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Abstract We investigate the extension of the multilevel Monte Carlo method [4, 5]
to the calculation of Greeks. The pathwise sensitivity analysis [8] differentiates the
path evolution and effectively reduces the smoothness of the payoff. This leads to
new challenges: the use of naive algorithms is often impossible because of the inap-
plicability of pathwise sensitivities to discontinuous payoffs.
These challenges can be addressed in three different ways: payoff smoothing using
conditional expectations of the payoff before maturity [8]; an approximation of the
above technique using path splitting for the final timestep [1]; the use of a hybrid
combination of pathwise sensitivity and the Likelihood Ratio Method [6]. We dis-
cuss the strengths and weaknesses of these alternatives in different multilevel Monte
Carlo settings.

1 Introduction

In mathematical finance, Monte Carlo methods are used to compute the price of an
option by estimating the expected value E(P). P is the payoff function that depends
on an underlying asset’s scalar price S(t) which satisfies an evolution SDE of the
form

dS(t) = a(S, t)dt +b(S, t)dWt , 0≤ t ≤ T, S(0) given. (1)

This is just one use of Monte Carlo in finance. In practice the prices are often quoted
and used to calibrate our market models; the option’s sensitivities to market param-
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eters, the so-called Greeks, reflect the exposure to different sources of risk. Com-
puting these is essential to hedge portfolios and is therefore even more important
than pricing the option itself. This is why our research focuses on getting fast and
accurate estimates of Greeks through Monte Carlo simulations.

1.1 Multilevel Monte Carlo

Let us first recall important results from [4] and [5]. We consider a standard Monte
Carlo method using a discretisation with first order weak convergence (e.g. the Mil-
stein scheme). Achieving a root-mean square error of O(ε) requires a variance of
order O(ε2), hence O(ε−2) independent paths. It also requires a discretisation bias
of order O(ε), thus O(ε−1) timesteps, giving a total computational cost O(ε−3).

Giles’ multilevel Monte Carlo technique reduces this cost to O(ε−2) under cer-
tain conditions. The idea is to write the expected payoff with a fine discretisation
using 2L uniform timesteps as a telescopic sum. Let P̂̀ be the simulated payoff with
a discretisation using 2` uniform timesteps,

E(P̂L) = E(P̂0)+
L

∑
`=1

E(P̂̀ − P̂̀ −1) (2)

We then use Monte Carlo estimators using N` independent samples

E(P̂̀ − P̂̀ −1)≈ Ŷ` =
1
N`

N`

∑
i=1

(
P̂(i)
` − P̂(i)

`−1

)
(3)

The small corrective term P̂(i)
` − P̂(i)

`−1 comes from the difference between a fine and
a coarse discretisation of the same driving Brownian motion. Its magnitude depends
on the strong convergence properties of the scheme used. Let V` be the variance
of a single sample P̂(i)

` − P̂(i)
`−1. The next theorem shows that what determines the

efficiency of the multilevel approach is the convergence rate of V` as `→ ∞.
To ensure a better efficiency we may modify (3) and use different estimators of

P̂ on the fine and coarse levels of Ŷ`,

E(P̂L) = E(P̂0)+
L

∑
`=1

E
(

P̂ f
` − P̂c

`−1

)
(4)

P̂ f
` , P̂c

`−1 are the estimators using respectively 2` and 2`−1 steps in the computation
of Ŷ`. The telescoping sum property is maintained provided that

E
(

P̂ f
`

)
= E

(
P̂c
`

)
. (5)
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Theorem 1. Let P be a function of a solution to (1) for a given Brownian path W (t);
let P̂̀ be the corresponding approximation using the discretisation at level `, i.e. with
2` steps of width h` = 2−` T .

