
CHAPTER 2

Sumsets

We now come to some of the key definitions in additive combinatorics.

Definition 2.1 (Sumsets and difference sets). Suppose that A and B are two
sets in some abelian group. Then we write A + B := {a + b|a ∈ A, b ∈ B}
and A − B := {a − b|a ∈ A, b ∈ B}. Similarly if C is a further set we define
A + B + C := {a + b + c|a ∈ A, b ∈ B, c ∈ C}, and so on. If A is a set and k, l
are non-negative integers, not both zero, then kA − lA denotes the set of sums
a1 + · · · + ak − a′1 − · · ·− a′l with a1, . . . , ak, a′1, . . . , a

′
l ∈ A.

Definition 2.2 (Doubling constant). Suppose that A is a finite set in some abelian
group. Then we define the doubling constant σ[A] := |A + A|/|A|. More generally
if A, B are two potentially different sets we define σ[A, B] := |A + B|/|A|1/2|B|1/2.

In this section we shall develop some basic inequalities for sumsets and difference
sets.

2.1. Basic sumset estimates and Ruzsa calculus

The following result, though its proof is extremely simple, has proved to be abso-
lutely fundamental in the subject.

Theorem 2.1 (Ruzsa triangle inequality). Suppose that U, V and W are three finite
sets in some ambient abelian group. Then |U ||V −W | ! |U − V ||U −W |.

Proof. We define a map φ : U × (V − W ) → (U − V ) × (U − W ) as follows.
For each d ∈ V −W , choose v(d) and w(d) such that v(d) − w(d) = d, and set
φ(u, d) = (u−v(d), u−w(d)). This map is well-defined and, furthermore, injective.
Indeed if φ(u, d) = φ(u′, d′) then d = v(d) − w(d) = v(d′) − w(d′) = d′, and hence
v(d) = v(d′), w(d) = w(d′). Therefore u = u′.

Remark. This inequality may be rewritten in the form

log
|V −W |

|V |1/2|W |1/2
! log

|U − V |
|U |1/2|V |1/2

+ log
|U −W |

|U |1/2|W |1/2
,

at which point it becomes extremely natural to define the Ruzsa distance d(U, V ) :=
log |U−V |

|U |1/2|V |1/2 between pairs of sets U, V . Ruzsa’s inequality may then be inter-
preted as the triangle inequality for this “distance”; note, however that d is not a
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14 2. SUMSETS

bona fide metric as the distance between unequal sets may vanish (when U and V
are different cosets of the same subgroup) and more importantly d(U, U) is rarely
zero (in fact this happens only when U is a coset of a subgroup, as you may care
to check).

The triangle inequality is often supplemented with the following estimate.

Theorem 2.2 (Second Ruzsa inequality). Suppose that U and V are two finite sets
in some ambient abelian group. Then d(U,−V ) ! 3d(U, V ).

Remark. By swapping the roles of V and −V one may, of course, obtain the
complimentary inequality d(U, V ) ! 3d(U,−V ).

Proof. Write s(x) for the number of pairs (u, v) with u + v = x and r(x) for the
number with u − v = x. Then

∑
r(x)2 =

∑
s(x)2, both quantities being equal to

the number of quadruples (u1, v1, u2, v2) with u1 + v1 = u2 + v2 and u1, u2 ∈ U ,
v1, v2 ∈ V . By double counting we have

∑

x

s(x) =
∑

x

r(x) = |U ||V |

and furthermore, by the Cauchy-Schwarz inequality,
∑

x

s(x)2 =
∑

x

r(x)2 " |U |2|V |2

|U − V | .

