, high-impact 
extreme weather events

Storm tracks over the Northern Atlantic

Storm tracks over the Western Pacific



Modelling Extremes
AI-Driven Hurricane Risk Assessment – Partnered with AXA

Modern numerical systems produce 50-100 ensemble 
members

AI pipelines can be easily scaled to 10,000+ ensemble 
members

Hurricanes represent low-probability but high-impact 
extreme weather events

AI enables the generation of ensemble forecasts for storm 
tracks, demonstrated on Hurricane Helene

This approach provides valuable insights into the frequency, 
intensity, and risk associated with rare natural disasters and 
predict extremely rare events like once-in-a-century events

Facilitates faster, more accurate, and proactive decision-
making for disaster preparedness and response

https://developer.nvidia.com/blog/spotlight-axa-explores-ai-driven-hurricane-risk-
assessment-with-nvidia-earth-2/



Macroscale Weather

• Global datasets | 10-30 km resolution.

• Large phenomena – 100s to 1000s of km (e.g. cyclones)

• Negligible vertical acceleration of air; hydrostatic balance

• AI forecasts more skillful than physics models.

The Mesoscale: An AI Weather Forecasting Frontier

Microscale Weather

• National datasets | 1-5km resolution.

• Small phenomena: Thunderstorms, convection complexes.

• Hydrostatic balance not assumed. Buoyancy, stochasticity.

• Potential of AI unknown

Atmospheric River
~1000 km

Organized Storm
Complex
~ 10 km



Efficient Downscaling with CorrDiff
Super fast super-resolution with generative diffusion

• AI models provide physically realistic representations of small-scale weather

• Trained to go from low resolution to high resolution (e.g., 25 km ERA5 to km-scale WRF)

• Stochasticity of generative models allows generating ensemble of downscaled realizations

• Inference is orders of magnitude faster than numerical (dynamical) downscaling

CorrDiff

ca. 25 km per pixel ca. 3 km per pixel

https://build.nvidia.com/nvidia/corrdiff

https://build.nvidia.com/nvidia/corrdiff


CorrDiff and StormCast Combine Regression and Diffusion
Two-step downscaling specifically developed for weather data

• Regression model predicts mean of high-resolution weather variables

• Mean is stochastically corrected through diffusion model

• Two-step process is thought to help bridge the significant distribution shift between input and output

• CorrDiff conducts super-resolution, StormCast makes forecasts at km scale

StormCast: https://arxiv.org/abs/2408.10958v1. Corrdiff: https://arxiv.org/abs/2309.15214. 

https://arxiv.org/abs/2408.10958v1
https://arxiv.org/abs/2309.15214


Downscaling with Diffusion Models
Iterative noise removal for resolving the fine scales of data

“Photo
of a tree”

Prompt

Denoise Denoise Denoise Denoise Denoise Denoise Denoise

CorrDiff

Super-resolution

Image generation

Application



CorrDiff Downscaling Pipeline
Convert low-resolution to high-resolution forecast

t+0h t+6h t+12h t+18h t+24h

FourCastNet FourCastNet FourCastNet FourCastNet

CorrDiffCorrDiff CorrDiffCorrDiff CorrDiff

Lo
w

-r
es

H
ig

h
-r

es

Input



Path to Bias Correction & Super-Resolution
Diversity across samples to account for downscaling uncertainty

Mardani et al. 2023

25km -> 2km

https://arxiv.org/abs/2309.15214


StormCast - Motivation

Existing km-scale national AI weather models:

• Do not surpass physical such models on metrics of ensemble skill.

• Struggle to learn from sparse hourly data closest to observations.

• Can emulate physical models given subhourly output:
Multi-Scale Stochastic Architecture

• Cope with a sparse hourly time step

• Aligned with radar data fusion frequency. 

• Generative methods to handle chaos. 

• Condition on synoptic prior prediction.



Multi-Scale Inference Design
Analogous to the forcing of the US High Resolution Rapid Refresh (HRRR) National Weather Model

Coarse-resolution:
ML model is made 
aware of a prior, 25-km 
global forecast.

Fine-resolution:
Is initialized with 
radar-assimilating 
HRRR analysis...

Fine-resolution:
Mesoscale dynamics learnt from time-
stepping km-scale state.



