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ABSTRACT

The multilevel Monte Carlo method has been previously introduced for the efficient pricing of options based on a single
underlying quantity. In this paper we show that the method iseasily extended to basket options based on a weighted average
of several underlying quantities. Numerical results for Asian, lookback, barrier and digital basket options demonstrate that
the computational cost to achieve a root-mean-square errorof ε is O(ε−2). This is achieved through a careful construction
of the multilevel estimator which computes the difference in expected payoff when using different numbers of timesteps.

1 INTRODUCTION

Giles (Giles 2007, Giles 2008) has recently introduced a multilevel Monte Carlo path simulation method which improves
the efficiency of financial option pricing by combining results using different numbers of timesteps. This can be viewed as
a generalisation of the two-level method of Kebaier (Kebaier 2005) and is also similar in approach to Heinrich’s multilevel
method for parametric integration (Heinrich 2001). Reference (Giles 2008) introduced the multilevel Monte Carlo method
and proved that it can lower the computational complexity ofpath-dependent Monte Carlo evaluations, while reference
(Giles 2007) demonstrated that the computational cost can be further reduced by using the Milstein discretisation. In this
paper we briefly review the key ideas and show that the same approach can be used for basket options in which the financial
payoff functions depends on a weighted averaged of a number of underlying assets.

2 MULTILEVEL MONTE CARLO METHOD

We start by considering a scalar SDE with general drift and volatility terms,

dS(t) = a(S, t)dt +b(S, t)dW(t), 0 < t < T, (1)

with given initial dataS0. In the case of European and digital options, we are interested in the expected value of a function
of the terminal state,f (S(T)), but in other cases the valuation depends on the entire pathS(t),0< t <T. Using a simple
Euler-Maruyama discretisation with first order weak convergence, to achieve a r.m.s. error ofε would requireO(ε−2)
independent paths, each withO(ε−1) timesteps, giving a computational complexity which isO(ε−3).

Consider performing Monte Carlo path simulations with different numbers of uniform timestepshl = 2−l T, l = 0,1, . . . ,L,
so on the coarsest level,l =0, the simulations use just 1 timestep, while on the finest level, l =L, the simulations use 2L

timesteps. For a given Brownian pathW(t), let P denote the payoff, and let̂Pl denote its approximation using a numerical
discretisation with timestephl . Because of the linearity of the expectation operator, it isclearly true that

E[P̂L] = E[P̂0]+
L

∑
l=1

E[P̂l−P̂l−1]. (2)
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This expresses the expectation on the finest level as being equal to the expectation on the coarsest level plus a sum of
corrections which give the difference in expectation between simulations using different numbers of timesteps. In the
multilevel method we independently estimate each of the expectations on the right-hand side in a way which minimises the
overall variance for a given computational cost.

The simplest estimator forE[P̂l−P̂l−1] for l >0 is a mean ofNl independent samples,

Ŷl = N−1
l

Nl

∑
i=1

(
P̂(i)

l −P̂(i)
l−1

)
. (3)

The key point here is that the quantitŷP(i)
l −P̂(i)

l−1 comes from two discrete approximations with different timesteps but the

same Brownian path. The variance of this simple estimator isV[Ŷl ] = N−1
l Vl whereVl is the variance of a single sample.

Combining this with independent estimators for each of the other levels, and witĥY0 being the usual estimate forE[P̂0],
the variance of the combined estimatorŶ = ∑L

l=0Ŷl is V[Ŷ] = ∑L
l=0N−1

l Vl , while its computational cost is proportional to

∑L
l=0Nl h−1

l . Treating theNl as continuous variables, the variance is minimised for a fixed computational cost by choosing

Nl to be proportional to
√

Vl hl .
The Euler-Maruyama discretisation givesO(h1/2) strong convergence, provideda(S, t) andb(S, t) satisfy certain conditions

(Kloeden and Platen 1992). From this it follows thatV[P̂l−P] = O(hl ) for a European option with a Lipschitz continuous
payoff. Hence for the simple estimator (3), the single sample varianceVl is O(hl ), and the optimal choice forNl is
asymptotically proportional tohl . SettingNl = O(ε−2Lhl ), the variance of the combined estimatorŶ is O(ε2). If L is
chosen such thatL = logε−1/ log2+O(1), asε →0, thenhL = 2−L = O(ε), and so the bias errorE[P̂L−P] is O(ε) due to
standard results on weak convergence. Consequently, we obtain a Mean Square Error which isO(ε2), with a computational
complexity which isO(ε−2L2) = O(ε−2(logε)2).

This analysis is generalised in the following theorem (Giles 2008):

Theorem 1. Let P denote a functional of the solution of stochastic differential equation (1) for a given Brownian path W(t),
and let P̂l denote the corresponding approximation using a numerical discretisation with timestep hl = M−l T.

