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Abstract We investigate the extension of the multilevel Monte Carlo path simulation
method to jump-diffusion SDEs. We consider models with finite rate activity using
a jump-adapted discretisation in which the jump times are computed and added to
the standard uniform discretisation times. The key component in multilevel analysis
is the calculation of an expected payoff difference betweena coarse path simulation
and a fine path simulation with twice as many timesteps. If thePoisson jump rate
is constant, the jump times are the same on both paths and the multilevel extension
is relatively straightforward, but the implementation is more complex in the case of
state-dependent jump rates for which the jump times naturally differ

1 Introduction

In the Black-Scholes Model, the price of an option is given bythe expected value of
a payoff depending upon an asset price modelled by a stochastic differential equa-
tion driven by Brownian motion,
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dS(t) = a(S(t), t)dt +b(S(t), t)dW(t), 0≤ t ≤ T, (1)

with given initial dataS0. Although this model is widely used, the fact that asset
returns are not log-normal has motivated people to suggest models which better
capture the characteristics of the asset price dynamics. Merton[Mer76] instead pro-
posed a jump-diffusion process, in which the asset price follows a jump-diffusion
SDE:

dS(t) = a(S(t−), t)dt +b(S(t−), t)dW(t)+c(S(t−), t)dJ(t), 0≤ t ≤ T, (2)

where the jump termJ(t) is a compound Poisson process∑N(t)
i=1 (Yi − 1), the jump

magnitudeYi has a prescribed distribution, andN(t) is a Poisson process with in-
tensityλ , independent of the Brownian motion. Due to the existence ofjumps, the
process is a c̀adl̀ag process, i.e. having right continuity with left limits. We note that
S(t−) denotes the left limit of the process whileS(t) = lims→t+S(t). In [Mer76],
Merton also assumed that logYi has a normal distribution.

There are several ways in which to generalize the Merton model. Here we con-
sider one case investigated by Glasserman & Merener [GM04],in which the jump
rate depends on the asset price, namelyλ = λ (S(t−), t).

For European options, we are interested in the expected value of a function of the
terminal state,f (S(T)), but in the case of exotic options the valuation depends on the
entire pathS(t),0≤ t ≤T. The expected value can be estimated by a simple Monte
Carlo method with a suitable approximation to the SDE solution. However, if the
discretisation has first order weak convergence then to achieve anO(ε) root mean
square (RMS) error requiresO(ε−2) paths, each withO(ε−1) timesteps, leading to
a computational complexity ofO(ε−3).

Giles [Gil07, Gil08] introduced a multilevel Monte Carlo path simulation method,
demonstrating that the computational cost can be reduced toO(ε−2) for SDEs
driven by Brownian motion. This has been extended by Dereichand Heidenreich
[DH11, Der11] to approximation methods for both finite and infinite activity Lévy-
driven SDEs with globally Lipschitz payoffs. The work in this paper differs in con-
sidering simpler finite activity jump-diffusion models, but also one example of a
more challenging non-Lipschitz payoff, and also uses a moreaccurate Milstein dis-
cretisation to achieve an improved order of convergence forthe multilevel correction
variance which will be defined later.

We first present the jump-adapted discretisation of jump-diffusion processes,
and review the multilevel Monte Carlo method and some modifications for jump-
diffusion processes. We then present the numerical algorithm in detail for the con-
stant rate jump-diffusion model, and show numerical results for various options. The
next section presents the thinning algorithm used for state-dependent intensities, and
the final section draws conclusions and indicates directions for future research.
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2 A Jump-adapted Milstein discretisation

To simulate finite activity jump-diffusion processes, we choose to use the jump-
adapted approximation proposed by Platen [Pla82]. For eachpath simulation, the
set of jump timesJ = {τ1,τ2, . . . ,τm} within the time interval[0,T] is added to a
set of uniformly spaced timest ′i = iT/N, i = 0, . . . ,N, to form a combined set of
discretisation timesT = {0= t0 < t1 < t2 < .. . < tM = T}. As a result, the length
of each timestephn = tn+1− tn will be no greater thanh= T/N.

Within each timestep the first order Milstein discretisation is used to approximate
the SDE, and then the jump is simulated when the simulation time is equal to one
of the jump times. This gives the following numerical method:

Ŝ−n+1 = Ŝn+anhn+bn ∆Wn+
1
2 b′nbn (∆W2

n −hn),

Ŝn+1 =

{
Ŝ−n+1 +c(Ŝ−n+1, tn+1)(Yi −1), whentn+1 = τi ;

Ŝ−n+1, otherwise,

(3)

where the subscriptn is used to denotes the timestep index,Ŝ−n = Ŝ(tn−) is the left
limit of the approximated path,∆Wn is the Brownian increment during the timestep,
an,bn,b′n are the values ofa,b,b′ based on(Ŝn, tn), andYi is the jump magnitude at
τi .

