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Using Al in Science and Engineering

Inverse and Data Assimilation Parameterized Solutions
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Autonomous Heatsinks

Robotics Ride & Handling Circuit Design
Physics & Data - Little to no gain from Traditional Solver Physics - Traditional Solver (Speed is a limitation)
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PhysicsNeMo Case-Studies: Physics Al across different applications

Interconnect layer

Insulation layer

Si Substrate

Electro-thermal cooling
Blog: Link

Additive Manufacturing: Lattice Simulation

Blog: Link

HRSG Digital Twin
Blog: Link, GTC Session:

RTX 4090 heat sink design
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Demo: Link
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Data Center Digital Twin
Blog: Link, GTC Session: Link
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Carbon capture and storage

Demo: Link, Blog: Link

Brain Aneurysm Simulation
Demo: Link

und Truth

Additive Manufacturing: 3D Printing
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Cardiovascular Simulation

Blog: Link

Sub surface simulations

Resource: Link
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https://arxiv.org/abs/2404.14447
https://www.youtube.com/watch?v=Oq2Mpi5pF1w
https://www.youtube.com/watch?v=bH08wv60Kvg&t=1s
https://developer.nvidia.com/blog/using-carbon-capture-and-storage-digital-twins-for-net-zero-strategies/
https://blogs.nvidia.com/blog/digital-twins-modulus-wistron/
https://www.nvidia.com/en-us/on-demand/session/gtc24-s62600/
https://blogs.nvidia.com/blog/ansys-omniverse-modulus-accelerate-simulation/
https://developer.nvidia.com/blog/using-graph-neural-networks-for-additive-manufacturing/
https://www.youtube.com/watch?v=QjY_8xFjsgE
https://developer.nvidia.com/blog/spotlight-siemens-energy-accelerates-power-grid-asset-simulation-10000x-using-nvidia-modulus/
https://www.nvidia.com/en-us/on-demand/session/gtc24-s62524/
https://developer.nvidia.com/blog/enabling-greater-patient-specific-cardiovascular-care-with-ai-surrogates/
https://developer.nvidia.com/blog/reducing-power-plant-greenhouse-gasses-using-ai-and-digital-twins/

BioNeMo Framework Supports Optimized Biomolecular Models

Proteins | Small Molecules | Genomics
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NVIDIA SOFTWARE FOR PHYSICS ACCELERATION

Libraries, APls, and microservices to facilitate the acceleration of physics workflows
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NVIDIA Warp

Purpose-built framework for accelerated simulation and Al

Accelerated Python for physical computing
* Warp is a Python DSL and framework for writing GPU-accelerated
and differentiable kernels

 Kernel-based programming is often a more natural fit for routines
found in simulation and geometry processing

Create scalable physical simulations and Al training pipelines

e Multi-GPU acceleration

* |ntegrated with PhysicsNeMo, Newton, Omniverse, and CUDA-X
* Native simulation data structure & algorithms and FEM module

Broad adoption across the CAE and Robotics ecosystem

* Autodesk, Amazon, Google/DeepMind, Siemens

* Applicable to every stage of the CAE/EDA workflow:
design = simulation = analysis & Al training

* Applicable across robotics workflows and 3-computer system: simulation
- training =2 Inference on edge

Open Source
* Links:

* Repo: https://github.com/NVIDIA/warp
* Docs: https://nvidia.github.io/warp/

pip 1nstall warp-lang

Distributed and Differentiable Fluid Dynamics with
Accelerated Python
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https://github.com/NVIDIA/warp

AP| Extensions

Core Libraries

NVIDIA CUDA-X Math Libraries




Accelerated Numerical Solvers
NVIDIA Warp

Accelerated physical computing

* A developer framework for high-performance simulation,
rendering, and data processing
* Enables physics-informed machine-learning pipelines

Create scalable physical simulations and Al training
pipelines
 Multi-GPU acceleration

* |ntegrated into Modulus, Omniverse, and CUDA-X
* Accelerated rendering and NanoVDB integration

Broad adoption across the CAE ecosystem

* Autodesk, Amazon, Google/Deepmind, Siemens
* Applicable to every stage of the CAE/EDA workflow: design
- simulation = analysis & Al training
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Simulations are a critical for engineering design

Simulations via numerical methods are computationally expensive

11 <A NVIDIA.



Using Al for simulations?

Al has already disrupted the way we think of
computation in other domains and mapping to Al
unleashes parallelism

Doing once vs repetitive — learn once and infer over

LA

and over r

N 1 It ¢ — |
ear-real time emulation | m‘

Enable high fidelity simulations

Representative of the high dimensional geometry

and parameter design space —




Training: NVIDIA PhysicsNeMo

Open-Source Platform for Developing Physics-Based Machine Learning

Training Neural Networks using both
Data and Governing Equations

Advancing Scientific Discovery With PhysicsNeMo

. Open-source Python toolkit for | Renewable Energy Climate Change
hvsics-dri ML Siemens Gamesa: 4000X Faster 45,000X Faster extreme weather
physics-driven wind turbine wake optimization prediction with Al Weather Models

Simulation Data / SymPy Equation Model Library

Observations  State-of-the-art architectures and
pre-trained weights

« Efficient data loading and
preprocessing components

» Easily scalable to multi-GPU, multi-
node infrastructure

Training 9 - o8 2 b ueVu - =LV 4 VeV + s Numerical
Data Optimization Plans
Healthcare Digital Twins Industrial HPC
High-tidelity results faster for Kinetic Vision: Design optimization NETL: 10,000X Faster build of high-
blood flow in inter-cranial aneurysm using parameterized models fidelity surrogate models

’ l l

Velocity Magnitude
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https://github.com/NVIDIA/physicsnemo
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https://github.com/NVIDIA/physicsnemo

NVIDIA PhysicsNeMo

NVIDIA’s Al framework for developing Physics-Al models

Developing Al models for engineering and science applications Physics Al speedup logscale 1000

B CPU Solver
B GPU Solver accel

2000

* Tools to develop solutions that obey first principles / domain
knowledge

B Physics Al accel

* Performant Al stack for real-world problem scale 1000
 Model architectures and training pipelines tuned for CAE to accelerate
adoption of Al
Unlocking accelerated simulations with Al 100
Al models can run a simulation 1000x faster than traditional numerical
solvers
* Design cycles reduced to seconds from hours 1
* Enabling more simulations for better designs.
'1 '1
Optimal and Scalable training pipelines .
External Data Center Reservoir
.. . C : Aero Cooling Sim
* Memory optimized training pipelines and model architectures/layers
e Scale to multi-node systems out of the box — data and model parallel - ~
 Reference Al enhanced sample applications . _
\NSYS  ©  msiuscaLe wistron
rescale
SIEMENS
® luminary  GOSTINERIDGE  ACroY
o /
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NVIDIA PhysicsNeMo

NVIDIA’s Al framework for developing Physics-Al models
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Open-Source platform for Physics-ML innovation and development - .
— 4+ u «Vu —LVp + V.« (vVu + 5
Stack for building vertical specific applications . |
Simulation Data / SymPy Equation Model Library
Platform for training and inference pipeline Observations PAIREN, PRI, Caaponst]

Computational Graph Complier

NIMs Inference pipelines @

IV,IOdEI Interfaces Training recipes Training
architectures Data

Numerical
Optimization Plans

Geometric module Distributed module (Model, Data

and Domain parallel)

Physics Al module

DALI GPU Optimized PyTorch Warp
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https://github.com/NVIDIA/modulus

Open-Source Al Toolkit for Physics-based ML

Limited generalizability of off-the-shelf surrogate models

Encoder Processor Decoder Palxgq]x,)

