

Al-Accelerated Physical Modelling for Weather, Climate, and Engineering at NVIDIA Ira Shokar, PhD | Applied Scientist | NVIDIA | ishokar@nvidia.com

Lithography

cuEquivariance Drug & Materials Discovery

ALCHEMI Al Materials Science

CUDA-X Accelerates Every Industry

Holoscan Edge HPC

Earth-2 Weather Analytics

Al Physics

Parabricks Gene Sequencing

cuPyNumeric Numerical Computing

📀 NVIDIA.

NVIDIA AI Accelerated Computing Platform Hardware and Software Acceleration Across Every Workload and Vertical

Data Processing CAD, CAE, SDA

NVIDIA AI Enterprise

Computer-aided Drug Design

Climate Simulation

Simulation

CUDA-X Libraries

Accelerated Computing

Quantum

Robotics & Industrial **Digital Twins**

Enterprise AI

OMNIVERSE

Inverse and Data Assimilation

Medical Imaging

Weather & Climate

Operational Control / Real-time

Robotics

Physics & Data – Little to no gain from Traditional Solver

Using AI in Science and Engineering

Oil & Gas

Autonomous Ride & Handling

Physics – Traditional Solver (Speed is a limitation)

PhysicsNeMo Case-Studies: Physics AI across different applications

Electro-thermal cooling Blog: <u>Link</u>

Additive Manufacturing: Lattice Simulation Blog: <u>Link</u>

HRSG Digital Twin Blog: Link, GTC Session: Link

RTX 4090 heat sink design Demo: <u>Link</u>

Design optimization

Data Center Digital Twin Blog: Link, GTC Session: Link

Carbon capture and storage Demo: <u>Link</u>, Blog: <u>Link</u>

Additive Manufacturing: 3D Printing Blog: <u>Link</u>

Sub surface simulations Resource: <u>Link</u>

Cardiovascular Simulation Blog: <u>Link</u>

BioNeMo Framework Supports Optimized Biomolecular Models Proteins | Small Molecules | Genomics

ESM-1 | ESM-2 Protein LLMs

NEW: OpenFold 3D Protein Structure Prediction

MegaMolBART Generative Chemistry Model

ProtT5 Protein Sequence Generation

COMING SOON: MolMIM Molecular Generation

NEW: DiffDock | EquiDock Docking Prediction

COMING SOON: Single Cell BERT Single Cell Expression Model

<mark> NVIDIA</mark>.

NVIDIA SOFTWARE FOR PHYSICS ACCELERATION Libraries, APIs, and microservices to facilitate the acceleration of physics workflows

Warp

Design Optimization

Accelerated Python for physical computing

- Warp is a Python DSL and framework for writing GPU-accelerated and differentiable kernels
- Kernel-based programming is often a more natural fit for routines found in simulation and geometry processing

Create scalable physical simulations and AI training pipelines

- Multi-GPU acceleration
- Integrated with PhysicsNeMo, Newton, Omniverse, and CUDA-X
- Native simulation data structure & algorithms and FEM module

Broad adoption across the CAE and Robotics ecosystem

- Autodesk, Amazon, Google/DeepMind, Siemens
- Applicable to every stage of the CAE/EDA workflow: design \rightarrow simulation \rightarrow analysis & AI training
- Applicable across robotics workflows and 3-computer system: simulation \rightarrow training \rightarrow Inference on edge

Open Source

- Links:
 - Repo: <u>https://github.com/NVIDIA/warp</u> \bullet
 - Docs: https://nvidia.github.io/warp/ \bullet

NVIDIA Warp

Purpose-built framework for accelerated simulation and AI

Accelerated Python

pip install warp-lang

NVIDIA CUDA-X Math Libraries

Accelerated physical computing

- A developer framework for high-performance simulation, rendering, and data processing
- Enables physics-informed machine-learning pipelines

Create scalable physical simulations and AI training pipelines

- Multi-GPU acceleration
- Integrated into Modulus, Omniverse, and CUDA-X
- Accelerated rendering and NanoVDB integration

Broad adoption across the CAE ecosystem

- Autodesk, Amazon, Google/Deepmind, Siemens
- Applicable to every stage of the CAE/EDA workflow: design \rightarrow simulation \rightarrow analysis & AI training

Accelerated Numerical Solvers NVIDIA Warp

Simulations are a critical for engineering design

Simulations via numerical methods are computationally expensive

- AI has already disrupted the way we think of computation in other domains and mapping to Al unleashes parallelism
- Doing once vs repetitive learn once and infer over and over
- Near-real time emulation
- Enable high fidelity simulations
- Representative of the high dimensional geometry and parameter design space

Using Al for simulations?

Open-Source Platform for Developing Physics-Based Machine Learning

Training Neural Networks using both Data and Governing Equations

Training: NVIDIA PhysicsNeMo

- Open-source Python toolkit for physics-driven ML
- State-of-the-art architectures and pre-trained weights
- Efficient data loading and preprocessing components
- Easily scalable to multi-GPU, multinode infrastructure

Healthcare High-fidelity results faster for blood flow in inter-cranial aneurysm

Model Library (XIREN, PINO, DeepONe

Numerical Optimization Plans

Advancing Scientific Discovery With PhysicsNeMo

Renewable Energy Siemens Gamesa: 4000X Faster wind turbine wake optimization

Digital Twins Kinetic Vision: Design optimization using parameterized models

Climate Change

Industrial HPC fidelity surrogate models

Physics AI speedup logscale **Developing AI models for engineering and science applications** • Tools to develop solutions that obey first principles / domain knowledge 1000 • Performant AI stack for real-world problem scale • Model architectures and training pipelines tuned for CAE to accelerate adoption of AI 100 • Al models can run a simulation **1000x** faster than traditional numerical solvers 10 Design cycles reduced to seconds from hours Enabling more simulations for better designs. 6 External Aero Memory optimized training pipelines and model architectures/layers Scale to multi-node systems out of the box – data and model parallel **Ansys DimensionLab**

