
www.oerc.ox.ac.uk

Introduction to the C programming

language

Wes Armour

Oxford e-Research Centre,

Department of Engineering Science

Learning outcomes

In this lecture you will learn about:

• High level computer languages.

• The basic components of a C computer program.

• How data is stored on a computer.

• The difference between statements and expressions.

• What operators and functions are.

• How to control basic input and output.

• Finally how to write a basic C program.

A brief introduction

The C programming language was

devised by Dennis Ritchie at Bell labs in

1972 (yes, it’s predecessor was B!).

C is a high-level programming language,

meaning that it is possible to express

several pages of machine code in just a

few lines of C code.

Other examples of high-level languages

are BASIC, C++, Fortran and Pascal.

They are so called because they are

closer to human language than machine

languages.

A brief introduction

Such high-level languages allow

a programmer to write programs

that are independent of particular

types of computer. This is called

portability.

Portability can be aided by using

an agreed standard when writing

your program (such as C99).

A compiler (such as gcc or icc) is

used to convert your high-level

language program into machine

code that can be executed on a

computer.

int square(int num) {

return num * num;

}

push rbp #2.21

mov rbp, rsp #2.21

sub rsp, 16 #2.21

mov DWORD PTR [-16+rbp], edi #2.21

mov eax, DWORD PTR [-16+rbp] #3.18

imul eax, DWORD PTR [-16+rbp] #3.18

leave #3.18

ret #3.18

01110000011010001010100100100101001

00011111111111101010111100111001010

10101010011111111111101010100101010

10101010101010101001010101010100101

https://godbolt.org/

HLL

Assembly

Code

Machine

Code

The components of a C program

All C programs have some common elements.

• The #include directive tells the compiler

to include other files stored on your HDD

into your C program. These files will include

information that does not change between

programs that your program can use. On

the right we include the standard input and

output library.

• The main() function is the only

component that has to be included in every

C program. It is followed by a pair of
braces: { }

• The return() statement returns values

from a function. Within the main()

function return()can be used to tell the

operating system (in our case Linux)

whether our code completed successfully.

#include <stdio.h>

int main() {

return(0);

}

The C standard library

The C programing language has a rich set of tools that you can use in your code to

make it portable and easer to write.

Using these tools (contained in the C standard library) will save you time, effort and

make your code more understandable to others.

https://xkcd.com/927/

Standard header files

The list on the right describes some

of the more common header files.

These are included into your code in

the same way as we included the

standard input/output header, using
the #include directive.

These tools can save you lots of

time, for example you could use the

random number generator included
in <stdlib.h> rather than writing

your own.

Name Description

<assert.h>

Contains the assert macro, used to assist with

detecting logical errors and other types of bug in

debugging versions of a program.

<complex.h>
A set of functions for manipulating complex

numbers.

<errno.h> For testing error codes reported by library functions.

<math.h> Defines common mathematical functions.

<stdbool.h> Defines a boolean data type.

<stdio.h> Defines core input and output functions

<stdlib.h>
Defines numeric conversion functions, pseudo-

random numbers generation functions, memory

allocation, process control functions

<string.h> Defines string handling functions.

<time.h> Defines date and time handling functions

Storing data

Our previous example program didn’t do

anything though. To make this more useful we

need to store and manipulate data.

A computer stores data as strings of zeros and

ones: 100101111001…

The smallest element of data storage on a

computer is a bit, it can be two things, a zero or

a one.

Eight bits combine to produce a byte. If each bit

in a byte can be either a zero or a one then a

byte can represent:

2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 28 = 256

unique “things”. For example these “things”

could be the numbers from -128 to 127.

In the C language this would be called a char

variable.

#include <stdio.h>

int main() {

char x;

return(0);

}

Variables and Constants

The C language has different numeric data

types that you can use in your program

depending on what type of number you need to

store or manipulate.

This is useful for many reasons. For example if

our program only operates on small numbers

(-128 to 127) then we can use a char which

takes up a single byte of memory rather than

using a long integer that might take 4 bytes or

8 bytes of memory space.

Along with this we might want to work on

decimal numbers. In C, real numbers are

stored as floating point variables, these have a

fractional part. Integers are stored as integer

numbers and have no fractional part.

Variables with more bytes require more

computational operations to manipulate them,

so this will slow down program execution.

Data Type Keyword Minimum

Bytes

Required

Minimum Range

Character char 1 –128 to 127

Short integer short 2 –32767 to 32767

Integer int 4 –2,147,483,647 to

2,147,438,647

Long integer long 4 –2,147,483,647 to

2,147,438,647

Unsigned character unsigned

char

1 0 to 255

Unsigned short

integer

unsigned

short

2 0 to 65535

Unsigned integer unsigned int 4 0 to 4,294,967,295

Unsigned long

integer

unsigned

long

4 0 to 4,294,967,295

Single-precision

floating-point

float 4 1.2E–38 to 3.4E38

Double-precision

floating-point

double 8 2.2E–308 to

1.8E308

Variables and Constants

The amount of bytes needed to store any particular

numeric data type in memory can vary between

computer architectures.
C provides a useful function sizeof() to

determine this.

Numeric data types can either be a variable or a

constant in your C program.

Variables and literal constants can change during

your program execution, symbolic constants cannot.

