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ADAPTIVE EULER-MARUYAMA METHOD FOR
SDES WITH NON-GLOBALLY LIPSCHITZ DRIFT

By Wei Fang and Michael B. Giles

University of Oxford

This paper proposes an adaptive timestep construction for an
Euler-Maruyama approximation of SDEs with non-globally Lipschitz
drift. It is proved that if the timestep is bounded appropriately, then
over a finite time interval the numerical approximation is stable, and
the expected number of timesteps is finite. Furthermore, the order of
strong convergence is the same as usual, i.e. order 1

2
for SDEs with

a non-uniform globally Lipschitz volatility, and order 1 for Langevin
SDEs with unit volatility and a drift with sufficient smoothness. For
a class of ergodic SDEs, we also show that the bound for the moments
and the strong error of the numerical solution are uniform in T, which
allow us to introduce the adaptive multilevel Monte Carlo method to
compute the expectations with respect to the invariant distribution.
The analysis is supported by numerical experiments.

1. Introduction. In this paper we consider an m-dimensional stochas-
tic differential equation (SDE) driven by a d-dimensional Brownian motion:

(1) dXt = f(Xt) dt+ g(Xt) dWt,

with a fixed initial value x0. The standard theory assumes the drift coeffi-
cient f : Rm→ Rm and the diffusion coefficient g : Rm→ Rm×d are both
globally Lipschitz. Under this assumption, there is well-established theory
on the existence and uniqueness of strong solutions, and the numerical ap-
proximation X̂t obtained from the explicit Euler-Maruyama discretization

X̂(n+1)h = X̂nh + f(X̂nh)h+ g(X̂nh) ∆Wn

using a uniform timestep of size h with Brownian increments ∆Wn, plus a
suitable interpolation within each timestep, is known [18] to have a strong
error which is O(h1/2).

The interest in this paper is in other cases in which g is again globally
Lipschitz, but f is only locally Lipschitz. If, for any α, β ≥ 0, f also satisfies
the one-sided growth condition
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〈x, f(x)〉 ≤ α‖x‖2 + β,

where 〈·, ·〉 denotes an inner product, then it is again possible to prove the
existence and uniqueness of strong solutions (see Theorems 2.3.5 and 2.4.1
in [22]). Furthermore (see Lemma 3.2 in [12]), these solutions are stable in
the sense that for any T, p > 0

E

[
sup

0≤t≤T
‖Xt‖p

]
<∞.

The problem is that the numerical approximation X̂t given by the uniform
timestep explicit Euler-Maruyama discretization may not be stable. Indeed,
for the SDE

(2) dXt = −X3
t dt+ dWt,

it has been proved [15] that for any T >0 and p≥2

lim
h→0

E
[
‖X̂T ‖p

]
=∞.

This behaviour has led to research on numerical methods which achieve
strong convergence for these SDEs with a non-globally Lipschitz coefficient,
see [12, 16, 17, 23, 24, 25, 29, 32, 39] and references therein.

The other motivation for this paper is the analysis of a class of ergodic
SDEs which exponentially converge to some invariant measure π, especially
the FENE (Finitely Extensible Nonlinear Elastic) model in [2]. To ensure
the ergodicity, we assume that the SDEs have a locally Lipschitz drift f :
Rm→Rm satisfying the dissipative condition: for some α, β > 0,

(3) 〈x, f(x)〉 ≤ −α‖x‖2 + β,

and a bounded and non-degenerate diffusion coefficient g : Rm → Rm×d.
Evaluating the expectation of some function ϕ(x) with respect to that in-
variant measure π is of great interest in mathematical biology, physics and
Bayesian inference in statistics:

π(ϕ) ,
∫
ϕ(x) dπ(x) = lim

t→∞
E [ϕ(Xt)] ,

which drives us to consider the stability and strong convergence of the al-
gorithm in the infinite time interval. Several different methodologies have
been developed to estimate the expectation π(ϕ).
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First, we can compute the probability density function ρ(x) of π by solving
the corresponding stationary Fokker-Planck equation, see [36] and references
therein. The second approach is based on the ergodicity of the SDEs:

(4) lim
T→∞

1

T

∫ T

0
ϕ(Xt) dt = π(ϕ), a.s.,

where the limit does not depend on initial value x0. This approach uses
discretized numerical schemes to approximate the SDEs and requires the
numerical solution X̂t to preserve the ergodicity. See [11, 20, 21, 26, 34, 38]
and the references therein.

Finally, without requiring the ergodicity of the schemes, for exponentially
ergodic SDEs, we can choose a sufficiently large T such that

|E[ϕ(XT )]− π(ϕ)| ≤ ε.

Then, for this fixed T, we can use all the methods mentioned in finite time
analysis to estimate E[ϕ(XT )]. Milstein & Tretyakov [30] analyse the error
of this kind of approach based on their quasi-symplectic method.

In this paper, we propose instead to use the standard explicit Euler-
Maruyama method, but with an adaptive timestep hn which is a function of
the current approximate solution X̂tn . Adaptive timesteps have been used in
previous research to improve the accuracy of numerical approximations, see
[6, 13, 19, 27, 31] and the references therein. The idea of using an adaptive
timestep in this paper comes from considering the divergence of the uniform
timestep method for the SDE (2). When there is no noise, the requirement
for the explicit Euler approximation of the corresponding ODE to have a
stable monotonic decay is that its timestep satisfies h< X̂−2tn . An intuitive
explanation for the instability of the uniform timestep Euler-Maruyama ap-
proximation of the SDE is that there is always a very small probability of a
large Brownian increment ∆Wn which pushes the approximation X̂tn+1 into

the region h > 2 X̂−2tn+1
leading to an oscillatory super-exponential growth.

Using an adaptive timestep can avoid this problem, as proved by Lemaire[21]
for the time-averaging approach. His adaptive construction has similarities
to the one used in this paper.

For the ergodic SDEs, by setting a suitable condition for h, we can show
that, instead of an exponential bound, the numerical solution has a uniform
bound with respect to T for both moments and the strong error. Then,
multi-level Monte Carlo (MLMC) methodology [7, 8] is employed and non-
nested timestepping is used to construct an adaptive MLMC [9]. Following
the idea of Glynn and Rhee [10] to estimate the invariant measure of some
Markov chains, we introduce an adaptive MLMC algorithm for the infinite
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time interval, in which each level ` has a different time interval length T`,
to achieve a better computational performance.

The rest of the paper is organized as follows. The adaptive algorithm is
presented and the main theorems both in the finite and infinite time intervals
are stated in Section 2. Section 3 introduces the MLMC schemes, and the
relevant numerical experiments are provided in section 4. Section 5 has the
proofs of the main theorems. Finally, section 6 concludes.

In this paper we consider both the finite time interval [0, T ] with T >
0 a fixed positive real number and the infinite time interval [0,∞). Let
(Ω,F ,P) be a probability space with normal filtration (Ft)t∈[0,∞) for section
2 and (Ft)t∈(−∞,0] for section 3 corresponding to a d-dimensional standard

Brownian motion Wt = (W (1),W (2), . . . ,W (d))Tt . We denote the vector norm

by ‖v‖ , (|v1|2 + |v2|2 + . . .+ |vm|2)
1
2 , the inner product of vectors v and w

by 〈v, w〉 , v1w1 + v2w2 + . . .+ vmwm, for any v, w ∈ Rm and the Frobenius

matrix norm by ‖A‖ ,
√∑

i,j A
2
i,j for all A ∈ Rm×d.

2. Adaptive algorithm and theoretical results.

2.1. Adaptive Euler-Maruyama method. The proposed adaptive Euler-
Maruyama discretisation is

(5) tn+1 = tn + hn, X̂tn+1 = X̂tn + f(X̂tn)hn + g(X̂tn) ∆Wn,

where hn , h(X̂tn) and ∆Wn ,Wtn+1−Wtn , and there is fixed initial data

t0=0, X̂0=X0.
One key point in the analysis is to prove that tn increases without bound

as n increases. More specifically, the analysis proves that for any T > 0,
almost surely for each path there is an N such that tN ≥T .

We use the notation t , max{tn : tn ≤ t}, nt , max{n : tn ≤ t} for
the nearest time point before time t, and its index. We define the piece-
wise constant interpolant process Xt = X̂t and also define the standard
continuous interpolant [18] as

X̂t = X̂t + f(X̂t)(t−t) + g(X̂t)(Wt−Wt),

so that X̂t is the solution of the SDE

(6) dX̂t = f(X̂t) dt+ g(X̂t) dWt = f(Xt) dt+ g(Xt) dWt.

In the following subsections, we state the key results on stability and
strong convergence in both finite and infinite time intervals, and related
results on the number of timesteps, introducing various assumptions as re-
quired for each. The main proofs are deferred to Section 6.
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2.2. Finite Time Interval.

2.2.1. Stability.

Assumption 1 (Local Lipschitz and linear growth). Assume f and g
are both locally Lipschitz, so that for any R>0 there is a constant CR such
that

(7) ‖f(x)−f(y)‖+ ‖g(x)−g(y)‖ ≤ CR ‖x−y‖

for all x, y ∈ Rm with ‖x‖, ‖y‖ ≤ R. Furthermore, there exist constants
α, β ≥ 0 such that for all x ∈ Rm, f satisfies the one-sided linear growth
condition:

(8) 〈x, f(x)〉 ≤ α‖x‖2 + β,

and g satisfies the linear growth condition:

(9) ‖g(x)‖2 ≤ α‖x‖2 + β.

Together, (8) and (9) imply the monotone condition

〈x, f(x)〉+ 1
2‖g(x)‖2 ≤ 3

2(α‖x‖2+β),

which is a key assumption in the analysis of Mao & Szpruch [25] and Mao [23]
for SDEs with volatilities which are not globally Lipschitz. However, in our
analysis we choose to use this slightly stronger assumption, which provides
the basis for the following lemma on the stability of the SDE solution.

Lemma 1 (SDE stability). If the SDE satisfies Assumption 1, then for
all p>0

E

[
sup

0≤t≤T
‖Xt‖p

]
<∞.

Proof. The proof is given in Lemma 3.2 in [12]; the statement of that
lemma makes stronger assumptions on f and g, corresponding to (12) and
(13), but the proof only uses the conditions in Assumption 1.

We now specify the critical assumption about the adaptive timestep.

Assumption 2 (Adaptive timestep). The adaptive timestep function
h : Rm → R+ is continuous and strictly positive, and there exist constants
α, β > 0 such that for all x ∈ Rm, h satisfies the inequality

(10) 〈x, f(x)〉+ 1
2 h(x) ‖f(x)‖2 ≤ α‖x‖2 + β.
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Note that if another timestep function hδ(x) is smaller than h(x), then
hδ(x) also satisfies the Assumption 2. Note also that the form of (10), which
is motivated by the requirements of the proof of the next theorem, is very
similar to (8). Indeed, if (10) is satisfied then (8) is also true for the same
values of α and β.

