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Abstract We investigate the extension of the multilevel Monte Cadthgsimulation
method to jump-diffusion SDEs. We consider models with éiméte activity using
a jump-adapted discretisation in which the jump times arapided and added to
the standard uniform discretisation times. The key compbimemultilevel analysis
is the calculation of an expected payoff difference betwaeeoarse path simulation
and a fine path simulation with twice as many timesteps. IfRhisson jump rate
is constant, the jump times are the same on both paths andultieewel extension
is relatively straightforward, but the implementation ienecomplex in the case of
state-dependent jump rates for which the jump times ndyiddfer

1 Introduction

In the Black-Scholes Model, the price of an option is giveriti®yexpected value of
a payoff depending upon an asset price modelled by a stochiéfétrential equa-
tion driven by Brownian motion,
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dS(t) = a(S(t),t)dt+b(S(t),t)dW(t), 0<t<T, (1)

with given initial dataS. Although this model is widely used, the fact that asset
returns are not log-normal has motivated people to suggesels which better
capture the characteristics of the asset price dynamicgol[®&ler76] instead pro-
posed a jump-diffusion process, in which the asset pridevisl a jump-diffusion
SDE:

dS(t) = a(S(t—),t)dt +b(S(t—),t) dW(t) +c(S(t—),t)dI(t), 0<t<T, (2)

where the jump ternd(t) is a compound Poisson proce;Ez(tl) (Yi — 1), the jump
magnitudeY; has a prescribed distribution, ahlt) is a Poisson process with in-
tensity A, independent of the Brownian motion. Due to the existengarops, the
process is aadlag process, i.e. having right continuity with left limitseWote that
S(t—) denotes the left limit of the process whit) = lims ¢ S(t). In [Mer76],
Merton also assumed that lgghas a normal distribution.

There are several ways in which to generalize the Merton métége we con-
sider one case investigated by Glasserman & Merener [GM®4}hich the jump
rate depends on the asset price, namely A (S(t—),t).

For European options, we are interested in the expected edlufunction of the
terminal statef (S(T)), butin the case of exotic options the valuation dependsen th
entire pathS(t),0<t <T. The expected value can be estimated by a simple Monte
Carlo method with a suitable approximation to the SDE sofutHowever, if the
discretisation has first order weak convergence then teaelanO(€) root mean
square (RMS) error requiré3(s~?) paths, each witlD(¢ 1) timesteps, leading to
a computational complexity @(e3).

Giles [Gil07, Gil08] introduced a multilevel Monte Carlothasimulation method,
demonstrating that the computational cost can be reduce®d(4c?) for SDEs
driven by Brownian motion. This has been extended by Deraigh Heidenreich
[DH11, Derl1] to approximation methods for both finite anfinite activity Levy-
driven SDEs with globally Lipschitz payoffs. The work ins$hpaper differs in con-
sidering simpler finite activity jump-diffusion models, tbelso one example of a
more challenging non-Lipschitz payoff, and also uses a raocerate Milstein dis-
cretisation to achieve an improved order of convergencthéomultilevel correction
variance which will be defined later.

We first present the jump-adapted discretisation of junffusion processes,
and review the multilevel Monte Carlo method and some madifias for jump-
diffusion processes. We then present the numerical algorit detail for the con-
stant rate jump-diffusion model, and show numerical redoltvarious options. The
next section presents the thinning algorithm used for stafeendent intensities, and
the final section draws conclusions and indicates direstionfuture research.
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2 A Jump-adapted Milstein discretisation

To simulate finite activity jump-diffusion processes, weogbke to use the jump-
adapted approximation proposed by Platen [Pla82]. For patih simulation, the
set of jump timeg] = {11, T2,..., Tm} Within the time intervall0, T] is added to a
set of uniformly spaced time$=iT /N, i =0,...,N, to form a combined set of
discretisation time§ = {0 =ty <ty <ty <... <ty = T}. As a result, the length
of each timestep, = tn+1 —tn Will be no greater thah = T/N.