Literal constants are defined by assigning a number

to the constant:

float radius = 10;

A symbolic constant can be defined using two
methods. The first is by using #define, the other by

using the const keyword.

const float radius = 10;

#include <stdio.h>

#define PI 3.14

int main() {

float radius = 10.0;

float area;

area = PI * radius * radius;

return(0);

}

Statements

A statement in C is a command that instructs the

computer to do something.

An example of a statement is:

area = PI * radius * radius;

This tells the computer to multiply PI by radius and

the multiply the results of this by radius again.

The result of the multiplications is then assigned to
the variable area

All statements in C are terminated with a semi-colon

and all white space (tabs, spaces and blank lines)

are ignored by the compiler (apart from within a

string – more later).

This allows for lots of freedom in formatting your C

program, however to ensure that your code is easy

to work with and reusable by others it is important to

ensure that it is easy to read and understand.

area = PI * radius * radius;

area =

PI *

radius

* radius

;

Is equivalent to

Comments

To ensure that your code is easy to read and understand it’s important to write your code in a

readable and maintainable way.

Adding comments to your code will help others understand your code when they come to work on it.

A comment is text that you or other programmers can read but is ignored by the compiler. A good

code has more comments than source code.

// starts a single line comment

/* Starts a multiline comments and is ended by */

https://xkcd.com/979/

Naming

Using variable names that are meaningful is

a useful thing to do, for example:

area = PI * radius * radius;

is easy to understand, whereas

one = c * two * two;

tells us less about what you want your code

to achieve. Take time to name variables in a

meaningful and intuitive way.

/* This is a C program that

calculates the area of a circle.

Written by Wes

wes.armour@eng.ox.ac.uk

06/05/18

*/

//Include standard IO library

#include <stdio.h>

// Define a symbolic constant, pi.

#define PI 3.14

// The main body of the program

int main() {

// Define variables

float radius = 10.0;

float area;

// Calculate the area

area = PI * radius * radius;

return(0);

}

Expressions

An expression in C is any statement

that evaluates to a numeric value. In

the most basic form this could just be

our previous example of using a
symbolic constant, PI

We use the assignment operator (=)

to assign the result of our expression

to a variable:

variable = expression;

https://www.freepik.com/free-photos-vectors/people Created by Ddraw - Freepik.com

Expressions

However statements can become

complicated very quickly. Consider

summing the area of three circles:

a = p*a*a+p*b*b+p*c*c;

When trying to evaluate the above

where does the computer start with

such an expression? What stops the
computer evaluating a+p first?

Several things can help us ensure that

we get the computer to do the right

thing, separating our expression, using

brackets and operator precedence.

#include <stdio.h>

#define PI 3.14

int main() {

float radius_one = 5.0;

float radius_two = 10.0;

float radius_three = 15.0;

float area_one, area_two, area_three;

float total_area;

area_one = PI * radius_one * radius_one;

area_two = PI * radius_two * radius_two;

area_three = PI * radius_three * radius_three;

total_area = area_one + area_two + area_three;

return(0);

}

Operators

An operator in C is a symbol that instructs

the computer to perform an operation on an

operand.

Precedence tells the computer which

operation should be performed first in an

expression. Returning to our example of

calculating the area of a circle:

area = PI * radius * radius;

We see that multiply (*) has a precedence

of 3, whereas assignment (=) has a lower

precedence of 7, meaning multiplication is

carried out then the assignment.

The order in which the multiplication is

carried out is determined by the

Associativity of multiplication. We see that

this is Left-to-right. So the order would be:

(PI * radius) * radius

Precedence Operator Description Associativity

1

++ Postfix increment Left-to-right

-- Postfix decrement

() Function call

2

++ Prefix increment Right-to-left

-- Prefix decrement

sizeof Size-of

3

* Multiplication Left-to-right

/ Division

% Modulo (remainder)

4
+ Addition Left-to-right

- Subtraction

5

< Less than Left-to-right

<= Less than or equal to

> Greater than

>= Greater than or equal to

6
== Equal to Left-to-right

!= Not equal to

7

= Direct assignment Right-to-left

+= Assignment by sum

-= Assignment by difference

*= Assignment by product

/= Assignment by quotient

Functions

A function is an independent piece of C code

that performs a specific task. The function may

or may not return a value to the calling code.

For example it might calculate the area of a

circle, or it might print a message to the screen.

• A function has a unique name

• A function is independent of other parts of

your code, so it is self contained.

• A function performs a specific task in your

code.

• A function may or may not have a return

value.

On the right we see how we can use a function

in our example code that calculates and sums

the area of three circles.

#include <stdio.h>

#define PI 3.14

float area_of_circle(float radius);

int main() {

float radius_one = 5.0;

float radius_two = 10.0;

float radius_three = 15.0;

float area_one, area_two, area_three;

float total_area;

area_one = area_of_circle(radius_one);

area_two = area_of_circle(radius_two);

area_three = area_of_circle(radius_three);

total_area = area_one + area_two + area_three;

return(0);

}

float area_of_circle(float radius) {

float area = PI * radius * radius;

return area;

}

Functions

#include <stdio.h>

#define PI 3.14

float area_of_circle(float radius);

int main() {

float radius_one = 5.0;

float radius_two = 10.0;

float radius_three = 15.0;

float area_one, area_two, area_three;

float total_area;

area_one = area_of_circle(radius_one);

area_two = area_of_circle(radius_two);

area_three = area_of_circle(radius_three);

total_area = area_one + area_two + area_three;

return(0);

}

float area_of_circle(float radius) {

float area = PI * radius * radius;

return area;

}

Looking at our example in a little more detail.

float area_of_circle(float radius);

Is the function prototype this tells the compiler
that a function called area_of_circle will be

used later in the code and it will take a float as

an argument and return a float.