Unlocking accelerated simulations with AI

- \bullet
- \bullet

Optimal and Scalable training pipelines

- \bullet
- lacksquare
- Reference AI enhanced sample applications

NVIDIA PhysicsNeMo

NVIDIA's AI framework for developing Physics-AI models

NVIDIA PhysicsNeMo

NVIDIA's AI framework for developing Physics-AI models

Open-Source AI Toolkit for Physics-based ML Tailored for developing Physics AI models

The Problem

- Limited generalizability of off-the-shelf surrogate models
- Expensive, limited datasets for training
- Computer vision approaches insufficient due to convergence issues & spectral bias
- Need to satisfy governing principles for coupled PDEs and downstream applications

PhysicsNeMo

- Built-in Reference Samples: No more starting from scratch
- Modular Architecture: Abstracted ML layers as building blocks
 - Point/block conv, spectral, graph, recurrence, attention, ect.
- Supported AI Architectures
 - Graph Neural Networks (GNNs)
 - Neural Operators
 - Diffusion Models
 - Physics-Informed Neural Networks (PINNs)

Optimized model architectures and ML layers

6X more params

Key takeaways:

- better as compared to the Base FNO implementation.

- Minimal tensor copying resulting in better memory utilization.

FNO Performance benchmarking vs PyTorch

ers)	Memory utilization(Gb) / Time taken(sec) per epoch					
	Batch size					
	1	2	3		4	
6m)	10.84/81.94	13.12/90.84	OOM	OOM		
3m)	10.62/64.1	12.75/74.1	14.04/72.9	000		
ōm)	9.89/43	11.09/51	12.01/49.1		13.17/47.1	
	12.44/101.8	OOM	OOM		OOM	
	11.62/75.26	14.41/83.15	OOM		OOM	

• PhysicsNeMo implemented FNO can accommodate a larger batch size for the same number of parameters. The training time per epoch is also

• PhysicsNeMo FNO can accommodate 6x larger number of model parameters for the same memory utilization. o Low level kernels (FFT kernels, Vectorized and elementwise kernels etc.) evaluation is optimized in PhysicsNeMo implemented FNO.

Optimized model architectures and ML layers MeshGraphNet Performance benchmarking

Model (Mesh size)

Base MGN (0.5 mil) PhysicsNeMo MGN (0.5 mil) PhysicsNeMo MGN (1 mil) PhysicsNeMo MGN (2 mil) PhysicsNeMo MGN (5 mil)

- Key takeaways:

memory and performance.

- Minimal tensor copying resulting in better memory utilization.

• Base MeshGraphNet implementation is only data parallel. In PhysicsNeMo, an optimized, graph parallel GPU implementation is provided. o The graph-parallel MeshGraphNet implementation in PhysicsNeMo scales to multiple nodes. The distributed message passing is optimized for

o Gradient checkpointing, fused activation and low-level network improvements for improvement in memory utilization.

Multi-level parallelism for enterprise engineering scale solutions

• Parallelism in AI applications has several dimensions :

- **Data** (or **batch**) parallelism distributes a minibatch over several GPUs. Ideal when the size of the data and number of model parameters are modest.
- **Model** parallelism distributes model weights (and corresponding optimizer states) over GPUs. Useful as the number of trainable parameters grows.
- **Pipeline** parallelism distributes entire layers over GPUs, connecting the output of one GPU as the input to another GPU.
- In scientific AI training, the driver of memory utilization is often the extremely high resolution data.
- Generalized, domain parallelization techniques to enable generic, sharded computation.
- Enabling multi-level parallelism to compose **domain, model, and data** parallelisms.

Domain, model, and data parallelisms.

Spire Al Forecast | Init: 2023-08-28 00Z | F72

... leads to exponential growth of GPU memory and compute usage.

Increasing Data resolution ...

Multi-level parallelism for enterprise engineering scale solutions

- ShardTensor is a PhysicsNemo utility for building domainparallel applications.
- ShardTensor:
 - Combines the data, metadata, and device orchestration concepts into one object.
 - Interoperates with Pytorch's FSDP framework to enable multilevel parallelism
 - Leverages Pytorch support for a variety of operations (tensor ops, reshaping, reductions) with extensions in PhysicsNeMo to enable critical operations (ex: Convolutions, Attention, GroupNorm, etc).

PhysicsNeMo ShardTensor

Decrease latency at high 10³ resolution for both training and inference. (su 10² Ð ЦЩ 10^{1} 2⁵ 26 2^{7}

Goal : Accurate and efficient predictions of aerodynamic quantities (surface pressure, wall shear stress, volume fields)

X-MeshGraphNet - Multi-scale Graph Neural Network for Physics Simulation

- Scales effectively to large meshes
- Multi-Scale Graphs: Combines coarse and fine-resolution point clouds to capture local and long-range interactions
- Accurately predicts surface pressure and wall shear stresses
- Overcomes scalability and mesh preprocessing bottlenecks in traditional GNNs

Fig. 3: Comparison between the predictions and the ground truth for pressure for Sample 320.