If there exist independent estimatorsŶl based on Nl Monte Carlo samples, and positive constantsα≥
1
2,β ,c1,c2,c3 such

that

i)
∣∣∣E[P̂l −P]

∣∣∣ ≤ c1hα
l

ii) E[Ŷl ] =

{
E[P̂0], l = 0

E[P̂l − P̂l−1], l > 0

iii) V[Ŷl ] ≤ c2N−1
l hβ

l

iv) Cl , the computational complexity of̂Yl , is bounded by Cl ≤ c3Nl h−1
l ,

then there exists a positive constant c4 such that for anyε <e−1 there are values L and Nl for which the multilevel estimator

Ŷ =
L

∑
l=0

Ŷl ,

has a mean-square-error with bound

E

[(
Ŷ−E[P]

)2
]

< ε2

with a computational complexity C with bound

C≤






c4 ε−2, β > 1,

c4 ε−2(logε)2, β = 1,

c4 ε−2−(1−β )/α , 0 < β < 1.
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3 MILSTEIN DISCRETISATION

The Milstein discretisation of equation (1) is

Ŝn+1 = Ŝn +anh+bn ∆Wn + 1
2

∂bn

∂S
bn

(
(∆Wn)

2
−h

)
. (4)

In the above equation, the subscriptn is used to denote the timestep index, andan, bn and ∂bn/∂S are evaluated at̂Sn, tn.
Provided certain conditions are satisfied (Kloeden and Platen 1992), the Milstein scheme givesO(h) strong convergence,
and for a Lipschitz European payoff this immediately leads to the result thatVl = O(h2

l ).
Reference (Giles 2007) addresses the tougher challenges of Asian, lookback, barrier and digital options. The key to

the Asian, lookback and barrier option constructions is a conditional piecewise Brownian interpolation. Within the time
interval [tn, tn+1] we approximate the drift and volatility as being constant with the interval and use a Brownian interpolation
conditional on the two end valueŝSn and Ŝn+1, giving

Ŝ(t) = Ŝn +λ (t)(Ŝn+1−Ŝn)+bn

(
W(t)−Wn−λ (t)(Wn+1−Wn)

)
, (5)

where λ (t) = (t−tn)/(tn+1−tn). Standard results for the distribution of the extrema and averages of Brownian motions
(Glasserman 2004) can then be used to construct suitable multilevel estimators (Giles 2007).

Similarly, for the digital option which has a discontinuouspayoff, one can use a constant coefficient Brownian extrapolation
conditional on the valuêSN−1, one timestep before the end. Following an approach used forpayoff smoothing for pathwise
sensitivity analysis (Glasserman 2004), the conditional expectation for the payoff can be evaluated analytically and this is
then used to construct the multilevel estimator (Giles 2007).

4 BASKET OPTIONS

In basket options the value is dependent on a weighted average of J underlying assets,S(t) =
J

∑
j=1

µ j Sj(t), each of which

satisfies an SDE of the form (1) driven by Brownian motionsWj(t) with correlation matrixΣ. In constructing the multilevel
estimator, the important observation is that the average ofthe Brownian interpolations for theJ underlying assets gives

Ŝ(t) = Ŝn +λ (t)(Ŝn+1−Ŝn)+
J

∑
j=1

µ j b j,n

(
Wj(t)−Wj,n−λ (t)(Wj,n+1−Wj,n)

)

= Ŝn +λ (t)(Ŝn+1−Ŝn)+bn

(
W(t)−Wn−λ (t)(Wn+1−Wn)

)
,

whereW(t) is another Brownian motion which is a weighted average of theWj(t), andbn is defined by

b
2
n = ∑

i, j
µi bi,n Σi, j µ j b j,n.

Since the Brownian interpolation for the basket average hasthe same form as the scalar interpolation, the multilevel estimators
can be constructed in exactly the same way as in (Giles 2007) usingbn.

The numerical results to be presented are for a basket of five assets, each modelled as a geometric Brownian motion:

dSj = rSj dt +σ j Sj dWj(t), 0 < t < T,

using a constant risk-free interest rater =0.05, and five volatilitiesσ = 0.2,0.25,0.3,0.35,0.4. The initial asset values are
Sj(0) = 100, the simulation interval is taken to beT =1, and the driving Brownian motions have a correlation of 0.25. In
each case, the option price is based on a simple arithmetic average of the five assets.



Giles

0 2 4 6 8

−15

−10

−5

0

5

10

level l

lo
g 2 v

ar
ia

nc
e

 

 

P
l

P
l
− P

l−1

0 2 4 6 8

−10

−5

0

5

level l

lo
g 2 |m

ea
n|

 

 

P
l

P
l
− P

l−1

0 2 4 6 8
10

2

10
4

10
6

10
8

level l

N
l

 

 

10
−2

10
−1

10
3

10
4

10
5

accuracy ε

ε2  C
os

t

 

 
Std MC
MLMC

ε=0.01
ε=0.02
ε=0.05
ε=0.1
ε=0.2

Figure 1: Asian option

4.1 Asian Option

The Asian basket option has the discounted payoffP= exp(−rT ) max
(

0,S−K
)

, whereS is the time-average of the average

of the underlying assets, and the strike isK =100.
The top left plot in Figure1 shows the behaviour of the variance of bothP̂l and P̂l−P̂l−1. The slope of the latter is

approaching a value approximately equal to−2, indicating thatVl =O(h2
l ). On level l =2, which has just 4 timesteps,Vl is

already almost 1000 times smaller than the varianceV[P̂l ] of the standard Monte Carlo method with the same timestep. The
top right plot shows thatE[P̂l−P̂l−1] is approximatelyO(hl ), corresponding to first order weak convergence. This is usedto
determine the number of levels that are required to reduce the bias to an acceptable level (Giles 2008).

