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ABSTRACT

The multilevel Monte Carlo method has been previously hiced for the efficient pricing of options based on a single
underlying quantity. In this paper we show that the methoehbisily extended to basket options based on a weighted @&verag
of several underlying quantities. Numerical results forafss lookback, barrier and digital basket options demastthat

the computational cost to achieve a root-mean-square efroris O(e~2). This is achieved through a careful construction
of the multilevel estimator which computes the differenceskpected payoff when using different numbers of timesteps

1 INTRODUCTION

Giles Giles 2007 Giles 2008 has recently introduced a multilevel Monte Carlo path dation method which improves
the efficiency of financial option pricing by combining retsulising different numbers of timesteps. This can be viewged a
a generalisation of the two-level method of Kebailkelfaier 200% and is also similar in approach to Heinrich’s multilevel
method for parametric integratiotd€inrich 200). Reference Giles 2008 introduced the multilevel Monte Carlo method
and proved that it can lower the computational complexitypath-dependent Monte Carlo evaluations, while reference
(Giles 2007 demonstrated that the computational cost can be furthterceal by using the Milstein discretisation. In this
paper we briefly review the key ideas and show that the sam@agip can be used for basket options in which the financial
payoff functions depends on a weighted averaged of a nunfbenderlying assets.

2 MULTILEVEL MONTE CARLO METHOD
We start by considering a scalar SDE with general drift andtility terms,
dSit) =a(St)dt+b(St)dw(t), 0<t<T, Q)

with given initial dataSy. In the case of European and digital options, we are intedeist the expected value of a function
of the terminal statef (S(T)), but in other cases the valuation depends on the entire §atf0 <t <T. Using a simple
Euler-Maruyama discretisation with first order weak cogesice, to achieve a r.m.s. error efwould require O(g~2)
independent paths, each wi®(e~1) timesteps, giving a computational complexity whichQge—3).

Consider performing Monte Carlo path simulations withefié&nt numbers of uniform timesteps=2"'T,1 =0,1,...,L,
so on the coarsest levdl=0, the simulations use just 1 timestep, while on the finestlJdv=L, the simulations use'2
timesteps. For a given Brownian pati(t), let P denote the payoff, and I& denote its approximation using a numerical
discretisation with timestep,. Because of the linearity of the expectation operator, dléarly true that

L
E[R]=ER)]+ 5 ER-A_4. (2

=1
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This expresses the expectation on the finest level as beingl ¢g the expectation on the coarsest level plus a sum of
corrections which give the difference in expectation betmveimulations using different numbers of timesteps. In the
multilevel method we independently estimate each of theeetgtions on the right-hand side in a way which minimises the
overall variance for a given computational cost.

The simplest estimator de[ﬁ—FALﬂ for | >0 is a mean of\| independent samples,

M=y (A-AL). ®

The key point here is that the quantlﬁ?')—ﬁ(')l comes from two discrete approximations with different t&teps but the
same Brownian path. The variance of this simple estimat(}f[}?s] = Nl’l\/| whereV, is the variance of a single sample.
Combining this with independent estimators for each of ttlewolevels, and withYg being the usual estimate f@E[Iso],
the variance of the combined estimatdoe= S .Y is V[Y] = -, N, Vi, while its computational cost is proportional to
Zf‘:o I\ hl’l. Treating theN, as continuous variables, the variance is minimised for alfo@mputational cost by choosing
N, to be proportional to,/V, h;.

The Euler-Maruyama discretisation giv@éh'/?) strong convergence, provida@S,t) andb(S t) satisfy certain conditions
(Kloeden and Platen 1992From this it follows thatV[ﬁ—P] = O(h) for a European option with a Lipschitz continuous
payoff. Hence for the simple estimatoB)( the single sample variandé is O(hy), and the optimal choice foN, is
asymptotically proportional tdy. SettingN, = O(¢~2Lhy), the variance of the combined estimgt%ris O(€?). If L is
chosen such thdt = loge~1/log2+0(1), ase —0, thenh_ = 2" = O(¢), and so the bias errdi[P.—P] is O(¢) due to
standard results on weak convergence. Consequently, vainabMean Square Error which @(£?), with a computational
complexity which isO(e2L?) = O(¢?(log€)?).

This analysis is generalised in the following theore@ilés 2008:

Theorem 1. Let P denote a functional of the solution of stochastic réfiéal equation {) for a given Brownian path i),
and letR denote the corresponding approximation using a numericstrdtisation with timestep, k= M.

