
Lecture 5: Libraries and tools

Prof Wes Armour

wes.armour@eng.ox.ac.uk

Prof Mike Giles

mike.giles@maths.ox.ac.uk

Oxford e-Research Centre

Department of Engineering Science

1

mailto:wes.armour@eng.ox.ac.uk
mailto:wes.armour@eng.ox.ac.uk

Learning outcomes

In this fifth lecture we will learn about GPU libraries and tools for GPU programming.

Specifically:

• NVIDIA GPU libraries and their usefulness in scientific computing.

• Third party libraries.

• Directives based approaches to GPU computation.

• Tools for GPU programming.

2

Software overview

NVIDIA provides a rich ecosystem of
software tools that allow you to
easily utilise GPUs in your project.

During this lecture we will focus on a
range of libraries and software tools
that will make your life easier when
either writing CUDA code or when
utilising GPUs in your projects.

https://developer.nvidia.com/gpu-accelerated-libraries

3

https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries

Dependencies – Advantages / Disadvantages

4

Some advantages:

• Simple to use – you don’t need to write your
own complex code to perform a specific task.

• Well maintained – always benefit from the
latest optimisations and improvements.

• Easier(?) to move from CPU code to GPU
code (for example see cuFFTW).

Some disadvantages:

• Reduces portability - can make installing your
code on another system harder (the user also
needs to have the dependency installed).

• Reliance on a third party - If the dependency
isn’t maintained it could break your code as
other things (e.g. compiler) are updated.

• Inheritance - If your code is very dependent
on it and the developers stop supporting it –
you become the owner (not a great position
to be in).

CUDA math library

The CUDA Math Library contains all of the typical mathematical functions that you
will need for your projects. It is very similar to Intel’s MKL library.

• various exponential and log functions

• trigonometric functions and their inverses

• hyperbolic functions and their inverses

• error functions and their inverses

• Bessel and Gamma functions

• vector norms and reciprocals (esp. for graphics)

• To use - “#include math.h”

The library supports standard int, float and double types, but in recent years has
also added support* for fp4, fp6, fp8, fp16 and bfloat16.

Typecasting and SIMD intrinsics are also included in this library.

C
U

D
A

 M
at

h
 L

ib
ra

ry
 |

 N
V

ID
IA

 D
ev

el
o

p
er

5* To use these lower precision types, you must include the appropriate header, e.g. cuda_fp4.h

https://developer.nvidia.com/cuda-math-library

cuBLAS Library

6

The cuBLAS (CUDA Basic Linear Algebra Subprograms) library provides CUDA
accelerated standard BLAS APIs (for 152 different routines) for dense matrices.

• includes matrix-vector and matrix-matrix product.

• it is possible to call cuBLAS routines from user kernels (via a device API).

• some support for a single routine call to do a “batch” of smaller matrix-matrix
multiplications.

• also support for using CUDA streams to do a large number of small tasks
concurrently.

• has support for multi-GPU operation (cuBLASTxt or cuBLASMg).

• has mixed / low precision implementations.

cuBLAS Library

To use cuBLAS in your codes, a set of routines are called from your host code. These come in
two forms, helper routines and compute routines.

Helper routines for:

• memory allocation

• data copying from CPU to GPU, and vice versa

• error reporting

cuBLAS | NVIDIA Developer

Compute routines for:

• e.g. matrix-matrix and matrix-vector product

• Warning! Some calls are asynchronous, i.e. the call starts the operation

but the host code then continues before it has completed!!

7

https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas

cuBLAS Library

cuBLAS is one of three libraries that utilize
‘tensor cores’. Tensor cores differ from
standard processing cores in that they are
designed to perform very specific operations,
and these operations are executed on mixed-
precision data.

By reducing the precision of your
matrix/vector operations in cuBLAS, you can
achieve significant acceleration.

https://developer.nvidia.com/cublas

8

https://developer.nvidia.com/cublas

cuBLAS Library

Since the introduction of Ampere, there has been a
‘TF32’ variable that serves as a compromise between
FP32 and BFLOAT16. It allows for a balance between
lower precision and FP32 matrix-matrix operations.