We then see the function being called to
calculate area_one, area_two and

area_three.

Finally outside of the main() { } function we

see the function definition. The first line is the

function header and this is exactly the same as

the function prototype (without the semicolon). It

defines the functions name, the parameter list

(variables and their types that are passed to the

function by the calling code), whether it returns

a value (in this case the return type is a float)

and then what it does.

Arrays

Our previous example code could be come very

cumbersome and difficult to maintain if we

wanted to calculate the area of thousands of

circles.

C has arrays to help with this. An array is a

indexed group of data storage, all of the same

type.

C arrays are indexed from 0 to n-1, where n is

the number of elements in the array.

An array is defined in the following way:

float radius[3];

Here we define an array called radius that has 3

elements. It can be initialised using braces.

float radius[3] = {5, 10, 15};

#include <stdio.h>

#define PI 3.14

float area_of_circle(float radius);

int main() {

float radius[3] = {5.0, 10.0, 15.0};

float area[3];

float total_area;

area[0] = area_of_circle(radius[0]);

area[1] = area_of_circle(radius[1]);

area[2] = area_of_circle(radius[2]);

total_area = area[0] + area[1] + area[2];

return(0);

}

float area_of_circle(float radius) {

float area = PI * radius * radius;

return area;

}

Break

Program control

To solve a particular problem your C program might need to take different execution

paths. These might depend on different inputs.

For example we could construct a program that calculates the area or circumference of

a circle depending on what the user requests.

C has various statements that give the programmer control over the flow of execution in

their program. However it’s important to use these sensibly and not create

unmaintainable “spaghetti” code.

https://xkcd.com/292/

Relational operators

The C language has a set of relational

operators that are used to compare

expressions.

For example we could check to see if

our radius is less than or equal to 10:

radius <= 10.0

If our radius is less than or equal to 10

the above expression evaluates to true

(represented by 1).

If our radius is greater than 10 then the

above expression evaluates to false

(represented by 0).

Precedence Operator Description Associativity

5

< Less than Left-to-right

<= Less than or equal to

> Greater than

>= Greater than or equal to

6
== Equal to Left-to-right

!= Not equal to

Logical operators

What if we need to compare more than

one expression at the same time?

C has logical operators to help with this.

Logical operators allow us to combine

two or more relational expressions into

one single expression.

For example we could check to see if

our radius is greater than 5 and less

than or equal to 10:

radius > 5.0 && radius <= 10.0

Precedence Operator Description Associativity

2 ! Logical NOT Right-to-left

11 && Logical AND Left-to-right

12 || Logical OR Left-to-right

Program control – if statement

The if statement evaluates an

expression, if the expression

evaluates to true (1) then the code
following the if statement

executes.

The example on the left checks to

see if we have a radius less than or

equal to 10, if we do then it

calculates the area of a circle.

#include <stdio.h>

#define PI 3.14

int main() {

float radius = 10.0;

float area;

if(radius <= 10.0) {

area = PI * radius * radius;

}

return(0);

}

Program control – if statement

The if statement also has an else

clause. The else clause executes when

the expression evaluated by the if

statement evaluates to false.

An example of this is given on the right.

Here we see that when we have a

radius less than or equal to 10.0 our

code calculates the area of a circle. For

a radius greater than 10 the code

calculates the circumference. In this
example radius = 11.0, so the code

would calculate the circumference.

The example on the right is binary in

the sense that the result gives two

different outcomes dependent on

whether our expression is true or false.

This can be expanded to give many
different outcomes by using else if

(see practical 1).

#include <stdio.h>

#define PI 3.14

int main() {

float radius = 11.0;

float area;

float circumference;

if(radius <= 10.0) {

area = PI * radius * radius;

} else {

circumference = 2.0 * PI * radius;

}

return(0);

}

Program control – for statement

The for statement (often called the for loop)

executes a block of statements a certain

number of defined times. It has the following

structure:

for(start point; relational expression; increment)

statement;

Our example on the right executes as follows:

1. start point is an integer index that is set to
zero (i = 0).

2. The relational expression is evaluated, our
index i is less than 3 (i<3) so the

condition is true (if this evaluates to false

the for loop terminates).

3. Statement then executes (e.g. the area of a

circle is calculated).
4. Next the index i is incremented by one

(i++) and execution returns to step 2.

#include <stdio.h>

#define PI 3.14

float area_of_circle(float radius);

int main() {

int i;

float radius[3] = {5.0, 10.0, 15.0};

float area[3];

float total_area;

for(i=0; i<3; i++) {

area[i] = area_of_circle(radius[i]);

}

total_area = 0.0;

for(i=0; i<3; i++) {

total_area += area[i];

}

return(0);

}

float area_of_circle(float radius) {

float area = PI * radius * radius;

return area;

}

Program control – for statement

The diagram on the right represents the for

loop as a flow diagram.