Expensive, limited datasets for training o d || T N
- | . | Fullydata | 70 00 o | BUEH B8
Computer vision approaches insufficient due to convergence issues & driven SR || A N/
spectral bias
Need to satisfy governing principles for coupled PDEs and downstream Q@ i oo - @@
applications Inductive OF 1 O ..
bias Gf” \__' (w}/‘——” °
(O
. . 2 PN
Built-in Reference Samples: No more starting from scratch a %, e =
d'\/. (z,z,t) = (P, T, u, w)
Modular Architecture: Abstracted ML layers as building blocks d‘% Physics (N 1
. . Z constrained S, S
Point/block conv, spectral, graph, recurrence, attention, ect. O G mr
Supported Al Architectures N |
Graph Neural Networks (GNNs) | 2 o
Fully physics . :
Neural Operators driven T,
Diffusion Models Physics

Physics-Informed Neural Networks (PINNs)
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Optimized model architectures and ML layers

FNO Performance benchmarking vs PyTorch

Model (# of Parameters) Memory utilization(Gb) / Time taken(sec) per epoch
- Bachsize
S A A S R S
PhysicsNetio FNO (236m) (054/8194)  1.12/%084  ooM  oow

PhysicsNeMo FNO (1.33m) | 10.62/64.1 |  12.75/74.1 14.04/729 000
6X more PhysicsNeMo FNO (0.5m) | 9.89/43 | 11.09/51 12.01/49.1 13.17/47.1 |

Gl oo [pwos| o o o |
beerotsi  lnersas) reasas oo | oo )

N GACLCEVENS

o PhysicsNeMo implemented FNO can accommodate a larger batch size for the same number of parameters. The training time per epoch is also
better as compared to the Base FNO implementation.

o PhysicsNeMo FNO can accommodate 6x larger number of model parameters for the same memory utilization.
o Low level kernels (FFT kernels, Vectorized and elementwise kernels etc.) evaluation is optimized in PhysicsNeMo implemented FNO .

o Minimal tensor copying resulting in better memory utilization.

17 <A NVIDIA.



Optimized model architectures and ML layers

MeshGraphNet Performance benchmarking

Model (Mesh size) Number of GPUs

PhysicsNeMo MGN (0.5
mil)

» Key takeaways:
o Base MeshGraphNet implementation is only data parallel. In PhysicsNeMo, an optimized, graph parallel GPU implementation is provided.

o The graph-parallel MeshGraphNet implementation in PhysicsNeMo scales to multiple nodes. The distributed message passing is optimized for

memory and performance.

o Gradient checkpointing, fused activation and low-level network improvements for improvement in memory utilization.

o Minimal tensor copying resulting in better memory utilization.

18 <A NVIDIA.



Multi-level parallelism for enterprise engineering scale solutions

Domain, model, and data parallelisms.

e Parallelism in Al applications has several dimensions : Increasing Data resolution

o Data (or batch) parallelism distributes a minibatch over several GPUs. Ideal when the size of

the data and number of model parameters are modest.

o Model parallelism distributes model weights (and corresponding optimizer states) over

GPUs. Useful as the number of trainable parameters grows.

o Pipeline parallelism distributes entire layers over GPUs, connecting the output of one GPU

as the input to another GPU.

Total Column Water Vapor (mm)

* |n scientific Al training, the driver of memory utilization is often the extremely

high resolution data.

Spire Al Forecast | Init: 2023-08-28 00Z | F720h

* Generalized, domain parallelization techniques to enable generic, sharded

computation. ... leads to
_ | | . exponential
e Enabling multi-level parallelism to compose domain, model, and data growth of GPU

memory and

parallelisms.
compute usage.

10 20 30 40 50

Total Column Water Vapor (mm)
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Multi-level parallelism for enterprise engineering scale solutions

e ShardTensor is a PhysicsNemo utility for building domain-

parallel applications.

e ShardTensor:

o Combines the data, metadata, and device orchestration

concepts into one object.

o Interoperates with Pytorch's FSDP framework to enable

multilevel parallelism

o Leverages Pytorch support for a variety of operations (tensor
ops, reshaping, reductions) with extensions in PhysicsNeMo
to enable critical operations (ex: Convolutions, Attention,

GroupNorm, etc).

PhysicsNeMo ShardTensor

Training a Diffusion Transformer Model

Decrease latency at high
resolution for both
and inference.

28
NXN (Problem Size)

29

8 GPUs
— Training
--=-- |nference

Train and evaluate
significantly larger
resolution data

20
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Surrogates for Aerodynamic Prediction

Goal : Accurate and efficient predictions of aerodynamic quantities (surface pressure, wall shear stress, volume fields)

X-MeshGraphNet - Multi-scale Graph Neural Network for Physics DoMINO - Decomposable Multi-scale Iterative Neural Operator
Simulation , , _
* Point Cloud-Based: Uses local geometric features to predict flow
* Scales effectively to large meshes fields on discrete surface and volume points
* Multi-Scale Graphs: Combines coarse and fine-resolution point * Mesh-Independent: Trained on one mesh, transferable across
clouds to capture local and long-range interactions discretisation without re-training
e Accurately predicts surface pressure and wall shear stresses * Predicts both surface and volume flow fields, scales to large

engineering simulations
* Overcomes scalability and mesh preprocessing bottlenecks in 5 5

traditional GNNs

Fig. 3: Comparison between the predictions and the ground truth for pressure for Sample 320.

(b) Partitioned tessellated representation with Halo.

X-MeshGraphNet - https://arxiv.org/abs/2411.17164 Demo - https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation
DoMINO - https://arxiv.org/abs/2501.13350 21 <SANVIDIA.


https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation
https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation
https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation
https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation
https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation
https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation
https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation
https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation
https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation

DoMINO

Point cloud based neural operator for scalability, accuracy and generalizability

* DoMINO stands for Decomposable Multiscale Iterative Neural Operator

» Key features:
* Neural operator: Predicts point-wise volume and surface fields, infinitely scalable
» Decomposable: Learns local geometry representations in sub-regions to improve solution accuracy
* Multi-scale: Learns multi-scale point kernels to capture fine- and coarse-scale geometry features
* lterative: Facilitates long-range interaction by propagating geometry features into computational domain
e Basis in traditional numerical methods: Builds dynamic computational stencils to learn non-linear basis functions

* Only STLs required at inference (no surface or volume meshes): Insensitive to spatial structure and density of point cloud at
inference

e DoMINO artifacts:
* Preprint https://arxiv.org/pdf/2501.13350
e Source code: https://github.com/NVIDIA/physicsnemo/blob/domino/physicsnemo/models/domino/model.py

22 <ANVIDIA.


https://arxiv.org/pdf/2501.13350
https://github.com/NVIDIA/physicsnemo/blob/domino/physicsnemo/models/domino/model.py

DOMINO MODEL ARCHITECTURE

Overview

Computational domain R :
Global Geometry representation
on computational domain (G.)

(M X m X m X ng resolution)
Surface bounding box

Multi-scale point
convolutional kernels

——4 Geometry NN }—-»

Geometry
roint Cloud

Local
encodings on |
Construct multi-res sub-regions
Point in volume sub-regions (IxIx1xn)

or on surface Multi-scale point

(1Xxng) convolutional kernels
O Q) '

Solution on
volume or

Build computational surface point
1 X ns)

: ‘, (
stencil |
‘. : :] Aggregation NN }—-» &

> O - —> Basis Function NN
—@ O

|
Neighboring points <—

Three components:

 Multi-res geometry NN: Transforms STLs to structured representations using multi-scale point convolutional kernels
Local geometry representation: Extracts local geometry encodings in multi-res subdomains from global representations
Aggregation NN: Dynamically constructs a finite-volume stencil and approximates solution on the cell center conditioned on the local geometry

representation
23 <ANVIDIA.