Useful for:

• AI Training

• Liner solvers

https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores
9

https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/#:~:text=TF32%20mode%20is%20the%20default,any%20changes%20to%20model%20scripts
https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/#:~:text=TF32%20mode%20is%20the%20default,any%20changes%20to%20model%20scripts
https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/#:~:text=TF32%20mode%20is%20the%20default,any%20changes%20to%20model%20scripts
https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/#:~:text=TF32%20mode%20is%20the%20default,any%20changes%20to%20model%20scripts
https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/#:~:text=TF32%20mode%20is%20the%20default,any%20changes%20to%20model%20scripts
https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/#:~:text=TF32%20mode%20is%20the%20default,any%20changes%20to%20model%20scripts
https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/#:~:text=TF32%20mode%20is%20the%20default,any%20changes%20to%20model%20scripts
https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/#:~:text=TF32%20mode%20is%20the%20default,any%20changes%20to%20model%20scripts
https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/#:~:text=TF32%20mode%20is%20the%20default,any%20changes%20to%20model%20scripts
https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/#:~:text=TF32%20mode%20is%20the%20default,any%20changes%20to%20model%20scripts
https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/#:~:text=TF32%20mode%20is%20the%20default,any%20changes%20to%20model%20scripts
https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/#:~:text=TF32%20mode%20is%20the%20default,any%20changes%20to%20model%20scripts
https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/#:~:text=TF32%20mode%20is%20the%20default,any%20changes%20to%20model%20scripts

cuBLAS Example

https://docs.nvidia.com/cuda/archive/11.4.4/cublas/index.html

SAXPY

Here is an example of using cuBLAS to perform the
SAXPY operation.

SAXPY stands for Single-Precision A·X Plus Y

𝒚 = 𝛼𝒙 + 𝒚

Note the use of cuBLAS_v2.h, cuBLAS.h contains
legacy interfaces so you should pick which best fits
with your needs.

10

https://docs.nvidia.com/cuda/archive/11.4.4/cublas/index.html
http://en.wikipedia.org/wiki/SAXPY

cuBLAS Example

https://developer.nvidia.com/blog/six-ways-saxpy/

Compile with:

Results are as we would expect.

We have initialised 𝑥 to be -1.0, we have multiplied it by
the scalar 𝛼 which we set equal to 2.0.

We then add the output to 𝑦, which was initialised from
0(+3) to 7(+3).

11

https://developer.nvidia.com/blog/six-ways-saxpy/
https://developer.nvidia.com/blog/six-ways-saxpy/
https://developer.nvidia.com/blog/six-ways-saxpy/
https://developer.nvidia.com/blog/six-ways-saxpy/
https://developer.nvidia.com/blog/six-ways-saxpy/

cuTENSOR

12

Tensor cores, originally introduced on Volta in
2017, provided hardware-enabled acceleration
for matrix-matrix multiplies.

• These cores originally performed a 4x4
matrix multiply-accumulate (think of it as a
FMA for matrices) using the wmma::
instruction.

• Matrices A and B would be lower precision
and the accumulators would be the same
or higher precision.

• With Ampere and Hopper, some of these
restrictions have been relaxed.

https://arxiv.org/pdf/2206.02874.pdf
https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
https://developer.nvidia.com/blog/nvidia-automatic-mixed-precision-tensorflow/
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9593-cutensor-
high-performance-tensor-operations-in-cuda-v2.pdf

D = A * B + C

https://arxiv.org/pdf/2206.02874.pdf
https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
https://developer.nvidia.com/blog/nvidia-automatic-mixed-precision-tensorflow/
https://developer.nvidia.com/blog/nvidia-automatic-mixed-precision-tensorflow/
https://developer.nvidia.com/blog/nvidia-automatic-mixed-precision-tensorflow/
https://developer.nvidia.com/blog/nvidia-automatic-mixed-precision-tensorflow/
https://developer.nvidia.com/blog/nvidia-automatic-mixed-precision-tensorflow/
https://developer.nvidia.com/blog/nvidia-automatic-mixed-precision-tensorflow/
https://developer.nvidia.com/blog/nvidia-automatic-mixed-precision-tensorflow/
https://developer.nvidia.com/blog/nvidia-automatic-mixed-precision-tensorflow/
https://developer.nvidia.com/blog/nvidia-automatic-mixed-precision-tensorflow/
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf

cuTENSOR

13

https://developer.nvidia.com/cutensor

https://github.com/NVIDIA/CUDALibrarySamples/blob/master/cuTENSOR/reduction.cu

https://docs.nvidia.com/cuda/cutensor/index.html

Current tensor cores, such as those in Hopper, can
use various precisions and exploit sparsity to
achieve further acceleration.

• FP64 inputs with FP32 compute (DMMA).

• FP32 inputs with FP16, BF16, or TF32
compute.

• Complex-times-real operations.

• Conjugate support (without the need for
transposition).

• Support for tensors with up to 64-
dimensions.

