
CHAPTER 3

Small doubling and the Freiman-Ruzsa theorem

3.1. Introduction

In the last section we made a fairly detailed study of the operation of set addition,
and we defined the doubling constant σ[A] := |A+A|/|A| of a set A. Colloquially, we
say that a set A has small doubling if σ[A] is rather small: this term is particularly
appropriate when σ[A] is constant, say σ[A] ∼ 100.

A central question in additive combinatorics, the “inverse question for small dou-
bling”, asks for some description of those sets A with small doubling. This question
may be asked in any abelian group, or indeed in nonabelian groups as we shall do
in a later chapter.

The notion of small doubling is somewhat hereditary: if σ[A] = K and if A′ ⊆ A
is a set of cardinality δ|A| then it is clear that σ[A′] ! K/δ. For this reason it is of
particular interest to classify sets of small doubling which are “basic” in that every
set of small doubling is economically contained within a basic set.

3.2. Small doubling in F∞2

Consider the vector space F∞2 consisting of all infinite sequences (an)∞n=1 with
an ∈ F2. This group is often a very useful model setting in which to test addi-
tive combinatorial arguments. The huge amount of torsion in this group can be
very helpful. I know of no better place to see this than in the following result of
Imre Ruzsa, giving an answer to the inverse question for small doubling in F∞2 .
When thinking about F∞2 , recall that addition is the same as subtraction!

Theorem 3.1 (Ruzsa). Suppose that A ⊆ F∞2 is a finite set with σ[A] ! K. Then
A is contained inside some subspace H with |H| ! exp(CKC)|A|.

Proof. Pick a set X ⊆ 3A with the property that the translates A+x, x ∈ X, are all
disjoint, and which is maximal with respect to this property. Since

⋃
x∈X(x+A) ⊆

4A, it follows that |X| ! |4A|/|A|, a quantity which is bounded by CKC from Ruzsa
calculus. Now suppose that y ∈ 3A. By the supposed maximality of X we must
have (y+A)∩(x+A) %= ∅ for some x ∈ X, which means that y ∈ X +2A. It follows
that 3A ⊆ X + 2A. Adding copies of A, we then obtain 4A ⊆ X + 3A ⊆ 2X + 2A,
5A ⊆ 3X+2A, and so on. It follows that the group 〈A〉 generated by A is contained
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20 3. SMALL DOUBLING AND THE FREIMAN-RUZSA THEOREM

in 〈X〉 + 2A, a set of size at most 2|X||2A| = 2|X|K|A|. The theorem follows
immediately.

3.3. Small doubling in Z: GAPs and the Frĕıman-Ruzsa theorem

The inverse question in Z is more complicated. For a start, there do not exist sets
with more than one element whose doubling constant is 1. Indeed we have the
following almost trivial bound.

Lemma 3.1. Suppose that A ⊆ Z is a set of n integers. Then |A + A| " 2n− 1.

Proof. Order the elements of A as a1 < a2 < · · · < an. Then we have

a1 + a1 < a1 + a2 < · · · < a1 + an < a2 + an < · · · < an + an,

and explicit exhibition of 2n− 1 distinct elements of A.

One can show without too much pain (see the example sheet) that equality occurs
if an only if A is an arithmetic progression of length n. Since small doubling is
hereditary, any reasonably dense subset of an arithmetic progression will have small
doubling. A crucial observation, however, is that these are not the only examples.

Definition 3.1 (Generalised Arithmetic Progression or GAP). Suppose that x0

and x1, . . . , xd are integers and that L1, . . . , Ld are positive integers. Then any set
of the form

P := {x0 + l1x1 + · · · + ldxd : 0 ! li < Li}
is called a GAP. The dimension of P is declared to be d and its size L1 . . . Ld. P
is said to be proper if all L1 . . . Ld elements are distinct, that is to say if |P | =
L1 . . . Ld.

Now P +P is contained within the GAP {2x0 + l1x1 + · · ·+ ldxd : 0 ! li < 2Li−1},
and so in particular if P is proper then σ[P ] ! 2d. Thus these GAPs must be added
to our list of “basic” examples.

Remarkably there are no further examples. This is the content of the so-called
Frĕıman-Ruzsa Theorem. We will prove a version of this theorem with relatively
good bounds; this result is due to Chang [?] though much of the proof is based on
Ruzsa’s ideas [?].

Theorem 3.2 (Frĕıman-Ruzsa; Chang). Suppose that A ⊆ Z is a finite set and that
σ[A] ! K. Then there is a GAP, P , with dim(P ) ! CKC and |P | ! exp(CKC)|A|,
which contains A.

3.4. Frĕıman homomorphisms

In his remarkably insightful 1966 book [?], Frĕıman made an attempt to treat
additive number theory (as it was then) by analogy with the way Klein treated
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geometry: as well as sets A, B, . . . of integers one should study maps between them
and, most particularly, properties invariant under natural types of map. This was
doubtless regarded as somewhat eccentric at the time, but the notion of Frĕiman
homomorphism is now quite important in additive combinatorics.

