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Multilevel Monte Carlo
MLMC is based on the telescoping sum

E[P̂L] = E[P̂0] +

L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1]

where P̂ℓ represents an approximation using on level ℓ.

In SDE applications with uniform timestep hℓ = 2−ℓ h0,
if the weak convergence is

E[P̂ℓ − P ] = O(2−α ℓ),

Ŷℓ is an unbiased estimator for E[P̂ℓ−P̂ℓ−1], based on Nℓ samples,
with variance

V[Ŷℓ] = O(N−1
ℓ 2−β ℓ),

and expected cost
E[Cℓ] = O(Nℓ 2

γ ℓ), . . .
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Multilevel Monte Carlo

. . . then the finest level L and the number of samples Nℓ on each level
can be chosen to achieve an RMS error of ε at an expected cost

C =





O
(
ε−2

)
, β > γ,

O
(
ε−2(log ε)2

)
, β = γ,

O
(
ε−2−(γ−β)/α

)
, 0 < β < γ.
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Multilevel Monte Carlo

The standard estimator for SDE applications is

Ŷℓ = N−1
ℓ

Nℓ∑

n=0

(
P̂ℓ(W

(n))− P̂ℓ−1(W
(n))

)

using the same Brownian motion W (n) for the nth sample on the fine
and coarse levels.

However, there is some freedom in how we construct the coupling provided
Ŷℓ is an unbiased estimator for E[P̂ℓ−P̂ℓ−1].

Also, uniform timestepping is not required – it is fairly straightforward
to implement MLMC using non-nested adaptive timestepping.

(G, Lester, Whittle: MCQMC14 proceedings)
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1D particles with mass

Position xt , and velocity ut subject to steady and stochastic forcing:

dut = a(xt , ut , t)dt + b(xt , t)dwt

dxt = ut dt

Domain x ≥ 0, with reflection so that when it hits x=0 at time τ then
the velocity is reflected, so

uτ+ = − uτ− .
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1D particles with mass

Euler-Maruyama treatment with uniform timestep h:

ûn+1 = sn (ûn + a(x̂n, ûn, t) h + b(x̂n, tn)∆wn)

x̂n+1 = sn (x̂n + ûn h)

with sn = ±1 chosen so that x̂n+1 ≥ 0.

Problem: only O(h1/2) strong convergence

Reason: doesn’t account for reflection occurring part-way through a
timestep.

Mike Giles (Oxford) MLMC for reflected diffusions Sept 16, 2015 7 / 26



1D particles with mass

Key idea: if A(X ,U, t), B(X , t) are sufficiently smooth, get O(h)
convergence using an extended domain:

dUt = A(Xt ,Ut , t)dt + B(Xt , t)dWt

dXt = Ut dt,

with

A(X ,U, t) =

{
a(X ,U, t), X ≥ 0

−a(−X ,−U, t), X < 0

B(X , t) =

{
b(X , t), X ≥ 0

b(−X , t), X < 0

and then take x = |X | as output.
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1D particles with mass

Why does that give O(h) strong convergence, but the original doesn’t?

If we define (
ut
xt

)
= S(Xt)

(
Ut

Xt

)
,

where S(X ) ≡ sign(X ), then ut , xt satisfy

dut = a(xt , ut , t)dt + b(xt , t)S(Xt)dWt

dxt = ut dt,

By setting dwt = S(Xt)dWt , we see that this is equivalent in distribution
to the original model problem.

Note: strong convergence is now at fixed Wt – not the same as fixed wt .
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1D particles with mass

New MLMC treatment:

û
p
n+1 = ûn + a(x̂n, ûn, tn) h + b(x̂n, tn) ŝn ∆Wn

x̂
p
n+1 = x̂n + ûn h

followed by a correction/reflection step:

ûn+1 = sign(x̂pn+1) û
p
n+1

x̂n+1 = sign(x̂pn+1) x̂
p
n+1

ŝn+1 = sign(x̂pn+1) ŝn

with same Brownian path for coarse and fine levels.

Can show that when a and b are both constant, the coarse and fine paths
are identical at coarse timesteps.
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1D particles with mass

Test case 1:

x0 = 0.2, u0 = −0.2, a(x , t) = 0, b(x , t) = 0.5.

in domain 0 ≤ x ≤ 1, with reflection at both boundaries.

Output of interest:
∫ 1
0 xt dt approximated by

2ℓ∑

n=1

hℓ x̂n.

Test case 2: changes drift, volatility to

a(x , t) = −0.2, b(x , t) = 0.5 + 0.5 x .

– standard O(h) numerical analysis no longer applies
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1D particles with mass

Test case 1: V[P̂ℓ−P̂ℓ−1] ∼ h2ℓ E[P̂ℓ−P̂ℓ−1] ∼ hℓ
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1D particles with mass

Test case 2: V[P̂ℓ−P̂ℓ−1] ∼ h2ℓ E[P̂ℓ−P̂ℓ−1] ∼ hℓ
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1D massless particles

Without mass, the SDE is

dxt = a(xt , t)dt + b(xt , t)dwt

and if the domain is x≥0, particles are prevented from crossing x=0.