X-MeshGraphNet - https://arxiv.org/abs/2411.17164

Surrogates for Aerodynamic Prediction

- engineering simulations

(b) Partitioned tessellated representation with Halo

Demo - https://build.nvidia.com/nvidia/digital-twins-for-fluid-simulation DoMINO - https://arxiv.org/abs/2501.13350 21

DoMINO - Decomposable Multi-scale Iterative Neural Operator

Point Cloud-Based: Uses local geometric features to predict flow fields on discrete surface and volume points

Mesh-Independent: Trained on one mesh, transferable across discretisation without re-training

Predicts both surface and volume flow fields, scales to large

- Key features:

 - inference
- DoMINO artifacts:
 - Preprint https://arxiv.org/pdf/2501.13350

DOMINO

Point cloud based neural operator for scalability, accuracy and generalizability

DoMINO stands for Decomposable Multiscale Iterative Neural Operator

• Neural operator: Predicts point-wise volume and surface fields, infinitely scalable • **Decomposable:** Learns local geometry representations in sub-regions to improve solution accuracy • Multi-scale: Learns multi-scale point kernels to capture fine- and coarse-scale geometry features • Iterative: Facilitates long-range interaction by propagating geometry features into computational domain • Basis in traditional numerical methods: Builds dynamic computational stencils to learn non-linear basis functions • Only STLs required at inference (no surface or volume meshes): Insensitive to spatial structure and density of point cloud at

• Source code: <u>https://github.com/NVIDIA/physicsnemo/blob/domino/physicsnemo/models/domino/model.py</u>

Three components:

- representation

DOMINO MODEL ARCHITECTURE

Overview

Multi-res geometry NN: Transforms STLs to structured representations using multi-scale point convolutional kernels Local geometry representation: Extracts local geometry encodings in multi-res subdomains from global representations Aggregation NN: Dynamically constructs a finite-volume stencil and approximates solution on the cell center conditioned on the local geometry

A SURROGATE FOR DESIGN SPACE OPTIMIZATION Real Time Digital Wind Tunnel for road vehicle aerodynamics

Use Case

- Enabling real-time design exploration through Al-accelerated virtual wind tunnel simulations
- Allowing engineers to iterate on complex aerodynamic geometries with immediate feedback

Challenges

- Traditional CFD simulations (RANS, LES) require significant computational resources and time — ranging from hours to months
- Limited number of design iterations due to the high cost and duration of conventional solvers

Solution

- Al surrogate model trained using solver-generated data to emulate flow physics at high fidelity and speed
- DoMINO architecture capable of handling varying geometries

Outcome

- ~1,200x speed-up in design iteration time
- Full real-time feedback loop for geometry modification and aerodynamic evaluation
- Model can be finetuned on new geometries to transfer to new domains, requiring smaller datasets

https://github.com/NVIDIA/modulus/tree/main/examples/cfd/external_aerodynamics/domino

DVIDIA.

DoMINO AI model

Captures high-fidelity volume and surface flow fields on large meshes

Local geometry representation

Basis in traditional numerical methods

No mesh required at inference, non-uniform point cloud can be sampled

DoMINO model was trained on ~1500 OpenFOAM simulations (20-50 mil meshes), comprising 5 vehicle classes (Sedans, SUVs, Pickups, Vans, Hatchbacks) for flow speeds ranging between 45 and 135 mph.

Inputs to model:

Geometry STL (triangulated surface mesh), Inlet velocity, sampled point on volume and surface

Outputs of model

Surface fields: pressure, wall-shear vector and engineering metrics drag, lift forces.

Volume fields: pressure, velocity, turbulent viscosity and kinetic energy etc.

Compute details:

Data generation (~8 hrs per case on 64 CPUs and ~2 hrs on 8 H100s with partially accelerated GPU solver)

Training on 2 H100 nodes and took about 4 days

NIM optimized to run on a single GPU with H100, A100 and L40.

Takes about ~4 seconds end-to-end to evaluate 0.5 million points (includes time taken for sending-receiving inference requests)

WORKFLOW DETAILS

Pressure

Geometry STL

Parameters (Inlet velocity)

Sampled points

DoMINO AI model

Wall-shear

External Aerodynamics benchmarking Utilities and workflows for benchmarking ML models for external aero

metrics

• Developed utilities and workflows for benchmarking to analyze ML models in a consistent and transparent manner using CAE specific

• Users train their ML models with the OSS DrivAerML dataset (<u>https://caemldatasets.org/drivaerml/</u>) with a specified train and test split • Trained models are used to predict on test set and written back into the VTPs and VTUs provided with the dataset • Use our benchmarking utilities with these files to generate CAE specific results (few examples showed below) L₂ error metrics, drag force R² coefficients and design trends, comparisons of surface and volume contours, centerline plot on surface, line plots in different volume regions such as wake, underbody etc. for different field variables

NVIDIA Omniverse Development platform for building digital twins

NVIDIA Omniverse Turbocharges Self-Driving Car Development

NVIDIA Omniverse Cloud APIs deliver large-scale, high-fidelity sensor simulation, paving the path to autonomous driving. By bringing together a rich ecosystem of simulation tools, applications, and sensors, these APIs let developers safely explore the wide variety of real-world scenarios autonomous systems will encounter. This enables vehicles to drive millions of miles in a wide range of simulated scenarios, so they hit the road running safely.

Foxconn's Robotic Factory Ecosystem Runs on NVIDIA

Foxconn, one of the world's largest makers of electronics, uses Omniverse to build their robotic factories. This lets them orchestrate robots running on NVIDIA Isaac[™] to build NVIDIA AI supercomputers, which in turn train Foxconn's robots.

.....

.....

.....

=

Omniverse Digital Twin

....

....

....

....

Amazon Robotics Builds Digital Twins of Warehouses in NVIDIA Omniverse

Amazon has over 200 robotics facilities that handle millions of packages each day. Using NVIDIA Omniverse and Isaac Sim, Amazon Robotics is building AI- enabled digital twins of its warehouses to better optimize warehouse design and flow, and train more intelligent robotic solutions.

