
Lecture 4: warp shuffles,
and reduction / scan operations

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Lecture 4 – p. 1/38

Warp shuffles

Warp shuffles are a faster mechanism for moving data
between threads in the same warp.

There are 4 variants:

shfl up sync

copy from a lane with lower ID relative to caller

shfl down sync

copy from a lane with higher ID relative to caller

shfl xor sync

copy from a lane based on bitwise XOR of own lane ID

shfl sync

copy from indexed lane ID

Here the lane ID is the position within the warp
(threadIdx.x%warpSize for 1D blocks)

Lecture 4 – p. 2/38

Warp shuffles

T shfl up sync(unsigned mask, T var,

unsigned int delta);

mask controls which threads are involved — usually set
to -1 or 0xffffffff, equivalent to all 1’s

var is a local register variable (int, unsigned int, long
long, unsigned long long, float or double)

delta is the offset within the warp – if the appropriate
thread does not exist (i.e. it’s off the end of the warp)
then the value is taken from the current thread

T shfl down sync(unsigned mask, T var,

unsigned int delta);

defined similarly
Lecture 4 – p. 3/38

Warp shuffles

T shfl xor sync(unsigned mask, T var, int

laneMask);

an XOR (exclusive or) operation is performed between
laneMask and the calling thread’s laneID to
determine the lane from which to copy the value

(laneMask controls which bits of laneID are “flipped”)

a “butterfly” type of addressing, very useful for reduction
operations and FFTs

T shfl sync(unsigned mask, T var, int

srcLane);

copies data from srcLane

Lecture 4 – p. 4/38

Warp shuffles

Very important

Threads may only read data from another thread
which is actively participating in the shuffle
command. If the target thread is inactive, the
retrieved value is undefined.

This means you must be very careful with conditional code.

Lecture 4 – p. 5/38

Warp shuffles

Two ways to sum all the elements in a warp: method 1

for (int i=1; i<warpSize; i*=2)

value += __shfl_xor_sync(-1, value, i);

t t t t t t t t t t t t t t t t

t t t t t t t t t t t t t t t t

t t t t t t t t t t t t t t t t

t t t t t t t t t t t t t t t t

t t t t t t t t t t t t t t t t

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁❆

❆
❆❆

❆
❆
❆❆

❆
❆
❆❆

❆
❆
❆❆

❆
❆
❆❆

❆
❆
❆❆

❆
❆
❆❆

❆
❆
❆❆

�
�
��

�
�
��

�
�
��

�
�
��❅

❅
❅❅

❅
❅
❅❅

❅
❅
❅❅

❅
❅
❅❅�

�
��

�
�
��

�
�
��

�
�
��❅

❅
❅❅

❅
❅
❅❅

❅
❅
❅❅

❅
❅
❅❅

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟❍❍❍❍❍❍❍

❍❍❍❍❍❍❍

❍❍❍❍❍❍❍

❍❍❍❍❍❍❍ ✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟❍❍❍❍❍❍❍

❍❍❍❍❍❍❍

❍❍❍❍❍❍❍

❍❍❍❍❍❍❍

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘❳❳❳❳❳❳❳❳❳❳❳❳❳❳

❳❳❳❳❳❳❳❳❳❳❳❳❳❳

❳❳❳❳❳❳❳❳❳❳❳❳❳❳

❳❳❳❳❳❳❳❳❳❳❳❳❳❳

❳❳❳❳❳❳❳❳❳❳❳❳❳❳

❳❳❳❳❳❳❳❳❳❳❳❳❳❳

❳❳❳❳❳❳❳❳❳❳❳❳❳❳

❳❳❳❳❳❳❳❳❳❳❳❳❳❳

❄

Lecture 4 – p. 6/38

Warp shuffles

Two ways to sum all the elements in a warp: method 2

for (int i=warpSize/2; i>0; i=i/2)

value += __shfl_down_sync(-1, value, i);