Al SURROGATE FOR DESIGN SPACE OPTIMIZATION

Real Time Digital Wind Tunnel for road vehicle aerodynamics

Use Case

"= Enabling real-time design exploration through Al-accelerated virtual
wind tunnel simulations

= Allowing engineers to iterate on complex aerodynamic geometries with
immediate feedback

Challenges

" Traditional CFD simulations (RANS, LES) require significant
computational resources and time — ranging from hours to months

" Limited number of design iterations due to the high cost and duration of
conventional solvers

Solution

= Al surrogate model trained using solver-generated data to emulate flow
physics at high fidelity and speed

= DoMINO architecture capable of handling varying geometries

OUtCOme >, : : ; : "— - Velocity Magnitude -

T—_—
S @

= ~1,200x speed-up in design iteration time _ — S

= Full real-time feedback loop for geometry modification and aerodynamic

evaluation https://github.com/NVIDIA/modulus/tree/main/examples/cfd/external aerodynamics/domino

" Model can be finetuned on new geometries to transfer to new domains,
requiring smaller datasets

24 <A NVIDIA.


https://github.com/NVIDIA/modulus/tree/main/examples/cfd/external_aerodynamics/domino

WORKFLOW DETAILS

DoMINO Al model
Captures high-fidelity volume and surface flow fields on large meshes
Local geometry representation
Basis in traditional numerical methods

No mesh required at inference, non-uniform point cloud can be sampled

DoMINO model was trained on ~1500 OpenFOAM simulations (20-50 mil meshes), comprising 5
vehicle classes (Sedans, SUVs, Pickups, Vans, Hatchbacks) for flow speeds ranging between 45 and
135 mph.

Inputs to model:

Geometry STL (triangulated surface mesh), Inlet velocity, sampled point on volume and
surface

Outputs of model
Surface fields: pressure, wall-shear vector and engineering metrics drag, lift forces.

Volume fields: pressure, velocity, turbulent viscosity and kinetic energy etc.

Compute details:

Data generation (~8 hrs per case on 64 CPUs and ~2 hrs on 8 H100s with partially accelerated
GPU solver)

Training on 2 H100 nodes and took about 4 days
NIM optimized to run on a single GPU with H100, A100 and L40.

Takes about ~4 seconds end-to-end to evaluate 0.5 million points (includes time taken for
sending-receiving inference requests)

Geometry
STL
Parameters
(Inlet velocity) Sampled
points
v \ 4 \ 4

DoMINO Al model

Pressure Wall-shear

Velocity-mag
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External Aerodynamics benchmarking

Utilities and workflows for benchmarking ML models for external aero

e Developed utilities and workflows for benchmarking to analyze ML models in a consistent and transparent manner using CAE specific
metrics

o Users train their ML models with the OSS DrivAerML dataset (https://caemldatasets.org/drivaerml/) with a specified train and test split

o Trained models are used to predict on test set and written back into the VTPs and VTUs provided with the dataset

o Use our benchmarking utilities with these files to generate CAE specific results (few examples showed below)

= L, error metrics, drag force R? coefficients and design trends, comparisons of surface and volume contours, centerline plot on surface, line plots in
different volume regions such as wake, underbody etc. for different field variables

pMeanTrimPred pMeanTrim - pMeanTrimPred

Surface contours

Trend. Trend.
Spearman Corr: 9.80e-01. Mean Abs. Error: 1.12e+01. Max Abs. Error: 3.42e+01 Spearman Corr: 9.47e-01. Mean Abs. Error: 2.85e+01. Max Abs. Error: 1.32e+02

— Cd (True) —— Cl (True)
Cd (Pred) A Cl (Pred)

Average Centerline.
Mean Abs. Error: 4.68e-03. Max Abs. Error: 3.62e-02

1 2 3
X Coordinate

Centerline surface

26 <ANVIDIA.
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https://caemldatasets.org/drivaerml/

NVIDIA Omniverse

Development platform for building digital twins

LT T T Wi Progress S
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PERFORMANCE AV FACTORY ROBOTICS WAREHOUSE CLIMATE NETWORK
DIGITALTWIN DIGITAL TWIN DIGITAL TWIN DIGITAL TWIN DIGITAL TWIN DIGITAL TWIN DIGITAL TWIN DIGITAL TWIN

NVIDIA
Omniverse
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NVIDIA Omniverse
Turbocharges
Self-Driving Car
Development

NVIDIA Omniverse Cloud APIs deliver
large-scale, high-fidelity sensor simulation,

paving the path to autonomous driving.
By bringing together a rich ecosystem of

simulation tools, applications, and sensors, these
APls let developers safely explore the wide
variety of real-world scenarios autonomous
systems will encounter. This enables vehicles to
drive millions of miles in a wide range of
simulated scenarios, so they hit the road running
safely.
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Foxconn’s Robotic
Factory Ecosystem Runs
on NVIDIA

Foxconn, one of the world’s largest makers of
| “ electronics, uses Omniverse to build their robotic
' factories. This lets them orchestrate robots
running on NVIDIA Isaac™ to build NVIDIA Al
supercomputers, which in turn train Foxconn’s

robots.

"EEE R
"EEE R
Fa ceeses
'EEE R ot
TR EEEEEEEEE Y .
TR R EEEEE T
TR R R
T EEEEEEEEEE
TR R EEEE R
T EEEEEEEEE R
= T  eeeesssses
TR EEEERE

Real Factory I:- =

N Q__ %
R
-

I Omniverse Digital Twin

N eoeoeoc0 I

S_:
-

il




otics

Amazon
Builds Digital T

Warehouses in NVIDIA

Omniverse

Amazon has over 200 robotics facilities that
handle millions of packages each day. Using
NVIDIA Omniverse and Isaac Sim, Amazon
Robotics is building Al- enabled digital twins
of its warehouses to better optimize
warehouse design and flow, and train more
intelligent robotic solutions.
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Digital Twin: Actionable Results an Actionable Time

Decision making

Environment
system
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Keeping the twin in sync with Reality

Decision making
system

Environment

Source of
Truth
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Digital twin at realistic complexity

Decision making

system
Data

Harvesting

Virtual
Environment

Virtual Sensor

Process model R SN SOEJI_rthOf /
~ \

Surrogate
Process model

Surrogate
Process model

Process model

Virtual Actor

Human 1n
the Loop
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Omniverse: Platform for Building digital Twins

Decision making

Virtual system

Environment Data

Harvesting

Virtual Sensor

Surrogate

Process Process model

Models

Surrogate
Process model

Process

Models :
Virtual Actor
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Advanced Tools and technologies

Foundational Platform Components

SIMULATION RTX RENDERER

. Application AP Virtual Actor
Coupling User experience

Virtual Sensor
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PhysicsNeMo Surrogate Models for Transient CFD Initialization

* Many high-fidelity automotive aerodynamics simulations require transient
CFD:

e LES/DDES turbulence modeling
 Massively separated flows, base drag prediction
e Traditional initializations either:
e Slow (steady RANS) — 2-40 hours additional compute

* |naccurate (uniform / potential flow) —» much slower transient convergence
e ML-Enhanced workflow:

o ~2x faster convergence vs. uniform/potential flow

* Uses existing solvers for the subsequent transient solve — no need to redo
costly validation studies

e Fast initialization (1-10 minutes)

Figure reproduced from DrMesh using Star-CCM+, CC-BY-SA.
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PhysicsNeMo Surrogate Models for Transient CFD Initialization
Problem Setup

e Various initialization strategies tested:
e Traditional, fast: uniform flow, potential flow
e Traditional, slow: steady RANS, DDES snapshot
e ML-based: DoMINO via NVIDIA PhysicsNeMo

e Various strategies used to extend prediction range from the near-field ML domain to the larger CFD domain

~

—

“Accelerating Transient CFD through ML-based Flow Initialization”, ArXiv
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PhysicsNeMo Surrogate Models for Transient CFD Initialization
Problem Setup

e Geometry & Mesh:
e Sample from public DrivAerML automotive CFD dataset
 16.7M cells, hex-dominant, via SnappyHexMesh
° Model for Initialization:
e DoMINO architecture via NVIDIA PhysicsNeMo
* Training data:

 DriveSim dataset, an in-house automotive CFD dataset that
includes sedans, pickup trucks, hatchbacks, etc.