3 Multilevel Monte Carlo method

For Brownian diffusion SDEs, suppose we perform Monte Carlopath simulations
on different levels of resolutionℓ, with 2ℓ uniform timesteps on levelℓ. For a given
Brownian pathW(t), let P denote the payoff, and let̂Pℓ denote its approximation by
a numerical scheme with timestephℓ. As a result of the linearity of the expectation
operator, we have the following identity:

E[P̂L] = E[P̂0]+
L

∑
ℓ=1

E[P̂ℓ−P̂ℓ−1]. (4)

Let Ŷ0 denote the standard Monte Carlo estimate forE[P̂0] usingN0 paths, and for
ℓ > 0, we useNℓ independent paths to estimateE[P̂ℓ−P̂ℓ−1] using

Ŷℓ = N−1
ℓ

Nℓ

∑
i=1

(
P̂(i)
ℓ −P̂(i)

ℓ−1

)
. (5)
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The multilevel method exploits the fact thatVℓ := V[P̂ℓ−P̂ℓ−1] decreases withℓ,
and adaptively choosesNℓ to minimise the computational cost to achieve a desired
root-mean-square error. This is summarized in the following theorem:

Theorem 1. Let P denote a functional of the solution of stochastic differential equa-
tion (1) for a given Brownian path W(t), and letP̂ℓ denote the corresponding ap-
proximation using a numerical discretisation with timestep hℓ = 2−ℓT.

If there exist independent estimatorsŶℓ based on Nℓ Monte Carlo samples, and
positive constantsα ≥ 1

2,β ,c1,c2,c3 such that

i)
∣∣∣E[P̂ℓ−P]

∣∣∣≤ c1hα
ℓ

ii) E[Ŷℓ] =

{
E[P̂0], l = 0

E[P̂ℓ− P̂ℓ−1], l > 0

iii) V[Ŷℓ]≤ c2N−1
ℓ hβ

ℓ

iv) Cℓ, the computational complexity ofŶℓ, is bounded by

Cℓ ≤ c3Nℓh−1
ℓ ,

then there exists a positive constant c4 such that for anyε <e−1 there are values L
and Nℓ for which the multilevel estimator

Ŷ =
L

∑
ℓ=0

Ŷℓ,

has a mean-square-error with bound

MSE≡ E

[(
Ŷ−E[P]

)2
]
< ε2

with a computational complexity C with bound

C≤





c4 ε−2, β > 1,

c4 ε−2(logε)2, β = 1,

c4 ε−2−(1−β )/α , 0< β < 1.

Proof. See [Gil08].

In the case of the jump-adapted discretisation,hℓ should be taken to be the uni-
form timestep at levelℓ, to which the jump times are added to form the set of dis-
cretisation times. We have to define the computational complexity as the expected
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computational cost since different paths may have different numbers of jumps. How-
ever, the expected number of jumps is finite and therefore thecost bound in assump-
tion iv) will still remain valid for an appropriate choice of the constantc3.

4 Multilevel Monte Carlo for constant jump rate

The Multilevel Monte Carlo approach for a constant jump rateis straightforward.
The jump timesτ j , which are the same for the coarse and fine paths, are simulated by
settingτ j −τ j−1 ∼ exp(λ ). The Brownian increments∆Wn are generated for the fine
path, and then summed appropriately to generate the increments for the coarse path.
In the following we show numerical results for European call, lookback and barrier
options. Asian and digital options have also been simulated; numerical results for
these are available in [Xia11] along with more details of theconstruction of the
multilevel estimators for the path-dependent payoffs.

All of the options are priced for the Merton model in which thejump-diffusion
SDE under the risk-neutral measure is

dS(t)
S(t−)

= (r −λm)dt +σ dW(t)+dJ(t), 0≤ t ≤ T,

whereλ is the jump intensity,r is the risk-free interest rate,σ is the volatility, the
jump magnitude satisfies logYi ∼ N(a,b), andm= E[Yi ]− 1 is the compensator
to ensure the discounted asset price is a martingale. All of the simulations in this
section use the parameter valuesS0=100,K=100,T=1, r=0.05,σ =0.2, a=0.1,
b=0.2, λ =1.

4.1 European call option

Figure 1 shows the numerical results for the European call option with payoff
exp(−rT )(S(T)−K)+, with (x)+ ≡ max(x,0) and strikeK=100.