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

https://developer.nvidia.com/cutensor
https://github.com/NVIDIA/CUDALibrarySamples/blob/master/cuTENSOR/reduction.cu
https://docs.nvidia.com/cuda/cutensor/index.html
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

cuTENSOR

14

A useful description of the low-level tensor operations can
be found here:

https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html#improved-
tensor-core-operations

(note this is for Ampere)

Here you can find code for a double precision GEMM
computation using the Double precision Warp Matrix
Multiply and Accumulate (DMMA) here:

https://github.com/NVIDIA/cuda-
samples/tree/master/Samples/3_CUDA_Features/dmmaTensorCoreGemm

Note the differences between generations

https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html#improved-tensor-core-operations
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html#improved-tensor-core-operations
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html#improved-tensor-core-operations
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html#improved-tensor-core-operations
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html#improved-tensor-core-operations
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html#improved-tensor-core-operations
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html#improved-tensor-core-operations
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html#improved-tensor-core-operations
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html#improved-tensor-core-operations
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html#improved-tensor-core-operations
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html#improved-tensor-core-operations
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/3_CUDA_Features/dmmaTensorCoreGemm
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/3_CUDA_Features/dmmaTensorCoreGemm
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/3_CUDA_Features/dmmaTensorCoreGemm

cuFFT Library

15

The cuFFT library is a GPU accelerated library that provides Fast Fourier
Transforms (FFTs).

• It provides 1D, 2D and 3D FFTs.

• It encompasses almost all of the variations found in FFTW and other
CPU libraries.

• It includes the cuFFTW library, a porting tool, to enable users of FFTW
to start using GPUs with minimal effort.

• Provides some device level functionality (If this is something of
interest, ask me, we have already produced shared memory device level
FFTs for some of our projects).

cuFFT Library

16

cuFFT is used exactly like cuBLAS - it has a set of routines called by host code:

Helper routines include “plan” construction.

Compute routines perform 1D, 2D, 3D FFTs:

• cufftExecC2C() - complex-to-complex.
• cufftExecR2C() - real-to-complex.
• cufftExecC2R() - complex-to-real.

(double precision routines have different function calls, e.g. cufftExecZ2Z())

It supports doing a “batch” of independent transforms, e.g. applying 1D
transform to a 3D dataset.

The simpleCUFFT example in SDK is a good starting point.

https://docs.nvidia.com/cuda/cufft/index.html#introduction

https://docs.nvidia.com/cuda/cufft/index.html#introduction

cuFFT Example

17

Sample time = 1 millisecond

Number of samples (NX) = 1000

So signal length = 1 second

Create a sinusoid with 10 cycles over the
duration of the signal.

Hence frequency of sinusoid is 10 Hz.

Question: Anything wrong with this code?

cuFFT Example

18

Compile with:

Frequency resolution = sampling rate / FFT length

So, given a signal of length 1 second, having 10 cycles in it,
we expect a 10Hz response.

Exactly what we see.

cuSPARSE Library

19

cuSPARSE is a GPU accelerated library that provides various routines to
work with sparse matrices.

• Includes sparse matrix-vector and matrix-matrix products.

• Can be used for iterative solution (but see cuSOLVER for an easy life).

• Also has solution of sparse triangular system

• Note: batched tridiagonal solver is in cuBLAS not cuSPARSE

cuRAND Library

20

The cuRAND library is a GPU accelerated library for random number
generation.

It has many different algorithms for pseudorandom and quasi-
random number generation.

Pseudo: XORWOW, mrg32k3a, Mersenne Twister and Philox 4x32_10
Quasi: SOBOL and Scrambled SOBOL

Uniform, Normal, log-Normal and Poisson outputs

This library also includes device level routines for RNG within user
kernels.

cuRAND Example

21

Here is an example of using cuRAND.

This code generates a normal distribution with
a mean of zero, standard deviation equal to
one.

It prints out the generated numbers to a file.

To compile:

cuRAND Example

22

Using matplotlib:

cuSOLVER

23

cuSOLVER brings together cuSPARSE and cuBLAS.

Has solvers for dense and sparse systems.

Key LAPACK dense solvers, 3 – 6x faster than MKL.

Sparse direct solvers, 2–14x faster than CPU equivalents.

Other notable libraries

24

CUB (CUDA Unbound): https://nvidia.github.io/cccl/cub/

• Provides a collection of basic building blocks at three levels: device,
thread block, warp.