If there exist independent estimators Ŷ` of computational complexity C` based on
N` samples and there are positive constants α≥ 1

2 ,β ,c1,c2,c3 such that

1. E(Ŷ`) =
{
E(P̂0) if l = 0
E(P̂̀ − P̂̀ −1) if ` > 0

2. |E(P̂̀ −P)| ≤ c1hα
`

3. V(Ŷ`)≤ c2hβ

` N−1
`

4. C` ≤ c3N` h−1
`

Then there is a constant c4 such that for any ε < e−1, there are values for L

and N` resulting in a multilevel estimator Ŷ =
L

∑
`=0

Ŷ` with a mean-square-error

MSE = E((Ŷ − E(P))2)< ε2 with a complexity C bounded by

C ≤


c4ε
−2 if β > 1

c4ε
−2 (logε)2 if β = 1

c4ε
−2−(1−β )/α if 0 < β < 1

(6)

Proof. See [5].

We usually know α thanks to the literature on weak convergence. Results in [9]
give α = 1 for the Milstein scheme, even in the case of discontinuous payoffs. β

is related to strong convergence and is in practice what determines the efficiency of
the multilevel approach. Its value depends on the payoff and may not be known a
priori.

1.2 Monte Carlo Greeks

Let us briefly recall two classic methods used to compute Greeks in a Monte Carlo
setting: the pathwise sensitivities and the Likelihood Ratio Method. More details
can be found in [2], [3] and [8].

Pathwise sensitivities

Let Ŝ = (Ŝk)k∈[0,N] be the simulated values of the asset at the discretisation times
and Ŵ = (Ŵk)k∈[1,N] be the corresponding set of independent Brownian increments.
The value of the option V is estimated by V̂ defined as

V = E [P(S)]≈ V̂ = E
[
P(Ŝ)

]
=
∫

P(Ŝ)p(θ , Ŝ)dŜ
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Assuming that the payoff P(Ŝ) is Lipschitz, we can use the chain rule and write

∂V̂
∂θ

=
∂

∂θ

∫
P
(

Ŝ(θ ,Ŵ )
)

p(Ŵ )dŴ =
∫

∂P(Ŝ)

∂ Ŝ

∂ Ŝ(θ ,Ŵ )

∂θ
p(Ŵ )dŴ

where dŴ =
N
∏

k=1
dŴk and p(Ŵ ) =

N
∏

k=1
p(Ŵk) is the joint probability density function

of the normally distributed independent increments (Ŵk)k∈[1,N].

We obtain
∂ Ŝ
∂θ

by differentiating the discretisation of (1) with respect to θ and
iterating the resulting formula.The limitation of this technique is that it requires the
payoff to be Lipschitz and piecewise differentiable.

Likelihood Ratio Method

The Likelihood Ratio Method starts from

V̂ = E
[
P(Ŝ)

]
=
∫

P(Ŝ)p(θ , Ŝ)dŜ (7)

The dependence on θ comes through the probability density function p(θ , Ŝ); as-
suming some conditions discussed in [3] and in section 7 of [8], we can write

∂V̂
∂θ

=
∫

P(Ŝ)
∂ p(Ŝ)

∂θ
dŜ =

∫
P(Ŝ)

∂ log p(Ŝ)
∂θ

p(Ŝ)dŜ = E

[
P(Ŝ)

∂ log p(Ŝ)
∂θ

]
(8)

with dŜ =
N

∏
k=1

dŜk and p(Ŝ) =
N

∏
k=1

p
(

Ŝk Ŝk−1

)
The main limitation of the method is that the estimator’s variance is O(N), in-

creasing without limit as we refine the discretisation.

1.3 Multilevel Monte Carlo Greeks

By combining the elements of sections 1.1 and 1.2 together, we write

∂V
∂θ

=
∂E(P)

∂θ
≈ ∂E(P̂L)

∂θ
=

∂E(P̂0)

∂θ
+

L

∑
`=1

∂E(P̂̀ − P̂̀ −1)

∂θ
(9)

As in (3), we define the multilevel estimators

Ŷ0 = N−1
0

M

∑
i=1

∂ P̂(i)
0

∂θ
and Ŷ` = N−1

`

N`

∑
i=1

(
∂ P̂(i)

`

∂θ
−

∂ P̂(i)
`−1

∂θ

)
(10)
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where
∂ P̂0

∂θ
,

∂ P̂̀ −1

∂θ
,

∂ P̂̀
∂θ

are computed with the techniques presented in section 1.2.

