
Lecture 2: different memory
and variable types

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Lecture 2 – p. 1/36

Memory

Key challenge in modern computer architecture

no point in blindingly fast computation if data can’t be
moved in and out fast enough

need lots of memory for big applications

very fast memory is also very expensive

end up being pushed towards a hierarchical design

Lecture 2 – p. 2/36

CPU Memory Hierarchy

❄
faster

more expensive
smaller

32–128 GB
2–3GHz DDR4Main memory

12–30 MB (shared)
2GHz SRAML3 Cache

L1/L2 Cache
48KB + 1.25MB
3GHz SRAM

registers

200+ cycle access, 60–180GB/s

25-35 cycle access, 25–50GB/s

5-12 cycle access, 100–200GB/s

❄

✻

❄❄
✻✻

❄❄❄
✻✻✻

Lecture 2 – p. 3/36

Memory Hierarchy

Execution speed relies on exploiting data locality

temporal locality: a data item just accessed is likely to
be used again in the near future, so keep it in the cache

spatial locality: neighbouring data is also likely to be
used soon, so load them into the cache at the same
time using a ‘wide’ bus (like a multi-lane motorway)

This wide bus is only way to get high bandwidth to slow
main memory

Lecture 2 – p. 4/36

Caches

The cache line is the basic unit of data transfer;
typical size is 64 bytes ≡ 8× 8-byte items.

With a single cache, when the CPU loads data into a
register:

it looks for line in cache

if there (hit), it gets data

if not (miss), it gets entire line from main memory,
displacing an existing line in cache (usually least
recently used)

When the CPU stores data from a register:

same procedure
Lecture 2 – p. 5/36

Importance of Locality

Typical workstation:

20 Gflops per core

40 GB/s L3←→ L2 cache bandwidth

64 bytes/line

40GB/s ≡ 600M line/s ≡ 5G double/s

At worst, each flop requires 2 inputs and has 1 output,
forcing loading of 3 lines =⇒ 200 Mflops

If all 8 variables/line are used, then this increases to 1.6
Gflops.

To get up to 20Gflops needs temporal locality, re-using data
already in the L2 cache.

Lecture 2 – p. 6/36

GPU Architecture

SM SM SM SM

L2 cache

SM SM SM SM

L1 cache /

shared memory

✟✟✟✟✟✟✟

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏

✏✏✏✏✏

❅
❅
❅
❅
❅

Lecture 2 – p. 7/36

Ampere

usually 32 bytes cache line (8 floats or 4 doubles)

A100: 5120-bit memory path from HBM2e device
memory to L2 cache =⇒ up to 1555 GB/s bandwidth

unified 40MB L2 cache for all SM’s

each SM has 192kB of shared memory / L1 cache

no global cache coherency as in CPUs, so should
(almost) never have different blocks updating the same
global array elements

Lecture 2 – p. 8/36

GPU Memory Hierarchy

❄
faster

more expensive
smaller

32 GB
HBMeDevice memory

6MB (shared)
L2 Cache

L1/shared
96KB

registers

200-300 cycle access, 1500GB/s

200-300 cycle access, 50GB/s?

20-35 cycle access, 200GB/s
(128 Bytes/cycle)

❄

✻

❄❄
✻✻

❄❄❄
✻✻✻

Lecture 2 – p. 9/36

Importance of Locality

10Tflops GPU

640 GB/s memory←→ L2 cache bandwidth

32 bytes/line

640 GB/s ≡ 20G line/s ≡ 80G double/s

At worst, each flop requires 2 inputs and has 1 output,
forcing loading of 3 lines =⇒ 7 Gflops

If all 4 doubles/line are used, increases to 27 Gflops

To get up to 4 TFlops needs about 50 flops per double
transferred to/from device memory

Even with careful implementation, many algorithms are
bandwidth-limited not compute-bound

Lecture 2 – p. 10/36

Practical 1 kernel

__global__ void my_first_kernel(float *x)

{

int tid = threadIdx.x + blockDim.x*blockIdx.x;

x[tid] = threadIdx.x;

}

32 threads in a warp will address neighbouring
elements of array x

if the data is correctly “aligned” so that x[0] is at the
beginning of a cache line, then x[0] – x[31] will be in
same cache line – a “coalesced” transfer

hence we get perfect spatial locality

Lecture 2 – p. 11/36

A bad kernel

__global__ void bad_kernel(float *x)

{

int tid = threadIdx.x + blockDim.x*blockIdx.x;

x[1000*tid] = threadIdx.x;

}

in this case, different threads within a warp access
widely spaced elements of array x – a “strided” array
access

each access involves a different cache line, so
performance will be much worse

Lecture 2 – p. 12/36

Global arrays

So far, concentrated on global / device arrays:

held in the large device memory

allocated by host code

pointers held by host code and passed into kernels

continue to exist until freed by host code

since blocks execute in an arbitrary order, if one block
modifies an array element, no other block should read
or write that same element

Lecture 2 – p. 13/36

Global variables

Global variables can also be created by declarations with
global scope within kernel code file

__device__ int reduction_lock=0;

__global__ void kernel_1(...) {

...