The top left plot shows the behaviour of the variance of bothP̂ℓ and the multilevel
correctionP̂ℓ−P̂ℓ−1, estimated using 105 samples so that the Monte Carlo sampling
error is negligible. The slope of the MLMC line indicates that Vℓ≡V[P̂ℓ−P̂ℓ−1]=
O(h2

ℓ), corresponding toβ = 2 in conditioniii ) of Theorem 1. The top right plot
shows thatE[P̂ℓ−P̂ℓ−1] is approximatelyO(hℓ), corresponding toα = 1 in condition
i). Noting that the payoff is Lipschitz, both of these are consistent with the first order
strong convergence proved in [Pla10].
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Fig. 1 European call option with constant Poisson rate

The bottom two plots correspond to five different multilevelcalculations with dif-
ferent user-specified accuracies to be achieved. These use the numerical algorithm
given in [Gil08] to determine the number of grid levels, and the optimal number of
samples on each level, which are required to achieve the desired accuracy. The left
plot shows that in each case many more samples are used on level 0 than on any
other level, with very few samples used on the finest level of resolution. The right
plot shows that the the multilevel cost is approximately proportional toε−2, which
agrees with the computational complexity bound in Theorem 1for theβ >1 case.

4.2 Lookback option

The payoff of the lookback option we consider is

P= exp(−rT )

(
S(T)− min

0≤t≤T
S(t)

)
.

Previous work [Gil07] achieved a second order convergence rate for the multilevel
correction variance using the Milstein discretisation andan estimator constructed by
approximating the behaviour within a timestep as an Itô process with constant drift
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and volatility, conditional on the endpoint valueŝSn and Ŝn+1. Brownian Bridge
results (see section 6.4 in [Gla04]) give the minimum value within the timestep
[tn, tn+1], conditional on the end values, as

Ŝn,min =
1
2

(
Ŝn+ Ŝn+1−

√(
Ŝn+1−Ŝn

)2
−2b2

nhlogUn

)
, (6)

wherebn is the constant volatility andUn is a uniform random variable on[0,1]. The
same treatment can be used for the jump-adapted discretisation in this paper, except
thatŜ−n+1 must be used in place of̂Sn+1 in (6).

Equation (6) is used for the fine path approximation, but a different treatment
is used for the coarse path, as in [Gil07]. This involves a change to the original
telescoping sum in (4) which now becomes

E[P̂f
L ] = E[P̂f

0 ]+
L

∑
ℓ=1

E[P̂f
ℓ −P̂c

ℓ−1], (7)

whereP̂f
ℓ is the approximation on levelℓ when it is the finer of the two levels being

considered, and̂Pc
ℓ is the approximation when it is the coarser of the two. This

modified telescoping sum remains valid providedE[P̂f
ℓ ] = E[P̂c

ℓ ].

Considering a particular timestep in the coarse path construction, we have two
possible situations. If it does not contain one of the fine path discretisation times,
and therefore corresponds exactly to one of the fine path timesteps, then it is treated
in the same way as the fine path, using the same uniform random numberUn. This
leads naturally to a very small difference in the respectiveminima for the two paths.

The more complicated case is the one in which the coarse timestep contains one
of the fine path discretisation timest ′, and so corresponds to the union of two fine
path timesteps. In this case, the value at timet ′ is given by the conditional Brownian
interpolant

Ŝ(t ′) = Ŝn+µ (Ŝ−n+1− Ŝn)+bn
(
W(t ′)−Wn−µ (Wn+1−Wn)

)
, (8)

whereµ = (t ′ − tn)/(tn+1 − tn) and the value ofW(t ′) comes from the fine path
simulation. Given this value for̂S(t ′), the minimum values forS(t) within the two
intervals[tn, t ′] and[t ′, tn+1] can be simulated in the same way as before, using the
same uniform random numbers as the two fine timesteps.

The equalityE[P̂f
ℓ ] = E[P̂c

ℓ ] is respected in this treatment becauseW(t ′) comes
from the correct distribution, conditional onWn+1,Wn, and therefore, conditional
on the values of the Brownian path at the set of coarse discretisation points, the
computed value for the coarse path minimum has exactly the same distribution as it
would have if the fine path algorithm were applied.
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Fig. 2 Lookback option with constant Poisson rate

Further discussion and analysis of this is given in [XG11], including a proof that
the strong error between the analytic path and the conditional interpolation approx-
imation is at worstO(h logh).