2 European call

We consider the Black-Scholes model: the asset’s evolution is modelled by a geo-
metric Brownian motion dS(t) = r S(t)dt +σ S(t)dWt . We use the Milstein scheme
for its good strong convergence properties. For timesteps of width h,

Ŝn+1 = Ŝn ·
(

1+ r h+σ ∆Wn +
σ2

2
(∆W 2

n −h)
)

:= Ŝn ·Dn (11)

The payoff of the European call is P = (ST −K)+ = max(0,ST −K). We illustrate
the techniques by computing Delta and Vega, the sensitivities to the asset’s initial
value S0 and to its volatility σ . We take a time to maturity T = 1.

2.1 Pathwise sensitivities

Since the payoff is Lipschitz, we can use pathwise sensitivities. The differentiation
of equation (11) gives

∂ Ŝ0

∂S0
= 1,

∂ Ŝn+1

∂S0
=

∂ Ŝn

∂S0
·Dn

∂ Ŝ0

∂σ
= 0,

∂ Ŝn+1

∂σ
=

∂ Ŝn

∂σ
·Dn + Ŝn

(
∆Wn +σ(∆W 2

n −h)
)

To compute Ŷ` we use a fine and a coarse discretisation with N f = 2` and Nc = 2`−1

uniform timesteps respectively.

Ŷ` =
1
N`

N`

∑
i=1


 ∂P

∂SN f

∂ Ŝ(i)N f

∂θ

(`)

−

(
∂P

∂SNc

∂ Ŝ(i)Nc

∂θ

)(`−1)
 (12)

We use the same driving Brownian motion for the fine and coarse discretisations: we
first generate the fine Brownian increments Ŵ = (∆W0,∆W2, . . . ,∆WN f−1) and then
use Ŵ c = (∆W0 +∆W1, . . . ,∆WN f−2 +∆WN f−1) as the coarse level’s increments.

To assess the order of convergence of V(ŶL), we take a sufficient number of sam-
ples so that the Monte Carlo error of our simulations will not influence the results.
We plot log(V(Ŷ`)) as a function of log(h`) and use a linear regression to mea-
sure the slope for the different estimators. The theoretical results on convergence
are asymptotic ones, therefore the coarsest levels are not relevant: hence we per-
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form the linear regression on levels ` ∈ [3,8]. This gives a numerical estimate of the
parameter β in Theorem 1. Combining this with the theorem, we get an estimated
complexity of the multilevel algorithm. This gives the following results :

Estimator β MLMC Complexity
Value ≈ 2.0 O(ε−2)

Delta ≈ 0.8 O(ε−2.2)

Vega ≈ 1.0 O(ε−2 logε2)

Giles has shown in [4] that β =2 for the value’s estimator. For Greeks, the conver-
gence is degraded by the discontinuity of ∂P

∂S = 1S>K : a fraction O(h`) of the paths
has a final value Ŝ which is O(h`) from the discontinuity K. For these paths, there is
a O(1) probability that Ŝ(`)N f

and Ŝ(`−1)
Nc

are on different sides of the strike K, implying(
∂P

∂SNf

∂ ŜNf
∂θ

)(`)

−
(

∂P
∂SNc

∂ ŜNc
∂θ

)(`−1)

is O(1). Thus V(Ŷ`) = O(h`), and β = 1 for the

Greeks.

2.2 Pathwise sensitivities and Conditional Expectations

We have seen that the payoff’s lack of smoothness prevents the variance of Greeks’
estimators Ŷ` from decaying quickly and limits the potential benefits of the multi-
level approach. To improve the convergence speed, we can use conditional expec-
tations as explained in section 7.2 of [8]. Instead of simulating the whole path, we
stop at the penultimate step and then for every fixed set Ŵ = (∆Wk)k∈[0,N−2], we

consider the full distribution of
(

ŜN |Ŵ
)

. With an = a
(

ŜN−1(Ŵ ),(N−1)h
)

and

bn = b
(

ŜN−1(Ŵ ),(N−1)h
)

, we can write

ŜN(Ŵ ,∆WN−1) = ŜN−1(Ŵ )+an(Ŵ )h+bn(Ŵ )∆WN−1 (13)

We hence get a normal distribution for
(

ŜN |Ŵ
)

.

p(ŜN |Ŵ ) =
1

σŴ

√
2π

exp

−
(

ŜN−µŴ

)2

2σ2
Ŵ

 (14)

with
µŴ = ŜN−1 +a

(
ŜN−1,(N−1)h

)
h

σŴ = b
(

ŜN−1,(N−1)h
)√

h
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If the payoff function is sufficiently simple, we can evaluate analytically E
[
P
(

ŜN

)
|Ŵ
]
.