StormCast Leverages Residual Trick like CorrDiff
NVIDIA’s Generative Super-Resolution Architecture Powered by Residual Diffusion

12.5X

CorrDiff: Super-Resolution & Channel Synthesis 



HRRR baseline

StormCast Ensemble 
MembersPMMMM

StormCast: Example Forecast. July 17, 2024
Evolution of Central US Radar Reflectivity – a Proxy for Precipitation



Skill Surpasses HRRR Physical Model
Using a 5-Member Ensemble Probability Matched Mean (PMM)

R
ad
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io
n
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ll 

Sc
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re

HRRR baseline

StormCast Ensemble PMMP PMMMM

Lead time (hours)Lead time (hours)



Building Level Resolution
Regional AI Weather Forecasting in the Taiwan

High-resolution regional forecasting 
helps mitigate risks from severe rain, 
fog, dust storms, and heat by 
protecting infrastructure, transport, 
and public safety.

Localised forecasts support grid 
stability and renewable energy 
integration.

Capturing winds at building scale 
enables hyper-local forecasting for 
infrastructure protection, disaster 
response, and renewable energy 
integration.

https://developer.nvidia.com/blog/spotlight-axa-
explores-ai-driven-hurricane-risk-assessment-with-
nvidia-earth-2/



Flood risk over and entire season
With JBA Risk

x 1008



ModAFNO
Solar Radiation 

Diagnostic
CorrDiff

Post-processed Future 
Solar Radiation Data

Perceiver33 PV Stations
Down-sampled Past 

Power Data
Visualization

SFNO

wind wind solar radiation solar radiation
25km, 6h 25km, 1h 25km, 1h 5km, 10m

4h 

24h 

7d

Data collection Input Prediction

Computed with Earth-2 and visualized in Omniverse

Solar radiation prediction
• 5,000x speedup
• 10,000x more energy efficient

PV power prediction 
• 10% increase in accuracy
• 2 Bn ¥/year   (~$300m)

Prediction of PV production with GCL





Climate Emulators Are Being Built On AI Weather Prediction Models
“ACE” by The Allen Institute for AI Builds off NVIDIA FourCastNet

"ACE2": Watt-Meyer et al., 2024
ArXiv: 2411.11268

"CAMulator": Chapman et al., 2025
ArXiv: 2504.06007



A Frontier: Multi-Component AutoRegressive AI Earth System Modeling
Linking AI Earth System component models

Ocean Atmosphere Land



ReGen Generates Full States from Sparse Observations
Data source: NOAA weather stations. See Manshausen et al, 

arxiv.org/abs/2406.16947 

Spherical Fourier Neural Operators for Coupled Ocean-
Atmosphere Prediction

“Ocean-Linked Atmosphere”: SST, SSH & sub-surface theta. See Wang & 
Pathak et al, arXiv:2406.08632

Beyond Atmospheric Forecasting, Other Challenges in Weather and Climate

https://arxiv.org/abs/2406.16947


Atmosphere-Ocean Coupled Architectures Stable for Centuries Exist
Realistic midlatitude cyclones & seasonal modulation of tropical cyclogenesis 100-years into roll-out

A Deep Learning Earth System Model for Stable and Efficient Simulation of the Current Climate

Nathaniel Cresswell-Clay, Bowen Liu, Dale Durran, Andy Liu, Zachary I. Espinosa, Raul Moreno, Matthias Karlbauer

https://arxiv.org/abs/2409.16247

https://arxiv.org/abs/2409.16247


Aside: SubSeasonal-To-Seasonal (S2S) Ocean-Atmosphere Skill Is Here
DLESyM: Competitive with IFS ENS Physics Baseline

Lower is better

DLESyM

Baseline



Climate in a Bottle

Problem: Intractable 
High-Resolution Data

• Climate simulations generate petabytes 
of data

• Only major supercomputing centers can 
store / access it

• Interactive analysis is nearly impossible

Solution: 
Fast AI data-generator

• Compress massive climate datasets into 
a small AI model

• Generate realistic km-scale climate data 
on demand



How emulators can help

• More samples

• Better samples

• Event attribution

• Enhance existing archives of climate data (CMIP):

• Bias-correction

• Downscaling/super-resolution

• In-filling

Climate emulators and extreme events

The Pacific NW Heatwave of 2021, Nature 



Sample Inflation With Autoregressive Models (Bill Collins’ talk this aft)
Huge Ensembles Part I and II, Mahesh & Collins et. al. 2025, in press at GMD

Kansas city heatwave at 10-day leads.