Definition 3.2 (Frĕıman homomorphism). Suppose that s " 2 is an integer. Sup-
pose that A is a subset of some abelian group G and that B is a subset of some other
abelian group H. Then we say that a map φ : A → B is a Freiman s-homomorphism
if we have

φ(a1) + · · · + φ(as) = φ(a′1) + · · · + φ(a′s)
whenever a1 + · · · + as = a′1 + · · · + a′s.

If π : G → H is a group homomorphism then π induces a Freiman homomorphism of
all orders on any set A ⊆ G. The notion of Freiman homomorphism is rather more
general, however. For example, an arbitrary bijection between {1, 10, 100, 1000}
and {1, 100, 10000, 1000000} is a Freiman 2-homomorphism since neither of these
sets has any nontrivial additive relations a + b = c + d. We shall see some more
useful examples shortly.

The map φ is said to be a Freiman s-isomorphism if it has an inverse φ−1 which
is also a Frĕıman s-homomorphism. We caution that, contrary to what is often
expected in more algenraic situations, a 1-1 Freiman homomorphism need not be a
Freiman isomorphism. An excellent example of this is the obvious map

φ : {0, 1}n → Fn
2

which is a Freiman homomorphism of all orders. It is not, however, a Freiman
isomorphism of any order since there are a great many more additive relations
amonst elements of Fn

2 than there are in {0, 1}n.

In the following lemma we record some more-or-less easy to prove facts about
Freiman homomorphisms.

Lemma 3.2 (Basic facts about Freiman homomorphisms). Suppose that A, B and
C are sets inside abelian groups. Let s " 2 be an integer. We have the following.

(i) Suppose that φ : A → B and ψ : B → C are Freiman s-homomorpisms.
Then so is the composition ψ ◦ φ.

(ii) Suppose that φ : A → B is a Freiman s-homomorphism. Then it is also
a Freiman s′-homomorphism for every s′ satisfying 2 ! s′ ! s.

(iii) Suppose that φ : A → B is a Freiman s-homomorphism and let k, l " 0
be integers. Then φ induces a Freiman s′ homomorphism φ̃ : kA− lA →
kB − lB, for any integer s′ ! s/(|k| + |l|).

(iv) The above three statements are true with “homo” replaced by “iso” through-
out.

(v) Suppose that P is a GAP and that φ : P → B is a Freiman s-homomorphism
for some s " 2. Then φ(P ) is a GAP of the same dimension.

(vi) Suppose that m " 1 is an integer, and consider the group Z/mZ to-
gether with the “unwrapping” map ψ : Z/mZ → {1, . . . ,m} which sends
a residue x to the least positive integer congruent to x(modm). Suppose
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that A ⊆ Z/mZ and that ψ(A) is contained in an interval of length at
most m/s. Then ψ is a Freiman s-homomorphism on A.

Proof. Essentially all of this is quite easy, and is a good exercise in checking that
one has understood the definitions. (i) is trivial. (ii) may be established by the
simple expedient of introducing dummy variables. Indeed if

a1 + · · · + as′ = a′1 + · · · + a′s′

then we may add s− s′ copies of a to each side, for some arbitrary a ∈ A. Since φ
is a Freiman s-homomorphism we then have

φ(a1) + · · · + φ(as′) + φ(a) + · · · + φ(a) = φ(a′1) + · · · + φ(a′s′) + φ(a) + · · · + φ(a);

cancelling the φ(a)s from both sides yields the result. To prove (ii), define φ̃ :
kA− lA → H by

φ̃(a1 + · · · + ak − a′1 − · · ·− a′l) = φ(a1) + · · · + φ(ak)− φ(a′1)− · · ·− φ(a′l).

It is conceptually easy, though notationally rather irritating, to verify that φ̃ is
well-defined and in fact defines a Freiman homomorphism of the order stated.

Part (iv) is immediate: simply apply (ii) and (iii) to the inverse map φ−1.

To prove (v) it clearly suffices to assume that s = 2. Let φ : P → φ(P ) be a Freiman
2-isomorphism, and suppose that P = {x0 + l1x1 + · · · + ldxd : 0 ! li < Li}. Set
y0 = φ(x0), and define y1, . . . , yd by y0 + y1 = φ(x0 + xi) for i = 0, 1, . . . , d; we
claim that φ(x0 + l1x1 + · · ·+ ldxd) = y0 + l1y1 + · · ·+ ldyd for all l1, . . . , ld satisfying
0 ! li < Li. This may be established by induction on l1 + · · · + ld, noting that we
have defined the yi in such a way that it holds whenever l1 + · · · + ld = 0 or 1. To
obtain the statement for (l1, . . . , ld) = (1, 1, 0, . . . , 0), for example, one may use the
relation

x0 + (x0 + x1 + x2) = (x0 + x1) + (x0 + x2)
to conclude that

φ(x0) + φ(x0 + x1 + x2) = φ(x0 + x1) + φ(x0 + x2)

and hence that φ(x0 + x1 + x2) = y0 + y1 + y2, as required.