Theorem 1 (Finite time stability). If the SDE satisfies Assumption 1,
and the timestep function h satisfies Assumption 2, then T is almost surely
attainable (i.e. for ω ∈ Ω, P(∃N(ω) < ∞ s.t. tN(ω) ≥ T ) = 1) and for all
p > 0 there exists a constant Cp,T which depends solely on p, T and the
constants α, β in Assumption 2, such that

E

[
sup

0≤t≤T
‖X̂t‖p

]
< Cp,T .

Proof. The proof is deferred to Section 6.1.

2.2.2. Strong convergence. Standard strong convergence analysis for an
approximation with a uniform timestep h considers the limit h→ 0. This
clearly needs to be modified when using an adaptive timestep, and we will
instead consider a timestep function hδ(x) controlled by a scalar parameter
0<δ≤1, and consider the limit δ→0.

Given a timestep function h(x) which satisfies Assumption 2, ensuring
stability as analyzed in the previous section, there are two quite natural
ways in which we might introduce δ to define hδ(x):

hδ(x) = δ min(T, h(x)),

hδ(x) = min(δ T, h(x)).

The first refines the timestep everywhere, while the latter concentrates the
computational effort on reducing the maximum timestep, with h(x) intro-
duced to ensure stability when ‖X̂t‖ is large.

In our analysis, we will cover both possibilities by making the following
assumption.

Assumption 3. The timestep function hδ, satisfies the inequality

(11) δ min(T, h(x)) ≤ hδ(x) ≤ min(δ T, h(x)),

Examples of suitable h(x) and hδ(x) are given in Section 4. Given this
assumption, we obtain the following theorem:
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Theorem 2 (Strong convergence). If the SDE satisfies Assumption 1,
and the timestep function hδ satisfies Assumption 3 with h satisfying As-
sumption 2, then for all p>0

lim
δ→0

E

[
sup

0≤t≤T
‖X̂t−Xt‖p

]
= 0.

Proof. The proof is essentially identical to the uniform timestep Euler-
Maruyama analysis in Theorem 2.2 in [12] by Higham, Mao & Stuart. The
only change required by the use of an adaptive timestep is to note that

X̂s −Xs = f(Xs) (s−s) + g(Xs) (Ws−Ws)

and s−s < δ T and E
[
‖Ws−Ws‖2 | Fs

]
= d (s−s).

To prove an order of strong convergence requires new assumptions on f
and g:

Assumption 4 (Lipschitz properties). There exists a constant α > 0
such that for all x, y ∈ Rm, f satisfies the one-sided Lipschitz condition:

(12) 〈x−y, f(x)−f(y)〉 ≤ 1
2α‖x−y‖

2,

and g satisfies the Lipschitz condition:

(13) ‖g(x)−g(y)‖2 ≤ 1
2α‖x−y‖

2.

In addition, f satisfies the polynomial growth Lipschitz condition

(14) ‖f(x)−f(y)‖ ≤ (γ (‖x‖q+‖y‖q) + µ) ‖x−y‖,

for some γ, µ, q > 0.

Note that setting y=0 gives

〈x, f(x)〉 ≤ 1
2α‖x‖

2 + 〈x, f(0)〉 ≤ α‖x‖2 + 1
2α
−1‖f(0)‖2,

‖g(x)‖2 ≤ 2‖g(x)−g(0)‖2 + 2‖g(0)‖2 ≤ α‖x‖2 + 2‖g(0)‖2.

Hence, Assumption 4 implies Assumption 1, with the same α and an appro-
priate β.
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Theorem 3 (Strong convergence order). If the SDE satisfies Assump-
tion 4, and the timestep function hδ satisfies Assumption 3 with h satisfying
Assumption 2, then for all p>0 there exists a constant Cp,T such that

E

[
sup

0≤t≤T
‖X̂t−Xt‖p

]
≤ Cp,T δp/2.

Proof. The proof is deferred to Section 6.2.

To bound the expected number of timesteps, we require an assumption
on how quickly h(x) can approach zero as ‖x‖ → ∞.

Assumption 5 (Timestep lower bound). There exist constants ξ, ζ, q>
0, such that the adaptive timestep function satisfies the inequality

h(x) ≥ (ξ‖x‖q + ζ)−1 .

Lemma 2 (Number of timesteps). If the SDE satisfies Assumption 1,
and the timestep function hδ satisfies Assumption 3, with h satisfying As-
sumptions 2 and Assumption 5, then for all p>0 there exists a constant cp,T
such that

E [(NT − 1)p] ≤ cp,T δ−p.

where NT is the number of timesteps required by a path approximation.

Proof. By Assumption 3 and Assumption 5, we have

NT =

NT∑
k=1

1 =

NT∑
k=1

hδ(X̂tk)

hδ(X̂tk)
≤
∫ T

0

1

hδ(Xt)
dt+1 ≤

∫ T

0
(ξ‖Xt‖q+ζ+1)δ−1dt+1

Therefore, by Jensen’s inequality, we obtain

(15) E [(NT − 1)p] ≤ T p−1δ−p
∫ T

0
E
[(
ξ‖Xt‖q + ζ + 1

)p]
dt

and the result is then an immediate consequence of Theorem 1.

The conclusion from Theorem 3 and Lemma 2 is that

E

[
sup

0≤t≤T
‖X̂t−Xt‖p

]1/p
≤ C1/p

p,T c
1/2
1,T (E [NT ])−1/2
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which corresponds to order 1
2 strong convergence when comparing the accu-

racy to the expected cost.
First order strong convergence is achievable for the SDEs with uniform

diffusion coefficient in which m=d and g is the identity matrix Im, but this
requires stronger assumptions on the drift f .

Assumption 6 (Enhanced Lipschitz properties). Assume f satisfies the
Assumption 4 and in addition, f is differentiable, and f and ∇f satisfy the
polynomial growth Lipschitz condition

(16) ‖f(x)−f(y)‖+ ‖∇f(x)−∇f(y)‖ ≤ (γ (‖x‖q+‖y‖q) + µ) ‖x−y‖,

for some γ, µ, q > 0.

Theorem 4 (Strong convergence for SDEs with uniform diffusion coef-
ficient). If m = d, g ≡ Im, f satisfies Assumption 6, and the timestep
function hδ satisfies Assumption 3, then for all T, p ∈ (0,∞) there exists a
constant Cp,T such that

E

[
sup

0≤t≤T
‖X̂t−Xt‖p

]
≤ Cp,T δp.

Proof. The proof is given in Theorem 4 in [3]

Comment: first order strong convergence can also be achieved for a general
g(x) by using an adaptive timestep Milstein discretization, provided ∇g
satisfies an additional Lipschitz condition. However, this numerical approach
is only practical in cases in which the commutativity condition is satisfied
and therefore there is no need to simulate the Lévy areas which the Milstein
method otherwise requires [18].

2.3. Infinite Time Interval. Now, we focus on a class of ergodic SDEs
and show that the moment bounds and strong error bound are uniform in
T under stronger assumptions.

2.3.1. Stability.

Assumption 7 (Dissipative condition). f and g satisfy the locally Lip-
schitz condition (7) and there exist constants α, β > 0 such that for all
x ∈ Rm, f satisfies the dissipative one-sided linear growth condition:

(17) 〈x, f(x)〉 ≤ −α‖x‖2 + β,
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and g is globally bounded and non-degenerate:

(18) ‖g(x)‖2 ≤ β.

Theorem 4.4 in [26] and Theorem 6.1 in [28] show that this Assumption
ensures the existence and uniqueness of the invariant measure. We can also
prove the following uniform moment bound for the SDE solution.

Lemma 3 (SDE stability in infinite time interval). If the SDE satisfies
Assumption 7 with X0 = x0, then for all p ∈ (0,∞), there is a constant Cp
which only depends on x0 and p such that, ∀ t ≥ 0,

E [‖Xt‖p] ≤ Cp.

Proof. The result follows Proposition 3.1 (i) in [38].

We now specify the critical assumption about the adaptive timestep for
the infinite time interval.

Assumption 8 (Adaptive timestep for infinite time interval). The adap-
tive timestep function h : Rm → (0, hmax] is continuous and bounded, with
0 < hmax <∞, and there exist constants α, β > 0 such that for all x ∈ Rm,
h satisfies the inequality

(19) 〈x, f(x)〉+ 1
2 h(x) ‖f(x)‖2 ≤ −α‖x‖2 + β.

Compared with the Assumption 2 in the finite time analysis, this assump-
tion additionally bound h to achieve the uniform bound.

Theorem 5 (Stability in infinite interval). If the SDE satisfies Assump-
tion 7, and the timestep function h satisfies Assumption 8, then for all
p ∈ (0,∞) there exists a constant Cp which depends solely on p, x0, hmax
and the constants α, β in Assumption 8 such that, ∀t ≥ 0,

E
[
‖X̂t‖p

]
< Cp, E

[
‖Xt‖p

]
< Cp.

Proof. The proof is deferred to Section 6.3.

2.3.2. Strong convergence. To prove an order of strong convergence again
requires new assumptions on f and g:
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Assumption 9 (Contractive Lipschitz properties). For some fixed p∗ ∈
(2,∞), there exist constants λ, η > 0 such that for all x, y ∈ Rm, f and g
satisfy the contractive Lipschitz condition:

(20) 〈x−y, f(x)−f(y)〉+ p∗ − 1

2
‖g(x)−g(y)‖2≤ −λ ‖x−y‖2,

and g satisfies the Lipschitz condition:

(21) ‖g(x)−g(y)‖2 ≤ η‖x−y‖2.

In addition, f satisfies the polynomial growth Lipschitz condition (14).

This Assumption ensures that two solutions to this SDE starting from dif-
ferent places but driven by the same Brownian increment, will come together
exponentially, as shown in the following lemma.

Lemma 4 (SDE contractivity). If the SDE satisfies Assumption 9 for
some fixed p∗ ∈ (2,∞), then for p ∈ (0, p∗] any two solutions to the SDE:
Xt and Yt, driven by the same Brownian motion but starting from x0 and
y0, satisfy that, ∀ t > 0,

E [‖Xt − Yt‖p] ≤ e−λpt ‖x0 − y0‖p.

Proof. First, we can define et , Xt−Yt, and since Xt and Yt are driven
by the same Brownian motion, we get

det = (f(Xt)− f(Yt)) dt+ (g(Xt)− g(Yt)) dWt

By Itô’s formula, we have for any 0 < t ≤ T,

eλpt‖et‖p − ‖e0‖p≤
∫ t

0
λp eλps‖es‖p ds+

∫ t

0
p〈es, f(Xs)− f(Ys)〉eλps‖es‖p−2 ds

+

∫ t

0

p(p− 1)

2
‖g(Xs)− g(Ys)‖2eλps‖es‖p−2ds

+

∫ t

0
p eλps‖es‖p−2〈es, (g(Xs)− g(Ys)) dWs〉.