t t t t t t t t t t t t t t t t

t t t t t t t t t t t t t t t t

t t t t t t t t t t t t t t t t

t t t t t t t t t t t t t t t t

t t t t t t t t t t t t t t t t

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

❄

✁
✁
✁✁

�
�
��

�
�
��

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✁
✁
✁✁

�
�
��

�
�
��

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✁
✁
✁✁

�
�
��

�
�
��

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✁
✁
✁✁

�
�
��

�
�
��

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✁
✁
✁✁

�
�
��

�
�
��

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✁
✁
✁✁

�
�
��

�
�

��
✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✁
✁
✁✁

�
�

��

�
�

��
✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✁
✁
✁✁

�
�
��

�
�
��

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✁
✁
✁✁

�
�
��

�
�
��

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✁
✁
✁✁

�
�
��

�
�
��

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

Lecture 4 – p. 7/38

Reduction

The most common reduction operation is computing the
sum of a large array of values:

averaging in Monte Carlo simulation

computing RMS change in finite difference computation
or an iterative solver

computing a vector dot product in a CG or GMRES
iteration

Lecture 4 – p. 8/38

Reduction

Other common reduction operations are to compute a
minimum or maximum.

Key requirements for a reduction operator ◦ are:

commutative: a ◦ b = b ◦ a

associative: a ◦ (b ◦ c) = (a ◦ b) ◦ c

Together, they mean that the elements can be re-arranged
and combined in any order.

(Note: in MPI there are special routines to perform
reductions over distributed arrays.)

Lecture 4 – p. 9/38

Approach

Will describe things for a summation reduction – the
extension to other reductions is obvious

Assuming each thread starts with one value, the approach
is to

first add the values within each thread block, to form a
partial sum

then add together the partial sums from all of the blocks

I’ll look at each of these stages in turn

Lecture 4 – p. 10/38

Local reduction

The first phase is contructing a partial sum of the values
within a thread block.

Question 1: where is the parallelism?

“Standard” summation uses an accumulator, adding one
value at a time =⇒ sequential

Parallel summation of N values:

first sum them in pairs to get N/2 values

repeat the procedure until we have only one value

Lecture 4 – p. 11/38

Local reduction

Question 2: any problems with warp divergence?

Note that not all threads can be busy all of the time:

N/2 operations in first phase

N/4 in second

N/8 in third

etc.

For efficiency, we want to make sure that each warp is
either fully active or fully inactive, as far as possible.

Lecture 4 – p. 12/38

Local reduction

Question 3: where should data be held?

Threads need to access results produced by other threads:

global device arrays would be too slow, so use shared
memory

need to think about synchronisation

Lecture 4 – p. 13/38

Local reduction

Pictorial representation of the algorithm:

✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈

✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈

✈ ✈ ✈ ✈

✈ ✈

✈

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✟✟✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✟✟

�
�
�
��

�
�
�
��

✁
✁
✁
✁✁

second half added pairwise to first half

by leading set of threads

Lecture 4 – p. 14/38

Local reduction

__global__ void sum(float *d_sum,float *d_data)

{

extern __shared__ float temp[];

int tid = threadIdx.x;

temp[tid] = d_data[tid+blockIdx.x*blockDim.x];

for (int d=blockDim.x/2; d>0; d=d/2) {

__syncthreads();

if (tid<d) temp[tid] += temp[tid+d];

}

if (tid==0) d_sum[blockIdx.x] = temp[0];

}

Lecture 4 – p. 15/38

Local reduction

Note:

use of dynamic shared memory – size has to be
declared when the kernel is called

use of syncthreads to make sure previous
operations have completed

first thread outputs final partial sum into specific place
for that block

could use shuffles when only one warp still active

alternatively, could reduce each warp, put partial sums
in shared memory, and then the first warp could reduce
the sums – requires only one syncthreads

Lecture 4 – p. 16/38

Global reduction: version 1

This version of the local reduction puts the partial sum for
each block in a different entry in a global array

These partial sums can be transferred back to the host for
the final summation – practical 4

Lecture 4 – p. 17/38

Global reduction: version 2

Alternatively, can use the atomic add discussed in the
previous lecture, and replace

if (tid==0) d_sum[blockIdx.x] = temp[0];

by

if (tid==0) atomicAdd(&d_sum,temp[0]);

Lecture 4 – p. 18/38

Global reduction: version 2

More general reduction operations could use the atomic
lock mechanism, also discussed in the previous lecture:

if (tid==0) d_sum[blockIdx.x] = temp[0];

by

if (tid==0) {

do {} while(atomicCAS(&lock,0,1)); // set lock

*d_sum += temp[0];

__threadfence(); // wait for write completion

lock = 0; // free lock

}
Lecture 4 – p. 19/38

Scan operation

Given an input vector ui, i = 0, . . . , I−1, the objective of a
scan operation is to compute

vj =
∑

i<j

ui for all j < I.