Consider the following for loop:

for(A; B; C)

D;

The initial starting point A is evaluated.

Then the relational condition B is evaluated.

If B evaluates to true then statement D is

executed. If B evaluates to false then the for

loop ends.

Once statement D has executed, the increment

C is evaluated.

The loop then returns to evaluating the

relational condition B.

A

B

Start

D

C

End

True

False

Program control – while statement

The while statement (often called the while

loop) executes a block of statements while a

certain condition is true. It has the following

structure:

while(relational expression)

statement;

Our example on the right executes as follows:

1. We fist set our integer index i to zero (i =

0).

2. The relational expression is evaluated, our
index i is less than 3 (i<3) so the

condition is true (if this evaluates to false

the while loop terminates).

3. Statement then executes (e.g. the area of a

circle is calculate).
4. Next the index i is incremented by one

(i++) and execution returns to step 2.

#include <stdio.h>

#define PI 3.14

float area_of_circle(float radius);

int main() {

int i;

float radius[3] = {5.0, 10.0, 15.0};

float area[3];

float total_area;

i=0;

while(i<3) {

area[i] = area_of_circle(radius[i]);

i++;

}

total_area = 0.0;

for(i=0; i<3; i++) {

total_area += area[i];

}

return(0);

}

float area_of_circle(float radius) {

float area = PI * radius * radius;

return area;

}

Program control – while statement

The diagram on the right represents the
while loop as a flow diagram.

Consider the following while loop:

while(A)

B;

The relational condition A is evaluated.

If A evaluates to true then statement B is

executed. If A evaluates to false then the

while loop ends.

Once statement B has executed, the loop

evaluates relational condition A again.

A

Start

B

End

True

False

Inputs and Outputs

Many years ago computers were

programmed using a series of punch

cards (right)!

Fortunately the C language has many

functions to help with input and output.

In this lecture we will look at two

commonly used functions.

To print information out to the screen we
will use printf()

To read information from the keyboard we
will use scanf()

These are contained in the stdio.h library.

Arnold Reinhold https://commons.wikimedia.org/wiki/File:FortranCardPROJ039.agr.jpg

Inputs and Outputs

To format input and output C uses conversion specifiers and escape sequences.

The use of these will become clear in the following slides.

Escape sequence Description

\b Backspace

\n Newline

\t Horizontal Tab

\v Vertical Tab

\\ Backslash

\' Single quotation mark

\" Double quotation mark

\? Question mark

Conversion
specifier

Type converted Description

%c char char single character

%d int signed integer

%ld long int long signed integer

%f float, double float or double signed decimal

%s char[] sequence of characters

%u int unsigned integer

%lu long int long unsigned integer

Inputs and Outputs - printf

The keen eyed amongst you will

have noticed an issue with our

example program. Although we

calculate a sum of areas of circles,

we never actually get the result out

of our program.

We can do this using the printf()

statement. In our example program

on the right you can see that we’ve

added a printf() statement.

It works as follows…

#include <stdio.h>

#define PI 3.14

float area_of_circle(float radius);

int main() {

int i;

float radius[3] = {5.0, 10.0, 15.0};

float area[3];

float total_area;

i=0;

while(i<3) {

area[i] = area_of_circle(radius[i]);

i++;

}

total_area = 0.0;

for(i=0; i<3; i++) {

total_area += area[i];

}

printf(“\nTotal area is:\t%f\n”, total_area);

return(0);

}

float area_of_circle(float radius) {

float area = PI * radius * radius;

return area;

}

Inputs and Outputs - printf

We tell printf to print a string to the monitor:
“\nTotal area is:\t%f\n”

We start a new line using the “\n” escape

sequence.

We the print the characters “Total area is:”

We use a tab to neatly separate our words

from our output number using the “\t”

escape sequence.

We use the conversation specifier for a float

“%f” to output a float.

We tell printf that the float to output is
total_area

#include <stdio.h>

#define PI 3.14

float area_of_circle(float radius);

int main() {

int i;

float radius[3] = {5.0, 10.0, 15.0};

float area[3];

float total_area;

i=0;

while(i<3) {

area[i] = area_of_circle(radius[i]);

i++;

}

total_area = 0.0;

for(i=0; i<3; i++) {

total_area += area[i];

}

printf(“\nTotal area is:\t%f\n”, total_area);

return(0);

}

float area_of_circle(float radius) {

float area = PI * radius * radius;

return area;

}

Inputs and Outputs - scanf

You will have also noticed that we

hardcode the radii into our code

{5.0,10.0,15.0}

So if we wanted to use different radii

we would need to change these

values in our source code and then

recompile. That’s not very efficient or

portable.

We can use the scanf() statement

to read three different values,

meaning our code will work for any

combination of radii.

#include <stdio.h>

#define PI 3.14

float area_of_circle(float radius);

int main() {

int i=0;

float radius[3];

float area[3];

float total_area;

printf(“\nEnter three radii:\t”);

scanf(“%f %f %f”, &radius[0], &radius[1], &radius[2]);

while(i<3) {

area[i] = area_of_circle(radius[i]);

i++;

}

total_area = 0.0;

for(i=0; i<3; i++) {

total_area += area[i];

}

printf(“\nTotal area is:\t%f\n”, total_area);

return(0);

}

float area_of_circle(float radius) {

float area = PI * radius * radius;

return area;

}

Inputs and Outputs - scanf

The example code on the right uses the
scanf() statement to read three floats

into our code and then uses these

values to calculate our total area as

before.