Therefore, by taking expectations on both sides and using the contractive
Lipschitz property (20), we obtain that

E
[
eλpt‖et‖p

]
≤ ‖e0‖p.
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This lemma means the error made on previous time steps will decay ex-
ponentially and then we can prove a uniform bound for the strong error.

Theorem 6 (Strong convergence order in infinite time interval). If the
SDE satisfies Assumption 9, and the timestep function hδ satisfies Assump-
tion 3 with h satisfying Assumption 8, then for all p ∈ (0, p∗] there exists a
constant Cp such that, ∀t ≥ 0,

E
[
‖X̂t−Xt‖p

]
≤ Cp δp/2.

Proof. The proof is deferred to Section 6.4.

For the finite time interval [0, T ], we can show that the expected number
of timesteps per path increases linearly in T which is the same as for uniform
timesteps.

Lemma 5 (Number of timesteps). If the SDE satisfies Assumption 9,
and the timestep function hδ satisfies Assumption 3, with h satisfying As-
sumption 5 and Assumption 8, then for all T, p ∈ (0,∞) there exists a
constant cp such that

E [(NT − 1)p] ≤ cp T p δ−p.

where NT is again the number of timesteps required by a path approximation.

Proof. Similar to the proof of Lemma 2, the uniform moment bound
from Theorem 5 and the equation (15) give the result.

Again, we can prove first order strong convergence for SDEs with uniform
diffusion coefficient.

Assumption 10 (Enhanced contractive Lipschitz properties). Assume
f satisfies Assumption 9 and in addition, f is differentiable, and f and ∇f
satisfy the polynomial growth Lipschitz condition (16).

Theorem 7 (Strong convergence for SDEs with uniform diffusion coef-
ficient in infinite time interval). If m= d, g ≡ Im, f satisfies Assumption
10, and the timestep function hδ satisfies Assumption 3 with h satisfying
Assumption 8, then for all p ∈ (0,∞) there exists a constant Cp such that,
∀ t ≥ 0,

E
[
‖X̂t−Xt‖p

]
≤ Cp δp.

Proof. The proof is given in Theorem 3 in [4].
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3. Adaptive Multilevel Monte Carlo for invariant distributions.
We are interested in the problem of approximating:

π(ϕ) := Eπϕ =

∫
Rm

ϕ(x)π(dx),

where π is the invariant measure of the SDE (1). Numerically, we can ap-
proximate this quantity by simulating E [ϕ(XT )] for a sufficiently large T. In
the following subsections, we will introduce our adaptive multilevel Monte
Carlo algorithm and its numerical analysis.

3.1. Algorithm. To estimate E [ϕ(XT )] , the simplest Monte Carlo esti-
mator is

1

N

N∑
n=1

ϕ(X̂
(n)
T ),

where X̂
(n)
T is the terminal value of the nth numerical path in the time

interval [0, T ] using a suitable adaptive function hδ. It can be extended to
Multilevel Monte Carlo by using non-nested timesteps as explained in [9].
Consider the identity

(22) E [ϕL] = E [ϕ0] +
L∑
`=1

E [ϕ` − ϕ`−1] ,

where ϕ` := ϕ(X̂`
T ) with X̂`

T being the numerical estimator of XT , which
uses adaptive function hδ with δ = M−` for some fixed M > 1. Then the
standard MLMC estimator is the following telescoping sum:

1

N0

N0∑
n=1

ϕ(X̂
(n,0)
T ) +

L∑
`=1

{
1

N`

N∑̀
n=1

(
ϕ(X̂

(n,`)
T )− ϕ(X̂

(n,`−1)
T )

)}
,

where X̂
(n,`)
T is the terminal value of the nth numerical path in the time

interval [0, T ] using a suitable adaptive function hδ with δ = M−`.
Unlike the standard MLMC with fixed time interval [0, T ], we now allow

different levels to have a different length of time interval T`, satisfying 0 <
T0 < T1 < ... < T` < ... < TL = T, which means that as level ` increases,
we obtain a better approximation not only by using smaller timesteps but
also by simulating a longer time interval. However, the difficulty is how to
construct a good coupling on each level ` since the fine path and coarse path
have different lengths of time interval T` and T`−1.
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Following the idea of Glynn and Rhee [10] to estimate the invariant mea-
sure of some Markov chains, we perform the coupling by starting a level
` fine path simulation at time tf0 = −T` and a coarse path simulation at
time tc0 = −T`−1 and terminate both paths at t = 0. Since the drift f and
diffusion coefficient g do not depend explicitly on time t, the distribution of
the numerical solution simulated on the time interval [−T`, 0] is the same
as one simulated on [0, T`]. The key point here is that the fine and coarse
paths share the same driving Brownian motion during the overlap time in-
terval [−T`−1, 0]. Owing to the result of Lemma 4, two solutions to the SDE
satisfying Assumption 9, starting from different initial points and driven by
the same Brownian motion will converge exponentially. Therefore, the fact
that different levels terminate at the same time is crucial to the variance
reduction of the multilevel scheme.

Our new multilevel scheme still has the identity (22) but with ϕ` = ϕ(X̂`
0)

with X̂`
0 being the terminal value of the numerical path approximation on

the time interval [−T`, 0] using adaptive function hδ with δ = M−`. The
corresponding new MLMC estimator is

(23) Ŷ :=
1

N0

N0∑
n=1

ϕ(X̂
(n,0)
0 ) +

L∑
`=1

{
1

N`

N∑̀
n=1

(
ϕ(X̂

(n,`)
0 )− ϕ(X̂

(n,`−1)
0 )

)}
,

where X̂
(n,`)
0 is the terminal value of the nth numerical path through time

interval [−T`, 0] using adaptive function hδ with δ = M−`. Algorithm 1
outlines the detailed implementation of a single adaptive MLMC sample
using a non-nested adaptive timestep on level ` with M = 2.

3.2. Numerical analysis. First, we state the exponential convergence to
the invariant measure of the original SDEs, which can help us to measure
the approximation error caused by truncating the infinite time interval.

Lemma 6 (Exponential convergence). If the SDE satisfies Assumptions
1 and 9 and ϕ satisfies the polynomial growth Lipschitz condition (14), then
there exists a constant µ0 > 0 depending on x0 and constants in Lemma 3
and 4 such that

(24) |E [ϕ(Xt)− π(ϕ)]| ≤ µ0 e−λt.

Proof. We can define a new random variable Y0 which follows the in-
variant measure π, then the solution Yt to the SDE with the initial value
Y0 will also follows the invariant measure for any t > 0. Therefore, by the
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Algorithm 1: Outline of the algorithm for a single adaptive MLMC
sample for scalar SDE on level ` in time interval [−T`, 0].

t := −T`; tc := −T`−1; tf := −T`;

hc := 0; hf := 0;

∆W c := 0; ∆W f := 0;

X̂c = x0; X̂f = x0;
while t < 0 do

told := t;

t := min(tc, tf );
∆W := N(0, t− told);
∆W c := ∆W c + ∆W ;
if t = −T`−1 then

∆W c := 0;
end

∆W f := ∆W f + ∆W ;
if t = tc then

update coarse path X̂c using hc and ∆W c;

compute new adapted coarse path timestep hc = h2δ(X̂c);
hc := min(hc,−tc);
tc := tc + hc;
∆W c := 0;

end

if t = tf then

update fine path X̂f using hf and ∆W f ;

compute new adapted fine path timestep hf = hδ(X̂f );

hf := min(hf ,−tf );

tf := tf + hf ;

∆W f := 0;

end

end

Result: X̂f − X̂c

polynomial growth Lipschitz property of ϕ and Lemmas 3 and 4 and Hölder
inequality, there exists constants µ0, µ1>0 such that

|E [ϕ(Xt)−π(ϕ)]|=|E [ϕ(Xt)− ϕ(Yt)]|≤E [(γ(‖Xt‖q+‖Yt‖q) + µ) ‖Xt − Yt‖]

≤E
[
|γ(‖Xt‖q+‖Yt‖q) + µ|2

]1/2 E [‖Xt − Yt‖2
]1/2

≤µ1E
[
‖X0−Y0‖2

]1/2
e−λt≤2µ1 [‖x0‖+C1] e−λt := µ0e

−λt.

Note that Assumption 9 is a sufficient condition for this Lemma. We use
it here to show that the contractivity rate λ is a lower bound for the true
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convergence rate λ∗ and it is λ that determine the choice of T` shown in the
following results.

Now, we first bound the variance of the MLMC correction for each level.

Lemma 7 (Variance of MLMC corrections for bounded diffusion coeffi-
cient). If ϕ satisfies the polynomial growth Lipschitz condition (14), the
SDE satisfies Assumption 9 and the timestep function hδ satisfies Assump-
tion 3 with h satisfying Assumption 8 and δ = M−` for each level, then
for each level `, there exist constants c1 and c2 such that the variance of

correction V` := V
[
ϕ(X̂`

0)− ϕ(X̂`−1
0 )

]
satisfies

(25) V` ≤ c1M−` + c2 e−2λT`−1 .

Proof. By the polynomial growth Lipschitz condition (14) of ϕ, Hölder
inequality and Theorem 5, there exists a constant κ > 0 such that

V` ≤ E
[∣∣∣ϕ(X̂`

0)− ϕ(X̂`−1
0 )

∣∣∣2] ≤ κE [∥∥∥X̂`
0 − X̂`−1

0

∥∥∥p∗]2/p∗ .
X̂`
t and X̂`−1

t share the same driving Brownian motion from −T`−1 to 0. We
can define the corresponding solution to the SDE (1) starting from x0 at
time −T`−1 and driven by the same Brownian motion as X̂`−1

t through time
interval [−T`−1, 0] by Xc

t , and the solution starting from x0 at time −T`
driven by the same Brownian motion as X̂`

t through time interval [−T`, 0]

by Xf
t .

Then, by Jensen’s inequality, we obtain that

E
[∥∥∥X̂`

0 − X̂`−1
0

∥∥∥p∗] ≤ 3p
∗−1 (E1 + E2 + E3),

where

E1 = E
[∥∥∥Xc

0 − X̂`−1
0

∥∥∥p∗] ,
E2 = E

[∥∥∥X̂`
0 −X

f
0

∥∥∥p∗] ,
E3 = E

[∥∥∥Xf
0 −X

c
0

∥∥∥p∗] .
Theorem 6 implies that there exist a constant Cp∗ which does not depend
on T` such that

E1 ≤ Cp∗M−p
∗(`−1)/2, E2 ≤ Cp∗M−p

∗`/2,
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and Lemma 3 and Lemma 4 imply that there exists a constant C depending
on x0 and C4 in Lemma 1 such that

E3 ≤ E
[
‖Xf
−T`−1

− x0‖p
∗
]

e−p
∗λT`−1

≤ 2p
∗−1

(
‖x0‖p

∗
+ E

[
‖Xf
−T`−1

‖p∗
])

e−p
∗λT`−1 ≤ C e−p

∗λT`−1 .