The bottom two plots have results from five multilevel calculations for different values ofε. Each line in the bottom
left plot shows the values forNl , l = 0, . . . ,L, with the values decreasing withl because of the decrease in bothVl and hl .
It can also be seen that the value forL, the maximum level of timestep refinement, increases as the value forε decreases,
requiring a lower bias error (Giles 2008). The bottom right plot shows the variation withε of ε2C where the computational
complexityC is defined asC = ∑l 2l Nl , which is the total number of fine grid timesteps on all levels.One line shows the
results for the multilevel calculation and the other shows the corresponding cost of a standard Monte Carlo simulation of the
same accuracy, i.e. the same bias error corresponding to thesame value forL, and the same variance. It can be seen thatε2C
is almost constant for the multilevel method, as expected, whereas for the standard Monte Carlo method it increases with
L. For the most accurate case,ε =0.01, the multilevel method is approximately 100 times more efficient than the standard
method.
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Figure 2: Lookback option

4.2 Lookback Option

The basket lookback option we consider has the discounted payoff P = exp(−rT )

(
S(T)− min

0<t<T
S(t)

)
.

The top left plot in Figure2 shows that the variance isO(h2
l ), while the top right plot shows that the mean correction

is O(hl ). The bottom left plot shows that more levels are required to reduce the discretisation bias to the required level.
Consequently, the savings relative to the standard Monte Carlo treatment are greater, up to a factor of approximately 150
for ε =0.01. The computational cost of the multilevel method is almost perfectly proportional toε−2.
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Figure 3: Barrier option

4.3 Barrier Option

The barrier option which is considered is a down-and-out call with payoff P = exp(−rT ) (S(T)−K)+ 1τ>T , where the
notation(S(T)−K)+ denotes max(0,S(T)−K), 1τ>T is an indicator function taking value 1 if the argument is true, and zero
otherwise, and the crossing timeτ is defined asτ = inf

t>0

{
S(t) < B

}
. The barrier value is taken to beB=85, and the strike

is againK =100.

The top left plot in Figure3 shows that the variance is approximatelyO(h3/2
l ). The reason for this is that anO(h1/2

l )

fraction of the paths have a minimum which lies withinO(h1/2
l ) of the barrier. In (Giles 2007) it is argued that for these

paths the difference between the coarse and fine path payoff values isO(h1/2
l ), giving a contribution to the overall variance

which is O(h3/2
l ).

The top right plot shows that the mean correction isO(hl ), corresponding to first order weak convergence. The bottom
right plot shows that the computational cost of the multilevel method is again almost perfectly proportional toε−2, and for
ε =0.01 it is 100 times more efficient that the standard Monte Carlomethod.
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Figure 4: Digital option

4.4 Digital Option

The digital option has the discounted payoffP = exp(−rT ) K 1S(T)>K with strike K =100.

The top left plot in Figure4 shows that the variance is approximatelyO(h3/2
l ). The reason for this is similar to the

argument for the barrier option.O(h1/2
l ) of the paths have a minimum which lies withinO(h1/2

l ) of the strike. The fine path
and coarse path trajectories differ byO(hl ), due to the first order strong convergence of the Milstein scheme and this results

in an O(h1/2
l ) difference between the coarse and fine path evaluations.

One strikingly different feature is that the variance of thelevel 0 estimator is zero. This is because the multilevel
treatment introduced in (Giles 2007) uses a conditional expectation (based on a simple Brownianextrapolation for which
the expectation is known analytically) evaluated one timestep before the end. At levell =0 where there would usually be
one timestep, there is no path simulation at all; one simply uses the analytic expression for the conditional expectation. This
reduces the cost of the multilevel calculations even more than usual, giving more than a factor of 500 computational savings
for ε =0.01.
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5 CONCLUSIONS

In this paper we have reviewed the multilevel Monte Carlo method and have demonstrated that it achieves anO(ε−2)
complexity when computing the value of basket options to within a root-mean-square error ofε. This built on the single asset
methods introduced in (Giles 2007), by noting that the weighted average of a set of simple correlated Brownian motions is
itself a simple Brownian motion, and so the same techniques can be applied as in the single asset case.

This paper does not present any numerical analysis of the techniques used. Previous work (Giles, Higham, and Mao 2009,
Avikainen 2009) has analysed the multilevel method using the Euler-Maruyama discretisation. Current work by Giles,
Debrabant and R̈oßler extending this analysis to the Milstein discretisation supports the orders of convergence demonstrated
in this paper.

Future work will address the use of the multilevel approach for more general multivariate cases, in particular when the
payoff function is a general discontinuous function of the underlying asset values at a set of discrete times. Other extensions
to be considered are the computation of sensitivities (the “Greeks” in computational finance), and the application to general
Lévy processes.
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