• Functions include sort, scan and reduction.
• Thrust uses CUB for CUDA versions of key algorithms.
• API Reference: https://docs.nvidia.com/cuda/cub/index.html

AmgX (originally named NVAMG): http://developer.nvidia.com/amgx

• Library for algebraic multigrid.
• Well suited for implicit unstructured methods.

https://nvidia.github.io/cccl/cub/
https://docs.nvidia.com/cuda/cub/index.html
http://developer.nvidia.com/amgx

Other notable libraries

25

cuDNN

• Library for Deep Neural Networks
• Some parts developed by Jeremy Appleyard (NVIDIA) when working in Oxford

nvGraph
• Page Rank, Single Source Shortest Path, Single Source Widest Path
• https://developer.nvidia.com/nvgraph

NPP (NVIDIA Performance Primitives)
• Library for imaging and video processing
• Includes functions for filtering, JPEG decoding, etc.

CUDA Video Decoder API…

https://developer.nvidia.com/nvgraph
https://developer.nvidia.com/nvgraph

Libraries

NCCL

The NVIDIA Collective Communication Library (NCCL) is a low
level library that allows GPUs to communicate within a node and
across nodes. It provides functionality such as:

• all-gather,
• all-reduce,
• broadcast,
• point-to-point.

Optimised for PCIe and NVLink (within a node) and over NVIDIA
Mellanox Network between nodes.

For ML people – use torch.distributed

https://developer.nvidia.com/nccl
https://pytorch.org/docs/stable/distributed.html

26

https://developer.nvidia.com/nccl
https://pytorch.org/docs/stable/distributed.html

MAGMA

27

MAGMA (Matrix Algebra on GPU and Multicore Architectures) has been available for a few years (See nice SC17
handout: http://www.icl.utk.edu/files/print/2017/magma-sc17.pdf)

• LAPACK for GPUs – higher level numerical linear algebra, layered on top of cuBLAS.

• It supports interfaces to current LA packages so porting from a previous LAPACK code is easy.

• MAGMA allows applications to exploit heterogeneous systems consisting of multicore CPUs and multi-GPUs.

https://icl.utk.edu/magma/
https://developer.nvidia.com/magma

http://www.icl.utk.edu/files/print/2017/magma-sc17.pdf
http://www.icl.utk.edu/files/print/2017/magma-sc17.pdf
http://www.icl.utk.edu/files/print/2017/magma-sc17.pdf
https://icl.utk.edu/magma/
https://developer.nvidia.com/magma

ArrayFire

28

Originally a commercial software (from Accelereyes), but is now open source.

• Supports both CUDA, OpenCL and OneAPI execution.

• C, C++ and Python interfaces.

• Supports NVIDA and AMD GPUs/APUs, Intel processors and mobile
devices from ARM, Qualcomm…

• Wide range of functionality including linear algebra, image and signal
processing, random number generation, sorting…

• Actively developed.

https://arrayfire.com/
https://github.com/arrayfire/arrayfire

https://arrayfire.com/
https://github.com/arrayfire/arrayfire

Thrust

29

Thrust is a high-level C++ template library with an interface based on
the C++ Standard Template Library (STL).

Thrust has a very different philosophy to other libraries - users write
standard C++ code (no CUDA) but get the benefits of GPU acceleration.

Thrust relies on C++ object-oriented programming – certain objects exist
on the GPU, and operations involving them are implicitly performed on
the GPU.

It has lots of built-in functions for operations like sort and scan.

It also simplifies memory management and data movement.

https://thrust.github.io/

https://thrust.github.io/

Kokkos

30

Kokkos is another high-level C++ template library,
similar to Thrust.

It has been developed in the US DoE Labs, so there is
considerable investment in both capabilities and on-
going software maintenance.

Could be worth investigating if you are considering using
Thrust in your projects.

For more information see
https://kokkos.github.io/kokkos-core-wiki/
https://kokkos.org/about/

https://kokkos.github.io/kokkos-core-wiki/
https://kokkos.github.io/kokkos-core-wiki/
https://kokkos.github.io/kokkos-core-wiki/
https://kokkos.github.io/kokkos-core-wiki/
https://kokkos.github.io/kokkos-core-wiki/
https://kokkos.org/about/

A final word on libraries

31

NVIDIA maintains webpages with links to a variety of CUDA
libraries:

www.developer.nvidia.com/gpu-accelerated-libraries

and other tools:

www.developer.nvidia.com/tools-ecosystem

https://en.wikipedia.org/wiki/Duke_Humfrey%27s_Library

http://www.developer.nvidia.com/gpu-accelerated-libraries
http://www.developer.nvidia.com/gpu-accelerated-libraries
http://www.developer.nvidia.com/gpu-accelerated-libraries
http://www.developer.nvidia.com/gpu-accelerated-libraries
http://www.developer.nvidia.com/gpu-accelerated-libraries
http://www.developer.nvidia.com/tools-ecosystem
http://www.developer.nvidia.com/tools-ecosystem
http://www.developer.nvidia.com/tools-ecosystem
https://en.wikipedia.org/wiki/Duke_Humfrey%27s_Library

A note on directive based approaches and
other languages

32

OpenMP

33

OpenMP 5.0 is a directive based approach to
parallelisation.