It follows immediately that there is some x for which r(x) " |U |1/2|V |1/2/|U − V |.
We now apply an idea of Lev, rather reminiscent of the one used in the proof
of the Ruzsa triangle inequality. Let S ⊆ U × V be the set of pairs (u, v) with
u + v = x so that, by the preceding discussion, we have the lower bound |S| "
|U |1/2|V |1/2/|U − V |. For w ∈ U + V , assign arbitrary α(w) ∈ U and β(w) ∈ V
such that α(w) + β(w) = w, and consider the map ψ : S × (U + V ) → (U − V ) ×
(U−V ) defined by ψ(u, v, w) = (u−β(w), v−α(w)). This map is well-defined and,
furthermore, injective. Indeed if ψ(u, v, w) = ψ(u′, v′, w′) then, using the fact that
u + v = u′ + v′ = x, we have

w = α(w) + β(w)
= u + v − (u− β(w)) + (α(w)− v))

= u′ + v′ − (u′ − β(w′)) + (α(w′)− v)

= α(w′) + β(w′) = w′,

from which it follows easily that u = u′ and v = v′.

The injectivity of ψ immediately implies that |S||U + V | ! |U − V |2, from which
we at once obtain the bound |U + V | ! |U −V |3/|U ||V |, which is equivalent to the
stated inequality.

Remark. The number of solutions to u + v = u′ + v′ is called the additive energy
between U and V . We will explore this concept more fully in Chapter ??.
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The two Ruzsa inequalities are often combined several times to establish that some
particular pair of sets is close in Ruzsa distance. When relatively coarse bounds
suffice it is extremely convenient to use a kind of notational calculus that we shall
now describe. Let K " 2 be some ambient parameter, and write X # Y to mean
X ! KCY and X ≈ Y to mean X # Y and Y # X. Different instances of the
notation, of course, might entail different values of the absolute constant C. The
notation is supposed to represent “roughly equal to” and “roughly less than”, where
the notion of “roughly” is somehow linked to the parameter K. If K is quite large,
these will be rather weak notions, whereas if K is small they will be more precise.

Now let A and B be two sets in some ambient abelian group, and write A ∼ B to
denote |A − B|/|A|1/2|B|1/2 ≈ 1. Note carefully that we do not necessarily have
A ∼ A, and in fact by the second Ruzsa inequality this happens if and only if the
doubling constant σ[A] is bounded by a polynomial in the approximation parameter
K.

The rules of Ruzsa calculus may be written as follows.

Proposition 2.1 (Ruzsa Calculus). Suppose that U, V and W are sets in some
ambient abelian group.

(i) Suppose that U ∼ V . Then U ∼ −V , |U | ≈| V | and σ[U ], σ[V ] ≈ 1.
(ii) If U ∼ V and V ∼W , then U ∼W .
(iii) Suppose that U ∼ V , that σ[W ] ≈ 1 and that there is some x such that

|U ∩ (x + W )| ≈ |U | ≈| W |. Then U ∼ V ∼W .
(iv) Suppose that σ[U ], σ[W ] ≈ 1 and that there is some x such that |U ∩ (x+

W )| ≈ |U | ≈| W |. Then U ∼W .

Proof. To see that |U | ≈| V |, note that if U ∼ V then

|U | ! |U − V | ≈| U |1/2|V |1/2

whence |U | # |V |, and similarly |V | # |U |. Everything else stated in (i) and (ii) is
an immediate consequence of the Ruzsa inequalities. To prove (iii), we may assume
without loss of generality (by replacing W by x + W ) that x = 0. Note first that
as an instance of the Ruzsa triangle inequality and the inclusions U ∩W ⊆ U, W
we have

|U ∩W ||U −W | ! |(U ∩W )− U ||(U ∩W )−W | ! |U − U ||W −W |.

However it follows from (i) and (ii) that U ∼ U , that is to say |U − U | ≈| U |.
Furthermore the assumption that σ[W ] ≈ 1 implies that W ∼ −W and hence by
another application of (i) and (ii) we have W ∼W , and therefore |W −W | ≈| W |.
Combining all this information with |U ∩W | ≈| U | ≈| W | gives |U −W | ≈| U | ≈
|W |, whence U ∼W as required.