Once we execute our code it will print

the message “Enter three radii:” to the

monitor and then wait at the scanf()

statement for the user to enter three

values and press return.

scanf() reads the three values entered

by the user and stores them in

radius[0], radius[1] and radius[2]

respectively.

#include <stdio.h>

#define PI 3.14

float area_of_circle(float radius);

int main() {

int i=0;

float radius[3];

float area[3];

float total_area;

printf(“\nEnter three radii:\t”);

scanf(“%f %f %f”, &radius[0], &radius[1], &radius[2])

while(i<3) {

area[i] = area_of_circle(radius[i]);

i++;

}

total_area = 0.0;

for(i=0; i<3; i++) {

total_area += area[i];

}

printf(“\nTotal area is:\t%f\n”, total_area);

return(0);

}

float area_of_circle(float radius) {

float area = PI * radius * radius;

return area;

}

What have we learnt?

In this lecture you have learnt about the

basic building blocks of a C program.

You have learnt about standard

libraries, expressions and statements.

We have covered how data is stored on

a computer and how it is represented in

C.

You have learnt about functions,

operators, both logical and relational

and program control.

Finally we covered the basics of input

and output.

You should now be in a position to write

your own C program.

Further reading

http://www.learn-c.org/

https://www.cprogramming.com/tutorial/c-tutorial.html

https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html

www.oerc.ox.ac.uk

A deeper dive into C programming

Wes Armour

Oxford e-Research Centre,

Department of Engineering Science

Learning Outcomes

In this lecture you will learn about:

• More about arrays.

• Multidimensional arrays.

• An introduction to pointers.

• Characters and strings.

• Variable scope.

• Advanced program control.

• How to work with files.

• Dynamic memory allocation.

Using Arrays

In lecture two we presented the concept of

arrays and how to use them. Now let’s look

a them in some more detail. What

characterises an array?

• An array is a collection of data storage

locations.

• An array holds data all of the same type.

• Each storage location is called an array

element.

• C arrays are indexed from 0 to n-1,

where n is the number of elements in

the array.

• Arrays can be initialised using braces:

int array[3] = {1,3,5};

As demonstrated in our second lecture

arrays are a useful way to organise

variables in your program.

https://xkcd.com/163/

Using Arrays – single dimensional

In lecture two we used an array called radius to hold different values for the radius of a

circle. This can be represented schematically below.

We have a contiguous collection of array elements, starting at zero, increasing to n-1,

all holding a single value.

array[0] holds the integer value 5, array[1] holds the integer value 10, up to

array[n-1] which holds the integer value 11.

105 15 11

array[0] array[n-1]

int array[n]

…

Using Arrays – multidimensional

We can see that arrays can be very useful

in helping us create compact and easy to

read code. But what if we want to store

something that has more than a single

dimension?

Fortunately C has the concept of

multidimensional arrays. Using these we

can store an entity that has any dimension.

Lets consider the 3x3 identity matrix (right).

We can store this as a 2D array which we

declare as:

int identity[3][3]

In C this would tell the compiler to create a

linear contiguous area in memory to hold

3x3 = 9 ints.

C uses row-major ordering. What does

this mean?

I =
1 0 0
0 1 0
0 0 1

By Cmglee [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)

or GFDL (http://www.gnu.org/copyleft/fdl.html)], from Wikimedia Commons

Using Arrays – multidimensional

Row-major ordering means that consecutive elements within a row reside next to each other

in memory. Rows are then stored (in order) in memory consecutively.

Lets return to our example of the 3x3 identity matrix (below). We see the first element of the

first row is stored first, followed by the second element of the first row, and so on. Then the

first element of the second row is stored, followed by the second element of the second row

etc.

01 0

array[0][0]

int array[3][3]

10 0 00 1

array[0][m] array[1][m] array[2][m]

array[1][1] array[2][2]……

Using Arrays – initialising multidimensional arrays

How do we initialise these arrays in our code?

Previously we showed that a one dimensional array can be initialised as follows:

int array[3] = {1,3,5};

We can initialise a 2D array in the following way:

int identity[3][3] = {{1,0,0},

{0,1,0},

{0,0,1}};

This can be generalised. The example below is the initialisation for a 3D array which

has dimensions p x q x r (I’ve omitted actual values in an attempt to make this clearer).

int array[p][q][r] = {{{},{},{}},

{{},{},{}},

{{},{},{}}};

Using Arrays – using multidimensional arrays

Finally how do we used these arrays

in our code? The code on the right

gives an example of how we initialise

a matrix with random numbers.

To do this we use the random
number generator called rand().

This is a function that returns a

random integer between 0 and

RAND_MAX (where RAND_MAX is

at least 32767). It has the function

prototype:

int rand(void);

which is included in stdlib.h

#include <stdio.h>

#include <stdlib.h>

int main() {

const int els_in_row = 3;

const int els_in_col = 3;

int random[els_in_col][els_in_row];

for(int col=0; col<els_in_col; col++) {

for(int row=0; row<els_in_row; row++) {

random[col][row]=rand();

}

}

printf(“\n\n”);

for(int col=0; col<els_in_col; col++) {

for(int row=0; row<els_in_row; row++) {

printf(“%d\t\t”, random[col][row]);

}

printf(“\n”);

}

return(0);

}

Understanding pointers - memory locations

Our previous example of arrays depicted

a computers memory (RAM) as a

sequence of linear, contiguous storage

elements. We looked at how data items

are stored in each element.