Why is this important?

a key part of many sorting routines

arises also in particle filter methods in statistics

related to solving long recurrence equations:

vn+1 = (1−λn)vn + λnun

a good example that looks impossible to parallelise

Lecture 4 – p. 20/38

Scan operation

Before explaining the algorithm, here’s the “punch line”:

some parallel algorithms are tricky – don’t expect them
all to be obvious

check NVIDIA’s sample codes, check the literature
using Google – don’t put lots of effort into re-inventing
the wheel

the relevant literature may be more than 30 years old
– back to the glory days of CRAY vector computing
and Thinking Machines’ massively-parallel CM5

Lecture 4 – p. 21/38

Scan operation

Similar to the global reduction, the top-level strategy is

perform local scan within each block

add on sum of all preceding blocks

Will describe two approaches to the local scan, both similar
to the local reduction

first approach:

very simple using shared memory, but O(N logN)
operations

second approach:

more efficient using warp shuffles with O(N)
operations

Lecture 4 – p. 22/38

Local scan: version 1

✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉

✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉

✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉

✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉

❅
❅
❅❘

❅
❅
❅❘

❅
❅
❅❘

❅
❅
❅❘

❅
❅
❅❘

❅
❅
❅❘

❅
❅
❅❘❍❍❍❍❍❍❥

❍❍❍❍❍❍❥

❍❍❍❍❍❍❥

❍❍❍❍❍❍❥

❍❍❍❍❍❍❥

❍❍❍❍❍❍❥❳❳❳❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳❳❳③

after n passes, each sum has local plus preceding 2n−1
values

log2N passes, and O(N) operations per pass
=⇒ O(N logN) operations in total

Lecture 4 – p. 23/38

Local scan: version 1

__global__ void scan(float *d_data) {

extern __shared__ float temp[];

int tid = threadIdx.x;

temp[tid] = d_data[tid+blockIdx.x*blockDim.x];

for (int d=1; d<blockDim.x; d=2*d) {

__syncthreads();

float temp2 = (tid >= d) ? temp[tid-d] : 0;

__syncthreads();

temp[tid] += temp2;

}

...

}

Lecture 4 – p. 24/38

Local scan: version 1

Notes:

increment is set to zero if no element to the left

both __syncthreads(); are needed

Confession: my most common CUDA programming error
is failing to use a __syncthreads(); when needed

Lecture 4 – p. 25/38

Local scan: version 2
The second version starts by using warp shuffles to perform
a scan within each warp, and store the warp sum:

__global__ void scan(float *d_data) {

__shared__ float temp[32];

float temp1, temp2;

int tid = threadIdx.x;

temp1 = d_data[tid+blockIdx.x*blockDim.x];

for (int d=1; d<32; d=2*d) {

temp2 = __shfl_up_sync(-1, temp1,d);

if (tid%32 >= d) temp1 += temp2;

}

if (tid%32 == 31) temp[tid/32] = temp1;

__syncthreads();

...
Lecture 4 – p. 26/38

Local scan: version 2

Next we perform a scan of the warp sums (assuming no
more than 32 warps):

if (tid < 32) {

temp2 = 0.0f;

if (tid < blockDim.x/32)

temp2 = temp[tid];

for (int d=1; d<32; d=2*d) {

temp3 = __shfl_up_sync(-1, temp2,d);

if (tid%32 >= d) temp2 += temp3;

}

if (tid < blockDim.x/32) temp[tid] = temp2;

}

Lecture 4 – p. 27/38

Local scan: version 2

Finally, we add the sum of previous warps:

__syncthreads();

if (tid >= 32) temp1 += temp[tid/32 - 1];

...