* Notably: does not include any DrivAerML samples — the
geometry for this case is out-of-distribution.

* Transient CFD Solver:
* OpenFOAM
* Incompressible, URANS with k-w SST turbulence

* 39 m/s freestream, mixed ground boundary conditions

“Accelerating Transient CFD through ML-based Flow Initialization”, ArXiv
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PhysicsNeMo Surrogate Models for Transient CFD Initialization
Key Results

* Developed two strategies (DoMINO + Uniform, DoMINO + Potential) that yield substantial speedups over traditional methods.
o ~2x faster convergence of the subsequent transient solve, relative to traditional initialization methods with comparable cost

e With LES instead of URANS, wall-clock speedup becomes even more important

Time Required for
Transient Convergence

Physical sim- Wall-clock
ulation time runtime
(sec.) (hours)

Transient RANS Automotive CFD: Drag Convergence History

Initialization
wall-clock
runtime
(hours)

Initialization Strategy
Uniform Flow DoMINO + Uniform (simple extension)
Potential Flow — = DoMINC (IDW Extension)
Steady RANS Flow — = [DoMINO + Potential (k-based hybrid)
DDES Flow (time-avg.) * Convergence Criteria Met

Initialization Strategy

Uniform Flow Instant 0.7642 19.5
Potential Flow 0.18 0.8668 22.1
Steady RANS 2.4 0.1852 4.7

DDES Flow A( 0.5050 12.9
DoMINO + Uniform ).02 0.5540 14.1
DoMINO + IDW ).03 1.4198

DoMINO 4 Potential
(hybrid)

Transient solver: OpenFOAM

0.3146

solid lines: Raw CFD results
Dashed lines: Filtered results

1.0 1.9 2.0
Simulation Time [s]

“Accelerating Transient CFD through ML-based Flow Initialization™, ArXiv [
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Wind Turbine Wake Optimization — Siemens Gamesa

Enabling high resolution simulation

Use Case

= Developing optimal engineering wake models to optimize
wind farm layouts

= Simulating the effect that a turbine might have on another
when placed in close proximity

Challenges

" Generating high-fidelity simulation data from Reynolds-
averaged Navier-Stokes (RANS) or Large Eddy Simulations
(LES) can take over a month to run, even on a 100-CPU
cluster.

Solution

= NVIDIA Omniverse and PhysicsNeMo enable accurate, high-
fidelity simulations of the wake of the turbines, using low-
resolution simulations as inputs and applying super
resolution using Al.

Outcome

= ~4,000x speedup for high-fidelity simulation

" Optimizing wind farm layouts in real-time increases overall
production while reducing loads and operating costs.

Demo

SIEMENS Gafiesa <A NVIDIA.
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https://www.youtube.com/watch?v=mQuvYQmdbtw

Earth 2

A digital twin of our planet




Weather Prediction is Integral to Modern Society

Simulations and forecasts drive planning and decision-making
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Extreme Weather Events

Extreme weather events have become more frequent and more severe

Ahr Valley Flood: Hurricane lan Pakistan Floods
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Our future climate will be very different from the past

Global Mean Surface Temperatures (0°C — 6°C) www.ipcc.ch

IPIS.S VERY HIGH 2100

ER

7

Will the Horn of Africa struggle with unending drought? Will southeastern Australia burn worse than in previous years?
Will the hurricane season in North America intensify? Will Europe be submerged under incessant rain and heavy flooding?

Will billions in South Asia suffer a failed summer monsoon?

<A NVIDIA I



Advantages of Al Weather Models

Compelling skill, resource requirements, and accessibility

State of the art in Al weather prediction

NeuralGCM

EAL-VIT
GraphCastruxi SYW\SWirF(Xi-ENS
® SFNO GenEafAﬁﬁmfg'
ECMWF HRES Pa':‘-:’ FengWu  Archesvvgather
»

- High skill

120
NeuralGCM

115
HEAL-VIT
Rasp & FourCastNet °

Thuerey Weynetal ® WindB
. . 110 { GraphCast U swinve Less hardware

FuXi Stormer o FPUXI-ENS

ECMWF HRES

Weyn et al Clare et al
Weyn et al ° * 105 SFNO GenCast Aurora
®
Pangu

) ° AIFS
9
Dueben & Weathe.rBench ¢ Fen?Wu ArchES'steather

Bauer
@

n
>
L
0
=
o
-
-,
LN
N

Faster inference

2023-01 2024-01

2019 2020 2021 2022 2023 2024 Authors:

shoyer@google.com

Date of release srasp@google.com More accessible

Rasp, Stephan (2024). Al-Weather SotA vs. Time.
https://doi.org/10.6084/m9.figshare.28083515.v1
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Al Could Side-Step Moore’s Law With Implications for Weather Forecasts

Current PDE solvers will take 40 years to achieve meter-scale resolutions needed for local planning

100m at 0.1 s (500 MILLION X COMPUTE)
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Can Breakthroughs in Al for Atmospheric Simulation Unlock Bigger Ensembles & Higher Resolution?
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Which Requirements must Simulations fulfil to
Predict Severe Weather Events?

High Resolution

Details like land-sea breeze, topography, or small-scale physics
have a huge impact on the atmosphere, e.g. the track of a
hurricane. High-resolution simulations are required to capture such

small features.

Massive Number of Forecasts

Extreme events like floods are rare. Predicting rare extremes with
high confidence requires a huge set (ensemble) of forecasts
(~10,000 forecasts).

Under computational constraints, the number of forecasts
must be balanced against their resolution.

<A NVIDIA I



Imagine you could Select a Region of the Planet...
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out Climate Change's Impacts

... Answer Questions ab
On Food, Health, Infrastructure, Energy systems, and more...
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To Explore Consequences of Actions
And Optimize for Desired Outcomes
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Research Areas

Mission: Seed New Al Tech Across Earth System Simulation & Informatics Stack

300 +
>
a“\ -, 3
295 - S o2 o
P 6 o i
X A "=y | Atmos. Atmos. 4
. : @f’ 5 | SFNO (24h) | SENO (24h) || Arraen
S 290+ & A, > " FA(A, 0, Z,) KFA(AHZUU O¢, Zt124n) &
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Climatology Q7 o~

290 295 300 305 310 315
2m Temperature (K)

Hybrid Physics-ML Climate Simulation Global Al Weather Prediction Ocean-Coupled Earth System Prediction

Accelerating multi-scale predictions to capture storm physics Probabilistic Calibration for Tail Risk Use Cases Learning Subseasonal, Seasonal & Climate Physics
® S, % Acdd -
Denoiser D Obs. operator A
. Mt @ (D—g] K1 @ M+1
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Generative Data Fusion Km-Scale Weather Forecasting Climate Foundation Modeling
In-filling & multi-modal atmospheric state estimation Learning to Predict Fundamental Storm Physics Planetary Diffusion Models For Generative Informatics
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NVIDIA Earth-2 Libraries and Tools

PhysicsNeMo: Training framework for foundational scale
models

* Scalable training framework for weather models
* SOTA architectures for weather applications optimized for GPUs
* Training pipelines to train on peta byte scale datasets like ERAS
* Scaling to multi-GPU and multi-node training
* Training recipes for:
* CorrDiff: Downscaling model for custom region

* StormCast, ReGen, ....

https://github.com/NVIDIA/PhysicsNeMo-launch/tree/main/examples/weather

<ANVIDIA. I


https://github.com/NVIDIA/modulus-launch/tree/main/examples/weather
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Toolbox for understanding the impact of weather and climate

CUDA/ Warp N

NVIDIA Earth-2

Physics Nemo

N Earth 2 Studio

W

Simulation

Accelerated numerical
simulation of weather and
climate physics.