Figure 2 presents the numerical results. The results are very similar to those ob-
tained by Giles for geometric Brownian motion [Gil07]. The top two plots indicate
second order variance convergence rate and first order weak convergence, both of
which are consistent with theO(h logh) strong convergence. The computational
cost of the multilevel method is therefore proportional toε−2, as shown in the bot-
tom right plot.

4.3 Barrier option

We consider a down-and-out call barrier option for which thediscounted payoff is

P= exp(−rT )(S(T)−K)+1{MT>B},

where MT = min0≤t≤T S(t). The jump-adapted Milstein discretisation with the
Brownian interpolation gives the approximation
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P̂= exp(−rT )(Ŝ(T)−K)+1{M̂T>B}

whereM̂T = min0≤t≤T Ŝ(t). This could be simulated in exactly the same way as the
lookback option, but in this case the payoff is a discontinuous function of the min-
imum MT and anO(h) error in approximatingMT would lead to anO(h) variance
for the multilevel correction.

Instead, following the approach of Cont & Tankov (see page 177 in [CT04]), it is
better to use the expected value conditional on the values ofthe discrete Brownian
increments and the jump times and magnitudes, all of which may be represented
collectively asF . This yields

E

[
exp(−rT ) (Ŝ(T)−K)+1{M̂T>B}

]

= E

[
exp(−rT ) (Ŝ(T)−K)+E

[
1{M̂T>B} | F

]]

= E

[
exp(−rT ) (Ŝ(T)−K)+

nT−1

∏
n=0

p̂n

]

wherenT is the number of timesteps, and̂pn denotes the conditional probability that
the path does not cross the barrierB during thenth timestep:

p̂n = 1−exp

(
−2(Ŝn−B)+(Ŝ−n+1−B)+

b2
n (tn+1− tn)

)
. (9)

This barrier crossing probability is computed by conditional expectation and can be
used to deduce the (6).

For the coarse path calculation, we again deal separately with two cases. When
the coarse timestep does not include a fine path time, then we again use (9). In the
other case, when it includes a fine path timet ′ we evaluate the Brownian interpolant
at t ′ and then use the conditional expectation to obtain

p̂n =

{
1−exp

(
−2(Ŝn−B)+(Ŝ(t)−B)+

b2
n (t ′− tn)

)}

×

{
1−exp

(
−2(Ŝ(t ′)−B)+(Ŝ−n+1−B)+

b2
n (tn+1− t ′)

)}
. (10)

Figure 3 shows the numerical results forK=100,B=85. The top left plot shows
that the multilevel variance isO(hβ

ℓ ) for β ≈ 3/2 . This is similar to the behavior
for a diffusion process [Gil07]. The bottom right plot showsthat the computational
cost of the multilevel method is again almost perfectly proportional toε−2.
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Fig. 3 Barrier option with constant Poisson rate

5 Path-dependent rates

In the case of a path-dependent jump rateλ (St , t), the implementation of the mul-
tilevel method becomes more difficult because the coarse andfine path approxima-
tions may jump at different times. These differences could lead to a large difference
between the coarse and fine path payoffs, and hence greatly increase the variance
of the multilevel correction. To avoid this, we modify the simulation approach of
Glasserman & Merener [GM04] which uses “thinning” to treat the case in whichλ
is bounded.

The idea of the thinning method is to construct a Poisson process with a constant
rateλsup which is an upper bound of the state-dependent rate. This gives a set of
candidate jump times, and these are then selected as true jump times with probability
λ (St , t)/λsup. Hence we have the following jump-adapted thinning Milstein scheme:

1. Generate the jump-adapted time grid for a Poisson processwith constant rate
λsup;

2. Simulate each timestep using the Milstein discretisation;
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3. When the endpointtn+1 is a candidate jump time, generate a uniform random

numberU ∼ [0,1], and ifU < ptn+1 =
λ (S(tn+1−), tn+1)

λsup
, then accepttn+1 as a

real jump time and simulate the jump.

5.1 Multilevel treatment

In the multilevel implementation, if we use the above algorithm with different ac-
ceptance probabilities for fine and coarse level, there may be some samples in which
a jump candidate is accepted for the fine path, but not for the coarse path, or vice
versa. Because of first order strong convergence, the difference in acceptance proba-
bilities will be O(h), and hence there is anO(h) probability of coarse and fine paths
differing in accepting candidate jumps. Such differences will give an O(1) differ-
ence in the payoff value, and hence the multilevel variance will be O(h). A more
detailed analysis of this is given in [XG11].