If there exist independent estimatdfsbased on NMonte Carlo samples, and positive constants %,B,cl,cz,% such
that

) [ER-P| <chf

i) EW]{EPO]’ =0
o ER-A4], 1>0

i) VY] <cNhf
iv) G, the computational complexity &, is bounded by C< c3N, ht,

then there exists a positive constagtstich that for anye < e ! there are values L and;Nor which the multilevel estimator

-

Y=5 VY.

has a mean-square-error with bound
. 2
E [(YE[P]) } <2
with a computational complexity C with bound

C4E2, B>1,
C<{ cie?(loge)?, B=1,

cpe 2 I-B/a o< p <.
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3 MILSTEIN DISCRETISATION

The Milstein discretisation of equatiod)(is

L ab
Sie1= St anh+bndWh+ 3 S8y ((AWh)2—h). 4)

In the above equation, the subscripts used to denote the timestep index, aadb, and db,/dS are evaluated e@},tn.
Provided certain conditions are satisfig€ldeden and Platen 1992the Milstein scheme give®(h) strong convergence,
and for a Lipschitz European payoff this immediately leamshie result thav, = O(h,z).

Reference Giles 2007 addresses the tougher challenges of Asian, lookbackiebamnd digital options. The key to
the Asian, lookback and barrier option constructions is ad@é@nal piecewise Brownian interpolation. Within theng
interval [tn, th+1] we approximate the drift and volatility as being constarthwine interval and use a Brownian interpolation
conditional on the two end value® and Sy.1, giving

S(0) = S+ A1) (Sr2-55) 4 bn (WO ~Wa = A1) (Whsa—Wh)) (5)

where A (t) = (t—tn)/(thy1—tn). Standard results for the distribution of the extrema andages of Brownian motions
(Glasserman 2004can then be used to construct suitable multilevel estiragfdiles 2007.

Similarly, for the digital option which has a discontinuqueg/off, one can use a constant coefficient Brownian extedjool
conditional on the valu&y_1, one timestep before the end. Following an approach usepafpoff smoothing for pathwise
sensitivity analysis Glasserman 20Q4the conditional expectation for the payoff can be evadainalytically and this is
then used to construct the multilevel estimatGil¢s 2007.

4 BASKET OPTIONS

J
In basket options the value is dependent on a weighted awevbd underlying assetsS(t) = Z Uj Sj(t), each of which
=1

satisfies an SDE of the forni) driven by Brownian motion§V;(t) with correlation matrixz. In constructing the multilevel
estimator, the important observation is that the averagheBrownian interpolations for thé& underlying assets gives

l

=~ =~ J
SO = S+A0) S-S+ 3 Hibja (WD) - Wi = M) Wia W)
J:

I
l

FA ) (Sra =5 + B (W) ~Vh = A (1) (Whia—WWh) )
whereW(t) is another Brownian motion which is a weighted average of\thé), andb, is defined by
by = > HibinZij Hjbjn.

]

Since the Brownian interpolation for the basket averagefmasame form as the scalar interpolation, the multilevignegors
can be constructed in exactly the same way asGiheé 2007 using by.
The numerical results to be presented are for a basket of $set® each modelled as a geometric Brownian motion:

dSj =rSj dt+0;S; dw(t), 0<t<T,
using a constant risk-free interest raite 0.05, and five volatilitieso = 0.2,0.25,0.3,0.35,0.4. The initial asset values are

Sj(0) = 100, the simulation interval is taken to @e=1, and the driving Brownian motions have a correlation 060.
each case, the option price is based on a simple arithmetiage® of the five assets.
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Figure 1: Asian option

4.1 Asian Option

The Asian basket option has the discounted palpeffexp(—rT) max(O,é—K) , whereSis the time-average of the average

of the underlying assets, and the strikeKis=100.

The top left plot in Figurel shows the behaviour of the variance of b&hand B —R_;. The slope of the latter is
approaching a value approximately equaka, indicating thai :O(hlz). On levell =2, which has just 4 timestepy, is
already almost 1000 times smaller than the varia¥i@] of the standard Monte Carlo method with the same timestep. Th
top right plot shows tha]E[ﬁ—ﬁ,l] is approximatelyO(h;), corresponding to first order weak convergence. This is tsed
determine the number of levels that are required to redueéits to an acceptable levebiles 2008.

The bottom two plots have results from five multilevel castidns for different values of. Each line in the bottom
left plot shows the values fax,,| =0,...,L, with the values decreasing withbecause of the decrease in b&dhand h;.