Amazon Robotics

Digital Twin: Actionable Results an Actionable Time

Environment

Decision making system

Keeping the twin in sync with Reality

Environment

Source of Truth

Decision making system

Digital twin at realistic complexity

Virtual Environment

Virtual Sensor

Process model

Process model

 $\bullet \bullet \bullet$

Source of Truth

Human in the Loop

Decision making system Data Harvesting

> Surrogate Process model

> Surrogate Process model

 $\bullet \bullet \bullet$

Virtual Actor

Omniverse: Platform for Building digital Twins

Virtual Environment

Virtual Sensor

Process Models

Process Models

 $\bullet \bullet \bullet$

Human in the Loop

Decision making system Data Harvesting

Surrogate Process model

 $\bullet \bullet \bullet$

Surrogate Process model

Virtual Actor

NUCLEUS

CU

f truth

Advanced Tools and technologies Foundational Platform Components

CONNECT

KIT

Coupling

Application API User experience

SIMULATION

RTX RENDERER

Virtual Actor

Virtual Sensor

PhysicsNeMo Surrogate Models for Transient CFD Initialization

- Many high-fidelity automotive aerodynamics simulations require transient CFD:
 - LES/DDES turbulence modeling
 - Massively separated flows, base drag prediction
- Traditional initializations either:
 - Slow (steady RANS) \rightarrow 2-40 hours additional compute
 - Inaccurate (uniform / potential flow) → much slower transient convergence
- **ML-Enhanced workflow:**
 - ~2x faster convergence vs. uniform/potential flow
 - Uses existing solvers for the subsequent transient solve no need to redo costly validation studies
 - Fast initialization (1-10 minutes)

PhysicsNeMo Surrogate Models for Transient CFD Initialization Problem Setup

- Various initialization strategies tested:
 - Traditional, fast: uniform flow, potential flow
 - Traditional, slow: steady RANS, DDES snapshot
 - ML-based: DoMINO via NVIDIA PhysicsNeMo

Various strategies used to extend prediction range from the near-field ML domain to the larger CFD domain

Paper: "Accelerating Transient CFD through ML-based Flow Initialization", ArXiv

PhysicsNeMo Surrogate Models for Transient CFD Initialization Problem Setup

• Geometry & Mesh:

- Sample from public DrivAerML automotive CFD dataset
- 16.7M cells, hex-dominant, via SnappyHexMesh
- ML Model for Initialization:
 - DoMINO architecture via NVIDIA PhysicsNeMo
 - Training data:
 - DriveSim dataset, an in-house automotive CFD dataset that includes sedans, pickup trucks, hatchbacks, etc.
 - Notably: does not include any DrivAerML samples the geometry for this case is **out-of-distribution**.
- Transient CFD Solver:
 - OpenFOAM
 - Incompressible, URANS with k- ω SST turbulence
 - 39 m/s freestream, mixed ground boundary conditions

Paper: "Accelerating Transient CFD through ML-based Flow Initialization", ArXiv

PhysicsNeMo Surrogate Models for Transient CFD Initialization Key Results

• Developed two strategies (DoMINO + Uniform, DoMINO + Potential) that yield substantial speedups over traditional methods. • ~2x faster convergence of the subsequent transient solve, relative to traditional initialization methods with comparable cost • With LES instead of URANS, wall-clock speedup becomes even more important

		Initialization	Time Required for Transient Convergence		Trans	
Initializ	Initialization Strategy	wall-clock – runtime (hours)	Physical sim- ulation time (sec.)	Wall-clock runtime (hours)	650	
Traditional	Uniform Flow	Instant	0.7642	19.5	600	
	Potential Flow	0.18	0.8668	22.1	Drag Force 550	Mather Martin
	Steady RANS	2.4	0.1852	4.7		
	DDES Flow	40^{\dagger}	0.5050	12.9	[N]	NA WARA
ML-based	DoMINO + Uniform	0.02	0.5540	14.1	500	Mart- property
	DoMINO + IDW	0.03	1.4198	36.2		
	DoMINO + Potential (hybrid)	0.21	0.3146	8.0	450	
						k'
					0	.0

"Accelerating Transient CFD through ML-based Flow Initialization", ArXiv, 2025

1.0 Simulation Time [s]

2.0

Wind Turbine Wake Optimization — Siemens Gamesa

Enabling high resolution simulation

Use Case

- Developing optimal engineering wake models to optimize wind farm layouts
- Simulating the effect that a turbine might have on another when placed in close proximity

Challenges

Generating high-fidelity simulation data from Reynoldsaveraged Navier-Stokes (RANS) or Large Eddy Simulations (LES) can take over a month to run, even on a 100-CPU cluster.

Solution

NVIDIA Omniverse and PhysicsNeMo enable accurate, highfidelity simulations of the wake of the turbines, using lowresolution simulations as inputs and applying super resolution using Al.

Outcome

- ~4,000x speedup for high-fidelity simulation
- Optimizing wind farm layouts in real-time increases overall production while reducing loads and operating costs.

<u>Demo</u>

Agriculture & Forestry

Risk management

Weather Prediction is Integral to Modern Society

Simulations and forecasts drive planning and decision-making

Transport & Logistics

Land development

Energy

Recreation

Ahr Valley Flood:

https://commons.wikimedia.org/wiki/File:Hochwasser_in_Altenahr_Altenburg.jpg

Extreme Weather Events Extreme weather events have become more frequent and more severe

Hurricane lan

https://commons.wikimedia.org/w/index.php?curid=123606695

Pakistan Floods

https://commons.wikimedia.org/wiki/File:Flood_in_Pakistan_2022.png

© NVIDIA.

Our future climate will be very different from the past

Will the Horn of Africa struggle with unending drought? Will the hurricane season in North America intensify? Will billions in South Asia suffer a failed summer monsoon?