To improve the variance convergence rate, we use a change of measure so that the
acceptance probability is the same for both fine and coarse paths. This is achieved
by taking the expectation with respect to a new measureQ:

E[P̂ℓ− P̂ℓ−1] = EQ[P̂ℓ∏
τ

Rf
τ − P̂ℓ−1∏

τ
Rc

τ ]

whereτ are the jump times. The acceptance probability for a candidate jump under
the measureQ is defined to be1

2 for both coarse and fine paths, instead ofpτ =
λ (S(τ−),τ)/λsup. The corresponding Radon-Nikodym derivatives are

Rf
τ =





2pf
τ , if U <

1
2

;

2(1− pf
τ ), if U ≥

1
2
,

Rc
τ =





2pc
τ , if U <

1
2

;

2(1− pc
τ), if U ≥

1
2
,

SinceRf
τ −Rc

τ = O(h) andP̂ℓ− P̂ℓ−1 = O(h), this results in the multilevel correction
varianceVQ[P̂ℓ ∏τ Rf

τ − P̂ℓ−1 ∏τ Rc
τ ] beingO(h2).

If the analytic formulation is expressed using the same thinning and change of
measure, the weak error can be decomposed into two terms as follows:

EQ

[
P̂ℓ∏

τ
Rf

τ −P∏
τ

Rτ

]
= EQ

[
(P̂ℓ−P) ∏

τ
Rf

τ

]
+ EQ

[
P (∏

τ
Rf

τ −∏
τ

Rτ)

]
.

Using Hölder’s inequality, the bound max(Rτ ,R
f
τ ) ≤ 2 and standard results for a

Poisson process, the first term can be bounded using weak convergence results for
the constant rate process, and the second term can be boundedusing the corre-
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Fig. 4 European call option with path-dependent Poisson rate using thinning without a change of
measure

sponding strong convergence results [XG11]. This guarantees that the multilevel
procedure does converge to the correct value.
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Fig. 5 European call option with path-dependent Poisson rate using thinning with a change of
measure

5.1.1 Numerical results

We show numerical results for a European call option using

λ =
1

1+(S(t−)/S0)2 , λsup= 1,

and with all other parameters as used previously for the constant rate cases.

Comparing Figures 4 and 5 we see that the variance convergence rate is signifi-
cantly improved by the change of measure, but there is littlechange in the computa-
tional cost. This is due to the main computational effort being on the coarsest level,
which suggests using quasi-Monte Carlo on that level [GW09].

The bottom left plot in Figure 4 shows a slightly erratic behaviour. This is because
the O(hℓ) variance is due to a small fraction of the paths having anO(1) value
for P̂ℓ− P̂ℓ−1. In the numerical procedure, the variance is estimated using an initial
sample of 100 paths. When the variance is dominated by a few outliers, this sample
size is not sufficient to provide an accurate estimate, leading to this variability.
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6 Conclusions and future work

In this work we have extended the multilevel Monte Carlo method to scalar jump-
diffusion SDEs using a jump-adapted discretisation. Second order variance conver-
gence is maintained in the constant rate case for European options with Lipschitz
payoffs, and also for lookback options by constructing estimators using a previous
Brownian interpolation technique. Variance convergence of order 1.5 is obtained
for barrier and digital options, which again matches the convergence which has been
achieved previously for scalar SDEs without jumps. In the state-dependent rate case,
we use thinning with a change of measure to avoid asynchronous jumps in the fine
and coarse levels. In separate work [Xia11] we have also investigated an alternative
approach using a time-change Poisson process to handle cases in which there is no
upper bound on the jump rate.

The first natural direction for future work is numerical analysis to determine
the order of convergence of multilevel correction variance[XG11]. A second is to
investigate other Ĺevy processes, such as VG (Variance-Gamma), and NIG (Normal
Inverse Gaussian). We also plan to investigate whether the multilevel quasi-Monte
Carlo method [GW09] will further reduce the cost.
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correction.The Annals of Applied Probability, 21(1):283–311, 2011.
[DH11] S. Dereich and F. Heidenreich. A multilevel Monte Carlo algorithm for Ĺevy
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The Indian Journal of Statistics, Series A, 44(2):163–172, 1982.

[Pla10] N. Platen and E. Bruti-Liberati.Numerical Solution of Stochastic Differential Equa-
tions with Jumps in Finance, volume 64 ofStochastic Modelling and Applied Probability.
Springer-Verlag, 1st edition, 2010.



Multilevel path simulation for jump-diffusion SDEs 15

[Xia11] Y. Xia. Multilevel Monte Carlo method for jump-diffusion SDEs. Technical report.
http://arxiv.org/abs/1106.4730

[XG11] Y. Xia and M.B. Giles. Numerical analysis of multilevel Monte Carlo for scalar jump-
diffusion SDEs. Working paper in preparation, 2011.