Finally, note that (iv) is simply a special case of (iii), stated separately for future
convenience.
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Finally, one frequently needs to be able to control sums of more than two sets. The
following inequality of Ruzsa implies, together with the preceding two, everything
that is needed.

Theorem 2.3 (Ruzsa’s triple sumset inequality). Suppose that U, V, W are three
finite sets in some ambient abelian group and that d(U, V ), d(U, W ), d(V,W ) !
log K. Then

|U + V + W | ! KC |U |1/3|V |1/3|W |1/3.

In the language of Ruzsa calculus, if U ∼ V ∼W then W ∼ U + V .

Proof. We use, albeit sparingly, the language of Ruzsa calculus with parameter K.
We leave it as an exercise for the reader to confirm that the two statements in this
theorem imply one another; this is a good exercise to test you have understood
“rough” notation properly.

The argument is due to Tao [?], and the heart of the matter is to establish the
following claim: there is a set S with S ∼ U + V . Once this is known it follows by
Ruzsa calculus that σ[U + V ] ≈ 1 . Furthermore by assumption that d(U, W ) !
log K we have |U−W | ≈ |U | ≈| W |. Write r(x) for the number of pairs (u, w) with
u− w = x and note that r(x) = |U ∩ (x + W )|. Noting that

∑
x r(x) = |U ||W |, it

follows that there is some x such that r(x) $ |U |. Replacing x by x′ := x + v for
some arbitrary v ∈ V , it follows that |(U + V ) ∩ (x′ + W )| $ |U |. Since (by yet
another application of Ruzsa calculus) we have σ[W ] ≈ 1, it follows from rule (iv)
of Ruzsa calculus that W ∼ U + V , as required.

It remains to establish the claim. Write L = |U +V |/|U |1/2|V |1/2, and note that the
second Ruzsa inequality implies the bound L ! K3. The idea now is to take S to be
the set of popular sums in U + V . Writing s(x) for the number of pairs (u, v) with
x = u + v, take S to be the set of those x ∈ U + V for which s(x) " 1

2L |U |1/2|V |1/2

(this happens to be the “right” definition: it will become clear why in a very short
while).

We begin by establishing that S is reasonably large. By the same Cauchy-Schwarz
argument used in the proof of Theorem 2.2 we have

∑
x s(x)2 " 1

L |U |3/2|V |3/2.
The contribution to this sum from x /∈ S is bounded by

sup
x/∈S

s(x) ·
∑

x

s(x) ! 1
2L

|U |1/2|V |1/2 · |U ||V |,

and so
∑

x∈S

s(x)2 " 1
2L

|U |3/2|V |3/2.

Since s(x) ! |U | and s(x) ! |V | for all x, it follows that |S| " 1
2L |U |1/2|V |1/2.

Now suppose that u ∈ U, v ∈ V and s ∈ S. Then there are " 1
2L |U |1/2|V |1/2 pairs

(u′v′) such that u′ + v′ = s, and for each of them we may write

u + s + v = (u + v′) + (v + u′).
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These give distinct representations of u+s+v as the sum of two elements of U +V .
It follows that

|U + S + V | · 1
2L

|U |1/2|V |1/2 ! |U + V |2.

Recalling the assumption that U ∼ V , which implies by Ruzsa calculus that |U +
V | ≈| U | ≈| V |, it follows thta |U + S + V | ≈| U | ≈| V | ≈| S|. It follows by Ruzsa
calculus that U + V ∼ S as claimed.

Corollary 2.1 (Iterated sumset inequality). Suppose that σ[A] ! K and that l, k
are nonnegative integers, not both zero. Then there is some constant γ(k, l) such
that |kA− lA|) Kγ(k,l)|A|.

By much more involved arguments of a rather graph-theoretical nature it is possible
to establish the Plünnecke-Ruzsa inequalities, which furnish the bound |kA− lA| !
Kk+l|A| in this corollary. For details the original paper [?] of Ruzsa may be con-
sulted.