It can also be seen that the value fgrthe maximum level of timestep refinement, increases asdhe\for e decreases,
requiring a lower bias erroiQjles 2008. The bottom right plot shows the variation withof €2C where the computational
complexity C is defined a<l = 3, 2'N;, which is the total number of fine grid timesteps on all levée line shows the
results for the multilevel calculation and the other showes ¢orresponding cost of a standard Monte Carlo simulatidheo
same accuracy, i.e. the same bias error corresponding &athe value fot, and the same variance. It can be seen ¢f@t

is almost constant for the multilevel method, as expectdtereas for the standard Monte Carlo method it increases with
L. For the most accurate case=0.01, the multilevel method is approximately 100 times mofecieht than the standard
method.
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Figure 2: Lookback option

4.2 Lookback Option

The basket lookback option we consider has the discountgoiffpR = exp(—rT) (S(T) 0mtinTS(t)> .
<t<

The top left plot in Figure shows that the variance @(h,z), while the top right plot shows that the mean correction
is O(h;). The bottom left plot shows that more levels are requiredetituce the discretisation bias to the required level.
Consequently, the savings relative to the standard Monté @zatment are greater, up to a factor of approximatel§ 15
for e=0.01. The computational cost of the multilevel method is alpesfectly proportional tee 2.
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Figure 3: Barrier option

4.3 Barrier Option

The barrier option which is considered is a down-and-out with payoff P = exp(—rT) (S(T)—K)™ 1;.1, where the
notation(§(T)—K)* denotes maf0, S(T)—K), 1,1 is an indicator function taking value 1 if the argument isetrand zero
otherwise, and the crossing tinteis defined ast :tinB{S(t) < B}. The barrier value is taken to &=85, and the strike
>
is againK =100.
The top left plot in Figure3 shows that the variance is approximatﬂf(h?/z). The reason for this is that a(n(hl/z)

|
fraction of the paths have a minimum which lies witlmﬁhll/z) of the barrier. In Giles 2007 it is argued that for these

paths the difference between the coarse and fine path pa@luEES/isO(hll/ 2), giving a contribution to the overall variance
which is O(h?/?).
The top right plot shows that the mean correctio®i# ), corresponding to first order weak convergence. The bottom

right plot shows that the computational cost of the mulélemethod is again almost perfectly proportionalst?, and for
£=0.01 it is 100 times more efficient that the standard Monte Caré&thod.
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Figure 4: Digital option

4.4 Digital Option

The digital option has the discounted payBff= exp(—rT) K 1gt).k with strike K=100.

The top left plot in Figure4 shows that the variance is approximat@{(hl?’/z). The reason for this is similar to the
argument for the barrier optiorO(hll/z) of the paths have a minimum which lies Witf‘@(h,l/z) of the strike. The fine path

and coarse path trajectories differ ®yh,), due to the first order strong convergence of the Milsteiresghand this results

in an O(hll/ 2) difference between the coarse and fine path evaluations.

One strikingly different feature is that the variance of tbeel 0 estimator is zero. This is because the multilevel
treatment introduced inQiles 2007 uses a conditional expectation (based on a simple Browexarapolation for which
the expectation is known analytically) evaluated one tieedefore the end. At level=0 where there would usually be
one timestep, there is no path simulation at all; one simpBsithe analytic expression for the conditional expectafidis
reduces the cost of the multilevel calculations even maoae tisual, giving more than a factor of 500 computationalregsyi
for e=0.01.
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5 CONCLUSIONS

In this paper we have reviewed the multilevel Monte Carlohodtand have demonstrated that it achievesOga ?)
complexity when computing the value of basket options tdiwits root-mean-square error ©f This built on the single asset
methods introduced inGjles 2007, by noting that the weighted average of a set of simple taigd Brownian motions is
itself a simple Brownian motion, and so the same technigaesbe applied as in the single asset case.

This paper does not present any numerical analysis of thaitpees used. Previous woi&i{es, Higham, and Mao 2009
Avikainen 2009 has analysed the multilevel method using the Euler-Mangaliscretisation. Current work by Giles,
Debrabant and &3ler extending this analysis to the Milstein discretmatsupports the orders of convergence demonstrated
in this paper.

Future work will address the use of the multilevel approamhnfiore general multivariate cases, in particular when the
payoff function is a general discontinuous function of timelerlying asset values at a set of discrete times. Othengixites
to be considered are the computation of sensitivities (reéks” in computational finance), and the application toegal
Lévy processes.
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