• It uses a fork-join model.

• Can be used in C / C++ and FORTRAN codes.

• It supports both CPU and GPU hardware.

Is now becoming the industry standard for in node CPU
parallelisation.

By Wikipedia user A1 - w:en:File:Fork_join.svg, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=32004077

https://commons.wikimedia.org/w/index.php?curid=32004077

SYCL

34

SYCL (“sickle”) - C++ Single-source Heterogeneous Programming for
OpenCL.

From KHRONOS Group (responsible for OpenCL).

Provides an abstraction layer that builds on OpenCL.

It enables code for heterogeneous processors to be written in a
“single-source” style using completely standard C++.

Supported by Intel, NVIDIA and AMD.

Other Languages

35

FORTRAN: CUDA FORTRAN compiler with natural FORTRAN equivalent to CUDA C.

MATLAB: can call kernels directly, or use OOP like Thrust to define MATLAB objects which live on the GPU
https://uk.mathworks.com/help/parallel-computing/run-matlab-functions-on-a-gpu.html

Mathematica: similar to MATLAB?

Python: CuPy (compatible with NumPy – acceleration for array computations), Numba and CUDA python
http://mathema.tician.de/software/pycuda
https://store.continuum.io/cshop/accelerate/
https://developer.nvidia.com/cuda-python
https://developer.nvidia.com/how-to-cuda-python
https://nvidia.github.io/cuda-python/overview.html

https://uk.mathworks.com/help/parallel-computing/run-matlab-functions-on-a-gpu.html
https://uk.mathworks.com/help/parallel-computing/run-matlab-functions-on-a-gpu.html
https://uk.mathworks.com/help/parallel-computing/run-matlab-functions-on-a-gpu.html
https://uk.mathworks.com/help/parallel-computing/run-matlab-functions-on-a-gpu.html
https://uk.mathworks.com/help/parallel-computing/run-matlab-functions-on-a-gpu.html
https://uk.mathworks.com/help/parallel-computing/run-matlab-functions-on-a-gpu.html
https://uk.mathworks.com/help/parallel-computing/run-matlab-functions-on-a-gpu.html
https://uk.mathworks.com/help/parallel-computing/run-matlab-functions-on-a-gpu.html
https://uk.mathworks.com/help/parallel-computing/run-matlab-functions-on-a-gpu.html
https://uk.mathworks.com/help/parallel-computing/run-matlab-functions-on-a-gpu.html
https://uk.mathworks.com/help/parallel-computing/run-matlab-functions-on-a-gpu.html
https://uk.mathworks.com/help/parallel-computing/run-matlab-functions-on-a-gpu.html
https://uk.mathworks.com/help/parallel-computing/run-matlab-functions-on-a-gpu.html
http://mathema.tician.de/software/pycuda
https://store.continuum.io/cshop/accelerate/
https://developer.nvidia.com/cuda-python
https://developer.nvidia.com/cuda-python
https://developer.nvidia.com/cuda-python
https://developer.nvidia.com/how-to-cuda-python
https://developer.nvidia.com/how-to-cuda-python
https://developer.nvidia.com/how-to-cuda-python
https://developer.nvidia.com/how-to-cuda-python
https://developer.nvidia.com/how-to-cuda-python
https://developer.nvidia.com/how-to-cuda-python
https://developer.nvidia.com/how-to-cuda-python
https://nvidia.github.io/cuda-python/overview.html
https://nvidia.github.io/cuda-python/overview.html
https://nvidia.github.io/cuda-python/overview.html

Libraries

Python - CuPy

36

CuPy is an open-source library that provides a
NumPy/SciPy-compatible array API for GPU computing
within python.

You can replace:

import numpy as np

with

import cupy as cp

and run your existing code on the GPU with minimal
changes.

Libraries

Python - CuPy

37

CuPy can be installed as follows:

https://cupy.dev/
https://docs.cupy.dev/en/stable/

https://cupy.dev/
https://docs.cupy.dev/en/stable/

Libraries

Python - Numba

38

Numba is a just-in-time (JIT) compiler for Python that

translates Python functions into optimized machine code

at runtime. It uses decorators to direct the compiler.

The process is as follows:

• You write a standard Python function that contains slower

python code, like a for loop.

• You add a Numba decorator (e.g., @jit) on the line above

your function definition.

• The first time your function is called, Numba's compiler acts. It

compiles a highly optimized, type-specific version of your

function, then all subsequent calls to that function use the

fast, compiled version directly (rather than the slower Python

interpreter).