Finally, by the fact that av + bv ≥ (a + b)v for any a, b > 0 and 0 < v < 1,
there exist constants c1, c2 > 0 such that

V` ≤ κ
[
3p
∗−1

(
Cp∗M

−p∗(`−1)/2 + Cp∗M
−p∗`/2 + Ce−p

∗λT`−1

)]2/p∗
≤ c1M

−` + c2 e−2λT`−1 .

Given this, we obtain the following theorem for the complexity of the
MLMC algorithm to achieve a specified Mean Square Error accuracy.

Theorem 8 (MLMC for invariant measure). If ϕ satisfies the polyno-
mial growth Lipschitz condition (14), the SDE satisfies Assumption 9 and
the timestep function hδ satisfies Assumption 3 with h satisfying Assump-
tion 8 and δ = M−` for each level, then by choosing suitable values for L
and T`, N` for each level `, there exists a constant c3 such that the MLMC
estimator (23) has a mean square error (MSE) with bound

E
[
(Ŷ − π(ϕ))2

]
≤ ε2,

and an expected computational cost CMLMC with bound

CMLMC ≤ c3 ε−2| log ε|3.

Proof. By Jensen’s inequality, the mean square error can be decomposed
into three parts:

E
[
(Ŷ − π(ϕ))2

]
= V

[
Ŷ
]

+
∣∣∣E [Ŷ ]− π(ϕ)

∣∣∣2
≤ V

[
Ŷ
]

+ 2
∣∣∣E [Ŷ ]− E [ϕ(XTL)]

∣∣∣2+ 2 |E [ϕ(XTL)]− π(ϕ)|2

which enables us to achieve the MSE bound by bounding each part by ε2/3.
If we set

(26) T` = (`+1) logM/2λ,
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then V` ≤ (c1 + c2)M
−`, which has the same order of magnitude as the

variance bound for the standard MLMC theorem. Lemma 6 implies that

2 |E [ϕ(XTL)]− π(ϕ)|2 ≤ 2µ20 e−2λTL ≤ ε2

3

provided

(27) L ≥
⌈

2| log ε|
logM

+
log(6µ20)

logM

⌉
.

By Theorems 5 and 6, the polynomial growth Lipschitz condition (14) of ϕ
and Hölder inequality, there exists constants κ1, κ2 > 0 such that

2
∣∣∣E [Ŷ ]− E [ϕ(XTL)]

∣∣∣2 = 2
∣∣∣E [ϕ(X̂L

TL
)− ϕ(XTL)

]∣∣∣2
≤ 2κ1 E

[
‖X̂L

TL
−XTL‖

4
]1/2

≤ κ2M
−L ≤ ε2

3
,

provided

(28) L ≥
⌈

2| log ε|
logM

+
log(3κ2)

logM

⌉
.

Combining the requirements (27) and (28), we choose to define

(29) L =

⌈
2| log ε|
logM

+
log
(
max(6µ20, 3κ2)

)
logM

⌉
,

giving L = O(| log ε|) as ε → 0. Therefore, we have V` = O(M−`) and
C` = O(`M `), where C` is the expected cost of a sample on level `. Following
the analysis in [8], choosing

N` =

⌈
3 (c1 + c2)

M−`√
`+1

ε−2
L∑

`′=0

√
`′+1

⌉
,

to ensure that the overall variance is less than ε2

3 , then the expected total
cost is bounded by, for some constant C0,

CMLMC ≤ 3C0 (c1 + c2) ε
−2

(
L∑
`=0

√
`+1

)2

+ C0

L∑
`=0

(`+1)M `.

Since

L∑
`=0

√
`+1 ≤

∫ L+1

0

√
x+1 dx ≤ 2

3(L+2)3/2 = O(| log ε|3/2),



ADAPTIVE EULER-MARUYAMA METHOD FOR NON-LIPSCHITZ DRIFT 19

and
L∑
`=0

(`+1)M ` ≤ (L+1)2ML = O(ε−2| log ε|2),

we obtain the desired final result that there exists a constant c3 such that

CMLMC ≤ c3 ε−2| log ε|3.

For the SDEs with uniform diffusion coefficient, the computational cost
can be reduced to O(ε−2).

Theorem 9 (SDEs with uniform diffusion coefficient). If ϕ satisfies the
polynomial growth Lipschitz condition (14), and for the SDE, m=d, g ≡ Im,
f satisfies Assumption 6, and the timestep function hδ satisfies Assumption
3 with h satisfying Assumption 8 and δ = M−` for each level, then for each
level `, there exist constants c1 and c2 such that

(30) V` ≤ c1M−2` + c2 e−2λT`−1 .

Furthermore, by choosing suitable L, T` and N` for each level ` in the MLMC
estimator (23), one can achieve the MSE bound ε2 at an expected computa-
tional cost bounded by

CMLMC ≤ c3 ε−2,

for some constant c3>0.

Proof. Following a similar argument to the proof of Lemma 7, Theorem
7 implies V` ≤ c1M−2` + c2 e−2λT`−1 , and by choosing T` to be

(31) T` = (`+1) logM/λ,

we obtain V` ≤ (c1 + c2)M
−2`. The computational cost of a single MLMC

sample on level ` satisfies

C` ≤ C0(`+1)M ` ≤ CM (1+ε)`

for any 0<ε�1 and some C>0. Therefore, the standard MLMC Theorem
1 in [8] is applicable with γ<β, giving an O(ε−2) complexity.

Note that the choice of T` (31) for the equation with uniform diffusion
coefficient is different from (26) for SDEs with bounded diffusion coefficient.
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In other words, the strong convergence result and the contractive conver-
gence rate λ together determine T`. In some cases, λ needs to be estimated
numerically through Lemma 4. The difference in the variance convergence
rate also affects the choice of M . Based on the analysis in [7], the optimal M
for SDEs with general g is in the range 4− 8, while in the uniform diffusion
coefficient case the optimal M is around 2.

4. Examples and numerical results. In this section we first give
suggestions on the choice of adaptive function together with some example
SDEs, then present numerical results for a finite time interval and their
extension to the infinite time interval.

• Scalar SDEs. For any scalar SDE satisfying Assumption 1, we can
choose the adaptive function:

hδ(x) =
max(1, |x|)

max(1, |f(x)|)
δ.

• Multi-dimensional SDEs. For SDEs with a drift which, for some
ξ, η>0, satisfying the condition

(32) 〈x, f(x)〉 ≤ −ξ ‖x‖ ‖f(x)‖+ η,

one can use

hδ(x) =
max(1, ‖x‖)

max(1, ‖f(x)‖)
δ.

Alternatively, if condition (32) is not satisfied, we can use

hδ(x) =
max(1, ‖x‖2)

max(1, ‖f(x)‖2)
δ.

It is straightforward to check that these selected hδ(x) satisfy Assumptions
3 and 5. These are only general suggestions and users can design a more spe-
cific and efficient adaptive function based on the applications. For example,
consider the Ginzburg-Landau equation, which describes a phase transition
from the theory of superconductivity [15, 18],

dXt =
(
(η + 1

2σ
2)Xt − λX3

t

)
dt+ σXt dWt,

where η≥0, λ, σ>0. The drift and diffusion coefficients satisfy Assumptions
1 and 4, and therefore all of the theory is applicable, with a suitable choice
for hδ(x) being

hδ(x) = δ min
(
T, λ−1x−2

)
.
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Fig 1. Numerical results for finite time interval

The second example is the Stochastic Lorenz equation, which is a three-
dimensional system modeling convection rolls in the atmosphere [14]:

dX
(1)
t =

(
α1X

(2)
t − α1X

(1)
t

)
dt+ β1X

(1)
t dW

(1)
t

dX
(2)
t =

(
α2X

(1)
t −X

(2)
t −X

(1)
t X

(3)
t

)
dt+ β2X

(2)
t dW

(2)
t

dX
(3)
t =

(
X

(1)
t X

(2)
t − α3X

(3)
t

)
dt+ β3X

(3)
t dW

(3)
t

where α1, α2, α3, β1, β2, β3 > 0. The diffusion coefficient is globally Lipschitz,
and since 〈x, f(x)〉 consists solely of quadratic terms, the drift satisfies the
one-sided linear growth condition. Noting that ‖f‖2 ≈ x21(x

2
2 + x23) < ‖x‖4

as ‖x‖ → ∞, an appropriate maximum timestep is

h(x) = min(T, γ‖x‖−2),

for any γ > 0. However, the drift does not satisfy the one-sided Lipschitz
condition, and therefore the theory on the order of strong convergence is
not applicable.

The testcase taken from [16] is

dXt = −(Xt +X3
t ) dt+ dWt, x0 = 1,

with T = 1. The three methods tested are the Tamed Euler scheme, the
implicit Euler scheme, and the new Euler scheme with adaptive timestep.
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We can set hmax = 1, M = 2 and choose the adaptive function h, hδ to be

h(x) =
max(1, |x|)

max(1, |x+ x3|)
, hδ(x) = 2−`h(x).

Figure 1 shows the the root-mean-square error plotted against the average
number of timesteps. The plot on the left shows the error in X̂T at the
terminal time, while the plot on the right shows the error in the maximum
magnitude of the solution over the whole interval. The error in each case is
computed by comparing the numerical solution to a second solution with a
timestep, or δ, which is 2 times smaller.

When looking at the error in the final solution, all 3 methods have similar
accuracy with first order strong convergence. However, as reported in [16],
the cost of the implicit method per timestep is much higher. The plot of the
error in the maximum magnitude shows that the new method is slightly more
accurate, presumably because it uses smaller timesteps when the solution is
large. The plot was included to show that comparisons between numerical
methods depend on the choice of accuracy measure being used.

Next, we extend it to adaptive MLMC for the infinite time interval, since
it also satisfies the dissipative condition (8) and the contractive condition
(20). Our interest is to compute π(ϕ) where ϕ(x) = (x + 1)2 satisfies a
polynomial growth Lipschitz condition.

Since the probability density function π is

exp(−x2 − 1
2x

4)∫∞
−∞ exp(−x2 − 1

2x
4) dx

,

we can use numerical integration to calculate an approximate value: ϕ(π) ≈
1.2896 with accuracy 10−5, and use this value as a benchmark for our nu-
merical tests.

Next we need to determine T` for each level. Linear perturbations to the
SDE satisfy the ODE:

dYt = −
(
1 + 3X2

t

)
Yt dt,

and therefore λ≥1. Hence we choose to use T` = (`+1) log 2 to ensure that
the truncation error is acceptably small.