Within each timestep the first order Milstein discretisati®used to approximate
the SDE, and then the jump is simulated when the simulatioe t6 equal to one
of the jump times. This gives the following numerical method

A$+1 = §n+anhn+bnAWn+%b;1bn (Aan_ hn),

& .- S1 oS nthi) (i —1),  whenthyq = T; (3)
" AH, otherwise

where the subscript is used to denotes the timestep ind8x,= S(t,—) is the left
limit of the approximated patiW, is the Brownian increment during the timestep,
an, b, by, are the values od, b, b’ based or(S,,t,), andy; is the jump magnitude at
Ti.

3 Multilevel Monte Carlo method

For Brownian diffusion SDEs, suppose we perform Monte Cpdth simulations
on different levels of resolutiof, with 2 uniform timesteps on level For a given
Brownian pathW/(t), let P denote the payoff, and I& denote its approximation by
a numerical scheme with timestbp As a result of the linearity of the expectation
operator, we have the following identity:

L
E[R]=E[R) 2 E[R—P-1]. (4)
=1

Let Yo denote the standard Monte Carlo estimgte[@{ﬁo] usingNp paths, and for
¢ >0, we usd\,; independent paths to estim@&, —P,_;] using

Y= N; (RV-FRY). (5)
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The multilevel method exploits the fact thdt := V[P, —P,_,] decreases witlf,
and adaptively choosé¢ to minimise the computational cost to achieve a desired
root-mean-square error. This is summarized in the follgwireorem:

Theorem 1. Let P denote a functional of the solution of stochastic téfiéal equa-
tion (1) for a given Brownian path \(t), and letP, denote the corresponding ap-
proximation using a humerical discretisation with timgste =2T.

If there exist independent estimaton;sbased on NMonte Carlo samples, and
positive constante > %, B,c1,C2,c3 such that

i) ‘1{«:[@ - P]‘ < coh?
~ E[Ry], =0
i) EN =9
E[Pg — Pg,l], | >0
i) V[Y,] < coN; 1hf
iv) Cy, the computational complexity f, is bounded by

Cr < cgNeht,

then there exists a positive constagtstich that for anye < e~ there are values L
and N for which the multilevel estimator

~ L ~
Y = /Z)Yh
has a mean-square-error with bound
~ 2
MSE=E {(Y —E[P]) } < &2

with a computational complexity C with bound
Ca€ 2, B>1,
C << cye?(loge)?, B=1,
cae 2 (-B)/a o< B <1

Proof. See [Gil08].

In the case of the jump-adapted discretisatlprshould be taken to be the uni-
form timestep at levet, to which the jump times are added to form the set of dis-
cretisation times. We have to define the computational cexityl as the expected
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computational cost since different paths may have diffemambers of jumps. How-
ever, the expected number of jumps is finite and thereforedbebound in assump-
tion iv) will still remain valid for an appropriate choice of the ctenstcs.

4 Multilevel Monte Carlo for constant jump rate

The Multilevel Monte Carlo approach for a constant jump tiatstraightforward.
The jump timegj, which are the same for the coarse and fine paths, are simiiate
settingrj — Tj_1 ~ exp(A ). The Brownian incremenidW, are generated for the fine
path, and then summed appropriately to generate the inatsrize the coarse path.
In the following we show numerical results for European,dalbkback and barrier
options. Asian and digital options have also been simujatacherical results for
these are available in [Xiall] along with more details of tlo@struction of the
multilevel estimators for the path-dependent payoffs.

All of the options are priced for the Merton model in which foenp-diffusion
SDE under the risk-neutral measure is

ds(t

S(?(—)) =(r—Am)dt+odwW(t)+di(t), 0<t<T,
whereA is the jump intensityr is the risk-free interest rate;, is the volatility, the
jump magnitude satisfies ldg~ N(a,b), andm = E[Y;] — 1 is the compensator
to ensure the discounted asset price is a martingale. Ah®ftmulations in this
section use the parameter valiBgs-100,K=100,T=1,r=0.05,0=0.2,a=0.1,
b=0.2,A=1.