Using the tower property, we get

V̂ = E
[
P(ŜN)

]
= EŴ

[
E∆WN

[
P(ŜN) Ŵ

]]
≈ 1

M

M

∑
m=1

E
[
P
(

Ŝ(m)
N

)
Ŵ (m)

]
(15)

In the particular case of geometric Brownian motion and a European call op-
tion, we get (16) where φ is the normal probability density function, Φ the normal
cumulative distribution function, α = (1+ rh)ŜN−1(Ŵ ) and β = σ

√
hŜN−1(Ŵ ).

E(P(ŜN)|Ŵ ) = β φ

(
α−K

β

)
+(α−K)Φ

(
α−K

β

)
(16)

This expected payoff is infinitely differentiable with respect to the input parameters.
We can apply the pathwise sensitivities technique to this smooth function at time
(N−1)h. The multilevel estimator for the Greek is then

Ŷ` =
1
N`

N`

∑
1


∂ P̂(i)

f

∂θ

(`)

−

(
∂ P̂(i)

c

∂θ

)(`−1)
 (17)

At the fine level we use (16) with h = h f and Ŵf = (∆W0,∆W2, . . . ,∆WN f−2) to
get E(P(ŜN f )|Ŵf ) . We then use(

∂ P̂f

∂θ

)(`)

=
∂ ŜN f−1

∂θ

∂E(P(ŜN f )|Ŵf )

∂SN f−1
+

∂E(P(ŜN f )|Ŵf )

∂θ
(18)

At the coarse level, directly using E(P(ŜNc)|Ŵc) leads to an unsatisfactorily low
convergence rate of V(Ŷ`). As explained in (4) we use a modified estimator. The idea
is to include the final fine Brownian increment in the computation of the expectation
over the last coarse timestep. This guarantees that the two paths will be close to one
another and helps achieve better variance convergence rates.

Ŝ still follows a simple Brownian motion with constant drift and volatility on all
coarse steps. With Ŵc = (∆W0 +∆W1, . . . ,∆WN f−4 +∆WN f−3) and given that the
Brownian increment on the first half of the final step is ∆WN f−2 , we get

p(ŜNc |Ŵc,∆WN f−2) =
1

σŴc

√
2π

exp

−
(

ŜNc −µŴc

)2

2σ2
Ŵc

 (19)

with

µŴc
= ŜNc−1(Ŵc)+a

(
ŜNc−1,(Nc−1)hc

)
hc +b

(
ŜNc−1,(Nc−1)hc

)
∆WN f−2
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σŴc
= b

(
ŜNc−1,(Nc−1)hc

)√
hc/2

From this distribution we derive E
[
P(ŜNc)

∣∣ Ŵc,∆WN f−2

]
, which for the particu-

lar application being considered, leads to the same payoff formula as before with
αc = (1+ r hc +σ∆WN f−2) ŜNc−1(Ŵc) and βc = σ

√
hc ŜNc−1(Ŵc). Using it as the

coarse level’s payoff does not introduce any bias. Using the tower property we check
that it satisfies condition (5),

E∆WNf−1

[
E
[
P(ŜNc) Ŵc,∆WN f−2

]
Ŵc

]
= E

[
P(ŜNc) Ŵc

]
Our numerical experiments show the benefits of the conditional expectation tech-

nique on the European call:

Estimator β MLMC Complexity
Value ≈ 2.0 O(ε−2)

Delta ≈ 1.5 O(ε−2)

Vega ≈ 2.0 O(ε−2)

A fraction O(
√

h`) of the paths arrive in the area around the strike where the

conditional expectation
∂E(P(ŜN)|Ŵ )

∂ ŜN f−1
is neither close to 0 nor 1. In this area, its

slope is O(h−1/2
` ). The coarse and fine paths differ by O(h`), we thus have O(

√
h`)

difference between the coarse and fine Greeks’ estimates. Reasoning as in [4] we get
VŴ (E∆WN−1(...|Ŵ )) = O(h3/2

` ) for the Greeks’ estimators. This is the convergence
rate observed for Delta; the higher convergence rate of Vega is not explained yet by
this rough analysis and will be investigated in our future research.