Figure 2 displays the variance of the multilevel correction on each level
as a function of T ; this is to be compared to the bound in result (30). The
exponential part dominates the variance at the beginning, so the variance
decays exponentially. As time increases, the M−2` term becomes the major
part of the variance, and the variance stops decreasing.
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Fig 2. Variance of corrections on each level `

Figure 3 presents the MLMC results. The top right plot shows first order
convergence for the weak error and the top left plot shows second order
convergence for the multilevel correction variance. Hence the computational
cost for RMS accuracy ε is O(ε−2) which is verified in the bottom right
plot, while the bottom left plot shows the number of MLMC samples on
each level as a function of the target accuracy. Here, we also compared our
MLMC scheme with standard Monte Carlo (Standard MC) method directly
simulating X̂TL , the adaptive scheme proposed by Lemaire using same step
sequence as in example 7.1 in [21], and the MATLA in [34] with timestep
h = 0.1. Both standard MC and adaptive scheme by Lemaire have the order
O(ε−3). MLMC and MATLA have the optimal complexity O(ε−2). In this
case, MATLA performs better due to the relative short mixing time and
low correlations. However, MATLA and adaptive scheme by Lemaire only
simulate one path and are difficult to perform parallel computing.

5. Extension to a larger class of ergodic SDEs. In this section,
we extend our adaptive scheme to a larger class of ergodic SDEs: the SDEs
with negative Lyapunov exponent and then propose a new MLMC scheme
with change of measure for the SDEs with positive Lyapunov exponent, that
is chaotic system. For a detailed analysis of the Lyapunov exponent for the
nonlinear stochastic system, please refer to Arnold [1].
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Fig 3. Adaptive MLMC for invariant distribution

5.1. Systems with negative Lyapunov exponent. In practice, the condi-
tion (20) in Assumption 9 is restrictive and means the SDE is contractive
everywhere in the whole space. However, this condition is only a sufficient
condition to make the adaptive MLMC work. Numerically, our adaptive
MLMC does not need contractivity everywhere but does require contrac-
tivity in a global sense. Therefore, intuitively, our scheme works well for



ADAPTIVE EULER-MARUYAMA METHOD FOR NON-LIPSCHITZ DRIFT 25

0 5 10 15 20 25

-15

-10

-5

0

5

10

level 1

level 2

level 3

level 4

level 5

level 6

level 7

level 8

Fig 4. Variance of corrections on each level ` for 100-dimensional double-well potential
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systems with negative Lyapunov exponent. We present the numerical re-
sults for both a 100-dimensional SDE with double-well potential energy and
the FENE model.

5.1.1. Double-well potential energy. First, we apply adaptive MLMC for
a 100-dimensional SDEs with double-well potential energy:

dXt =

(
Xt −

1

100
‖Xt‖2Xt

)
dt+ dWt, x0 = 0,

where 0 is the original point in R100. Our interest is to compute π(ϕ) with
φ(x) = ‖x‖2 satisfying the polynomial growth Lipschitz condition. Although
this SDE does not satisfies Assumption 9, it has negative Lyapunov exponent
and the numerical estimation of the contractivity rate λ in Lemma 4 is 0.15.
We choose T` based on equation (31).

Figure 4 shows the variance decays due to the contractivity and the first
order strong convergence. The convergence results of adaptive MLMC and
the comparison with other schemes are shown in Figure 5. We use MATLA
with timestep h = 0.02 as the optimal scaling suggested in [33] and the adap-
tive scheme proposed by Lemaire using same step sequence as in example
7.1 in [21].
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Fig 5. Adaptive MLMC for invariant distribution (Double Well)

5.1.2. FENE model. The FENE (Finitely Extensible Nonlinear Elastic)
model is a Langevin equation describing the motion of a long-chained poly-
mer in a liquid [2, 9]. The unusual feature of the FENE model is that the
potential V (x) becomes infinite for finite values of x. In the simplest case of
a molecule with a single bond, Xt is three-dimensional and the SDE takes
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the form

dXt = − 16Xt

1−‖Xt‖2
dt+ dWt, X0 = 0,

which is defined on ‖Xt‖< 1. The drift term ensures that ‖Xt‖< 1 for all
t>0 almost surely. Also, it can be verified that 〈x, f(x)〉≤0.

Because the SDE is not defined on all of R3, the theory in this paper
is not applicable. However, it was one of the original motivations for the
analysis in this paper, since it seems natural to use an adaptive timestep,
taking smaller timestep as ‖X̂t‖ approaches 1, to maintain good accuracy,
as the drift varies so rapidly near the boundary, and to greatly reduce the
possibility of needing to clamp the computed solution to prevent it from
crossing a numerical boundary at radius 1−δ for some δ�1 [9].

Numerically we use the adaptive function h, hδ to be

h(x) = (1−‖x‖)2/8, hδ(x) = 2−`h(x).

to reduce the timestep when ‖X̂t‖ approaches the maximum radius. All
three methods (Tamed Euler, Implicit Euler, Adaptive Euler) are clamped
so that they do not exceed a radius of rmax = 1−10−10; if the new computed
value X̂tn+1 exceeds this radius then it is replaced by (rmax/‖X̂tn+1‖)X̂tn+1 .

The numerical results in Figure 6 show that the new scheme is consider-
ably more accurate than either of the others, confirming that an adaptive
timestep is desirable in this situation in which the drift varies enormously
as ‖X̂t‖ approaches the maximum radius. Figure 7 shows that the adaptive
MLMC also works well and achieve the optimal computational cost O(ε−2)
for the invariant measure computation. All other methods are not applicable
here.

5.2. Chaotic system. For chaotic systems with positive Lyapunov expo-
nent, for example, the stochastic Lorenz equation, our schemes will fail due
to the loss of contractivity. In [5], we deal with these chaotic systems by
introducing a coupling term between the coarse and fine paths, which leads
to a change of measure and hence a Radon-Nikodym derivative in the Monte
Carlo estimates. We give a brief outline of this shemem. Instead of consider-
ing the fine and coarse paths of the original SDEs under the same measure
P :

dXf
t = f(Xf

t ) dt + σ dW P
t ,

dXc
t = f(Xc

t ) dt + σ dW P
t .
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Fig 6. Numerical results for FENE model in finite time interval

We add a spring term with spring coefficient S > 0 for both fine path and
coarse paths and consider both paths under different measures:

Qf : dY f
t = f(Y f

t ) dt+ σ dWQf
t ,

Qc : dY c
t = f(Y c

t ) dt+ σ dWQc
t ,

with

dWQf
t =

S

σ
(Y c
t − Y

f
t ) dt+ dW P

t ,

dWQc
t =

S

σ
(Y f
t − Y c

t ) dt+ dW P
t .(33)

Therefore, under simulation measure P, we obtain

dY f
t = S(Y c

t − Y
f
t ) dt+ f(Y f

t ) dt+ σ dW P
t ,

dY c
t = S(Y f

t − Y c
t ) dt+ f(Y c

t ) dt+ σ dW P
t .

The Girsanov theorem gives

EP[ϕ(Xf
T )]− EP[ϕ(Xc

T )] = EQf [ϕ(Y f
T )]− EQc [ϕ(Y c

T )]

= EP
[
ϕ(Y f

T )
dQf

dPT
− ϕ(Y c

T )
dQc

dPT

]
,
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Fig 7. Adaptive MLMC for invariant distribution (FENE)

where dQf
dPT is the corresponding Radon-Nikodym derivative with following

form:

dQf

dPT
= exp

(
−
∫ T

0

〈
S

σ
(Y f
t − Y c

t ), dW P
t

〉
− 1

2

∫ T

0

S2

σ2

∥∥∥Y f
t − Y c

t

∥∥∥2 dt

)
and dQc

dPT is similar.
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The benefit of this technique is that under measure P, we recover the
contractivity between Y c

t and Y f
t using sufficiently large S > 0,

d(Y f
t − Y c

t ) = −2S(Y f
t − Y c

t ) dt+ (f(Y f
t )− f(Y c

t )) dt,

and the variance of the level estimator increases linearly in T instead of
the exponential increase of standard MLMC. For the detailed numerical
scheme, see section 2 in [5]. Note that it is not possible in general to use
different simulation times T` on different multilevel levels as in the current
MLMC scheme – instead the same simulation time T has to be used on all
levels, with T being adjusted (automatically) to ensure the necessary weak
convergence as the target error approaches zero.

6. Proofs. This section has the proofs of the four main theorems in this
paper, two on stability, and two on the order of strong convergence.

6.1. Theorem 1.

Proof. The proof proceeds in four steps. First, we introduce a constant
K to modify our discretisation scheme. Second, we derive an upper bound
for ‖X̂K

t ‖p. Third, we show that the moments E[sup0≤t≤T ‖X̂K
t ‖p] are each

bounded by a constant Cp,T which depends on p and T but is independent
of K. Finally, we reach the desired conclusion by taking the limit K→∞
and using the Monotone Convergence theorem.

The proof is given for p≥4; the result for 0≤p<4 follows from Hölder’s
inequality.
Step 1: K-Scheme definition

For any K>‖X0‖, we modify our discretisation scheme to:

(34) X̂K
tn+1

= PK

(
X̂K
tn + f(X̂K

tn )hn + g(X̂K
tn ) ∆Wn

)
,

where PK(Y ) , min(1,K/‖Y ‖)Y and therefore ‖X̂K
tn‖≤K, ∀n. The piece-

wise constant approximation for intermediate times is again X
K
t = X̂K

t , and
the continuous approximation is

X̂K
t = PK

(
X̂K
t + f(X̂K

t ) (t−t) + g(X̂K
t ) (Wt−Wt)

)
.

Since h(x) is continuous and strictly positive, it follows that

hKmin , inf
‖x‖≤K

h(x) > 0.
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This strictly positive lower bound for the timesteps implies that T is attain-
able.
Step 2: pth-moment of K-Scheme solution
‖PK(Y )‖≤‖Y ‖, so if we define φ(x) , x+h(x)f(x), then (34) gives

‖X̂K
tn+1
‖2 ≤ ‖X̂K

tn‖
2 + 2hn

(
〈X̂K

tn , f(X̂K
tn )〉+ 1

2hn‖f(X̂K
tn )‖2

)
+ 2 〈φ(X̂K

tn ), g(X̂K
tn ) ∆Wn〉+ ‖g(X̂K

tn ) ∆Wn‖2

Using condition (10) for h(x) then gives

‖X̂K
tn+1
‖2 ≤ ‖X̂K

tn‖
2 + 2α‖ X̂K

tn‖
2hn + 2β hn

+ 2 〈φ(X̂K
tn ), g(X̂K

tn ) ∆Wn〉+ ‖g(X̂K
tn ) ∆Wn‖2.(35)

Similarly, for the partial timestep from t to t, since (t−t) ≤ hnt

(36) 〈X̂K
t , f(X̂K

t )〉+ 1
2 (t−t) ‖f(X̂K

t )‖2 ≤ α ‖X̂K
t ‖2 + β,

and therefore we obtain

‖X̂K
t ‖2 ≤ ‖X̂K

t ‖2 + 2α‖ X̂K
t ‖2(t−t) + 2β (t−t)

+ 2 〈X̂K
t +f(X̂K

t ) (t−t), g(X̂K
t ) (Wt−Wt)〉

+ ‖g(X̂K
t ) (Wt−Wt)‖2.(37)

Summing (35) over multiple timesteps and then adding (37) gives

‖X̂K
t ‖2 ≤ ‖X0‖2 + 2α

(
nt−1∑
k=0

‖X̂K
tk
‖2hk + ‖X̂K

t ‖2(t−t)

)
+ 2β t

+ 2

nt−1∑
k=0

〈φ(X̂K
tk

), g(X̂K
tk

)∆W k〉) +

nt−1∑
k=0

‖g(X̂K
tk

) ∆W k‖2

+ 2〈X̂K
t +f(X̂K

t ) (t−t), g(X̂K
t )(Wt−Wt)〉

+ ‖g(X̂K
t ) (Wt−Wt)‖2.