But how does a computer know in which

element the data it wants to access is

stored? For example how does it know
where identity[0][0] is located?

This problem is overcome just as it would

be in the real world. Each memory

location is given a unique address. This

is a simplified view of the actual

mechanics of how memory is addressed,

however it is sufficient for our needs.

Understanding pointers – addressing memory

Lets go back to our previous

description of an integer array.

But now lets add an address.

I’ve chosen to add an integer

address where the beginning
element our array (which is

array[0]) has address 100

(again this is simplified, but its

sufficient to understand

pointers).

Schematically this is

represented on the right.

105 15 11

array[0] array[n-1]

int array[n]

…
100 101 102 … 100+(n-1)Address

Understanding pointers – creating a pointer

The next thing to note is that each

address is a number and so can be

treated like any other number in C.

If we know the address of
array[0] then we could create

another variable to store this

address.

Lets work through the process for

doing this over the next few slides.

Understanding pointers – creating a pointer

As before we declare

our integer array, let’s

declare space for 5

integers (so n=5)

5 11

array[0] array[4]

int array[5]

…
98 99 100 … 100+(5-1)Address

Understanding pointers – creating a pointer

Next we declare a variable
(called ptr_array) that

happens to live at address

98.

At this point it is uninitialized,

so its value is undetermined.

? 5 11

array[0] array[4]

int array[5]

…
98 99 100 … 100+(5-1)Address

ptr_array

Understanding pointers – creating a pointer

Now we store the address
of array[0] in the variable
ptr_array

Because ptr_array

contains the address of
array[0] it points to where

array is stored in memory.

Hence ptr_array is a pointer to array

100 5 11

array[0] array[4]

int array[5]

…
98 99 100 … 100+(5-1)Address

ptr_array

Understanding pointers – using pointers

To work with pointers we need to know

about two operators. These are:

The indirection operator *

The address-of operator &

To understand these operators lets return

to our simple example of calculating the

area of a circle.

We declare a pointer to type float by:

float *ptr_radius;

The indirection operator tells the compiler
that ptr_radius is a pointer to type

float and not a variable of type float.

#include <stdio.h>

#define PI 3.14

int main() {

float radius = 10.0;

float area;

float *ptr_radius;

area = PI * radius * radius;

return(0);

}

Understanding pointers – using pointers

To initialise the pointer (set it to point

to something) we use the address-of

operator:

ptr_radius = &radius;

This tells the compiler to take the
address of the variable radius and

store it in the pointer ptr_radius

The code on the right shows how this

works and tests the results of using a

pointer.

#include <stdio.h>

#define PI 3.14

int main() {

float radius = 10.0;

float *ptr_radius;

float area;

area = PI * radius * radius;

printf(“\nArea:\t%f”, area);

area = 0;

ptr_radius = &radius;

area = PI * (*ptr_radius) * (*ptr_radius);

printf(“\nArea with pointer:\t%f”, area);

return(0);

}

Understanding pointers – using pointers

We can use arithmetic on pointers, just like we can any other numbers.

A schematic demonstrating this is given below.

We also have increment: ptr_radius++;

and decrement operators: ptr_radius--;

Finally we can pass pointers as arguments to functions:

float area_of_circle(float *ptr_radius);

105 15 11

array[0]

*(array+0)

array[n-1]

*(array+n-1)

…

array[1]

*(array+1)

array[2]

*(array+2)

Understanding pointers

https://xkcd.com/138/

Pointers are (arguably) the most

difficult concept to understand in C.

However they are a powerful tool that

can be used to write versatile and

concise code. They also provide a

flexible method for data manipulation.

In “Practical examples using the C

programming language” we will look

at the uses of pointers in more detail.

Break

Characters and Strings

C uses the char variable to store

characters and strings.

C uses ASCII encoding to turn

integer numbers into characters.

An example of this is given on

the right.

C decides whether a char holds

a character or a number

depending on the context of its

use.

https://en.wikipedia.org/wiki/ASCII

#include <stdio.h>

int main() {

char one = 70;

char two = ‘q’;

printf(“\nOne as a character:\t%c”, one);

printf(“\nOne as a number:\t%d”, one);

printf(“\nTwo as a character:\t%c”, two);

printf(“\nTwo as a number:\t%d”, two);

return(0);

}

Characters and Strings

Characters and Strings

C uses arrays of char variables to

store strings.

Stings are terminated with the null

character which is represented by

\0

So a string that has seven

characters needs an array of eight

elements to store it.

The code on the right gives an

example of this and demonstrates

two ways to initialise a character

array with a string.

Recall the conversion specifier for

a string is %s

#include <stdio.h>

int main() {

char one[5] = {‘H’,’a’,’r’,’d’};

char two[5] = “Easy”;

printf(“\nString one:\t%s”, one);

printf(“\nString two:\t%s”, two);

return(0);

}

Characters and Strings

You can also allocate storage

space for your string at compile

time. To do this use one of the two

ways demonstrated in the code on

the right.