4.1 European call option

Figure 1 shows the numerical results for the European cdlbopvith payoff
exp(—rIT) ((T)—K)™, with (x)* = max(x,0) and strikeK =100.

The top left plot shows the behaviour of the variance of Rtnd the multilevel
correctionP,—P,_1, estimated using Plsamples so that the Monte Carlo sampling
error is negligible. The slope of the MLMC line indicatesttW@zV[ng—l?’p,l] =
O(h2), corresponding t@ = 2 in conditioniii ) of Theorem 1. The top right plot
shows thaft[P,—P,_] is approximatehO(h,), corresponding ter = 1 in condition
i). Noting that the payoff is Lipschitz, both of these are cstesit with the first order
strong convergence proved in [Plal10].
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Fig. 1 European call option with constant Poisson rate

accuracy €

The bottom two plots correspond to five different multilesglculations with dif-

ferent user-specified accuracies to be achieved. Thesdeseimerical algorithm
given in [Gil08] to determine the number of grid levels, ahd bptimal number of
samples on each level, which are required to achieve theedesccuracy. The left
plot shows that in each case many more samples are used ¢@ lhan on any
other level, with very few samples used on the finest levekeblution. The right
plot shows that the the multilevel cost is approximatelyppmional tos 2, which

agrees with the computational complexity bound in Theordor the 3 > 1 case.

4.2 Lookback option

The payoff of the lookback option we consider is

P=exp(—rT) (S(T) min S(t)) .

©o<t<T

Previous work [Gil07] achieved a second order convergeatzefor the multilevel
correction variance using the Milstein discretisation anestimator constructed by
approximating the behaviour within a timestep as @mltocess with constant drift



Multilevel path simulation for jump-diffusion SDEs 7

and volatility, conditional on the endpoint valu€s and §n+1. Brownian Bridge
results (see section 6.4 in [Gla04]) give the minimum valuthiw the timestep
[tn,th+1], conditional on the end values, as

~ ~ ~ ~ .\ 2
Shmin = % <31+Sr1+1 \/(S1+1S'I) — 2b%hlogUn ) ) (6)

whereby, is the constant volatility and,, is a uniform random variable df, 1]. The
same treatment can be used for the jump-adapted discietigathis paper, except
thatS,, ; must be used in place &1 in (6).

Equation (6) is used for the fine path approximation, but gedéht treatment
is used for the coarse path, as in [Gil07]. This involves angleato the original
telescoping sum in (4) which now becomes

L
ER]=E[R)] + ;E[@f—%ﬂ (7)

WhereI5[f is the approximation on levélwhen it is the finer of the two levels being
considered, an@C is the approximation when it is the coarser of the two. This
modified telescoping sum remains valid provide®, ] = E[PY].

Considering a particular timestep in the coarse path coctsdn, we have two
possible situations. If it does not contain one of the findamhs$cretisation times,
and therefore corresponds exactly to one of the fine pattstaps, then it is treated
in the same way as the fine path, using the same uniform randarberU,. This
leads naturally to a very small difference in the respectii@ma for the two paths.

The more complicated case is the one in which the coarsetémesntains one
of the fine path discretisation timé&s and so corresponds to the union of two fine
path timesteps. In this case, the value at tihig given by the conditional Brownian
interpolant

St) =S+ 1 (S —S) +bn (W) =Wh — tt (Why1 — W), (8)

wherep = (t' —tn)/(th+1 —tn) and the value ofV(t') comes from the fine path
simulation. Given this value fo§(t'), the minimum values fo8(t) within the two
intervals|[t,,t'] and[t’,th+1] can be simulated in the same way as before, using the
same uniform random numbers as the two fine timesteps.

