Introduction to CUDA Programming on NVIDIA GPUs
Mike Giles

Practical 4: reduction operation

The main objectives in this practical are to learn about:

e how to use dynamically-sized shared memory
e the importance of thread synchronisation
e how to implement global reduction, a key requirement for many applications

e how to use shuffle instructions

What you are to do is as follows:

1. Read through the reduction.cu source file and note the following:

e The main code computes the results using both the CPU and the GPU.
The CPU code is very simple, whereas the GPU code is much more
complex.

e Try to understand the reduction kernel completely.

e The kernel uses dynamically allocated shared memory; the size is a third
argument in the <<< >>> brackets.

2. Compile and run the executable reduction, and check that it gets the correct
result.

3. The code currently assumes the number of threads is a power of 2.

Extend it to handle the general case by finding the largest power of 2 less than
blockSize, and adding the elements beyond that point to the corresponding
first set of elements of that size. Test it with 192 threads.

Rounding n/2 up to the nearest power of 2 (or equivalently rounding n up to
the nearest power of 2 and then dividing by 2) can be accomplished with the
following code:

int m;
for (m=1; m<n; m=2*m) {3}
m=m/2;



(On the course webpage I have provided a little program which demonstrates
other ways of doing this rounding up which are more efficient but also more
obscure.)

. The code currently performs the reduction operation for a single thread block.
Modify the code to perform reduction using multiple blocks with each block
working with a different section of the input array.

As explained in Lecture 4, there are two ways in which the partial sums from
each block can be summed:
e cach block puts its partial sum into a different element of the output
array, and then these are transferred to the host and summed there;

e an atomic addition or lock is used to safely increment a single global sum.
Try at least one of these.

. Modify the block-level reduction to use shuffle instructions as described in
Lecture 4.

. If there is time, modify the laplace3d example from Practical 3 to compute
the root-mean-square change at each timestep. This will require a global
reduction to sum the squared changes.