Re-writing the first summation as a Riemann integral, and the second
as an Itô integral, raising both sides to the power p/2 and using Jensen’s
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inequality, we obtain

‖X̂K
t ‖p ≤ 7p/2−1

{
‖X0‖p +

(
2α

∫ t

0
‖XK

s ‖2 ds

)p/2
+ (2β t)p/2

+

∣∣∣∣ 2∫ t

0
〈φ(X

K
s ), g(X

K
s ) dWs〉

∣∣∣∣p/2+
(
nt−1∑
k=0

‖g(X
K
tk

) ∆W k‖2
)p/2

+
∣∣∣2 〈XK

t +f(X
K
t ) (t−t), g(X

K
t )(Wt−Wt)〉

∣∣∣p/2
+ ‖g(X

K
t )(Wt−Wt)‖p

}
.(38)

Step 3: Expected supremum of pth-moment of K-Scheme
For any 0 ≤ t ≤ T we take the supremum on both sides of inequality (38)

and then take the expectation to obtain

E
[

sup
0≤s≤t

‖X̂K
s ‖p

]
≤ 7p/2−1 (I1 + I2 + I3 + I4 + I5) ,

where

I1 = ‖X0‖p + E

[(
2α

∫ t

0
‖XK

s ‖2 ds

)p/2]
+ (2β t)p/2,

I2 = E

[
sup
0≤s≤t

∣∣∣∣ 2∫ s

0
〈φ(X

K
u ), g(X

K
u ) dWu〉

∣∣∣∣p/2
]
,

I3 = E

(nt−1∑
k=0

‖g(X
K
tk

) ∆W k‖2
)p/2 ,

I4 = E
[

sup
0≤s≤t

∣∣∣2〈XK
s +f(X

K
s ) (s−s), g(X

K
s )(Ws−Ws)〉

∣∣∣p/2] ,
I5 = E

[
sup
0≤s≤t

‖g(X
K
s ) (Ws−Ws)‖p

]
.

We now consider I1, I2, I3, I4, I5 in turn. Using Jensen’s inequality, we obtain

I1 ≤ ‖X0‖p + (2α)p/2T p/2−1
∫ t

0
E
[

sup
0≤u≤s

‖X̂K
u ‖p

]
ds+ (2β T )p/2.
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For I2, we begin by noting that due to condition (10), for u<t we have

‖φ(X
K
u )‖2 = ‖XK

u ‖2 + 2h(X
K
u )
(
〈XK

u , f(X
K
u )〉+ 1

2 h(X
K
u )‖f(X

K
u )‖2

)
≤ ‖XK

u ‖2 + 2h(X
K
u ) (α‖XK

u ‖2 + β)

≤ (1 + 2αT )‖XK
u ‖2 + 2β T,

and hence by Jensen’s inequality

‖φ(X
K
u )‖p/2 ≤ 2p/4−1

(
(1 + 2αT )p/4‖XK

u ‖p/2 + (2β T )p/4
)
.

In addition, the linear growth condition (9) gives

‖g(X
K
u )‖p/2 ≤ 2p/4−1

(
αp/4‖XK

u ‖p/2 + βp/4
)
,

and combining the last two equation, there exists a constant cp,T depending
on p and T , in addition to α, β, such that

‖φ(X
K
u )T g(X

K
u )‖p/2 ≤ cp,T

(
‖XK

u ‖p + 1
)
.

Then, by the Burkholder-Davis-Gundy inequality, there is a constant Cp
such that

I2 ≤ Cp 2p/2 E

[(∫ t

0
‖φ(X

K
u )T g(X

K
u )‖2 du

)p/4]

≤ Cp 2p/2 T p/4−1 E
[∫ t

0
‖φ(X

K
u )T g(X

K
u )‖p/2 du

]
≤ cp,T Cp 2p/2 T p/4−1

(∫ t

0
E
[

sup
0≤u≤s

‖X̂K
u ‖p

]
ds + T

)
.

For I3, we start by observing that by standard results there exists a con-
stant cp which depends solely on p such that for any tk≤s < tk+1,

(39) E[ sup
tk≤u≤s

‖Wu−Wtk ‖
p | Ftk ] = cp (s−s)p/2.

Using Jensen’s inequality and (39) with s ≡ tk+1 so that s− s = hk,

I3 ≤ T p/2−1 E

[
nt−1∑
k=0

hk ‖g(X
K
tk

)‖p ‖∆W k‖p

h
p/2
k

]

≤ T p/2−1 cp E
[ ∫ t

0
‖g(X

K
s )‖p ds

]
.
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Using condition (9), and Jensen’s inequality, we then obtain

I3 ≤ (2T )p/2−1 cp

(
αp/2

∫ t

0
E
[

sup
0≤u≤s

‖X̂K
u ‖p

]
ds + βp/2 T

)
.

For I4, using (36) and following the same argument as for I2, there exists
a constant cp,T depending on both p and T such that

‖XK
s +f(X

K
s )(s−s)‖p/2‖g(X

K
s )‖p/2 ≤ cp,T

(
‖XK

s ‖p + 1
)
.

Therefore, again using (39),

I4 ≤ 2p/2 E
[

sup
0≤s≤t

∣∣∣〈XK
s +f(X

K
s )(s−s), g(X

K
s ) (Ws−Ws)〉

∣∣∣p/2]

≤ cp,T 2p/2 E

[
nt−1∑
k=0

(
‖XK

tk
‖p+1

)
sup

tk≤s<tk+1

‖(Ws−Ws)‖p/2

+
(
‖XK

t ‖p+1
)

sup
t≤s≤t

‖(Ws−Ws)‖p/2
]

≤ cp/2 cp,T 2p/2 T p/4−1 E

[
nt−1∑
k=0

(
‖XK

tk
‖p+1

)
hk +

(
‖XK

t ‖p+1
)

(t−t)

]

≤ cp/2 cp,T 2p/2 T p/4−1
(∫ t

0
E
[

sup
0≤u≤s

‖X̂K
u ‖p

]
ds + T

)
.

Similarly, using the same definition for cp, we have

I5 ≤ cp (2T )p/2−1
(
αp/2

∫ t

0
E
[

sup
0≤u≤s

‖X̂K
u ‖p

]
ds + βp/2 T

)
.

Collecting together the bounds for I1, I2, I3, I4, I5, we conclude that there
exist constants C1

p,T and C2
p,T such that

E
[

sup
0≤s≤t

‖X̂K
s ‖p

]
≤ C1

p,T + C2
p,T

∫ t

0
E
[

sup
0≤u≤s

‖X̂K
u ‖p

]
ds,

and Grönwall’s inequality gives the result

E

[
sup

0≤t≤T
‖X̂K

t ‖p
]
≤ C1

p,T exp(C2
p,T T ) , Cp,T < ∞.

Step 4: Expected supremum of pth-moment of X̂t
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For any ω∈Ω, X̂t=X̂K
t for all 0≤ t≤T if, and only if, sup0≤t≤T ‖X̂t‖≤K.

Therefore, by the Markov inequality,

P( sup
0≤t≤T

‖X̂t‖ < K) = P( sup
0≤t≤T

‖X̂K
t ‖ < K) ≥ 1−E[ sup

0≤t≤T
‖X̂K

t ‖4]/K4 → 1

as K →∞. Hence, almost surely, sup
0≤t≤T

‖X̂t‖ <∞ and T is attainable. Also,

lim
K→∞

sup
0≤t≤T

‖X̂K
t (ω)‖ = sup

0≤t≤T
‖X̂t(ω)‖

and for 0<K1≤K2,

sup
0≤t≤T

‖X̂K1
t (ω)‖ ≤ sup

0≤t≤T
‖X̂K2

t (ω)‖ ≤ sup
0≤t≤T

‖X̂t(ω)‖.

Therefore, by the Monotone Convergence Theorem,

E

[
sup

0≤t≤T
‖X̂t‖p

]
= lim

K→∞
E

[
sup

0≤t≤T
‖X̂K

t ‖p
]
≤ Cp,T .

6.2. Theorem 3.

Proof. The approach which is followed is to bound the approximation
error et , X̂t−Xt by terms which depend on either X̂s−Xs or es, and then
use local analysis within each timestep to bound the former, and Grönwall’s
inequality to handle the latter.

The proof is again given for p≥ 4; the result for 0≤ p < 4 follows from
Hölder’s inequality.

We start by combining the original SDE with (6) to obtain

det =
(
f(Xt)−f(Xt)

)
dt+

(
g(Xt)−g(Xt)

)
dWt,

and then by Itô’s formula, together with e0=0, we get

‖et‖2 ≤ 2

∫ t

0
〈es, f(X̂s)−f(Xs)〉 ds− 2

∫ t

0
〈es, f(X̂s)−f(Xs)〉ds

+

∫ t

0
‖g(Xs)−g(Xs)‖2 ds+ 2

∫ t

0
〈es, (g(Xs)−g(Xs)) dWs〉.

Using the conditions in Assumption 4, (12) implies that

〈es, f(X̂s)−f(Xs)〉 ≤ 1
2α ‖es‖

2,
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(14) implies that∣∣∣〈es, f(X̂s)−f(Xs)〉
∣∣∣ ≤ ‖es‖L(X̂s, Xs) ‖X̂s−Xs‖

≤ 1
2‖es‖

2 + 1
2L(X̂s, Xs)

2‖X̂s−Xs‖2

where L(x, y) , γ(‖x‖q + ‖y‖q) + µ, and (13) gives

‖g(Xs)−g(Xs)‖2 ≤ 1
2 α ‖Xs−Xs‖2 ≤ α ‖es‖2 + α ‖X̂s−Xs‖2.