Will southeastern Australia burn worse than in previous years? Will Europe be submerged under incessant rain and heavy flooding?

Rasp, Stephan (2024). Al-Weather SotA vs. Time. https://doi.org/10.6084/m9.figshare.28083515.v1

Advantages of AI Weather Models Compelling skill, resource requirements, and accessibility

hardware requirement time to produce 10-day forecast achievable ensemble sizes

customizability

Al Weather Models in comparison

Numerical WP

user level

cluster

hours

O(100)

low

modelling expert

AIWP

≥ 1 GPU

seconds

≫1,000

high

basic technical and domain knowledge

AI Could Side-Step Moore's Law With Implications for Weather Forecasts

Current PDE solvers will take 40 years to achieve meter-scale resolutions needed for local planning

Can Breakthroughs in AI for Atmospheric Simulation Unlock Bigger Ensembles & Higher Resolution?

Which Requirements must Simulations fulfil to **Predict Severe Weather Events?**

High Resolution

Details like land-sea breeze, topography, or small-scale physics have a huge impact on the atmosphere, e.g. the track of a hurricane. High-resolution simulations are required to capture such small features.

Massive Number of Forecasts

Extreme events like floods are rare. Predicting rare extremes with high confidence requires a huge set (ensemble) of forecasts (~10,000 forecasts).

Under computational constraints, the number of forecasts must be balanced against their resolution.

Imagine you could Select a Region of the Planet...

... Answer Questions about Climate Change's Impacts

On Food, Health, Infrastructure, Energy systems, and more...

To Explore Consequences of Actions

And Optimize for Desired Outcomes

© NVIDIA.

Mission: Seed New AI Tech Across Earth System Simulation & Informatics Stack

Hybrid Physics-ML Climate Simulation Accelerating multi-scale predictions to capture storm physics

Generative Data Fusion In-filling & multi-modal atmospheric state estimation

Research Areas

Km-Scale Weather Forecasting Learning to Predict Fundamental Storm Physics

Ocean-Coupled Earth System Prediction Learning Subseasonal, Seasonal & Climate Physics

Climate Foundation Modeling Planetary Diffusion Models For Generative Informatics

https://github.com/NVIDIA/PhysicsNeMo-launch/tree/main/examples/weather

NVIDIA Earth-2 Libraries and Tools

PhysicsNeMo: Trainin models

- Scalable training framework for weather models
- SOTA architectures for weather applications optimized for GPUs
- Training pipelines to train on peta byte scale datasets like ERA5
- Scaling to multi-GPU and multi-node training
- Training recipes for:
 - CorrDiff: Downscaling model for custom region
 - StormCast, ReGen,

PhysicsNeMo: Training framework for foundational scale

NVIDIA Earth-2 Toolbox for understanding the impact of weather and climate

Two-Phase Life Cycle of AI Weather Models Once trained, AI models make rapid predictions

Inference: Earth2Studio

High-level API for rapid experimentation and deployment

- Easy: Open-source Python library for accessible AI weather model inference
- Modular: Combine data sources, perturbations, models, and IO utilities into workflows
- Model agnostic: Get immediately started with pretrained models or bring your own model

Forecasting	
IrCastNet (AFNO/SFNO)	Publication
gWu (Transformer)	Publication
(i (Transformer)	Publication
nguWeather (Transformer)	Publication
ora (Transformer)	Publication
VP (CNN)	Publication
S (GNN)	Publication
phCast (GNN)	Publication
ning soon: DLWP HEALPix (CNN)	Publication

Downsca	ling

rDiff (Diffusion)	Publication
rmCast (Diffusion)	Publication

Diagnostics

 Precipitation (AFNO) Tropical cyclones (CNN) Atmospheric rivers (CNN) Temporal interpolation (AFNO) Solar irradiance (AFNO) More to come...

Publication Publication Publication Publication Publication

Self-paced Cours	0			1/2
Applying NVIDIA Explore state-of-th custom workflows.	g Al W Earth	er prediction model	Solution Solution State Stat	
		Self-paced courses	s are temporarily unavailable for purchas We apologize for any inconvenience.	se outside the USA as we tran Free courses remain available
About Course	Objectives	Stay Informed	Contact Us	

About this Course

This course is free for a limited time.

Weather forecasts are indispensable for planning and decision-making in the public and private sector, with weather affecting anything from supply chain resiliency to energy production. Traditional numerical weather prediction systems are difficult to operate and place heavy demands on time and compute resources. With the recent advances in Al weather modeling, non-expert practitioners are now enabled to run forecasts tuned to their own needs. This course explores the possibilities offered by state-of-the-art AI weather prediction models and teaches how to integrate them into custom workflows. In this course, students will learn how AI weather models are revolutionizing the approach to weather forecasting. They will gain hands-on experience running AI weather forecasts, validating model outputs, and explore how super-resolution AI models can make fine-grained predictions. After the course, students will be able to build their own custom AI weather pipelines.

Learning Objectives

nsition to a new ecommerce system. for enrollment.

Enroll Now

Course Details

Duration: 03:00

Price: Free

Level: Technical - Beginner

Subject: Deep Learning

Language: English

Course Prerequisites:

- Basic familiarity with Python.
- Familiarity with Deep Learning beneficial but not required.

Prefer learning from an instructor?