The equalityE[P/] = E[P¢] is respected in this treatment becaMigé’) comes
from the correct distribution, conditional o, 1,W,, and therefore, conditional
on the values of the Brownian path at the set of coarse disatiemn points, the
computed value for the coarse path minimum has exactly tie shistribution as it
would have if the fine path algorithm were applied.
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Fig. 2 Lookback option with constant Poisson rate

Further discussion and analysis of this is given in [XG1igJuding a proof that
the strong error between the analytic path and the conditioterpolation approx-
imation is at worsO(hlogh).

Figure 2 presents the numerical results. The results ayesumilar to those ob-
tained by Giles for geometric Brownian motion [Gil07]. Thepttwo plots indicate
second order variance convergence rate and first order wealergence, both of
which are consistent with th®(hlogh) strong convergence. The computational
cost of the multilevel method is therefore proportionaktd, as shown in the bot-
tom right plot.

4.3 Barrier option

We consider a down-and-out call barrier option for whichdiseounted payoff is

P=exp(—IT) (S(T)—K)" Lyu;-g}

where Mt = ming<t<7 S(t). The jump-adapted Milstein discretisation with the
Brownian interpolation gives the approximation
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P=exp(—1T) (S(T)~K)" Ly g

whereMT = MiNp<t<T §(t). This could be simulated in exactly the same way as the
lookback option, but in this case the payoff is a discontirsufunction of the min-
imum My and anO(h) error in approximatindr would lead to arO(h) variance

for the multilevel correction.

Instead, following the approach of Cont & Tankov (see pageitn TCT04]), itis
better to use the expected value conditional on the valugseadiscrete Brownian
increments and the jump times and magnitudes, all of which bearepresented
collectively as#. This yields

E [exp(—rT) (§(T)—K)+ﬂ{m>sﬂ
—E [exp(—rT) (ST)—K)'E [l{l\ﬁvB} | y”

=E

nt—1
exp(—1T) (S(T)—K)* [L ﬁn]

wherenr is the number of timesteps, apd denotes the conditional probability that
the path does not cross the barBeduring then'" timestep:

—2<$—B>+<§;+1—B>+> |

(9)

Ph=1-—ex
Pn p( b3 (th+1—tn)

This barrier crossing probability is computed by condiéibexpectation and can be
used to deduce the (6).

For the coarse path calculation, we again deal separatéytwd cases. When
the coarse timestep does not include a fine path time, thergaia ase (9). In the
other case, when itincludes a fine path tirhee evaluate the Brownian interpolant
att’ and then use the conditional expectation to obtain

B = {1exp<2<snbﬁs(ij£st<nt)>s>+> }

y {1_exp<—2<§<v>—8>+<§;+l—8>+>}. 10)

bA (ths1—t')

Figure 3 shows the numerical results Fo=100,B=85. The top left plot shows
that the multilevel variance i@(hf) for B ~ 3/2 . This is similar to the behavior
for a diffusion process [Gil07]. The bottom right plot shothat the computational
cost of the multilevel method is again almost perfectly prbipnal tos 2.
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Fig. 3 Barrier option with constant Poisson rate

5 Path-dependent rates

In the case of a path-dependent jump t&at&;,t), the implementation of the mul-
tilevel method becomes more difficult because the coarsédimmgath approxima-
tions may jump at different times. These differences coeddllto a large difference
between the coarse and fine path payoffs, and hence greatgase the variance
of the multilevel correction. To avoid this, we modify thensilation approach of
Glasserman & Merener [GM04] which uses “thinning” to tréeg tase in whiciA

is bounded.

The idea of the thinning method is to construct a Poissonga®with a constant
rate Asyp Which is an upper bound of the state-dependent rate. Thésgivset of
candidate jump times, and these are then selected as trpdijuas with probability
A(S,t)/Asup Hence we have the following jump-adapted thinning Mils&theme:

1. Generate the jump-adapted time grid for a Poisson progitksconstant rate
Asup:
2. Simulate each timestep using the Milstein discretisatio
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3. When the endpoirtt,, 1 is a candidate jump time, generate a uniform random

numberd ~ [0,1], and ifU < py,,, = M then accept,1 as a

)\sup
real jump time and simulate the jump.