Initial
condition

Climate
samples



Inspiration: Scaling Diffusions for High-Resolution Image Synthesis
Source: https://imagen.research.google/; https://cascaded-diffusion.github.io/assets/cascaded_diffusion.pdf

https://imagen.research.google/
https://cascaded-diffusion.github.io/assets/cascaded_diffusion.pdf
https://cascaded-diffusion.github.io/assets/cascaded_diffusion.pdf
https://cascaded-diffusion.github.io/assets/cascaded_diffusion.pdf


Inspiration: Users Can Control Diffusion Models

Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.-Y., & Ermon, S. (2021). SDEdit: Guided image synthesis and editing with stochastic differential 
equations. In arXiv [cs.CV]. arXiv. http://arxiv.org/abs/2108.01073

User draws sketch

Some generated 
samples



Steerable Climate Sampling Would Be Useful
“AI-on-Top” Should Enable Interactive Experiences

User guided scenario
Multiple realizations

Prompt: Show me several realizations of a potential 
hurricane impacting the gulf coast given the current 
average surface conditions. Output precipitation and 
wind damage maps.

or

Hurricane Helene, Sept 26, NOAA



Two Ways to Generate Atmospheric States

Autoregression

x(n+1) ~ P(x(n)) for n = 1 to ∞

• + it’s how physics works

• + it’s how GCMs work

• + it’s how graphcast/ace/dlwp/FCN/etc works

• + easy to train

• - deterministic requires many channels

• - ML has no guarantees for 𝑛 → ∞

• No consistency + stability = accuracy result

• Blurring

• Hallucinations, drifts, blow-ups, etc

• Difficult to control. 

• Data assimilation is hard

• How would you generate a realistic hurricane impacting a specific 
location?

Denoising diffusion models

x(n-1) = f(x(n), y) from n=T to 0

• + Limited number of steps

• + Grounded in theory of maximum likelihood and stochastic 
processes

• + Controllability: User control as one pleases (y)

• + Simple training

• - Complicated and expensive inference

• -  More hyperparameters. Tuning noise schedules in addition to 
input/output normalization



Unifying Two Distinct Climate Data Modalities
Video Language Model → Reanalysis CMIP Model?

HPX64 Reanalysis (ERA5)
~ 50k pixels / channel / sample

HPX1024 ICON
12.5M pixels / channel / sample



Component 1: Multi-Modal MacroScale HPX64 Generator
Capable of Generating Either the ICON or ERA5 Modality at HPX64 Resolution (~100-km, 50k pixels)

          

      

           

            

           

                 

                     

           

                           

                 

                            

               

            



Validating Variability: Tropical Cyclone Frequency HeatMap

Correct Climatological Action Centers



Validating Variability: Detectability of the Diurnal Rainfall Cycle
Signal-to-Noise Ratio of the Estimated Diurnal Rainfall Amplitude

Correct Structure over Tropical Continents & Detectable Stratocumulus Drizzle Cycle



Trends - Climate Change of Heat Waves: Spatial Pattern
SST Conditioning Enough to Capture Secular Trend  - though it is underestimated



Component 2: Super-Resolution from 50k to 12.5M Pixels
HPX64 → HPX1024

                

                             

          

              

               

          

      

           

            

           

                 

                     

           

                           

                 

                            

               

            



Challenge: 12.5M Pixels is a Lot
Directly Applying a Diffusion Model Would Require Over 2,000 GB of GPU Memory 

OLR – from ICON Cycle 3 (HPX1024)



Local Patch-Based Approach
2D multi-diffusion on HEALPix patches for coherent generation 



Putting it Together

                

                             

          

              

               

          

      

           

            

           

                 

                     

           

                           

                 

                            

               

            



Generated surface temperature

Temperature



Visible light



Generated surface temperature

Infrared



Multi-Modal Inference Tricks
In the theme of Foundation Modeling

            

                                                  

                            

    

      

                

                             

          

              

               

          

      

           

            

           

                 

                     

           

                           

                 

                            

               

            



Task 1. Downscaling: Adding ICON-learnt Cloud Textures to ERA5
Upwelling Solar Radiation

1. ERA5 
HPX64
Input

2. cBottle in-
paints km-
scale detail



Task 2. In-Filling ERA5’s Corrupted Shortwave Radiation Channel
Using Data Learnt from ICON Modality



Task 3. De-Biasing ICON’s Liquid Cloud Water Statistics
While Preserving Its Weather Patterns. Using Data Learnt from the ERA5 Modality



Climate in a Bottle

Impact: 
Democratizes high-resolution climate-data 
access

• Enables interactive climate exploration

• Fixes corrupted/missing climate data

• Creates "what-if" scenarios instantly

• Transforms climate science from 
needing massive data archives to 
generating realistic climate data 
anywhere, anytime







AI-Accelerated Physical Modelling for Weather, Climate, and Engineering at NVIDIA

Ira Shokar, PhD | Applied Scientist |  NVIDIA  |  ishokar@nvidia.com
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