#include <stdio.h>

int main() {

char one[] = {‘H’,’a’,’r’,’d’};

char *two = “Easy”;

printf(“\nString one:\t%s”, one);

printf(“\nString two:\t%s”, two);

return(0);

}

Characters and Strings

For a user to interact with your

program they need to be able to

pass it input. C has two methods to

read strings from the keyboard.

The first is the gets() function. This

simply reads all input to the

keyboard until a user presses the

Enter key.

The second is the scanf() function,

this requires the programmer to

specify the format of the input

using conversion specifiers.

Both methods are demonstrated in

the code on the right.

#include <stdio.h>

int main() {

char one[256];

char two[256];

char three[256];

int count;

printf(“\nType some text and press Enter:\n”);

gets(one);

printf(“\nYou typed:\t%s”, one);

printf(“\nType two words and press Enter:\n”);

count = scanf(“%s %s”, &two, &three);

printf(“\nYou entered %d words.”, count);

printf(“\nYour words are: %s and %s”, two, three);

return(0);

}

Variable scope – Global variables

Variable scope refers to the extent to

which different parts of your C program

can “see” a variable that you declare.

The concept of scope allows a

programmer to truly separate out

(structure) their code into independent self

contained routines or functions.

Doing this helps reduce bugs in code and

makes for more reusable code. For

example if a variable can only be seen by

the function that is operating on it, another

function cannot mistakenly corrupt its

value.

In some instances it is desirable to share

a variable amongst the whole code. This
can be done with the extern keyword.

#include <stdio.h>

void print_number(void);

float one = 3.0;

int main() {

extern float one;

print_number(void);

return(0);

}

void print_number(void) {

extern float one;

printf(“\nYour number is:\t%f\n”, one);

}

Variable scope – Local variables

External variables are sometimes called

global variables. Their scope is the whole
program, so main() and any other

functions() that you define.

This is opposite to local variables. A local

variable is defined within a function. As

such its scope is within the function
(remember main() is a function and so

we can have local variables in main()).

Local variables are automatic, meaning

they are created when the function is

called and destroyed when it exits. So an

automatic variable doesn’t retain its value

in between function calls.

To remember the value of a variable

between function calls we can use the

static keyword.

#include <stdio.h>

void print_number(int x);

int main() {

for(int x=0; x<3; x++) {

print_number(x);

}

return(0);

}

void print_number(int x) {

static int y = 0;

printf(“\nx,y are:\t%d %d\n”, x, y);

y--;

}

Variable scope – Local variables

Advanced program control

C provides some additional tools for

advanced program control.

Three of the most useful are:

• break

• continue

• switch

Both break and continue provide

additional control within loops. They are
used within the body of a for() or

while() loop, additionally break can

be used in a switch statement.

The switch statement takes an

argument and then executes code

based on this.

#include <stdio.h>

void print_number(int x);

int main() {

for(int x=0; x<5; x++) {

print_number(x);

if(x == 2) break;

}

int x = 0;

while(1) {

if(x == 3) {

break;

}

print_number(x);

x++;

}

return(0);

}

void print_number(int x) {

static int y = 0;

printf(“\nx,y are:\t%d %df\n”, x, y);

y--;

}

Advanced program control

The switch statement is useful

when you want to compare a

value against a list of known

values. An example might be

allowable responses for input.

More general comparisons are
done by if as we saw

previously.

An example of how the switch

statement can be used is given

on the right.

#include <stdio.h>

void print_number(int x);

int main() {

int choice;

printf(“\nEnter a choice: 1,2 or 3 to exit: “);

scanf(“%d”, &choice);

switch(choice) {

case 1:

printf(“You entered 1”);

break;

case 2:

printf(“You entered 2”);

break;

case 3:

printf(“You entered 3. Exiting.”);

exit(0);

}

return(0);

}

Using files

C provides a number of

different tools for interacting

with files stored on your

computer.

In this lecture we’ll cover

four basic functions for this.

fopen()

fclose()

fprintf()

fscanf()
https://xkcd.com/1360/

Using files – fopen and fclose

The code on the right declares a

pointer to type FILE. Then two char

arrays are declared to hold a file

name and a mode.

The file name is the name of the file

you want to use and the path to it.

We use gets() to read strings

from the keyboard and store these

in our char arrays.

We then use fopen() to try and

open the requested file. If the file

opens successfully then the pointer

fp is initialised. If not the pointer is

set to NULL and we print an error.

Finally we close the file using the
fclose() statement.

#include <stdio.h>

int main() {

FILE *fp;

char filename[200], mode[4];

printf(“\nEnter your file: “);

gets(filename);

printf(“\nEnter a file mode: “);

gets(mode);

if((fp=fopen(filename, mode)) != NULL) {

printf(“\nOpened %s in mode %s”, filename, mode);

} else {

printf(“\nERROR: File not recognised”);

}

fclose(fp);

return(0);

}

Using files – fopen and fclose

In the previous slide we

introduce the concept of

opening a file in different

modes.