Request a private workshop or view our public workshop

01-July-2018 -18 -5 0 30 35 48 45 50 LS 29 25-Degenes Cettins 30

Produce an AI Weather Forecast with a few lines of code https://github.com/NVIDIA/earth2studio

from earth2studio.models.px import FCN from earth2studio.data import GFS from earth2studio.io import ZarrBackend import earth2studio.run as run

Load FourCastNet pretrained model model = FCN.load_model(FCN.load_default_package())

Create the data source data = GFS()

Create a Zarr IO Backend io = ZarrBackend()

Run 20 steps of inference output_datastore = run.deterministic(["2024-01-01"], 20, model, data, io)

Total column water vapour field at last time step of the forecast

FourCastNet: Formulating Fourier Neural Operators on the Sphere

Accounting for Geometry: Equivariant treatment of spherical geometry overcomes instabilities

tcwv 2018-01-03 00:00:00

AFNO

harm@nics

- PyTorch
- several GPUs

SFNO

Visualization by Boris Bonev

• Open-Source library under MIT license: https://github.com/NVIDIA/torch-harmonics

Efficient calls for forward and inverse spherical harmonic transformations Autograd support as differential layers in

Support for distributed computation across

FourCastNet v3

Combines Local and Global Convolutions to capture large scales efficiently while capturing small scale processes

(a) spectral convolution filter

FourCastNet v3

(b) local convolution filter

local / global pointwise functions spherical convolution

Domain parallelism to scale to 1024 GPUS

FourCastNet v3

Training Objective CRPS

$$CRPS(F_{ens}, u^*) = \frac{1}{N_{ens}} \sum_{e=1}^{N_{ens}} |u_e - u^*| - \frac{1}{2N_{ens}^2} \sum_{e=1}^{N_{ens}} |u_e - u^*| - \frac{1}{2N_{ens}^2}$$

Composite Training Objective:

 $L = CRPS_{spatial} + CRPS_{spectral}$

Retains realistic spectra, even at extended lead times of up to 60 days

60-day global forecast at 0.25°, 6hourly resolution in under 4 minute, 60x faster than diffusion

FourCastNet v3

1	
0 30	
0 50	00

FCN3 e=2

FourCastNet v3

FourCastNet 3 predictions of storm Dennis initialized at 2020-02-11

72 hours

96 hours

Ground truth

120 hours

144 hours

720 hours

Huge Ensembles for Accurate Statistics

Probabilistic applications benefit from large event sets

- Modern numerical systems produce 50-100 ensemble members
- Al pipelines can be easily scaled to 10,000+ ensemble members
 - Improve statistics on extreme weather events like hurricanes
 - Predict extremely rare events like once-in-a-century rainfalls
 - Capture coincident extremes like high humidity during a heat wave
- Long stable rollouts enable creation of event sets for risk modeling

FourCastNet validated to produce ensembles for low-likelihood, high-impact extreme weather events

Storm tracks over the Northern Atlantic

Storm tracks over the Western Pacific

Modern numerical systems produce 50-100 ensemble members

Al pipelines can be easily scaled to 10,000+ ensemble members

Hurricanes represent low-probability but high-impact extreme weather events

Al enables the generation of ensemble forecasts for storm tracks, demonstrated on Hurricane Helene

This approach provides valuable insights into the frequency, intensity, and risk associated with rare natural disasters and predict extremely rare events like once-in-a-century events

Facilitates faster, more accurate, and proactive decisionmaking for disaster preparedness and response

https://developer.nvidia.com/blog/spotlight-axa-explores-ai-driven-hurricane-riskassessment-with-nvidia-earth-2/

Modelling Extremes

Al-Driven Hurricane Risk Assessment – Partnered with AXA

The Mesoscale: An Al Weather Forecasting Frontier

Macroscale Weather

- Global datasets | 10-30 km resolution.
- Large phenomena 100s to 1000s of km (e.g. cyclones)
- Negligible vertical acceleration of air; hydrostatic balance
- Al forecasts more skillful than physics models.

Atmospheric River ~1000 km

Microscale Weather

Organized Storm Complex ~ 10 km

 National datasets | 1-5km resolution. • Small phenomena: Thunderstorms, convection complexes. • Hydrostatic balance not assumed. Buoyancy, stochasticity. Potential of AI unknown

ca. 25 km per pixel

https://build.nvidia.com/nvidia/corrdiff

Efficient Downscaling with CorrDiff Super fast super-resolution with generative diffusion

Al models provide physically realistic representations of small-scale weather • Trained to go from low resolution to high resolution (e.g., 25 km ERA5 to km-scale WRF) Stochasticity of generative models allows generating ensemble of downscaled realizations Inference is orders of magnitude faster than numerical (dynamical) downscaling

ca. 3 km per pixel

CorrDiff and StormCast Combine Regression and Diffusion Two-step downscaling specifically developed for weather data

- Regression model predicts mean of high-resolution weather variables
- Mean is stochastically corrected through diffusion model
- Two-step process is thought to help bridge the significant distribution shift between input and output
- CorrDiff conducts super-resolution, StormCast makes forecasts at km scale

StormCast: <u>https://arxiv.org/abs/2408.10958v1</u>.

Application

CorrDiff

Super-resolution

Image generation

Prompt

"Photo of a tree"

Downscaling with Diffusion Models

Iterative noise removal for resolving the fine scales of data

CorrDiff Downscaling Pipeline Convert low-resolution to high-resolution forecast

Path to Bias Correction & Super-Resolution

Mardani et al. 2023

Diversity across samples to account for downscaling uncertainty

25km -> 2km

Existing km-scale national AI weather models:

- Do not surpass physical such models on metrics of ensemble skill.
- Struggle to learn from sparse hourly data closest to observations.
- Can emulate physical models given subhourly output:

StormCast - Motivation

Multi-Scale Stochastic Architecture

- Cope with a sparse hourly time step
- Aligned with radar data fusion frequency.
- Generative methods to handle chaos.
- Condition on synoptic prior prediction.

t = 0

Coarse-resolution:

ML model is made aware of a prior, 25-km global forecast.

