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Practical 3: Finite Difference notes

This practical uses finite difference methods to approximate the solution of the
Laplace PDE
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on the unit cube 0 < z,y, z, < 1, subject to specified values for u(zx,y, z) on the
boundary.
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Using a uniform grid with spacing A in each direction, we define w; ;; to be an
approximation to u(iA, jA, kA). We then have
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and using these approximations in the Laplace PDE gives
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which can be re-arranged to give
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To solve this linear system of equations, given specified boundary conditions, we
use the Jacobi iteration
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It can be proved that this converges to the solution of the finite difference
equations.

Note: there are other much better iterative methods (conjugate gradient,
multigrid) which should be used for real applications but they are more
complicated — that’s why we are using Jacobi iteration in this practical.