Al Training

Training of Al models for
forecasting, downscaling,
Interpolation, and other

applications.
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Al Inference

Efficient inference,
connecting Al models, data
sources, and downstream

applications.
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Omniverse

Virtual World

Interactive second Earth

Data Federation
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Two-Phase Life Cycle of Al Weather Models

Once trained, Al models make rapid predictions

Training Inference
Learn from historical data Make new predictions
. Lt
t2 t2 . |
Diagnostic
model
Historical Model Model Additional
states predictions forecasts variables

56 <ANVIDIA.



Inference: Earth2Studio

High-level APl for rapid experimentation and deployment

I <A NVIDIA.

e Easy: Open-source Python library for accessible Al weather model
INEEREE

* Modular: Combine data sources, perturbations, models, and IO utilities
into workflows

* Model agnostic: Get immediately started with pretrained models or
bring your own model

o https://github.com/NVIDIA/earth2studio

Forecasting

FourCastNet (AFNO/SFNO) Publication
FengWu (Transformer) Publication
FuXi (Transformer) Publication
PanguWeather (Transformer) Publication
Aurora (Transformer) Publication
DLWP (CNN) Publication
AIFS (GNN) Publication
GraphCast (GNN) Publication
Coming soon: DLWP HEALPix (CNN) Publication
Downscaling
CorrDiff (Diffusion) Publication
StormCast (Diffusion) Publication
Diagnostics
Precipitation (AFNO) Publication
Tropical cyclones (CNN) Publication
Atmospheric rivers (CNN) Publication
Temporal interpolation (AFNO) Publication
Solar irradiance (AFNO) Publication

More to come...



https://github.com/NVIDIA/earth2studio
https://arxiv.org/abs/2306.03838
https://arxiv.org/abs/2304.02948
https://arxiv.org/abs/2306.12873
https://www.nature.com/articles/s41586-023-06185-3
https://arxiv.org/abs/2405.13063
https://arxiv.org/abs/2102.05107
https://arxiv.org/abs/2311.06253
https://arxiv.org/abs/2309.15214
https://arxiv.org/abs/2408.10958
https://gmd.copernicus.org/articles/14/107/2021/
https://gmd.copernicus.org/articles/14/107/2021/
https://arxiv.org/abs/2410.18904
https://arxiv.org/abs/2411.08843
https://arxiv.org/abs/2411.08843
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Self-paced Course

Applying Al Weather Models with
NVIDIA Earth-2

Explore state-of-the-art Al weather prediction models and learn how to integrate them into
custom workflows.
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About Course Objectives Stay Informed Contact Us

About this Course Course Details

This course is free for a limited time. Duration: 03:00

Weather forecasts are indispensable for planning and decision-making in the public and private sector, with weather Price: Free

affecting anything from ly chain resilie to en oduction. Traditional numerical weathe diction systems . .
ecting anything fr supply chain resiliency ergy production. Traditi numerical w r predicti yste ) evek Tecknical = Baglirier

are difficult to operate and place heavy demands on time and compute resources. With the recent advances in Al weather

modeling, non-expert practitioners are now enabled to run forecasts tuned to their own needs. This course explores the Subject: Deep Learning

possibilities offered by state-of-the-art Al weather prediction models and teaches how to integrate them into custom :
Language: English

workflows. In this course, students will learn how Al weather models are revolutionizing the approach to weather

forecasting. They will gain hands-on experience running Al weather forecasts, validating model outputs, and explore how Course Prerequisites:

super-resolution Al models can make fine-grained predictions. After the course, students will be able to build their own * Basic familiarity with Python.

custom Al weather pipelines.  Familiarity with Deep Learning beneficial but not
required.

Lea n i n g O bj eCtives Prefer learning from an instructor? VIDIA

Request a private workshop or view our public workshop






Produce an Al Weather Forecast with a few lines of code
https://github.com/NVIDIA/earth2studio

from earth2studio.models.px import FCN
from earth2studio.data import GFS

from earth2studio.io import ZarrBackend
import earth2studio.run as run

Load FourCastNet pretrained model
model = FCN.load model(FCN.load default package())

Create the data source
data = GFS()

Create a Zarr IO Backend
io = ZarrBackend()

Run 20 steps of inference
output datastore = run.deterministic(["2024-01-01"], 20, model, data, io)

Total column water vapour field at
last time step of the forecast

<ANVIDIA I



FourCastNet: Formulating Fourier Neural Operators on the Sphere

Accounting for Geometry: Equivariant treatment of spherical geometry overcomes instabilities

tcwv 2018-01-03 00:00:00

AFNO SFNO
Visualization by Boris Bonev

- * Open-Source library under MIT license:
h a r m n I CS https://github.com/NVIDIA/torch-harmonics
 Efficient calls for forward and inverse

spherical harmonic transformations
» Autograd support as differential layers in

PyTorch
» Support for distributed computation across

several GPUs SAnvVIDIA I



https://github.com/NVIDIA/torch-harmonics
https://github.com/NVIDIA/torch-harmonics
https://github.com/NVIDIA/torch-harmonics

downscaling with
local convolutions

r

local / global

pointwise functions

spherical convolution

FourCastNet v3

Bonev et al (2025) - A geometric approach to probabilistic machine-learning weather forecasting at scale

spherical upscaling
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FourCastNet v3

Bonev et al (2025) - A geometric approach to probabilistic machine-learning weather forecasting at scale

Combines Local and Global Convolutions to capture large scales local / global pointwise functions
efficiently while capturing small scale processes

spherical convolution
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Bonev et al (2025) - A geometric approach to probabilistic machine-learning weather forecasting at scale

Domain parallelism to scale to 1024 GPUS

FourCastNet v3

training data
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Training Objective CRPS

1 NEIIS 1
CRPS (Fens, ") = 57— > e =" = 5
€118 e—1 €1Ss

Composite Training Objective:

L = CRPS,__.... + CRPS

spatia spectral

Retains realistic spectra, even at
extended lead times of up to 60 days

60-day global forecast at 0.25°, 6-
hourly resolution in under 4 minute,
60x faster than diffusion
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FourCastNet v3

Bonev et al (2025) - A geometric approach to probabilistic machine-learning weather forecasting at scale
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FourCastNet v3

Bonev et al (2025) - A geometric approach to probabilistic machine-learning weather forecasting at scale

-02-11

FourCastNet 3 predictions of storm Dennis initialized at 2020

96 hours 120 hours 144 hours 720 hours
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Huge Ensembles for Accurate Statistics

Probabilistic applications benefit from large event sets

e Modern numerical systems produce 50-100 ensemble members

e Al pipelines can be easily scaled to 10,000+ ensemble members
* Improve statistics on extreme weather events like hurricanes
* Predict extremely rare events like once-in-a-century rainfalls

e Capture coincident extremes like high humidity during a heat wave

e Long stable rollouts enable creation of event sets for risk modeling

e

=

e S e
IR A N 7
"_}A‘!&.‘ v

s

Y

..\
SSE S \
S

e
s

N

FourCastNet validated to produce ensembles for low-likelihood, high-impact
extreme weather events
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Modelling Extremes