Fine-resolution: Is initialized with radar-assimilating HRRR analysis...

Initial State (HRRR Analysis)

Multi-Scale Inference Design

Analogous to the forcing of the US High Resolution Rapid Refresh (HRRR) National Weather Model

t = 1hr

CorrDiff: Super-Resolution & Channel Synthesis

StormCast Leverages Residual Trick like CorrDiff

NVIDIA's Generative Super-Resolution Architecture Powered by Residual Diffusion

communications earth & environment

Residual corrective diffusion modeling for km-scale atmospheric downscaling

Morteza Mardani ^{1,3} , Noah Brenowitz^{1,3}, Yair Cohen^{1,3}, Jaideep Pathak¹, Chieh-Yu Chen ¹, Cheng-Chin Liu 2, Arash Vahdat¹, Mohammad Amin Nabian¹, Tao Ge¹, Akshay Subramaniam¹, Karthik Kashinath¹, Jan Kautz¹ & Mike Pritchard¹

State of the art for weather and climate hazard prediction requires expensive km-scale numerical simulations. Here, a generative diffusion model is explored for downscaling global inputs to km-scale, as a cost-effective alternative. The model is trained to predict 2 km data from an operational regional weather model over Taiwan, conditioned on a 25 km reanalysis. To address the large resolution ratio, different physics and synthesize new channels, we employ a two-step approach. A deterministic model first predicts the mean, followed by a generative diffusion model that predicts the residual. The model exhibits encouraging deterministic and probabilistic skills, spectra and distributions that recover power law relationships in the target data. In case studies of coherent weather phenomena, it sharpens gradients in cold fronts and intensifies typhoons while synthesizing rainbands. Calibration of model uncertainty remains challenging. The prospect of unifying such methods with coarser global models implies a potential for global-to-regional machine learning simulation.

https://doi.org/10.1038/s43247-025-02042-5

Check for updates

Article

O

StormCast Ensemble Members

StormCast: Example Forecast. July 17, 2024 Evolution of Central US Radar Reflectivity – a Proxy for Precipitation

Valid Time: 2024-07-17T18:00:00

Tag: regression_a2a_v3_1_exclude_w_v2_noskip_diffusion_regression_a2a_v3_1_exclude_w_pstep_pos_embed_v2_2024-07-17T18:00:00

HRRR baseline

0.6 r Fractional Skill Score 0.2 0.3 0.4 0.2 -Radar 0.1 0.0

HRRR 20 dBZ HRRR 30 dBZ -----HRRR 40 dBZ **—** 1 1

Skill Surpasses HRRR Physical Model Using a 5-Member Ensemble Probability Matched Mean (PMM)

Lead time (hours)

- StormCast Ensemble PMM 20 dBZ ----• • • •
- --- StormCast Ensemble PMM 30 dBZ
- StormCast Ensemble PMM 40 dBZ / I \
-

StormCast single member 20 dBZ StormCast single member 30 dBZ StormCast single member 40 dBZ

High-resolution regional forecasting helps mitigate risks from severe rain, fog, dust storms, and heat by protecting infrastructure, transport, and public safety.

Localised forecasts support grid stability and renewable energy integration.

Capturing winds at **building scale** enables hyper-local forecasting for **infrastructure protection, disaster response**, and **renewable energy integration**.

https://developer.nvidia.com/blog/spotlight-axaexplores-ai-driven-hurricane-risk-assessment-withnvidia-earth-2/

Building Level Resolution

Regional AI Weather Forecasting in the Taiwan

📀 NVIDIA.

ERAS em2 Beer & em5

Flood risk over and entire season With JBA Risk

Date: 2023-11-09

x 1008

Solar radiation prediction

- 5,000x speedup
- 10,000x more energy efficient

Prediction of PV production with GCL

- 10% increase in accuracy
- 2 Bn ¥/year (~\$300m)

Post-processed Future Solar Radiation Data

The University of Manchester

со	NO	SO2_SRF	TS	me
			CO NO SO2_SRF	CO NO SOLSEF TS

Climate Emulators Are Being Built On AI Weather Prediction Models

"ACE2": Watt-Meyer et al., 2024 ArXiv: 2411.11268

"ACE" by The Allen Institute for AI Builds off NVIDIA FourCastNet

"CAMulator": Chapman et al., 2025 ArXiv: 2504.06007

A Frontier: Multi-Component AutoRegressive AI Earth System Modeling Linking AI Earth System component models

Ocean

Atmosphere

Land

Beyond Atmospheric Forecasting, Other Challenges in Weather and Climate

ReGen Generates Full States from Sparse Observations

Data source: NOAA weather stations. See Manshausen et al, arxiv.org/abs/2406.16947

"Ocean-Linked Atmosphere": SST, SSH & sub-surface theta. See Wang & Pathak et al, arXiv:2406.08632

Spherical Fourier Neural Operators for Coupled Ocean-Atmosphere Prediction

Atmosphere-Ocean Coupled Architectures Stable for Centuries Exist

Realistic midlatitude cyclones & seasonal modulation of tropical cyclogenesis 100-years into roll-out

Nathaniel Cresswell-Clay, Bowen Liu, Dale Durran, Andy Liu, Zachary I. Espinosa, Raul Moreno, Matthias Karlbauer https://arxiv.org/abs/2409.16247

A Deep Learning Earth System Model for Stable and Efficient Simulation of the Current Climate

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Aside: SubSeasonal-To-Seasonal (S2S) Ocean-Atmosphere Skill Is Here

DLESyM: Competitive with IFS ENS Physics Baseline

CRPS

Climate in a Bottle

Problem: Intractable **High-Resolution Data**

- Climate simulations generate petabytes of data
- Only major supercomputing centers can store / access it
- Interactive analysis is nearly impossible

