B3.4 Algebraic Number Theory, Hilary 2020

Exercises 3

Q 1. Factor the ideal \mathfrak{a} into prime ideals in \mathcal{O}_K in the following cases.

- (i) $a = (5), K = \mathbb{Q}(\sqrt{-6});$
- (ii) $\mathfrak{a} = (6, 1 + \sqrt{-17}), K = \mathbb{Q}(\sqrt{-17});$
- (iii) $a = (2 + 3\sqrt{10}), K = \mathbb{Q}(\sqrt{10});$
- (iv) $\mathfrak{a} = (5 + 2^{2/3}), K = \mathbb{Q}(2^{1/3})$ (you may use the fact, proven on Sheet 1, that $\mathcal{O}_K = \mathbb{Z}[2^{1/3}]$).
- **Q** 2. Let $K = \mathbb{Q}(\sqrt{10})$. Show that \mathcal{O}_K is not a principal ideal domain.

Q 3. Suppose that $K = \mathbb{Q}(\sqrt{d})$, d squarefree and $d \neq 0, 1$. Show that whether (2) ramifies, is inert, or splits completely on \mathcal{O}_K depends only on the value of $d \pmod{8}$, and classify the different possibilities.

Q 4. Let $K = \mathbb{Q}(\sqrt{15})$. Show that there is a unique ideal in \mathcal{O}_K of norm 12. Is it principal? Find all ideals containing 8.

Q 5. Let \mathcal{O}_K be the ring of integers of a number field, and let p be a rational prime. Show that p ramifies in \mathcal{O}_K if and only if the ring $\mathcal{O}_K/(p)$ has a nilpotent element, that is to say a nonzero element x for which $x^n = 0$ for some n.

Q 6. Let $K = \mathbb{Q}(\sqrt{-210})$. Show that $h_K \ge 8$.

Q 7. Let $f(X) = X^3 - X^2 - 2X - 8$. Recall from Sheet 1 that f is irreducible, and that if α is a root of f and $K = \mathbb{Q}(\alpha)$, then e_1, e_2, e_3 is an integral basis for \mathcal{O}_K , where $e_1 = 1$, $e_2 = \alpha$ and $e_3 = \frac{1}{2}\alpha(\alpha + 1)$.

- (i) Show that the linear maps $\psi_v : \mathcal{O}_K \to \mathbb{F}_2$ defined by $\psi_v(e_i) = v_i$ are ring homomorphisms, for the following values of v: (1) v = (1,0,0); (2) v = (1,1,0); (3) v = (1,0,1). Conclude that $\mathcal{O}_K/(2) \cong \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2$.
- (ii) Explain why it follows from (i) that (2) splits completely in \mathcal{O}_K . *Hint:* recall Question 5.
- (iii) Show that \mathcal{O}_K does not have a power integral basis.

Q 8. Let \mathcal{O}_K be the ring of integers of a number field.

- (i) Let \mathfrak{p} be a prime ideal in \mathcal{O}_K and n a positive integer. Explain why every proper ideal of the quotient ring $\mathcal{O}_K/\mathfrak{p}^n$ is of the form $\mathfrak{p}^i/\mathfrak{p}^n$ for some i.
- (ii) Show that $\mathfrak{p}^i/\mathfrak{p}^n$ is principal. (*Hint: first try the case* n = i + 1)

- (iii) Let \mathfrak{a} be an arbitrary ideal in \mathcal{O}_K . Show that every ideal in $\mathcal{O}_K/\mathfrak{a}$ is principal. (*Hint: Chinese Remainder Theorem.*)
- (iv) Conclude that every ideal \mathfrak{a} in \mathcal{O}_K is generated by at most two elements.

Q 9. In this question, do not worry about questions of convergence. If K is a number field, the *Dedekind* ζ -function is defined by

$$\zeta_K(s) := \sum_{\mathfrak{a} \subseteq \mathcal{O}_K, \mathfrak{a} \neq 0} (N\mathfrak{a})^{-s}.$$

Explain why

$$\zeta_K(s) = \prod_{\mathfrak{p}} (1 - N(\mathfrak{p})^{-s})^{-1},$$

where the product is over prime ideals in \mathcal{O}_K . Hence, show that

$$\zeta_{\mathbb{Q}(i)}(s) = \zeta_{\mathbb{Q}}(s)L(s),$$

where

$$L(s) = 1 - 3^{-s} + 5^{-s} - 7^{-s} + \dots$$

ben.green@maths.ox.ac.uk