Libraries

Python - Numba

39

Numba standard decorators are:

• @jit: This is the main decorator, it will speed up your functions on the

CPU.

• @vectorize: This allows you to create NumPy "universal functions"

(ufuncs) out of a simple Python function.

• @cuda.jit: This compiles your Python function into a CUDA kernel to

be run on an NVIDIA GPU.

Libraries

Python - PyCUDA

40

PyCUDA is far closer to the familiar CUDA that we have
been teaching you this week.

It works by taking C/CUDA code as a python string and
compiling it on-the-fly and returning a python object.

• SourceModule: This is a class provided by PyCUDA. It takes a
string containing source code for a CUDA kernel.

• Compilation: When you create a SourceModule object,
PyCUDA takes that string and passes it to nvcc which compiles
to machine code for execution.

• The variable mod holds the result of this compilation, a
compiled "module." You can think of this module as a container
for all the functions you defined in your C/C++ string.

Other useful things…

41

https://developer.nvidia.com/tools-ecosystem
https://developer.nvidia.com/language-solutions
https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/hpc-compilers

https://developer.nvidia.com/tools-ecosystem
https://developer.nvidia.com/tools-ecosystem
https://developer.nvidia.com/tools-ecosystem
https://developer.nvidia.com/language-solutions
https://developer.nvidia.com/language-solutions
https://developer.nvidia.com/language-solutions
https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/hpc-compilers
https://developer.nvidia.com/hpc-compilers
https://developer.nvidia.com/hpc-compilers

Which library should I use for my problem?

42

The seven dwarfs

43

Phil Colella a senior researcher at Lawrence Berkeley
National Laboratory, talked about “7 dwarfs” of numerical
computation in 2004.

Expanded to 13 by a group of UC Berkeley professors in a
2006 report: “A View from Berkeley”
www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-
183.pdf

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

The seven dwarfs

44

These 13 dwarfs define key algorithmic kernels in many
scientific computing applications.

They have been very helpful to focus attention on HPC
challenges and development of libraries and problem-
solving environments/frameworks.

The seven dwarfs

45

1. Dense linear algebra

2. Sparse linear algebra

3. Spectral methods

4. N-body methods

5. Structured grids

6. Unstructured grids

7. Monte Carlo

1. Dense Linear Algebra

46

Many tools available, some from NVIDIA, some third party:

• cuBLAS

• cuSOLVER

• MAGMA

• ArrayFire

CUTLASS, an NVIDIA tool for Fast Linear Algebra in CUDA
C++ might also be worth a look if you can’t use the above
libraries for any reason.

https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/

https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/

2. Sparse Linear Algebra

47

Iterative solvers

• Some available in PetSc (Portable, Extensible Toolkit for
Scientific Computation, for solving PDEs) -
https://petsc.org/release/overview/nutshell/

• Others can be implemented using sparse matrix-vector
multiplication from cuSPARSE (is also now in PETSc).

• NVIDIA has AmgX, an algebraic multigrid library.

Direct solvers

• NVIDIA’s cuSOLVER.
• SuperLU project (Gaussian elimination with partial pivoting)

https://portal.nersc.gov/project/sparse/superlu/

• STRUMPACK (ask Mike)
https://portal.nersc.gov/project/sparse/strumpack//

https://petsc.org/release/overview/nutshell/
https://portal.nersc.gov/project/sparse/superlu/
https://portal.nersc.gov/project/sparse/strumpack/

3. Spectral methods

48

cuFFT /cuFFTW

Library provided / maintained by NVIDIA

For those interested in FFTs on GPUs – ask me…

4. N-Body methods

49

OpenMM:
• http://openmm.org/

open source package to support molecular
modelling, developed at Stanford.

Fast multipole methods:
• ExaFMM by Yokota and Barba:

http://www.bu.edu/exafmm/

• FMM2D by Holm, Engblom, Goude,
Holmgren: http://user.it.uu.se/~stefane/freeware
https://lorenabarba.com/figshare/exafmm-10-years-
7-re-writes-the-tortuous-progress-of-computational-
research/