Al-Driven Hurricane Risk Assessment — Partnered with AXA

Modern numerical systems produce 50-100 ensemble
members

Al pipelines can be easily scaled to 10,000+ ensemble
members

Hurricanes represent low-probability but high-impact
extreme weather events

Al enables the generation of ensemble forecasts for storm
tracks, demonstrated on Hurricane Helene

This approach provides valuable insights into the frequency,

intensity, and risk associated with rare natural disasters and
predict extremely rare events like once-in-a-century events

Facilitates faster, more accurate, and proactive decision-
making for disaster preparedness and response

https://developer.nvidia.com/blog/spotlight-axa-explores-ai-driven-hurricane-risk-
assessment-with-nvidia-earth-2/

<A NVIDIA I



Atmospheric River

~1000 km

The Mesoscale: An Al Weather Forecasting Frontier

Macroscale Weather

Global datasets | 10-30 km resolution.
Large phenomena — 100s to 1000s of km (e.g. cyclones)
Negligible vertical acceleration of air; hydrostatic balance

Al forecasts more skillful than physics models.

Microscale Weather

Organized Storm

Complex
~ 10 km

National datasets | 1-5km resolution.
Small phenomena: Thunderstorms, convection complexes.
Hydrostatic balance not assumed. Buoyancy, stochasticity.

Potential of Al unknown

<ANVIDIA. I



Efficient Downscaling with CorrDiff
Super fast super-resolution with generative diffusion

* Al models provide physically realistic representations of small-scale weather
* Trained to go from low resolution to high resolution (e.g., 25 km ERAS5 to km-scale WRF)
* Stochasticity of generative models allows generating ensemble of downscaled realizations

* Inference is orders of magnitude faster than numerical (dynamical) downscaling

CorrDiff

\

ca. 25 km per pixel ca. 3 km per pixel

https://build.nvidia.com/nvidia/corrdiff

<ANVIDIA I


https://build.nvidia.com/nvidia/corrdiff

CorrDiff and StormCast Combine Regression and Diffusion

Two-step downscaling specifically developed for weather data

* Regression model predicts mean of high-resolution weather variables
* Mean is stochastically corrected through diffusion model
* Two-step process is thought to help bridge the significant distribution shift between input and output

* CorrDiff conducts super-resolution, StormCast makes forecasts at km scale

supervised trained on (x,y) pair

UNet

Q

u = E[x]y]
target
RF
UNet
Int-ERAS
—— ERA5S
— = corrdiff

regression \

generative trained on x-u conditioned on y

=
-
LA

Kinetic energy spectra (m?/s? - km)

1072
Zonal wavenumber (1/km)

(-
9
w

— 1 Corrdiff: https://arxiv.org/abs/2309.15214. o] StormCast: https://arxiv.org/abs/2408.10958v1.
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https://arxiv.org/abs/2408.10958v1
https://arxiv.org/abs/2309.15214

Downscaling with Diffusion Models

Iterative noise removal for resolving the fine scales of data

Application Prompt

CorrDiff
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Low-res

High-res

t+0h

CorrDiff

FourCastNet

CorrDiff Downscaling Pipeline

Convert low-resolution to high-resolution forecast

t+6h

CorrDiff

FourCastNet

t+12h

CorrDiff

FourCastNet

t+18h

CorrDiff

N N N N

FourCastNet

t+24h

CorrDiff
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Path to Bias Correction & Super-Resolution

Diversity across samples to account for downscaling uncertainty

25km -> 2km
regression _
400 - . 400 - é
300 - 300 - ﬂ
200 - 200 -
100 - 100 - 7 Ve
0 . Ry . 0 . MR . 0 . . — .
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
0 5 0 15 25 30 35 40

maximum_radar reflectivity

Mardani et al. 2023 SANVIDIA I



https://arxiv.org/abs/2309.15214

StormCast - Motivation

Existing km-scale national Al weather models:
* Do not surpass physical such models on metrics of ensemble skill.
» Struggle to learn from sparse hourly data closest to observations.

» Can emulate physical models given subhourly output: — Multi-Scale Stochastic Architecture

WOFS REFLCOMP WoFSCast REFLCOMP * Cope with a sparse hourly time step
| Time: 2021-05-15 00:20:00 | Time: 2021-05-15 00:20:00

140 140

120 - 120 - * Aligned with radar data fusion frequency.

100 - 100 -

80 - 80 - * Generative methods to handle chaos.

60 60 -

40 - 40 -

* Condition on synoptic prior prediction.

20 - 20 -

80 120 140 80 120 140

20 30 40 50 60 70 20 30 40 50 60 70
Comp. Refl. dBZ Comp. Refl. dBZ

<A NVIDIA. I



Multi-Scale Inference Design

Analogous to the forcing of the US High Resolution Rapid Refresh (HRRR) National Weather Model

Coarse-resolution:

ML model is made
aware of a prior, 25-km
global forecast.

Fine-resolution: —
|s initialized with
radar-assimilating
HRRR analysis...

[ Initial State (F

RRR Analysis) J

r

\_

\

StormCast

_J

t = lhr

GFS

(

\

StormCast

e

_J

s

\—

~

StormCast

_J

t = 12hr
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StormCast Leverages Residual Trick like CorrDiff

NVIDIA’s Generative Super-Resolution Architecture Powered by Residual Diffusion

CorrDiff: Super-Resolution & Channel Synthesis

communications earth & environment Article

G

httpsy/doi.org 0.1038/s4 324 7-025-02042-5

Residual corrective diffusion modeling for
km-scale atmospheric downscaling

" Check for updates

Morteza Mardani @7, Noah Brenowitz'~, Yair Cohen'”, Jaideep Pathak’, Chieh-Yu Chen®",
Cheng-Chin Liu @7, Arash Vahdat', Mohammad Amin Nabian', Tao Ge', Akshay Subramaniam’,
Karthik Kashinath', Jan Kautz' & Mike Pritchard’

State of the art for weather and climate hazard prediction requires expensive km-scale numerical

simulations. Here, a generative diffusion model is explored for downscaling global inputs to km-scale,
as a cost-effective alternative. The model is trained to predict 2 km data from an operational regional
weather model over Taiwan, conditioned on a 25 km reanalysis. To address the large resolution ratio,

different physics and synthesize new channels, we employ a two-step approach. A deterministic
maodel first predicts the mean, followed by a generative diffusion model that predicts the residual. The

model exhibits encouraging deterministic and probabilistic skills, spectra and distributions that
recover power law relationships in the target data. In case studies of coherent weather phenomena, it
sharpens gradients in cold fronts and intensifies typhoons while synthesizing rainbands. Calibration of
model uncertainty remains challenging. The prospect of unifying such methods with coarser global
models implies a potential for global-to-regional machine leaming simulation.