The main limitation of this approach is that in many situations it leads to com-
plicated integral computations. Path splitting, to be discussed next, may represent a
useful numerical approximation to this technique.

2.3 Split pathwise sensitivities

This technique is based on the previous one. The idea is to avoid the tricky compu-
tation of E

[
P(ŜN f )|Ŵf

]
and E

[
P(ŜNc)|Ŵc,∆WN f−2

]
. Instead, as detailed in section

5.5 of [1], we get numerical estimates of these values by “splitting” every path sim-
ulation on the final timestep.

At the fine level: for every simulated path Ŵf = (∆W0,∆W2, . . . ,∆WN f−2), we

simulate a set of d final increments (∆W (i)
N f−1)i∈[1,d] which we average to get

E
[
P(ŜN f ) Ŵf

]
≈ 1

d

d

∑
i=1

P(ŜN f (Ŵf ,∆W (i)
N f−1)) (20)
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At the coarse level we use Ŵc = (∆W0 +∆W1, . . . ,∆WN f−4 +∆WN f−3). As be-
fore (still assuming a constant drift and volatility on the final coarse step), we
improve the convergence rate of V(Ŷ`) by reusing ∆WN f−2 in our estimation of

E
[
P(ŜNc)

∣∣ Ŵc

]
. We can do so by constructing the final coarse increments as

(∆W (i)
Nc−1)i∈[1,d] = (∆WN f−2 +(∆W (i)

N f−1))i∈[1,d] and using these to estimate

E(P(ŜNc)|Ŵc) = E
[
P(ŜNc) Ŵc,∆WN f−2

]
≈ 1

d

d

∑
i=1

P
(

ŜNc(Ŵc,∆W (i)
Nc−1)

)
To get the Greeks, we simply compute the corresponding pathwise sensitivities.

We now examine the influence of d the number of splittings on the estimated
complexity.

Estimator d β MLMC Complexity
Value 10 ≈ 2.0 O(ε−2)

500 ≈ 2.0 O(ε−2)

Delta 10 ≈ 1.0 O(ε−2(logε)2)
500 ≈ 1.5 O(ε−2)

Vega 10 ≈ 1.6 O(ε−2)
500 ≈ 2.0 O(ε−2)

As expected this method yields higher values of β than simple pathwise sensitiv-
ities: the convergence rates increase and tend to the rates offered by conditional
expectations as d increases and the approximation gets more precise.

Taking a constant number of splittings d for all levels is actually not optimal; for
Greeks we can write the variance of the estimator as

V(Ŷ`) =
1
N`

VŴ f

E
(∂ P̂f

∂θ

)(`)

−

(
∂ P̂c

∂θ

)(`−1)

Ŵf


+

1
N` d

EŴ f

V
(∂ P̂f

∂θ

)(`)

−

(
∂ P̂c

∂θ

)(`−1)

Ŵf

 (21)

As explained in section 2.2 we have VŴ f
(E(...|Ŵf )) = O(h3/2

` ) for the Greeks. We

also have EŴ f
(V(...|Ŵf )) = O(h`) for similar reasons. We optimise the variance at

a fixed computational cost by choosing d such that the two terms of the sum are of
similar order. Taking d = O(h−1/2

` ) is therefore optimal.
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2.4 Vibrato Monte Carlo

Since the previous method uses pathwise sensitivity analysis, it is not applicable
when payoffs are discontinuous. To address this limitation, we use the Vibrato
Monte Carlo method introduced by Giles [6]. This hybrid method combines path-
wise sensitivities and the Likelihood Ratio Method.