• Software by Takahashi, Cecka, Fong, Darve:
http://onlinelibrary.wiley.com/doi/10.1002/nme.324
0/pdf

https://docs.nvidia.com/cuda/cuda-samples/index.html#cuda-n-body-simulation

https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/nbody/doc/nbody_gems3_ch31.pdf

http://openmm.org/
http://openmm.org/
http://www.bu.edu/exafmm/
http://user.it.uu.se/~stefane/freeware
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes-the-tortuous-progress-of-computational-research/
http://onlinelibrary.wiley.com/doi/10.1002/nme.3240/pdf
http://onlinelibrary.wiley.com/doi/10.1002/nme.3240/pdf
https://docs.nvidia.com/cuda/cuda-samples/index.html#cuda-n-body-simulation
https://docs.nvidia.com/cuda/cuda-samples/index.html#cuda-n-body-simulation
https://docs.nvidia.com/cuda/cuda-samples/index.html#cuda-n-body-simulation
https://docs.nvidia.com/cuda/cuda-samples/index.html#cuda-n-body-simulation
https://docs.nvidia.com/cuda/cuda-samples/index.html#cuda-n-body-simulation
https://docs.nvidia.com/cuda/cuda-samples/index.html#cuda-n-body-simulation
https://docs.nvidia.com/cuda/cuda-samples/index.html#cuda-n-body-simulation
https://docs.nvidia.com/cuda/cuda-samples/index.html#cuda-n-body-simulation
https://docs.nvidia.com/cuda/cuda-samples/index.html#cuda-n-body-simulation
https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/nbody/doc/nbody_gems3_ch31.pdf
https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/nbody/doc/nbody_gems3_ch31.pdf
https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/nbody/doc/nbody_gems3_ch31.pdf

5. Structured grids

50

Lots of people have developed one-off applications.

No great need for a library for single block codes (though
possible improvements from “tiling”?).

Multi-block codes could benefit from a general-purpose
library, mainly for MPI communication.

Oxford OPS project has developed a high-level open-
source framework for multi-block codes,
using GPUs for code execution and MPI for distributed-
memory message-passing.

All implementation details are hidden from “users”, so
they don’t have to know about GPU/MPI programming.

For those interested – ask Mike…

Slffea, Mysid - Drawn by Slffea, vectorized by Mysid.

https://en.wikipedia.org/wiki/User:Slffea
https://en.wikipedia.org/wiki/User:Mysid

6. Unstructured grids

51

In addition to GPU implementations of specific
codes there are projects to create high-level
solutions which others can use for their
application codes:

• Alonso, Darve and others (Stanford).

• Oxford / Imperial College / Warwick project
developed OP2, a general-purpose open-
source framework based on a previous
framework built on MPI.

• If there’s interest Mike could talk about OP2
and OPS in lecture 8/9.

See https://op-dsl.github.io/ for both OPS and OP2

I,
 Z

u
re

ks
, C

C
 B

Y-
SA

 3
.0

 <
h

tt
p

:/
/c

re
at

iv
ec

o
m

m
o

n
s.

o
rg

/l
ic

en
se

s/
b

y-
sa

/3
.0

/>
,

vi
a

W
ik

im
ed

ia
 C

o
m

m
o

n
s

https://op-dsl.github.io/
https://op-dsl.github.io/
https://op-dsl.github.io/

7. Monte Carlo methods

52

• NVIDIA cuRAND library.

• ArrayFire library.

• Some examples in CUDA SDK distribution.

• Nothing else needed except for more
output distributions?

Useful tools

53

Tools - Debugging

54

compute-sanitizer –tool memcheck

A command line tool that detects array out-of-bounds errors, and
mis-aligned device memory accesses – very useful because such
errors can be tough to track down otherwise.

compute-sanitizer --tool racecheck

This checks for shared memory race conditions:

• Write-After-Write (WAW): two threads write data to the same
memory location, but the order is uncertain.

• Read-After-Write (RAW) and Write-After-Read (WAR): one
thread writes and another reads, but the order is uncertain.

compute-sanitizer --tool initcheck

This detects the reading of uninitialised device memory.

compute-sanitizer --tool synccheck

This detects incorrect use of __syncthreads() and related intrinsics.

https://developer.nvidia.com/compute-sanitizer

https://developer.nvidia.com/compute-sanitizer
https://developer.nvidia.com/compute-sanitizer
https://developer.nvidia.com/compute-sanitizer

Tools – CUDA-GDB

55

For those familiar with the GNU debugger – GDB, this is an extension of GDB
that allows users to debug both GPU and CPU code.

All existing GDB debugging features are included for debugging host code and
then further functionality allows the user to debug device code.

Supports C/C++ and Fortran (that includes CUDA code).