}

Lecture 4 – p. 28/38

Global scan: version 1

To complete the global scan there are two options

First alternative:

use one kernel to do local scan and compute partial
sum for each block

use host code to perform a scan of the partial sums

use another kernel to add sums of preceding blocks

Lecture 4 – p. 29/38

Global scan: version 2

Second alternative – do it all in one kernel call

However, this needs the sum of all preceding blocks to add
to the local scan values

Problem: blocks are not necessarily processed in order,
so could end up in deadlock waiting for results from a block
which doesn’t get a chance to start.

Solution: use atomics to create an in-order block ID

Lecture 4 – p. 30/38

Global scan: version 2

Declare a global device variable

__device__ int my_block_count = 0;

and at the beginning of the kernel code use

__shared__ int my_blockId;

if (threadIdx.x==0) {

my_blockId = atomicAdd(&my_block_count, 1);

}

__syncthreads();

which returns the old value of my_block_count and
increments it, all in one operation.

This gives us a way of launching blocks in strict order.

Lecture 4 – p. 31/38

Global scan: version 2

In the second approach to the global scan, the kernel code
does the following:

get in-order block ID

perform scan within the block

wait until another global counter

__device__ volatile int my_block_count2 = 0;

shows that preceding block has computed the sum of
the blocks so far

get the sum of blocks so far, increment the sum with the
local partial sum, then increment my_block_count2

add previous sum to local scan values and store the
results

Lecture 4 – p. 32/38

Global scan: version 2

// get global sum, and increment for next block

if (tid == 0) {

// volatile qualifier critical here

do {} while(my_block_count2 < my_blockId);

shared_sum = global_sum; // copy to shared

global_sum += local_sum; // increment sum

__threadfence(); // wait for write

my_block_count2++; // increment block counter

}

__syncthreads();

Lecture 4 – p. 33/38

Scan operation

Conclusion: this is all quite tricky!

Advice: best to first see if you can get working code from
someone else (e.g. investigate Thrust C++ library)

Don’t re-invent the wheel unless you really think you can do
it better.

Lecture 4 – p. 34/38

Recurrence equation

Given sn, un, want to compute vn defined by

vn = sn vn−1 + un

(Often have

vn = (1−λn) vn−1 + λn un

with 0<λn<1 so this computes a running weighted
average, but that’s not important here.)

Again looks naturally sequential, but in fact it can be
handled in the same way as the scan.

Lecture 4 – p. 35/38

Recurrence equation

Starting from

vn = sn vn−1 + un

vn−1 = sn−1 vn−2 + un−1

then substituting the second equation into the first gives

vn = (snsn−1) vn−2 + (snun−1 + un)

so (sn−1, un−1), (sn, un) −→ (snsn−1, snun−1 + un)

Repeat at each level of the scan, eventually getting

vn = s′nv−1 + u′n

where v−1 represents the last element of the previous block.

Lecture 4 – p. 36/38

Recurrence equation

When combining the results from different blocks we have
the same choices as before:

store s′, u′ back to device memory, combine results for
different blocks on the CPU, then for each block we
have v−1 and can complete the computation of vn

use atomic trick to launch blocks in order, and then after
completing first phase get v−1 from previous block to
complete the computation.

Similarly, the calculation within a block can be performed
using shuffles in a two-stage process:

1. use shuffles to compute solution within each warp

2. use shared memory and shuffles to combine results
from different warps and update solution from first stage

Lecture 4 – p. 37/38

Key reading

CUDA C++ Programming Guide:

Section 10.22: warp shuffle instructions

Section 10.21: new warp reduction instruction
– this is only for integers currently, and I have not
experimented with it

Lecture 4 – p. 38/38

	Warp shuffles
	Warp shuffles
	Warp shuffles
	Warp shuffles
	Warp shuffles
	Warp shuffles
	Reduction
	Reduction
	Approach
	Local reduction
	Local reduction
	Local reduction
	Local reduction
	Local reduction
	Local reduction
	Global reduction: version 1
	Global reduction: version 2
	Global reduction: version 2
	Scan operation
	Scan operation
	Scan operation
	Local scan: version 1
	Local scan: version 1
	Local scan: version 1
	Local scan: version 2
	Local scan: version 2
	Local scan: version 2
	Global scan: version 1
	Global scan: version 2
	Global scan: version 2
	Global scan: version 2
	Global scan: version 2
	Scan operation
	Recurrence equation
	Recurrence equation
	Recurrence equation
	Key reading