We consider again equation (15). We now use the Likelihood Ratio Method on
the last timestep and with the notations of section 2.2 we get

∂V̂
∂θ

= EŴ

[
E∆WN−1

[
P
(

ŜN

)
∂ (log p(ŜN |Ŵ ))

∂θ

∣∣∣∣ Ŵ

]]
(22)

We can write p(ŜN |Ŵ )) as p(µŴ ,σŴ ). This leads to the estimator

∂V̂
∂θ
≈ 1

N`

N`

∑
m=1

(
∂ µŴ (m)

∂θ
E∆WN−1

[
P( ŜN

)
∂ (log p)

∂ µŴ

∣∣∣∣ Ŵ (m)

]
+

∂σŴ (m)

∂θ
E∆WN−1

[
P
(

ŜN

)
∂ (log p)

∂σŴ

∣∣∣∣ Ŵ (m)

])
(23)

We compute
∂ µŴ (m)

∂θ
and

∂σŴ (m)

∂θ
with pathwise sensitivities.

With Ŝ(m,i)
N = ŜN(Ŵ (m),∆W (i)

N−1), we substitute the following estimators into (23)

E∆WN−1

[
P
(

ŜN

)
∂ (log p)

∂ µŴ

∣∣∣∣ Ŵ (m)

]
≈ 1

d

d

∑
i=1

(
P
(

Ŝ(m,i)
N

) Ŝ(m,i)
N −µŴ (m)

σ2
Ŵ (m)

)

E∆WN−1

[
P
(

ŜN

)
∂ (log p)

∂σŴ

∣∣∣∣ Ŵ (m)

]
≈ 1

d

d

∑
i=1

P
(

Ŝ(m,i)
N

)
(

Ŝ(m,i)
N −µŴ (m)

)2

σ3
Ŵ (m)

− 1
σŴ (m)


In a multilevel setting: at the fine level we can use (23) directly. At the coarse

level, for the same reasons as in section 2.3, we reuse the fine brownian increments
to get efficient estimators. We take

Ŵc = (∆W0 +∆W1, . . . ,∆WN f−4 +∆WN f−3)

(∆W (i)
Nc−1)i∈[1,d] = (∆WN f−2 +(∆W (i)

N f−1))i∈[1,d]
(24)

We use the tower property to verify that condition (5) is verified on the last coarse
step. With the notations of equation (19) we derive the following estimators
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E∆WNc−1

[
P
(

ŜNc

)
∂ (log pc)

∂ µŴc

∣∣∣∣ Ŵ (m)
c

]

= E

[
E

[
P
(

ŜNc

)
∂ (log pc)

∂ µŴc

∣∣∣∣ Ŵ (m)
c ,∆WN f−2

]∣∣∣∣ Ŵ (m)
c

]

≈ 1
d

d

∑
i=1

P
(

Ŝ(m,i)
Nc

) Ŝ(m,i)
Nc
−µ

Ŵ (m)
c

σ2
Ŵc

(m)


E∆WNc−1

[
P
(

ŜNc

)
∂ (log p)

∂σŴ

∣∣∣∣ Ŵ (m)
c

]
= E

[
E
[

P
(

ŜNc

)
∂ (log p)

∂σŴ

∣∣∣∣ Ŵ (m)
c ,∆WN f−2

]∣∣∣∣ Ŵ (m)
c

]

≈ 1
d

d

∑
i=1

P
(

Ŝ(m,i)
Nc

)− 1
σ

Ŵ (m)
c

+

(
Ŝ(m,i)

Nc
−µ

Ŵ (m)
c

)2

σ3
Ŵ (m)

c



(25)

Our numerical experiments show the following convergence rates for d = 10:

Estimator β MLMC Complexity
Value ≈ 2.0 O(ε−2)

Delta ≈ 1.5 O(ε−2)

Vega ≈ 2.0 O(ε−2)

As in section 2.3, this is an approximation of the conditional expectation tech-
nique, and so the same convergence rates was expected.

3 European digital call

The European digital call’s payoff is P = 1ST>K . The discontinuity of the payoff
makes the computation of Greeks more challenging. We cannot apply pathwise sen-
sitivities, and so we use conditional expectations or Vibrato Monte Carlo.

With the same notation as in section 2.2 we compute the conditional expectations
of the digital call’s payoff.