Euler-Maruyama treatment with uniform timestep h:

x̂n+1 =
∣∣∣ x̂n + a(x̂n, t) h + b(x̂n, tn)∆wn

∣∣∣

Again only O(h1/2) strong convergence, even when b is uniform
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1D massless particles

Thinking about the extended domain leads to

dxt = a(xt , t)dt + b(xt , t)S(Xt)dWt

where S(X ) ≡ sign(X ), and hence the numerical approximation is

x̂
p
n+1 = x̂n + a(x̂n, tn) h + b(x̂n, tn) ŝn ∆Wn

followed by a correction/reflection step:

x̂n+1 = sign(x̂pn+1) x̂
p
n+1

ŝn+1 = sign(x̂pn+1) ŝn

with same Brownian path for coarse and fine levels.

Note: if b is not uniform then we need to use first order Milstein
approximation to get O(h) strong convergence.
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1D massless particles

Test case 1:
x0 = 0.2, a(x , t) = 0, b(x , t) = 0.5.

in domain 0 ≤ x ≤ 1, with reflection at both boundaries.

Output of interest:
∫ 1
0 xt dt approximated by

2ℓ∑

n=1

hℓ x̂n.

Test case 2: changes drift, volatility to

a(x , t) = −0.2, b(x , t) = 0.5 + 0.5 x .

– standard O(h) numerical analysis no longer applies
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1D massless particles

Test case 1: V[P̂ℓ−P̂ℓ−1] ∼ h2ℓ E[P̂ℓ−P̂ℓ−1] ∼ hℓ
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1D massless particles

Test case 2: V[P̂ℓ−P̂ℓ−1] ∼ h
3/2
ℓ E[P̂ℓ−P̂ℓ−1] ∼ hℓ
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1D massless particles

Why is the variance O(h3/2)?

Ad-hoc explanation:

O(1) path density near x=0

O(h1/2) movement in each timestep

=⇒ O(h1/2) probability of crossing boundary in each timestep

=⇒ O(h−1/2) total crossings per path

each crossing gives error which is O(h) but has near-zero mean

if crossings are approximately independent, then

V[P̂ℓ−P̂ℓ−1] = O(h−1/2 × h2) = O(h3/2)

Note: in the case with mass, the velocity is O(1), the movement in each
timestep is O(h), so the number of crossings is O(1) =⇒ Vℓ = O(h2).
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Multi-dimensional extensions

Start with particles with mass, and 2D domain with boundary at x=0.

If

a =

(
ax(x , y)
ay (x , y)

)
, b = I ,

then for x<0 extended domain SDE naturally has

A =

(
−ax(−x , y)
ay (−x , y)

)
, B = I ,

This leads to an SDE in the regular half-plane in which the x-component
of dW is “flipped” each time the boundary is hit.
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Multi-dimensional extensions

However, if

a =

(
ax(x , y)
ay (x , y)

)
, b =

(
1 0
β 1

)
,

then when x < 0

A =

(
−ax(−x , y)
ay (−x , y)

)
, B =

(
1 0

−β 1

)
,

because if X = −x then

E[dX dy ] = −E[dx dy ].

This gives a discontinuity in B , and there seems no way to get O(h)
strong convergence.
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Multi-dimensional extensions

Hence, multi-dimensional extension for particles with mass will only work
in simple cases.

For massless particles, there is extra complication of oblique reflections.

If diffusion is isotropic (i.e. b is a multiple of the identity matrix) and
reflections are normal, then can probably get O(h) strong convergence.

Otherwise, probably not.
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Multi-dimensional extensions

What else can we do for massless case?

Go back to starting point with standard reflection treatment,
and use adaptive timesteps based on distance d to boundary.

✲

✻
log-log ploth

h0

O(h20)

dO(
√
h0 )O(h0)

✟
✟
✟
✟
✟
✟
✟
✟✟

O(h20) timestep near boundary =⇒ O(h0) strong error
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Multi-dimensional extensions

In MLMC, on level ℓ would use

h = min
(
2−ℓh0, max

(
2−2ℓh0, (

1
3d/‖b‖2)

2
))

where d is the distance to the boundary

2−ℓh0 in interior

2−2ℓh0 next to boundary

(13d/‖b‖2)2 in layer in-between

The factor 1
3 implies 3

√
h ‖b‖2 < d so that boundary crossings from the

intermediate zone (or interior zone) are unlikely.

Most will come from boundary zone, with resultant O(2−ℓ) strong error.
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Multi-dimensional extensions

Key observation: the computational cost is proportional to

∫

D

h−1 dx

and this is O(2ℓ).

Hence, in the usual MLMC theorem, we should get

α = 1, β = 2, γ = 1,

and hence obtain O(ε−2) complexity.

Mike Giles (Oxford) MLMC for reflected diffusions Sept 16, 2015 25 / 26



Conclusions

simple reflection “trick” improves the MLMC variance for 1D
reflected diffusions, for particles with or without mass

the extension to multiple dimensions should work in simple cases,
but not in more general cases

more difficult cases can use adaptive timestepping

Webpages: http://people.maths.ox.ac.uk/gilesm/
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