<A NVIDIA. I



StormCast Ensemble
Members

StormCast: Example Forecast. July 17, 2024

Evolution of Central US Radar Reflectivity — a Proxy for Precipitation

ML Ensemble Member 0

Valid Time: 2024-07-17T718:00:00

Tag: regression a2a v3 1 exclude w v2 noskip diffusion regression a2a v3 1 exclude w pstep pos embed v2 2024-07-17T18:00:00

ML Ensemble Member 1

|

ML Ensemble Member 2

|

|

ML Ensemble Member 3

ML ensemble PMM

|

|

|

B e
20 40 60 X
Composite Reflectivity dBZ

——— HRRR baseline
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Radar Fractional Skill Score

—e— HRRR 20 dBZ
—e— HRRR 30 dBZ
—e— HRRR 40 dBZ

Skill Surpasses HRRR Physical Model

Using a 5-Member Ensemble Probability Matched Mean (PMM)

= Pu ==

- = ==

= u ==

StormCast Ensemble PMWM

\ HRRR baseline

Lead time (hours)

StormCast Ensemb
StormCast Ensemb
StormCast Ensemb

e PMM 20 dBZ
e PMM 30 dBZ
e PMM 40 dBZ

StormCast sing
StormCast sing
StormCast sing

e member 20 dBZ
e member 30 dBZ
e member 40 dBZ
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High-resolution regional forecasting
helps mitigate risks from severe rain,
fog, dust storms, and heat by
protecting infrastructure, transport,
and public safety.

Localised forecasts support grid
stability and renewable energy
integration.

Capturing winds at building scale
enables hyper-local forecasting for
infrastructure protection, disaster
response, and renewable energy
integration.

https://developer.nvidia.com/blog/spotlight-axa-
explores-ai-driven-hurricane-risk-assessment-with-
nvidia-earth-2/

Building Level Resolution

Regional Al Weather Forecasting in the Taiwan

Al Enhanced &30

<
. » . Ay .
v . - »
. -
L B S pi s
J A) 7 N
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Flood risk over and entire season
With JBA Risk

Date: 2023-11-09

x 1008

10 20 30 40
Total Precipitation (mm)
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Prediction of PV production with GCL

Solar radiation prediction PV power prediction
* 5,000x speedup * 10% increase in accuracy
« 10,000x more energy efficient « 2Bn¥/year (~$300m)

Data collection Input Prediction 4h
> ¥ > > 24h
7d

, Down-sampled Past . . L.

33 PV Stations P Perceiver Visualization
Power Data
25km, 6h ’ 25km, 1h ’ 25km, 1h ’ 5km, 10m
wind solar radiation

wind solar radiation

Solar Radiation

ModAFNO CorrDiff

Computed with Earth-2 and visualized in Omniverse

Solar Radiation Data
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288.5

288.0

X 2875

287.0

286.5

Climate Emulators Are Being Built On Al Weather Prediction Models
“ACE” by The Allen Institute for Al Builds off NVIDIA FourCastNet

a) 2-meter air temperature series

ACE2-ERAS ERAS - ACE-climSST
—— ACE2-SHIELD —-- SHIELD  —-- forced SST

"ACE2": Watt-Meyer et al., 2024
ArXiv: 2411.11268

(@) PNA Regression: CAMulator [38.0%)]

297.2

297.0

296.8

296.6

296.4

Forced SST [K]

296.2

296.0

-40 -20 0 20 40
Z500 Anomalies ([m], CAMulator)

"CAMulator": Chapman et al., 2025
ArXiv: 2504.06007
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A Frontier: Multi-Component AutoRegressive Al Earth System Modeling

Linking Al Earth System component models

Ocean Atmosphere

<A NVIDIA.




Beyond Atmospheric Forecasting, Other Challenges in Weather and Climate

Spherical Fourier Neural Operators for Coupled Ocean-

ReGen Generates Full States from Sparse Observations Atmosphere Prediction
Data source: NOAA weather stations. See Manshausen et al, “Ocean-Linked Atmosphere”: SST, SSH & sub-surface theta. See Wang &
arxiv.org/abs/2406.16947 Pathak et al, arXiv:2406.08632

6 e
- AA FaY <&
% 4 - N N
E |8 ? | y Atmos. Atmos. 4
>
- v o4 5 ; ) | SFNO (24h) [ | SFNO (24h) v- t+48h
% ’ . - Ay 2 FA(A¢, 0, Z,) FA(At+24n Ots Zesy2an) 7
= Okhhoma ' v ':‘Q- =4 \_ Y, \_ _J &
@ > ==
z Al A? " 0 £ E .g/z‘: &=
Q@ 3 - o [
Qo O -
g — — -
) I1] >~
O /ff/f"’e’ —1- w
4 0; Ocean > 0
i SFNO (48h) <2 | T
FO(0. A, Z,) A
-0
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https://arxiv.org/abs/2406.16947
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Storms per day
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0.0

Atmosphere-Ocean Coupled Architectures Stable for Centuries Exist

Realistic midlatitude cyclones & seasonal modulation of tropical cyclogenesis 100-years into roll-out

HadGEM3

A Deep Learning Earth System Model for Stable and Efficient Simulation of the Current Climate

Nathaniel Cresswell-Clay, Bowen Liu, Dale Durran, Andy Liu, Zachary |. Espinosa, Raul Moreno, Matthias Karlbauer
https://arxiv.org/abs/2409.16247

Jan Feb Mar AprMay Jun Jul Aug Sep Oct NovDec |an FebMar AprMay Jun Jul Aug Sep Oct NovDec Jan FebMar AprMay Jun Jul Aug Sep Oct NovDec

UNIVERSITY of WASHINGTON
<ANVIDIA. I



https://arxiv.org/abs/2409.16247

Aside: SubSeasonal-To-Seasonal (S2S) Ocean-Atmosphere Skill Is Here

Lower is better

1

DLESyM: Competitive with IFS ENS Physics Baseline

CRPS
60
— |F5 (blas corr)
- |FS (bias corr) fCRPS
50 - — 4Ax4x19. rollé (raw)
----- 4x4x19. rollé (raw) FCRPS
40 -
DLESYM
= """ Baseline
o 30 -
-
L™y
[d
20 -
10 -
D ! ! ! ! |
10 20 30 40 50 o0

Lead time (days)
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Climate in a Bottle

Problem: Intractable
High-Resolution Data

PRSI

canmalt i
AT e
u"bl )
R

1"

[Ty g WIS
b

it

* Climate simulations generate petabytes
of data

* Only major supercomputing centers can
store / access it

* [nteractive analysis is nearly impossible

Solution:
Fast Al data-generator

.”.'.:I

e
<v=d ¢
e L =

* Compress massive climate datasets into
a small Al model

Generate realistic km-scale climate data

on demand
<X




Climate emulators and extreme events

How emulators can help The Pacific NW Heatwave of 2021, Nature

* More samples

[
Qo

60°N

» Better samples

[
(o))

* Event attribution -

=
NS

[
g

Maximum 3-day TX anomalies (°C)

* Enhance existing archives of climate data (CMIP):

* Bias-correction .

[
o

* Downscaling/super-resolution

oo

* In-filling

45°N

o

<

. \
130°W 120°W 110°W

- Lytton
—— regional average

Daily TX (°C)
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Sample Inflation With Autoregressive Models (Bill Collins’ talk this aft)
Huge Ensembles Part | and I, Mahesh & Collins et. al. 2025, in press at GMD

BELI:;hizln*alni:at SFNO-BVMC 2m Temperature Daily Max Kansas city heatwave at 10-day leads.
(a)
320 - |
Climate pOYR
318 - samples ?
..E 295 7]
— 316 - o
U =
= £
E 314 - S 290
E- v, ) f-' . 77 "u.v.- \ |. | & q;) . .
E 31271 |nitial \ VAV a b %
" f | £ 285 -
condition T '
10 N HENS
A |IFS
* ERA5
308 - 280 - % Analysis
------- Climatology
3{]6 | | | | | | | | T T T . T T T
27 29 Jul 03 05 07 09 11 290 295 300 305 310 315
Time 2023-]ul 2m Temperature (K)
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Inspiration: Scaling Diffusions for High-Resolution Image Synthesis
Source: https://imagen.research.google/; https://cascaded-diffusion.github.io/assets/cascaded diffusion.pdf

Toxt “A Golden Retriever dog wearing a blue
¢ checkered beret and red dotted turtleneck.”