E(P(ŜN f )|Ŵ ) = Φ

(
α−K

β

)
E(P(ŜNc)|Ŵc,∆WN f−2) = Φ

(
αc−K

βc

)
The simulations give

Estimator β MLMC Complexity
Value ≈ 1.4 O(ε−2)

Delta ≈ 0.5 O(ε−2.5)

Vega ≈ 0.6 O(ε−2.4)
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The Vibrato technique can be applied in the same way as with the European call.
We get

Estimator β MLMC Complexity
Value ≈ 1.3 O(ε−2)

Delta ≈ 0.3 O(ε−2.7)

Vega ≈ 0.5 O(ε−2.5)

The analysis presented in section 2.2 explains why we expected β = 3/2 for the
value’s estimator. A fraction O(

√
h) of all paths arrive in the area around the payoff

where (∂E(P(ŜN)|Ŵ )/∂ ŜN−1) is not close to 0 ; there its derivative is O(h−1
` ) and

we have |ŜN f − ŜNc |= O(h`). For these paths, we thus have O(1) difference between
the fine and coarse Greeks’ estimates. This explains the experimental β ≈ 1/2.

4 European lookback call

The lookback call’s value depends on the values that the asset takes before expiry.
Its payoff is P(T ) = (ST − min

t∈[0,T ]
(St)).

As explained in [4], the natural discretisation P̂ = (ŜN −min
n

Ŝn) is not satisfac-
tory. To regain good convergence rates, we approximate the behaviour within each
fine timestep [tn, tn+1] of width h f as a simple Brownian motion with constant drift
a f

n and volatility b f
n conditional on the simulated values Ŝ f

n and Ŝ f
n+1. As shown in

[8] we can then simulate the local minimum

Ŝ f
n,min =

1
2

(
Ŝ f

n + Ŝ f
n+1−

√(
Ŝ f

n+1− Ŝ f
n

)2
−2(b f

n)2h f logUn

)
(26)

with Un a uniform random variable on [0,1]. We define the fine level’s payoff this
way choosing b f

n = b(Ŝ f
n , tn) and considering the minimum over all timesteps to get

the global minimum of the path.
At the coarse level we still consider a simple Brownian motion on each timestep

of width hc = 2h f . To get high strong convergence rates, we reuse the fine incre-
ments by defining a midpoint value for each step

Ŝc
n+1/2 =

1
2

(
Ŝc

n + Ŝc
n+1−bc

n(∆Wn+1/2−∆Wn)
)
, (27)

where (∆Wn+1/2−∆Wn) is the difference of the corresponding fine Brownian incre-
ments on [tn+1/2, tn+1] and [tn, tn+1/2]. Conditional on this value, we then define the
minimum over the whole step as the minimum of the minimum over each half step,
that is
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Ŝc
n,min = min

[
1
2

(
Ŝc

n + Ŝc
n+1/2−

√(
Ŝc

n+1/2− Ŝc
n

)2
− (bc

n)
2hc logU1,n

)
,

1
2

(
Ŝc

n+1/2 + Ŝc
n+1−

√(
Ŝc

n+1− Ŝc
n+1/2

)2
− (bc

n)
2hc logU2,n

)]
(28)

where U1,n and U2,n are the values we sampled to compute the minima of the corre-
sponding timesteps at the fine level. Once again we use the tower property to check
that condition (5) is verified and that this coarse-level estimator is adequate.

Using the treatment described above, we can then apply straighforward pathwise
sensitivities to compute the multilevel estimator. This gives the following results:

Estimator β MLMC Complexity
Value ≈ 1.9 O(ε−2)

Delta ≈ 1.9 O(ε−2)

Vega ≈ 1.3 O(ε−2)

For the value’s estimator, Giles, Debrabant and Rössler [7] have proved that V(Ŷl) =

O(h2−δ

` ) for all δ > 0, thus we expected β ≈ 2. In the Black & Scholes model, we
can prove that Delta = (V/S0). We therefore expected β ≈ 2 for Delta too. The
strong convergence speed of Vega’s estimator cannot be derived that easily and will
be analysed in our future research.