Tools - IDEs

56

Integrated Development Environments (IDE):

Nsight Systems – Unified IDE for Windows/Linux/Mac/Jetson:
https://developer.nvidia.com/nsight-systems

Nsight Visual Studio edition – NVIDIA plugin for Microsoft Visual Studio
http://developer.nvidia.com/nvidia-nsight-visual-studio-edition

Nsight Eclipse plugins
https://docs.nvidia.com/cuda/nsight-eclipse-plugins-guide/index.html

these come with editor, debugger, profiler integration

https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
http://developer.nvidia.com/nvidia-nsight-visual-studio-edition
http://developer.nvidia.com/nvidia-nsight-visual-studio-edition
http://developer.nvidia.com/nvidia-nsight-visual-studio-edition
http://developer.nvidia.com/nvidia-nsight-visual-studio-edition
http://developer.nvidia.com/nvidia-nsight-visual-studio-edition
http://developer.nvidia.com/nvidia-nsight-visual-studio-edition
http://developer.nvidia.com/nvidia-nsight-visual-studio-edition
http://developer.nvidia.com/nvidia-nsight-visual-studio-edition
http://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://docs.nvidia.com/cuda/nsight-eclipse-plugins-guide/index.html
https://docs.nvidia.com/cuda/nsight-eclipse-plugins-guide/index.html
https://docs.nvidia.com/cuda/nsight-eclipse-plugins-guide/index.html
https://docs.nvidia.com/cuda/nsight-eclipse-plugins-guide/index.html
https://docs.nvidia.com/cuda/nsight-eclipse-plugins-guide/index.html
https://docs.nvidia.com/cuda/nsight-eclipse-plugins-guide/index.html
https://docs.nvidia.com/cuda/nsight-eclipse-plugins-guide/index.html

Tools - Profiling

57

NVIDIA Profiler ncu or ncu-ui for a graphical interface.

• This is a standalone piece of software for Linux and Windows systems.

• It uses hardware counters to collect a lot of useful information.

• Lots of things can be measured, but the limited number of counters
means that, for some larger applications, it runs the application
multiple to gather necessary information.

• The ncu CLI can be useful if you want to profile on a machine that
you don’t have a graphical interface to.

• Do ncu --help for more info on different options.

https://docs.nvidia.com/cuda/profiler-users-guide/index.html

https://docs.nvidia.com/nsight-compute/NsightCompute/index.html

https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html

What have we learnt?

58

In this lecture we’ve looked at the wide
software ecosystem that now surrounds
GPU computing and how that can be used
to make your life as a programmer easier.

We’ve looked at directives-based
approaches and how these are useful.

Finally, we’ve looked at tools that allow us
to develop CUDA code in an easy and
maintainable way.

	Slide 1: Lecture 5: Libraries and tools
	Slide 2: Learning outcomes
	Slide 3: Software overview
	Slide 4: Dependencies – Advantages / Disadvantages
	Slide 5: CUDA math library
	Slide 6: cuBLAS Library
	Slide 7: cuBLAS Library
	Slide 8: cuBLAS Library
	Slide 9: cuBLAS Library
	Slide 10: cuBLAS Example
	Slide 11: cuBLAS Example
	Slide 12: cuTENSOR
	Slide 13: cuTENSOR
	Slide 14: cuTENSOR
	Slide 15: cuFFT Library
	Slide 16: cuFFT Library
	Slide 17: cuFFT Example
	Slide 18: cuFFT Example
	Slide 19: cuSPARSE Library
	Slide 20: cuRAND Library
	Slide 21: cuRAND Example
	Slide 22: cuRAND Example
	Slide 23: cuSOLVER
	Slide 24: Other notable libraries
	Slide 25: Other notable libraries
	Slide 26: NCCL
	Slide 27: MAGMA
	Slide 28: ArrayFire
	Slide 29: Thrust
	Slide 30: Kokkos
	Slide 31: A final word on libraries
	Slide 32: A note on directive based approaches and other languages
	Slide 33: OpenMP
	Slide 34: SYCL
	Slide 35: Other Languages
	Slide 36: Python - CuPy
	Slide 37: Python - CuPy
	Slide 38: Python - Numba
	Slide 39: Python - Numba
	Slide 40: Python - PyCUDA
	Slide 41: Other useful things…
	Slide 42: Which library should I use for my problem?
	Slide 43: The seven dwarfs
	Slide 44: The seven dwarfs
	Slide 45: The seven dwarfs
	Slide 46: 1. Dense Linear Algebra
	Slide 47: 2. Sparse Linear Algebra
	Slide 48: 3. Spectral methods
	Slide 49: 4. N-Body methods
	Slide 50: 5. Structured grids
	Slide 51: 6. Unstructured grids
	Slide 52: 7. Monte Carlo methods
	Slide 53: Useful tools
	Slide 54: Tools - Debugging
	Slide 55: Tools – CUDA-GDB
	Slide 56: Tools - IDEs
	Slide 57: Tools - Profiling
	Slide 58: What have we learnt?