Frozen Text Encoder

Text Embedding

Y

Text-to-Image
Diffusion Model

64 x 64 Tmage

Y

Super-Resolution

S i
Diffusion Model
256 X 256 Image
Y
Super-Resolution
>

Diffusion Model

Y
1024 x 1024 Image
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https://imagen.research.google/
https://cascaded-diffusion.github.io/assets/cascaded_diffusion.pdf
https://cascaded-diffusion.github.io/assets/cascaded_diffusion.pdf
https://cascaded-diffusion.github.io/assets/cascaded_diffusion.pdf

Inspiration: Users Can Control Diffusion Models

User draws sketch

Some generated
samples

L.SUN church

Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhuy, J.-Y., & Ermon, S. (2021). SDEdit: Guided image synthesis and editing with stochastic differential
equations. In arXiv [cs.CV]. arXiv. http://arxiv.org/abs/2108.01073

<A NVIDIA. I



Steerable Climate Sampling Would Be Useful

Multiple realizations

User guided scenario

| NE

KS

OK

MeXxico

or

Prompt: Show me several realizations of a potential
hurricane impacting the gulf coast given the current
average surface conditions. Output precipitation and

wind damage maps.

Hurricane Helene, Sept 26, NOAA

NVIDIA.



Two Ways to Generate Atmospheric States

Autoregression Denoising diffusion models
X(n+1) ~ P(x(n)) forn=1 to oo Xx(n-1) = f(x(n), y) from n=T to O
+ it’s how physics works + Limited number of steps
+ it’s how GCMs work + Grounded in theory of maximum likelihood and stochastic
processes

+ it’s how graphcast/ace/dlwp/FCN/etc works

_ + Controllability: User control as one pleases (y)
+ easy to train

L. . + Simple training
- deterministic requires many channels

- Complicated and expensive inference
- ML has no guarantees for n — oo

No consistency + stability = accuracy result - More hyperparameters. Tuning noise schedules in addition to

Blurring input/output normalization

Hallucinations, drifts, blow-ups, etc

Difficult to control.
Data assimilation is hard

How would you generate a realistic hurricane impacting a specific
location?

NVIDIA.



Unifying Two Distinct Climate Data Modalities
Video Language Model = Reanalysis CMIP Model?

Global Observing System ECMWF model

ng
g@?

Assimilation

£

2010-2019

1980 1990 2000 2010

HPX64 Reanalysis (ERA5S)

~ 50k pixels / channel / sample

f‘\q.... - :-.‘4

al | el
..b." f“”‘b g‘; [' L a o'

f'rw‘. n‘ﬁ n-! "“ﬂ’w ':"“’;4 "u

HPX1024 ICON
12.5M pixels / channel / sample
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Component 1: Multi-Modal MacroScale HPX64 Generator
Capable of Generating Either the ICON or ERA5 Modality at HPX64 Resolution (~100-km, 50k pixels)

INPUTS COARSE GENERATION

(Generative Diffusion Model)
Dataset ID

Time-of-day
Time-of-year

Sea Surface Features:
Temperature (SST)
« Conditional Generation

 Log-uniform Noise Schedule

Optional Climate Data + Multi-modal Training
(ERA5/ICON)

(for in-filling/correction)

« ERA5/ICON Harmonization

<A NVIDIA. I



Validating Variability: Tropical Cyclone Frequency HeatMap

ERAS 1980- 2017 CBDttle 1940- 2021

104
Cyclone Frequency

Correct Climatological Action Centers

<A NVIDIA. I



Validating Variability: Detectability of the Diurnal Rainfall Cycle

Signal-to-Noise Ratio of the Estimated Diurnal Rainfall Amplitude

0.0 0.5 1.0 1.5 2.0 2.0 3.0 0.0 0.5 1.0 1.5 2.0 2.0
SNR= (day max(mean) - day_min{mean))/std SNR= (day max({mean) - day_min{mean))/std

3.0

Correct Structure over Tropical Continents & Detectable Stratocumulus Drizzle Cycle

<ANVIDIA. I



tas [deqg K]

0.75
0.50

0.25
0.00
=0.25

Trends - Climate Change of Heat Waves: Spatial Pattern
SST Conditioning Enough to Capture Secular Trend - though it is underestimated

a) tas

S0Uurce
—— (CBottle

*

2000 2020

1980
year

1940 1960
c) £500
1940 1960

VMW

1980
year

2000 2020

pl]

7500 90

0.15
0.10
0.05
0.00

—0.05

b) pr cBottle (land avg=1.6 %)

—a.0

19240 1960 1980

year
d) Z500 90p

2000 2020

=7.2 —2.2

%410 yr
ERAS (land avg=2.2 %)

1940

1960

1980
year

2000 2020  _75

—2.0

—2.5
ol 10 yr
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Component 2: Super-Resolution from 50k to 12.5M Pixels
HPX64 - HPX1024

SUPER RESOLUTION
(Patch-based Multi-diffusion)

50km — 5km
(12.6M pixels)

Features:
* Overlapping Patches
» Seamless Boundary Handling
* Local Denoising

« 256x Compression

KM-SCALE OUTPUT

<A NVIDIA. I



Challenge: 12.5M Pixels is a Lot

Directly Applying a Diffusion Model Would Require Over 2,000 GB of GPU Memory

OLR — from ICON Cycle 3 (HPX1024)

<A NVIDIA.




Local Patch-Based Approach
2D multi-diffusion on HEALPix patches for coherent generation

g
0
>
C
)
4



Putting it Together

INPUTS COARSE GENERATION SUPER RESOLUTION
(Generative Diffusion Model) (Patch-based Multi-diffusion)

Dataset ID

Time-of-day B SGkm = Skm
. 49k pix (12.6M pixels)

Sea Surface
Temperature (SST)

Features: Features:
« Conditional Generation » Overlapping Patches

 Log-uniform Noise Schedule » Seamless Boundary Handling

Optional Climate Dat « Multi-modal Training « Local Denoising
(ERA5/ICON)

(for in-filling/correction)

« ERAS/ICON Harmonization « 256x Compression

KM-SCALE OUTPUT

\4
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Multi-Modal Inference Tricks

In the theme of Foundation Modeling

' D
APPLICATIONS
Climate Emulation Channel In-filling Bias Correction
Downscaling What-if Scenarios
J

<ANVIDIA. I



Task 1. Downscaling: Adding ICON-learnt Cloud Textures to ERAS

iInput i pred

2. cBottle in-
paints km-
scale detail

NVIDIA.




Task 2. In-Filling ERA5’s Corrupted Shortwave Radiation Channel

cBottle ICON

0 100 200 300 400 500 600

NVIDIA.



Task 3. De-Biasing ICON’s Liquid Cloud Water Statistics

While Preserving Its Weather Patterns. Using Data Learnt from the ERA5 Modality

cllvi [kg/m?]
Original Original Original
2024-03-07 02:00 2024-03-07 17:00 2024-03-08 08:00
Global average: 0.08 Global average: 0.08 Global average: 0.08

Debiased Debiased Debiased
2024-03-07 02:00 2024-03-07 17:00 2024-03-08 08:00
Global average: 0.05 Global average: 0.05 Global average: 0.05

<ANVIDIA. I



Climate in a Bottle

Impact:
Democratizes high-resolution climate-data
access

* Enables interactive climate exploration

* Fixes corrupted/missing climate data

* Creates "what-if" scenarios instantly

* Transforms climate science from
needing massive data archives to
generating realistic climate data
anywhere, anytime
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