Hence,

‖et‖2 ≤ (2α+1)

∫ t

0
‖es‖2 ds+

∫ t

0

(
L(X̂s, Xs)

2+α
)
‖X̂s−Xs‖2 ds

+ 2

∫ t

0
〈es, (g(Xs)−g(Xs)) dWs〉.

and then by Jensen’s inequality we obtain

‖et‖p ≤ (3T )p/2−1(2α+1)p/2
∫ t

0
‖es‖p ds

+ (3T )p/2−1
∫ t

0

(
L(X̂s, Xs)

2+α
)p/2
‖X̂s−Xs‖p ds

+ 3p/2−12p/2
∣∣∣∣∫ t

0
〈es, (g(Xs)−g(Xs)) dWs〉

∣∣∣∣p/2 .
Taking the supremum of each side, and then the expectation yields

E
[

sup
0≤s≤t

‖es‖p
]
≤ (3T )p/2−1(2α+1)p/2

∫ t

0
E
[

sup
0≤u≤s

‖eu‖p
]

ds

+ (3T )p/2−1
∫ t

0
E
[(
L(X̂s, Xs)

2+α
)p/2
‖X̂s−Xs‖p

]
ds

+ 3p/2−12p/2E

[
sup
0≤s≤t

∣∣∣∣∫ s

0
〈eu, (g(Xu)−g(Xu)) dWu〉

∣∣∣∣p/2
]
.

By the Hölder inequality,

E
[(
L(X̂s, Xs)

2+α
)p/2
‖X̂s−Xs‖p

]
≤

(
E
[(
L(X̂s, Xs)

2+α
)p]

E
[
‖X̂s−Xs‖2p

])1/2
,
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and E
[(
L(X̂s, Xs)

2+α
)p]

is uniformly bounded on [0, T ] due to the stabil-

ity property in Theorem 1.
In addition, by the Burkholder-Davis-Gundy inequality (which gives the

constant Cp which depends only on p) followed by Jensen’s inequality plus
the Lipschitz condition for g, we obtain

E

[
sup
0≤s≤t

∣∣∣∣∫ s

0
〈eu, (g(Xu)−g(Xu)) dWu〉

∣∣∣∣p/2
]

≤ Cp E

[(∫ t

0
‖es‖2‖g(Xs)−g(Xs)‖2 ds

)p/4]
.

≤ Cp T
p/4−1 (12α)p/4E

[∫ t

0
‖es‖p/2‖Xs−Xs‖p/2 ds

]
≤ Cp T

p/4−1 (12α)p/4E
[∫ t

0

1
2 ‖es‖

p + 1
2 ‖Xs−Xs‖p ds

]
≤ Cp T

p/4−1 (12α)p/4E
[∫ t

0
(12 +2p−2)‖es‖p + 2p−2‖X̂s−Xs‖p ds

]
.

Hence, using E[‖X̂s −Xs‖p] ≤ (E[‖X̂s −Xs‖2p])1/2, there are constants
C1
p,T , C

2
p,T such that

(40)

E
[

sup
0≤s≤t

‖es‖p
]
≤ C1

p,T

∫ t

0
E
[

sup
0≤u≤s

‖eu‖p
]

ds+C2
p,T

∫ t

0

(
E
[
‖X̂s−Xs‖2p

])1/2
ds.

For any s∈ [0, T ], X̂s−Xs = f(X̂s)(s−s) + g(X̂s)(Ws−Ws), and hence,
by a combination of Jensen and Hölder inequalities, we get

E
[
‖X̂s−Xs‖2p

]
≤ 22p−1

(
E
[
‖f(X̂s)‖4p

]
E
[
(s−s)4p

])1/2
+ 22p−1

(
E
[
‖g(X̂s)‖4p

]
E
[
‖Ws−Ws‖4p

])1/2
.(41)

E[‖f(X̂s)‖4p] and E[‖g(X̂s)‖4p] are both uniformly bounded on [0, T ] due to
stability and the polynomial bounds on the growth of f and g. Furthermore,
we have E[(s−s)4p] ≤ (δT )4p ≤ δ2pT 4p, and by standard results there is a
constant cp such that E[‖Ws−Ws‖4p] = E[ E[‖Ws−Ws‖4p | Fs] ] ≤ cp(δT )2p.

Hence, there exists a constant C3
p,T >0 such that E[ ‖X̂s−Xs‖2p] ≤ C3

p,T δ
p,

and therefore equation (40) gives us

E
[

sup
0≤s≤t

‖es‖p
]
≤ C1

p,T

∫ t

0
E
[

sup
0≤u≤s

‖eu‖p
]

ds + C2
p,T

√
C3
p,T T δ

p/2,

and Grönwall’s inequality then provides the final result.
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6.3. Theorem 5.

Proof. For simplicity, for α>0, we can define M̂α,p
t , sup0≤s≤t eαps‖X̂s‖p,

and M
α,p
t , sup0≤s≤t eαps‖Xs‖p, which implies

(42) M
α,p
t ≤ eαphmax M̂α,p

t ,

since Xs=X̂s and |s−s| ≤ hmax, and∫ t

0
eγps/2‖Xs‖p/2ds ≤ M

α,p/2
t

∫ t

0
e(γ−α)ps/2ds

≤ 2e(γ−α)pt/2

p (γ − α)
eαphmax/2M̂

α,p/2
t .(43)

provided γ>α>0. For M̂α,p
t , Young’s inequality gives, for any ξ>0,

(44) M̂
α,p/2
t ≤ ξ M̂α,p

t +
1

4 ξ
.

By theorem 1, we know T is almost surely attainable. Therefore we can
directly analyse our discretization scheme without the K truncation. The
proof proceeds in three steps. First, we derive an upper bound for eαpt‖X̂t‖p.
Second, we show that the moments E[M̂α,p

t ] and E[M
α,p
t ] are each bounded

by Cpe
αpt where Cp is a constant which only depends on p, x0, hmax and

the constants α, β in Assumption 8. Finally, we get the uniform bound for
E[‖X̂t‖p] and E[‖Xt‖p]. The proof is given for p≥4; the result for 0<p<4
follows from Hölder’s inequality.
Step 1: If we define φ(x) , x+h(x)f(x), then (5) gives

‖X̂tn+1‖2 = ‖X̂tn‖2 + 2hn

(
〈X̂tn , f(X̂tn)〉+ 1

2hn‖f(X̂tn)‖2
)

+ 2 〈φ(X̂tn), g(X̂tn) ∆Wn〉+ ‖g(X̂tn) ∆Wn‖2.

Using condition (19) for h then gives

‖X̂tn+1‖2 ≤ ‖X̂tn‖2 − 2α‖ X̂tn‖2hn + 2β hn

+ 2 〈φ(X̂tn), g(X̂tn) ∆Wn〉+ ‖g(X̂tn) ∆Wn‖2.

Since 1−2αhn ≤ e−2αhn and g and h are both bounded, we multiply by
e2αtn+1 on both sides to obtain

e2αtn+1‖X̂tn+1‖2 ≤ e2αtn‖X̂tn‖2+ 2e2α(tn+hmax) β hn + e2α(tn+hmax)β‖∆Wn‖2

+ 2 e2αtn+1〈φ(X̂tn), g(X̂tn) ∆Wn〉.(45)



ADAPTIVE EULER-MARUYAMA METHOD FOR NON-LIPSCHITZ DRIFT 39

Similarly, for the partial timestep from t to t, since (t−t) ≤ hnt ,

〈X̂t, f(X̂t)〉+ 1
2(t− t)‖f(X̂t)‖2 ≤ −α‖X̂t‖2 + β,(46)

and therefore we obtain

e2αt‖X̂t‖2 ≤ e2αt‖X̂t‖2 + 2e2α(t+hmax) β (t− t) + e2α(t+hmax)β‖Wt −Wt‖2

+ 2 e2αt〈φ(X̂t), g(X̂t) (Wt −Wt)〉.(47)

Summing (45) over multiple timesteps and then adding (47) gives

e2αt‖X̂t‖2 ≤ ‖x0‖2 + 2βe2αhmax

(
nt−1∑
k=0

e2αtkhk + e2αt(t− t)

)
+ 2

nt−1∑
k=0

e2αtk+1〈φ(X̂tk), g(X̂tk)∆W k〉) + βe2αhmax

nt−1∑
k=0

e2αtk‖∆W k‖2(48)

+ 2e2αt〈X̂t+f(X̂t) (t−t), g(X̂t)(Wt−Wt)〉+ βe2α(t+hmax)‖Wt−Wt‖2.

Bounding the first summation using a Riemann integral, and re-writing the
second as an Itô integral, raising both sides to the power p/2 and using
Jensen’s inequality, we obtain

eαpt‖X̂t‖p ≤ 6p/2−1eαphmax

{
‖x0‖p +

(
2β

∫ t

0
e2αs ds

)p/2

+

∣∣∣∣ 2∫ t

0
e2α(s+h(Xs))〈φ(Xs), g(Xs) dWs〉

∣∣∣∣p/2 +

(
β

nt−1∑
k=0

e2αtk‖∆W k‖2
)p/2

+
∣∣2e2αt〈Xt+f(Xt) (t−t), g(Xt)(Wt−Wt)〉

∣∣p/2+ βp/2eαpt‖Wt−Wt‖p
}
.

(49)

Step 2: For any 0≤ t≤T, we take the supremum on both sides of inequality
(49) and then take the expectation to obtain

E
[
M̂α,p
t

]
= E

[
sup
0≤s≤t

eαps‖X̂s‖p
]
≤ 6p/2−1eαphmax (I1 + I2 + I3 + I4 + I5) ,

where

I1 = ‖x0‖p +

(
2β

∫ t

0
e2αs ds

)p/2
,

I2 = E

[
sup
0≤s≤t

∣∣∣∣ 2∫ s

0
e2α(u+h(Xu))〈φ(Xu), g(Xu) dWu〉

∣∣∣∣p/2
]
,



40 W. FANG & M.B. GILES

I3 = E

(β nt−1∑
k=0

e2αtk‖∆W k‖2
)p/2 ,

I4 = E
[

sup
0≤s≤t

∣∣2e2αs〈Xs+f(Xs) (s−s), g(Xs)(Ws−Ws)〉
∣∣p/2] ,

I5 = E
[

sup
0≤s≤t

βp/2eαps‖Ws−Ws‖p
]
.

We now consider I1, I2, I3, I4, I5 in turn.

I1 = ‖x0‖p + (2β)p/2
(

e2αt − 1

2α

)p/2
≤ ‖x0‖p + (β/α)p/2eαpt.

By the Burkholder-Davis-Gundy inequality, there exist constants C1
p such

that

I2 = E

[
sup
0≤s≤t

∣∣∣∣ 2∫ s

0
e2α(u+h(Xu))〈φ(Xu), g(Xu) dWu〉

∣∣∣∣p/2
]

≤ E

[
C1
p

(∫ t

0
e4αu‖φ(Xu)T g(Xu)‖2 du

)p/4]
.

Due to condition (19), for u<t we have

‖φ(Xu)‖2 = ‖Xu‖2 + 2h(Xu)
(
〈Xu, f(Xu)〉+ 1

2 h(Xu)‖f(Xu)‖2
)

≤ ‖Xu‖2 + 2h(Xu) (−α‖Xu‖2 + β)

≤ ‖Xu‖2 + 2βhmax,

hence by Jensen’s inequality and the boundedness condition (18) of g , we
obtain

‖φ(Xu)T g(Xu)‖p/2 ≤ 2p/4−1βp/4
(
‖Xu‖p/2 + (2βhmax)p/4

)
.