Solution: Fast Al data-generator

- Compress massive climate datasets into a small AI model
- Generate realistic km-scale climate data on demand

How emulators can help

- More samples
- Better samples
- Event attribution
- Enhance existing archives of climate data (CMIP):
 - Bias-correction
 - Downscaling/super-resolution
 - In-filling

Climate emulators and extreme events

The Pacific NW Heatwave of 2021, Nature

Sample Inflation With Autoregressive Models (Bill Collins' talk this aft) Huge Ensembles Part I and II, Mahesh & Collins et. al. 2025, in press at GMD

Inspiration: Scaling Diffusions for High-Resolution Image Synthesis

Source: https://cascaded-diffusion.github.io/assets/cascaded_diffusion.pdf

"A Golden Retriever dog wearing a blue checkered beret and red dotted turtleneck."

Inspiration: Users Can Control Diffusion Models

User draws sketch

Some generated samples

Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.-Y., & Ermon, S. (2021). SDEdit: Guided image synthesis and editing with stochastic differential equations. In arXiv [cs.CV]. arXiv. http://arxiv.org/abs/2108.01073

LSUN church

CelebA

Steerable Climate Sampling Would Be Useful "Al-on-Top" Should Enable Interactive Experiences

User guided scenario

Prompt: Show me several realizations of a potential hurricane impacting the gulf coast given the current average surface conditions. Output precipitation and wind damage maps.

Multiple realizations

Hurricane Helene, Sept 26, NOAA

Two Ways to Generate Atmospheric States

Autoregression

 $x(n+1) \sim P(x(n))$ for n = 1 to ∞

- + it's how physics works
- + it's how GCMs work
- + it's how graphcast/ace/dlwp/FCN/etc works
- + easy to train
- deterministic requires many channels
- - ML has no guarantees for $n \to \infty$
 - No consistency + stability = accuracy result
 - Blurring
 - Hallucinations, drifts, blow-ups, etc
- Difficult to control.
 - Data assimilation is hard
 - How would you generate a realistic hurricane impacting a specific location?

Denoising diffusion models

x(n-1) = f(x(n), y) from n=T to 0

- + Limited number of steps
- processes
- + Simple training
- input/output normalization

• + Grounded in theory of maximum likelihood and stochastic

• + Controllability: User control as one pleases (y)

Complicated and expensive inference

• - More hyperparameters. Tuning noise schedules in addition to

Unifying Two Distinct Climate Data Modalities

HPX64 Reanalysis (ERA5) ~ 50k pixels / channel / sample

Video Language Model \rightarrow Reanalysis CMIP Model?

HPX1024 ICON 12.5M pixels / channel / sample

Component 1: Multi-Modal MacroScale HPX64 Generator

Capable of Generating Either the ICON or ERA5 Modality at HPX64 Resolution (~100-km, 50k pixels)

ATION Model)	1
ſ	
tian	
ieaule	
ng	
zation	

Validating Variability: Tropical Cyclone Frequency HeatMap

Correct Climatological Action Centers

Validating Variability: Detectability of the Diurnal Rainfall Cycle Signal-to-Noise Ratio of the Estimated Diurnal Rainfall Amplitude

Correct Structure over Tropical Continents & Detectable Stratocumulus Drizzle Cycle

Trends - Climate Change of Heat Waves: Spatial Pattern SST Conditioning Enough to Capture Secular Trend - though it is underestimated

Component 2: Super-Resolution from 50k to 12.5M Pixels HPX64 \rightarrow HPX1024

OLR – from ICON Cycle 3 (HPX1024)

Challenge: 12.5M Pixels is a Lot Directly Applying a Diffusion Model Would Require Over 2,000 GB of GPU Memory

Local Patch-Based Approach 2D multi-diffusion on HEALPix patches for coherent generation

Putting it Together

INPUT
Dataset
Time-of-
Time-of-y
Sea Surf Temperature
Optional Clim (ERA5/IC (for in-filling/co

Multi-Modal Inference Tricks In the theme of Foundation Modeling

Task 1. Downscaling: Adding ICON-learnt Cloud Textures to ERA5 **Upwelling Solar Radiation**

Task 2. In-Filling ERA5's Corrupted Shortwave Radiation Channel

Truth ICON

Truth ERA5 (0.25° res, corrupted)

Using Data Learnt from ICON Modality

cBottle-Infill ICON

cBottle-Infill ERA5

cBottle ICON

Task 3. De-Biasing ICON's Liquid Cloud Water Statistics While Preserving Its Weather Patterns. Using Data Learnt from the ERA5 Modality

Original 2024-03-07 02:00 Global average: 0.08

Debiased 2024-03-07 02:00 Global average: 0.05

cllvi [kg/m²]

Original 2024-03-07 17:00 Global average: 0.08

Debiased 2024-03-07 17:00 Global average: 0.05

0.2

0.6

0.8

Original 2024-03-08 08:00 Global average: 0.08

Debiased 2024-03-08 08:00 Global average: 0.05

1.4 1.2

Climate in a Bottle

Impact: Democratizes high-resolution climate-data access

- Enables interactive climate exploration
- Fixes corrupted/missing climate data
- Creates "what-if" scenarios instantly
- Transforms climate science from needing massive data archives to generating realistic climate data anywhere, anytime

Globe View

>	٢
eatures	

R2B8 R2B9 R2B10 R2B11

3000 **Toggle Wind Toggle Clouds Toggle Base**

Precache

24 🔻 FPS 🦨

238

Al-Accelerated Physical Modelling for Weather, Climate, and Engineering at NVIDIA Ira Shokar, PhD | Applied Scientist | NVIDIA | ishokar@nvidia.com