}

__global__ void kernel_2(...) {

...

}

Lecture 2 – p. 14/36

Global variables

the __device__ prefix tells nvcc this is a global
variable in the GPU, not the CPU.

the variable can be read and modified by any kernel

its lifetime is the lifetime of the whole application

can also declare arrays of fixed size

can read/write by host code using special routines
cudaMemcpyToSymbol, cudaMemcpyFromSymbol

or with standard cudaMemcpy in combination with
cudaGetSymbolAddress

in my own CUDA programming, I rarely use this
capability but it is occasionally very useful

Lecture 2 – p. 15/36

Constant variables

Very similar to global variables, except that they can’t be
modified by kernels:

defined with global scope within the kernel file using the
prefix __constant__

initialised by the host code using
cudaMemcpyToSymbol, cudaMemcpyFromSymbol

or cudaMemcpy in combination with
cudaGetSymbolAddress

I use it all the time in my applications; practical 2 has an
example

Lecture 2 – p. 16/36

Constant variables

Only 64KB of constant memory, but big benefit is that each
SM has a 8KB cache

when all threads read the same constant, almost as fast
as a register

doesn’t tie up a register, so very helpful in minimising
the total number of registers required

Lecture 2 – p. 17/36

Constants

A constant variable has its value set at run-time

But code also often has plain constants whose value is
known at compile-time:

#define PI 3.1415926f

a = b / (2.0f * PI);

Leave these as they are – they seem to be embedded into
the executable code so they don’t use up any registers

Don’t forget the f at the end if you want single precision;
in C/C++

single× double = double
Lecture 2 – p. 18/36

Registers

Within each kernel, by default, individual variables are
assigned to registers:

__global__ void lap(int I, int J,

float *u1, float *u2) {

int i = threadIdx.x + blockIdx.x*blockDim.x;

int j = threadIdx.y + blockIdx.y*blockDim.y;

int id = i + j*I;

if (i==0 || i==I-1 || j==0 || j==J-1) {

u2[id] = u1[id]; // Dirichlet b.c.’s

}

else {

u2[id] = 0.25f * (u1[id-1] + u1[id+1]

+ u1[id-I] + u1[id+I]);

}

} Lecture 2 – p. 19/36

Registers

64K 32-bit registers per SM

up to 255 registers per thread

up to 2048 threads per SM (at most 1024 per thread
block)

max registers per thread =⇒ 256 threads

max threads =⇒ 32 registers per thread

8× difference between “fat” and “thin” threads

Lecture 2 – p. 20/36

Registers

What happens if your application needs more registers?

They “spill” over into L1 cache, and from there to device
memory – precise mechanism unclear, but

either certain variables become device arrays with one
element per thread

or the contents of some registers get “saved” to device
memory so they can used for other purposes, then the data
gets “restored” later

Either way, the application suffers from the latency and
bandwidth implications of using device memory

Lecture 2 – p. 21/36

Local arrays

What happens if your application uses a little array?

__global__ void lap(float *u) {

float ut[3];

int tid = threadIdx.x + blockIdx.x*blockDim.x;

for (int k=0; k<3; k++)

ut[k] = u[tid+k*gridDim.x*blockDim.x];

for (int k=0; k<3; k++)

u[tid+k*gridDim.x*blockDim.x] =

A[3*k]*ut[0]+A[3*k+1]*ut[1]+A[3*k+2]*ut[2];

}

Lecture 2 – p. 22/36

Local arrays

In simple cases like this (quite common) compiler converts
to scalar registers:

__global__ void lap(float *u) {

int tid = threadIdx.x + blockIdx.x*blockDim.x;

float ut0 = u[tid+0*gridDim.x*blockDim.x];

float ut1 = u[tid+1*gridDim.x*blockDim.x];

float ut2 = u[tid+2*gridDim.x*blockDim.x];

u[tid+0*gridDim.x*blockDim.x] =

A[0]*ut0 + A[1]*ut1 + A[2]*ut2;

u[tid+1*gridDim.x*blockDim.x] =

A[3]*ut0 + A[4]*ut1 + A[5]*ut2;

u[tid+2*gridDim.x*blockDim.x] =

A[6]*ut0 + A[7]*ut1 + A[8]*ut2;

}
Lecture 2 – p. 23/36

Local arrays

In more complicated cases, array is put into device memory

this is because registers are not dynamically
addressable – compiler has to specify exactly which
registers are used for each instruction

still referred to in the documentation as a “local array”
because each thread has its own private copy

held in L1 cache by default, may never be transferred
to device memory

192kB of L1 cache equates to 48k 32-bit variables,
which is 48 per thread when using 1024 threads

beyond this, it will have to spill to device memory

Lecture 2 – p. 24/36

Shared memory

In a kernel, the prefix __shared__ as in

__shared__ int x_dim;

__shared__ float x[128];

declares data to be shared between all of the threads in
the thread block – any thread can set its value, or read it.