One variant of the Jensen’s inequality is

(50)

∣∣∣∣∫ t

0
Φ(s) eγs ds

∣∣∣∣p ≤ (∫ t

0
eγs ds

)p−1 ∫ t

0
|Φ(s)|peγs ds,

for some function Φ. Therefore, using Jensen’s inequality (50) with γ=2α,
followed by (43) with γ=(1 + 4/p)α and then (44) with ξ=e−αpt/2ζ, there
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exists a constant C2
p which is linearly dependent on ζ−1 such that

I2 ≤ E
[
C1
p(e2αt/(2α))p/4−1

∫ t

0
eα(p/2+2)u‖φ(Xu)T g(Xu)‖p/2 du

]
≤ E

[
C1
p(e2αt/α)p/4−1βp/4

∫ t

0
eα(p/2+2)u

(
‖Xu‖p/2 + (2βhmax)p/4

)
du

]
≤ E

[
C1
p

2

(
β

α

)p/4
eαp(t+hmax)/2M̂

α,p/2
t

]
+ C1

pβ
p/2

(
2hmax

α

)p/4 2eαpt

p+ 4

≤
C1
p

2

(
β

α

)p/4
eαphmax/2 ζ E

[
M̂α,p
t

]
+ C2

p eαpt.

Using discrete version of Jensen’s inequality (50) we obtain

I3 ≤ βp/2
(∫ t

0
e2αsds

)p/2−1
E

[
nt−1∑
k=0

hk e2αtk
‖∆W k‖p

h
p/2
k

]

≤ cp

(
β

∫ t

0
e2αsds

)p/2
≤ cp(β/2α)p/2eαpt,

where cp is defined in equation (39).
In considering I4, we start by observing that for tk≤s<tk+1

(51) E
[

sup
tk≤u≤s

‖(Wu−Wtk)‖p | Fs
]

= cp (s−s)p/2 ≤ cphmax
p/2−1(s−s).

In addition, using (46) and following the same argument as for I2, we have

‖Xs+f(Xs)(s−s)‖p/2‖g(Xs)‖p/2 ≤ 2p/4−1βp/4
(
‖Xs‖p/2 + (2βhmax)p/4

)
.

Therefore, combining the estimation (51), (43) with γ = 2α and (44) with
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ξ = e−αpt/2ζ, there exists C3
p which is linearly dependent on ζ−1 such that

I4 ≤ 2p/2 E
[

sup
0≤s≤t

eαps
∣∣〈Xs+f(Xs)(s−s), g(Xs) (Ws−Ws)〉

∣∣p/2]
≤ 2p/2 E

[
sup
0≤s≤t

eαps‖Xs+f(Xs)(s−s)‖p/2‖g(Xs)‖p/2‖(Ws−Ws)‖p/2
]

≤ 23p/4−1βp/4 E

[
nt−1∑
k=0

eαptk
(
‖Xtk‖

p/2 + (2βhmax)p/4
)

sup
tk≤s<tk+1

‖Ws−Ws‖p/2

+ eαpt
(
‖Xt‖p/2 + (2βhmax)p/4

)
sup
t≤s<t

‖Ws−Ws‖p/2
]

≤ 23p/4−1βp/4cp/2hmax
p/4−1 E

[∫ t

0
eαps

(
‖Xs‖p/2 + (2βhmax)p/4

)
ds

]
≤ 23p/4βp/4cp/2hmax

p/4−1 (pα)−1eαphmax/2 ζ E
[
M̂α,p
t

]
+ C3

peαpt.

Similarly, again using the same definition for cp, we have

I5 ≤ cp βp/2hmax
p/2−1eαpt/(αp).

Collecting together the bounds for I1, I2, I3, I4, I5, we conclude that we
can choose ζ > 0 sufficiently small so that there exist constants C4

p and C5
p

such that
E
[
M̂α,p
t

]
≤ 1

2 E
[
M̂α,p
t

]
+ C4

p‖x0‖p + C5
p eαpt,

and hence
E
[
M̂α,p
t

]
≤ 2C4

p ‖x0‖p + 2C5
p eαpt.

Step 3: Due to the definition of M
α,p
t and inequality (42), for any t ≥ 0,

E
[
‖Xt‖p

]
≤ e−αpt E

[
M

α,p
t

]
≤ e−αpt eαphmax E

[
M̂α,p
t

]
≤ eαphmax(2C4

p‖x0‖p + 2C5
p) , Cp

and similarly

E
[
‖X̂t‖p

]
≤ e−αpt E

[
M̂α,p
t

]
≤ 2C4

p ‖x0‖p + 2C5
p < Cp.
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6.4. Theorem 6.

Proof. Similar to the subsection 6.2, we start by combining the original
SDE (1) with (6) to obtain

et =

∫ t

0

(
f(Xs)− f(Xs)

)
ds+

∫ t

0

(
g(Xs)− g(Xs)

)
dWs,

and then by Itô’s formula and Young’s inequality, together with e0 = 0, and
λ, η as defined in Assumption 9, we get

eλpt/2‖et‖p≤
∫ t

0

pλ

2
eλps/2‖es‖p ds+

∫ t

0
p〈es, f(Xs)−f(Xs)〉eλps/2‖es‖p−2 ds

+

∫ t

0

p(p− 1)

2
‖g(Xs)−g(Xs)‖2eλps/2‖es‖p−2 ds

+

∫ t

0
p 〈es, (g(Xs)−g(Xs))e

λps/2 ‖es‖p−2 dWs〉

≤
∫ t

0

pλ

2
eλps/2‖es‖p ds+

∫ t

0
p〈es, f(X̂s)−f(Xs)〉eλps/2 ‖es‖p−2 ds

−
∫ t

0
p〈es, f(X̂s)−f(Xs)〉eλps/2 ‖es‖p−2 ds

+p

∫ t

0

(
p− 1

2
+

λ

4η

)
‖g(X̂s)−g(Xs)‖2eλps/2 ‖es‖p−2ds

+p

∫ t

0

(
p− 1

2
+
η(p− 1)2

λ

)
‖g(X̂s)−g(Xs)‖2eλps/2 ‖es‖p−2ds

+

∫ t

0
p 〈es, (g(Xs)−g(Xs))e

λps/2 ‖es‖p−2 dWs〉

Using the conditions in Assumption 9, (21) implies that

‖g(X̂s)− g(Xs)‖2 ≤ η‖X̂s −Xs‖2.

(20) and (21) imply that

〈es, f(X̂s)−f(Xs)〉+

(
p− 1

2
+

λ

4η

)
‖g(X̂s)− g(Xs)‖2 ≤ −

3λ

4
‖es‖2.

(14) and Young inequality implies that∣∣∣〈es, f(X̂s)−f(Xs)〉
∣∣∣ ≤ ‖es‖L(X̂s, Xs) ‖X̂s−Xs‖

≤ λ

8
‖es‖2 +

2

λ
L(X̂s, Xs)

2‖X̂s−Xs‖2.
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where L(x, y) , γ(‖x‖q + ‖y‖q) + µ. Hence,

eλpt/2‖et‖p ≤
∫ t

0
−pλ

8
eλps/2‖es‖p ds

+

∫ t

0
p L̂(X̂s, Xs)‖X̂s−Xs‖2eλps/2‖es‖p−2 ds

+

∫ t

0
p〈es, (g(Xs)−g(Xs))e

λps/2‖es‖p−2 dWs〉,

where L̂(x, y) = 2
λL(x, y)2+ (p−1)η

2 + η2(p−1)2
λ . Young inequality implies

eλpt/2‖et‖p ≤
∫ t

0
2

(
8(p−2)

pλ

)p/2−1
L̂(X̂s, Xs)

p/2eλps/2‖X̂s−Xs‖p ds

+

∫ t

0
p〈es, (g(Xs)−g(Xs))e

λpt/2‖es‖p−2 dWs〉.

Taking the expectation of each side yields
(52)

E
[
eλpt/2‖et‖p

]
≤ 2

(
8(p−2)

pλ

)p/2−1 ∫ t

0
E
[
L̂(X̂s, Xs)

p/2‖X̂s−Xs‖p
]

eλps/2ds.

By the Hölder inequality,

E
[
L̂(X̂s, Xs)

p/2‖X̂s−Xs‖p
]
≤
(
E
[
L̂(X̂s, Xs)

p
]
E
[
‖X̂s−Xs‖2p

])1/2
,

and E
[
L̂(X̂s, Xs)

p
]

can be bounded by a constant C1
p due to the stability

property in Theorem 5. Then following the same analysis for E
[
‖X̂s−Xs‖2p

]
in subsection 6.2 together with the uniform moments bound, there exists a
constant C2

p such that

E
[
eλpt/2‖et‖p

]
≤ 2

(
8(p−2)

pλ

)p/2−1 ∫ t

0
C2
p δ

p/2eλps/2 ds,

which provides the final result:

E [‖et‖p] ≤
4

λp

(
8(p−2)

pλ

)p/2−1√
C1
pC

2
p δ

p/2 , Cp δ
p/2, ∀ t ≥ 0
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7. Conclusions and future work. The central conclusion from this
paper is that by using an adaptive timestep it is possible to make the Euler-
Maruyama approximation stable for SDEs with a globally Lipschitz diffusion
coefficient and a drift which is not globally Lipschitz but is locally Lipschitz
and satisfies a one-sided linear growth condition. If the drift also satisfies
a one-sided Lipschitz condition then the order of strong convergence is 1

2 ,
when looking at the accuracy versus the expected cost of each path. For
the important class of SDEs with uniform diffusion coefficient, the order
of strong convergence is 1. For ergodic SDEs satisfying the dissipative and
contractive condition, we have shown that the moments and strong error of
the numerical solutions are bounded and independent of time T. Moreover,
we extend this adaptive scheme to MLMC for the infinite time interval
by allowing different lengths of time intervals and carefully coupling the
fine path and coarse path in each level `. All the schemes work well and
numerical experiments support the theoretical results.

One direction for extension of the theory for finite time interval is to
SDEs with a diffusion coefficient which is not globally Lipschitz, but instead
satisfies the Khasminskii-type condition used by Mao & Szpruch [23, 25],
Sabanis [35] and Szpruch & Zhāng [37]. Another possibility is to use a Lya-
punov function V (x) in place of ‖x‖2 in the stability analysis; this might
enable one to prove stability and convergence for a larger set of SDEs.

Another extension direction for the theory in the infinite time interval is
to address SDEs which don’t satisfy the contractive property. Numerically,
our scheme works well for all the dissipative systems with negative Lyapunov
exponent as shown in subsection 5.1, but the numerical analysis needs to be
done in the future. For the chaotic systems with positive Lyapunov exponent,
a further paper [5] will address this challenge by using change of measure as
outlined in subsection 5.2.
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