The table on the right

outlines different modes

and the and the associated
return value of fopen()

Mode Meaning
Return value from fopen if the file:

Exists Doesn’t exist

r Reading – NULL

w Writing Overwrite if file exists Create new file

a Append
New data is appended

at the end of file
Create new file

r+
Reading +

Writing

New data is written at

the beginning of the file

overwriting existing data

Create new file

w+
Reading +

Writing
Overwrite if file exists Create new file

a+
Reading +

Appending

New data is appended

at the end of file
Create new file

Using files – fprintf and fscanf

The code on the right gives examples
of using the fprintf()and

fscanf() functions (it’s a bit

squashed).

We open a file as before (note the bad

coding practice, the code fails silently if
fopen() fails).

We use fprintf() to print 10

numbers and their squares to a file.
Note how fprintf() works like

printf()

We close the file and reopen it.

We then use fscanf() to read in our

outputted numbers.

Finally we perform a difference of these

and print out to screen.

#include <stdio.h>

int main() {

FILE *fp;

char filename[200], mode[4];

int index[10], square[10];

printf(“\nEnter your file: “), gets(filename);

printf(“\nEnter a file mode: “), gets(mode);

if((fp=fopen(filename, mode)) == NULL) exit(1);

for(int i=0; i<10; i++) {

fprintf(fp, “%d %d”, i, i*i);

}

fclose(fp);

fp=fopen(filename, mode);

for(int i=0; i<10; i++) {

fscanf(fp, “%d %d”, &index[i], &square[i]);

}

for(int i=0; i<10; i++) {

fprintf(fp, “%d %d”, i-index[i],(i*i)-squared[i]);

}

return(0);

}

Working with memory

Up until now all of our example codes

have allocated static memory.

By this we mean that when we write our

code we declare how much memory we

need for particular variables or arrays.

However there might be instances

where we don’t know how much

memory we need until we run the code.

For example we might want to read a

file into our code that is updated on a

daily basis, the files length might be

different on different days.

C provides a process for allocating

memory at runtime. This is called

dynamic memory allocation.

https://en.wikipedia.org/wiki/C_dynamic_memory_allocation

Working with memory

Lets return to our example code from

Lecture two. We can modify this code so

that is asks the user how many areas they

want to calculate and then dynamically

allocates memory for them.

We start by declaring a pointer:

float *radius;

We then use scanf() to get the number

of circles the user wants to work with.

We then use malloc() to allocate the

memory that we need.

After this we use scanf() to get the radii

from the user.

This time we accumulate directly to
total_area

Finally we free()our allocated memory.

#include <stdio.h>

#include <stdlib.h>

#define PI 3.14

float area_of_circle(float radius);

int main() {

int i=0, number_of_circles=0;

float *radius;

float total_area=0;

printf(“\nEnter the number of circles to calculate:\t”);

scanf(“%d”, &number_of_circles);

radius=(float *)malloc(number_of_circles*sizeof(float));

printf(“\nEnter the radii:\n”);

for(i=0; i<number_of_circles; i++) scanf(“%f”, &radius[i]);

i=0;

while(i<number_of_circles) {

total_area += area_of_circle(radius[i]);

i++;

}

printf(“\nTotal area is:\t%f\n”, total_area);

free(radius);

return(0);

}

float area_of_circle(float radius) {

float area = PI * radius * radius;

return area;

}

Working with memory – malloc()

Lets take a closer look at malloc()

Both malloc()and free() are defined

in stdlib.h, so this must be included

into your code to use them.

The function prototype for malloc() is:

void *malloc(size_t num);

size_t is an unsigned integral type and

is used to represent the size of an object

in bytes. The return type of the
sizeof() operator is size_t

malloc() will return NULL if num bytes

cannot be allocated (for example the

computer doesn’t have enough memory

space left)

malloc(size)

memory

allocation

Working with memory – free()

Once we’ve finished working with the

memory that we’ve allocated using
malloc() we should free it so that it

can be used again.

This is done using the free() function.

Its function prototype is:

void free(void *ptr);

Calling free() releases the memory

that is pointed to by ptr

Working with memory – multidimensional arrays

Finally lets return to our identity matrix.

int identity[3][3]

How can we allocate memory for this
using malloc()?

The code snippet on the right shows

how to do this and then free the
allocated memory using free()

int ** identity;

int num_rows = 3;

int num_cols = 3;

// To allocate

identity = (int **)malloc(num_rows * sizeof(int*));

for(int i=0; i<num_rows; i++) {

identity[i] = (int *)malloc(num_cols * sizeof(int));

}

// To free

for(int i=0; i<num_rows; i++) {

free(identity[i]);

}

free(identity);

Working with memory – multidimensional arrays

Schematically this can be

represented by the diagram

on the right.

We begin by allocating a
double pointer to type int**

This in turn points to an array
of pointers of type int*

We then point each of these

at a single dimensional array
of type int.

Identity[1]identity[0] Identity[2]

identity **int

*int

identity[0][0]

identity[0][1]

identity[0][2]

identity[1][0]

identity[1][1]

identity[1][2]

identity[2][0]

identity[2][1]

identity[2][2]

int

What have we learnt?

In this lecture you have learnt about

some of the advanced features of the C

programing language.

We have covered multidimensional

arrays, pointers, characters and strings.

You have learnt about variable scope,

some of the functions that provide

advanced program control and how to

work with files.

Finally we have covered the basics of

dynamic memory allocation.

You should now be in a position to write

your own advanced C program.

Further reading

http://www.learn-c.org/

https://www.cprogramming.com/tutorial/c-tutorial.html

https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html