There can be several benefits:

essential for operations requiring communication
between threads (e.g. summation in lecture 4)

useful for data re-use

alternative to local arrays in device memory

Lecture 2 – p. 25/36

Shared memory

If a thread block has more than one warp, it’s not
pre-determined when each warp will execute its instructions
– warp 1 could be many instructions ahead of warp 2,
or well behind.

Consequently, almost always need thread synchronisation
to ensure correct use of shared memory.

Instruction

__syncthreads();

inserts a “barrier”; no thread/warp is allowed to proceed
beyond this point until the rest have reached it (like a roll
call on a school outing)

Lecture 2 – p. 26/36

Shared memory

So far, have discussed statically-allocated shared memory
– the size is known at compile-time

Can also create dynamic shared-memory arrays but this is
more complex

Total size is specified by an optional third argument when
launching the kernel:

kernel<<<blocks,threads,shared_bytes>>>(...)

Using this within the kernel function is complicated/tedious;
see Section 10.2.3 in CUDA C++ Programming Guide

Lecture 2 – p. 27/36

Read-only arrays

With “constant” variables, each thread reads the same
value.

In other cases, we have arrays where the data doesn’t
change, but different threads read different items.

In this case, can get improved performance by telling the
compiler by declaring global array with

const restrict

qualifiers so that the compiler knows that it is read-only

Lecture 2 – p. 28/36

Vector variables / 16-bit floats

Section 10.3 of CUDA C++ Programming Guide: CUDA
defines small vectors

double2,double3,double4: 2, 3, or 4 doubles

float2,float3,float4: 2, 3, or 4 floats

similar for ints, uints, etc.

Individual components are labelled .x, .y, .z, .w

Also, CUDA defines two kinds of 16-bit floats

half,half2: IEEE fp16 variables

(very limited range: 6×10−5 – 6×104)

bfloat16,bfloat162: bfloat16 variables
(same range as float but much lower precision)

Lecture 2 – p. 29/36

Built-in variables

Section 10.4 of CUDA C++ Programming Guide:

gridDim: type dim3 (like uint3 but all three
components .x, .y, .z initialised to 1 by default)

blockIdx: type uint3

blockDim: type dim3

threadIdx: type uint3

warpSize: type int

(always 32 so far, but might change in future?)

Lecture 2 – p. 30/36

Non-blocking loads/stores

What happens with the following code?

__global__ void lap(float *u1, float *u2) {

float a;

a = u1[threadIdx.x + blockIdx.x*blockDim.x]

...

...

c = b*a;

u2[threadIdx.x + blockIdx.x*blockDim.x] = c;

...

...

}

Load doesn’t block until needed; store also doesn’t block

Lecture 2 – p. 31/36

Active blocks per SM

Each block require certain resources:

threads

registers (registers per thread × number of threads)

shared memory (static + dynamic)

Together these determine how many blocks can be run
simultaneously on each SM – up to a maximum of 32 blocks

Lecture 2 – p. 32/36

Active blocks per SM

My general advice:

number of active threads depends on number of
registers each needs

good to have at least 4 active blocks per SM, each
with at least 128 threads

smaller number of blocks when each needs lots of
shared memory

larger number of blocks when they don’t need any
shared memory

Lecture 2 – p. 33/36

Active blocks per SM

On Volta:

maybe 4 big blocks (512 threads) if each needs a lot of
shared memory

maybe 12 small blocks (128 threads) if no shared
memory needed

or 4 small blocks (128 threads) if each thread needs
lots of registers

Very important to experiment with different block sizes to
find what gives the best performance.

Lecture 2 – p. 34/36

Summary

dynamic device arrays

static device variables / arrays

constant variables / arrays

registers

spilled registers

local arrays

shared variables / arrays

Lecture 2 – p. 35/36

Key reading

CUDA C++ Programming Guide:

Sections 10.1-10.4 – essential

Sections 6.2.2, 6.2.4

Other reading:

Wikipedia article on caches:
en.wikipedia.org/wiki/CPU cache

Lecture 2 – p. 36/36

	Memory
	CPU Memory Hierarchy
	Memory Hierarchy
	Caches
	Importance of Locality
	GPU Architecture
	Ampere
	GPU Memory Hierarchy
	Importance of Locality
	Practical 1 kernel
	A bad kernel
	Global arrays
	Global variables
	Global variables
	Constant variables
	Constant variables
	Constants
	Registers
	Registers
	Registers
	Local arrays
	Local arrays
	Local arrays
	Shared memory
	Shared memory
	Shared memory
	Read-only arrays
	Vector variables / 16-bit floats
	Built-in variables
	Non-blocking loads/stores
	Active blocks per SM
	Active blocks per SM
	Active blocks per SM
	Summary
	Key reading