Unlike the regular call option, the payoff of the lookback call is perfectly smooth
and so therefore there is no benefit from using conditional expectations and associ-
ated methods.

5 European barrier call

Barrier options are contracts which are activated or deactivated when the underlying
asset S reaches a certain barrier value B. We consider here the down-and-out call for
which the payoff can be written as

P = (ST −K)+ 1 min
t∈[0,T ]

(St)> K (29)

Both the naive estimators and the approach used with the lookback call are unsat-
isfactory here: the discontinuity induced by the barrier results in a higher variance
than before. Therefore we use the approach developed in [4] where we compute the
probability pn that the minimum of the interpolant crosses the barrier within each
timestep. This gives the conditional expectation of the payoff conditional on the
Brownian increments of the fine path:

P̂ f = (Ŝ f
N f
−K)+

N f−1

∏
n=0

(
1− p̂ f

n
)

(30)
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with

p̂ f
n = exp

(
−2(Ŝ f

n −B)+(Ŝ f
n+1−B)+

(b f
n)2 h f

)
At the coarse level we define the payoff similarly: we first simulate a midpoint value
Ŝc

n+1/2 as before and then define p̂c
n the probability of not hitting B in [tn, tn+1], that

is the probability of not hitting B in [tn, tn+1/2] and [tn+1/2, tn+1]. Thus

P̂c = (Ŝc
Nc −K)+

Nc−1

∏
n=0

(1− p̂c
n) = (Ŝc

Nc −K)+
Nc−1

∏
n=0

((1− p̂n,1)(1− p̂n,2)) (31)

with

p̂n,1 = exp

(
−2(Ŝc

n−B)+(Ŝc
n+1/2−B)+

(bc
n)

2 h f

)

p̂n,2 = exp

(
−2(Ŝc

n+1/2−B)+(Ŝc
n+1−B)+

(bc
n)

2 h f

)

5.1 Pathwise sensitivities

The multilevel estimators Ŷ` =
(

P̂ f
)(`)
−
(

P̂c
)(`−1)

are Lipschitz with respect to

all (Ŝ f
n)n=1...N f and (Ŝc

n)n=1...Nc , so we can use pathwise sensitivities to compute the
Greeks. Our numerical simulations give

Estimator β MLMC Complexity
Value ≈ 1.6 O(ε−2)

Delta ≈ 0.6 O(ε−2.4)

Vega ≈ 0.6 O(ε−2.4)

Giles proved β = 3
2 −δ (δ > 0) for the value’s estimator. We are currently working

on a numerical analysis supporting the observed convergence rates for the Greeks.

5.2 Conditional Expectations

The low convergence rates observed in the previous section come from both the dis-
continuity at the barrier and from the lack of smoothness of the call around K. To
address the latter, we can use the techniques described in section 1. Since path split-
ting and Vibrato Monte Carlo offer rates that are at best equal to those of conditional
expectations, we have therefore implemented conditional expectations and obtained
the following results:



Computing Greeks using multilevel path simulation 15

Estimator β MLMC Complexity
Value ≈ 1.7 O(ε−2)

Delta ≈ 0.7 O(ε−2.3)

Vega ≈ 0.7 O(ε−2.3)

We see that the maximum benefits of these techniques are only marginal. The barrier
appears to be responsible for most of the variance of the multilevel estimators.

Conclusion and future work

In this paper we have shown for a range of cases how multilevel techniques can be
used to reduce the computational complexity of Monte Carlo Greeks.

Smoothing a Lipschitz payoff with conditional expectations reduces the com-
plexity to O(ε−2). From this technique we derive the Path splitting and Vibrato
methods: they offer the same efficiency and avoid intricate integral computations.
Payoff smoothing and Vibrato also enable us to extend the computation of Greeks
to discontinuous payoffs where the pathwise sensitivity approach is not applicable.
Numerical evidence shows that with well-constructed estimators these techniques
provide computational savings even with exotic payoffs.

So far we have mostly relied on numerical estimates of β to estimate the com-
plexity of the algorithms. Our current analysis is somewhat crude ; this is why our
current research now focuses on a rigorous numerical analysis of the algorithms’
complexity.
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