5.1 Multilevel treatment

In the multilevel implementation, if we use the above algon with different ac-
ceptance probabilities for fine and coarse level, there reaome samples in which
a jump candidate is accepted for the fine path, but not for tlaese path, or vice
versa. Because of first order strong convergence, theelifferin acceptance proba-
bilities will be O(h), and hence there is @x(h) probability of coarse and fine paths
differing in accepting candidate jumps. Such differencédkgive an O(1) differ-
ence in the payoff value, and hence the multilevel varianitiebe O(h). A more
detailed analysis of this is given in [XG11].

To improve the variance convergence rate, we use a changeasfure so that the
acceptance probability is the same for both fine and coarbe.pehis is achieved
by taking the expectation with respect to a new meaure

E[R — P 1] = EolP []R —P-1[]R
T T

wheret are the jump times. The acceptance probability for a canglidanp under
the measur® is defined to be% for both coarse and fine paths, insteadpef=
A(S(1—-), 1)/ Asup The corresponding Radon-Nikodym derivatives are

2p1, U<l 2p5, ifu<t:
Rf = 2 RC — 2
r f . 1 T ] 1
21-pr), U273, 21-pf), HfU=3,

SinceRﬁ —RE=0(h) and@ — I34,1 = O(h), this results in the multilevel correction
varianceVo[P [1; R — P,_1[]; R¢] beingO(h?).

If the analytic formulation is expressed using the samenihim and change of
measure, the weak error can be decomposed into two termBavgsfo

Eq @DR{—PDRT] - EQ[(@—P) DR{] +EQ[P(|:|R£—|:|RT) .

Using Holder's inequality, the bound méRT,R;) < 2 and standard results for a
Poisson process, the first term can be bounded using weakrgemce results for
the constant rate process, and the second term can be bousidedthe corre-
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Fig. 4 European call option with path-dependent Poisson rate usingitiy without a change of
measure

sponding strong convergence results [XG11]. This guaeantkeat the multilevel
procedure does converge to the correct value.
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Fig. 5 European call option with path-dependent Poisson rate usingitly with a change of
measure

5.1.1 Numerical results

We show numerical results for a European call option using

1
/\ 29 )\sup: 1)

T 1t (St)/S)

and with all other parameters as used previously for thetaohgate cases.

Comparing Figures 4 and 5 we see that the variance convergatecis signifi-
cantly improved by the change of measure, but there is titthnge in the computa-
tional cost. This is due to the main computational efforhigedn the coarsest level,
which suggests using quasi-Monte Carlo on that level [GWO09].

The bottom left plotin Figure 4 shows a slightly erratic bébar. This is because
the O(hy) variance is due to a small fraction of the paths havingQdh) value
for B, — P_1. In the numerical procedure, the variance is estimatedyuesininitial
sample of 100 paths. When the variance is dominated by a fdigrsythis sample
size is not sufficient to provide an accurate estimate, fepidi this variability.
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6 Conclusions and future work

In this work we have extended the multilevel Monte Carlo rodtto scalar jump-
diffusion SDEs using a jump-adapted discretisation. Seé@vder variance conver-
gence is maintained in the constant rate case for Europg@nspwith Lipschitz
payoffs, and also for lookback options by constructingneators using a previous
Brownian interpolation technique. Variance convergencerder 1.5 is obtained
for barrier and digital options, which again matches theveagence which has been
achieved previously for scalar SDEs without jumps. In tlagestiependent rate case,
we use thinning with a change of measure to avoid asyncheojuoops in the fine
and coarse levels. In separate work [Xiall] we have alsstigated an alternative
approach using a time-change Poisson process to handkinashkich there is no
upper bound on the jump rate.

The first natural direction for future work is numerical arsaé to determine
the order of convergence of multilevel correction variaf@11]. A second is to
investigate other &vy processes, such as VG (Variance-Gamma), and NIG (Normal
Inverse Gaussian). We also plan to investigate whether thiglenel quasi-Monte
Carlo method [GWO09] will further reduce the cost.
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