Finally let us consider (vi). The point here is that if one restricts attention to sets
A ⊆ Z/mZ for which ψ(A) is contained in an interval of length at most m/s then
two sums a1 + · · · + as and a′1 + · · · + a′s are equal mod m if and only if their lifts
ψ(a1)+· · ·+ψ(as) and ψ(a′1)+· · ·+ψ(a′s) are equal, since there is no “wraparound”.

3.5. Ruzsa’s model lemma

In this section we prove a remarkable lemma of Imre Ruzsa. It asserts that a subset
of Z with small doubling has a large piece which is Freiman isomorphic to a dense
subset of a cyclic group Z/mZ. In that setting one has tools available which are
cannot be brought to bear on subsets of Z which, despite having small doubling,
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might be highly “spread out”. Most particularly one may use harmonic analysis as
an effective tool in Z/mZ.

Proposition 3.1 (Ruzsa’s model lemma). Suppose that A ⊆ Z is a finite set and
that s " 2 is an integer. Let m " |sA − sA| be an integer. Then there is a set
A′ ⊆ A with |A′| " |A|/s which is Freiman s-isomorphic to a subset of Z/mZ.

Proof. By translating A if necessary we may assume that A consists of positive
integers. Let q be a prime number greater than all elements of A, and consider the
composition of maps

Z πq−→ Z/qZ Dλ−→ Z/qZ ψ−→ Z πm−→ Z/mZ

where πq and πm are reduction mod q and m respectively, Dλ is multiplication
(dilation) by λ ∈ (Z/qZ)× and ψ is the unfolding map from Z/qZ to {1, . . . , q}.

Now ψq, Dλ and πm are Freiman homomorphisms of any order. By Proposition
?? (vi) ψ is a homomorphism of order s when restricted to any subset of Z/qZ
whose unfolding lies in a subinterval of Z of length at most q/s. Since Z/qZ may
be partitioned into s sets with this property (the inverse images under ψ of the
intervals {x ∈ Z : jq/s < x ! (j + 1)q/s}), it follows from the pigeonhole principle
that for each λ there is a set A′ ⊆ A, |A′| " |A|/s, with the property that the
composition φ := πm ◦ ψ ◦Dλ ◦ πq is a Freiman s-homomorphism when restricted
to A′.

Everything we have said so far holds for an arbitrary λ. To conclude the proof
we show that there is a choice of λ for which φ|A is invertible, and for which its
inverse is also a s-homomorphism. For this choice of λ, φ will then be a Freiman
s-isomorphism when restricted to the set A′ just defined. To this end it suffices to
show that whenever

φ(a1) + · · · + φ(as) = φ(a′1) + · · · + φ(a′s)

we have
a1 + · · · + as = a′1 + · · · + a′s,

since this clearly implies that φ is one-to-one. The only way in which these con-
ditions can fail to hold, for a given λ, is if there is some non-zero expression
d = a1 + · · · + as − a′1 − · · · − a′s such that πm ◦ ψ ◦ πq(λd) = 0. Let us fix d
and ask about values of λ for which this phenomenon occurs: lacking imagina-
tion, we call them “bad for d”. As λ ranges over (Z/qZ)×, πq(λd) of course covers
(Z/qZ)× uniformly, and hence the “unwrapped” set ψ ◦ πq(λd) covers each point
of {1, . . . q− 1} precisely once. The number of elements x in this interval for which
πm(x) = 0 (that is to say x is divisible by m) is at most (q − 1)/m. Since each d
lies in the set (sA − sA) \ {0}, it follows that the number of λ which are bad for
some d is at most

q − 1
m

(
|sA− sA|− 1

)
< q − 1,

the inequality being a consequence of the assumption that m " |sA−sA|. It follows
that there is at least one λ which is not bad for any d. By our discussion, the map
φ will then have an inverse which is a Freiman homomorphism of order s.
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In our applications of this lemma the set A will have small doubling, we shall take
s = 8, and it will also be convenient to take m to be prime.

Corollary 3.1 (Ruzsa’s model lemma). Suppose that A ⊆ Z is a finite set with
σ[A] ! K. Then there is a prime p ! CKC |A| and a subset A′ ⊆ A with |A′| "
|A|/8 such that A′ is Freiman 8-isomorphic to a subset of Z/pZ.

Proof. It follows from Corollary 2.1 that |8A − 8A| ! CKC |A| (in fact, if one has
the Plünnecke-Ruzsa inequalities mentioned just after that corollary we obtain the
more precise bound |8A − 8A| ! K16|A|). Now by Bertrand’s postulate (or some
even weaker result) there is a prime p satisfying |8A− 8A| ! p ! 2|8A− 8A|. This
prime of course satisfies the bound p ! CKC |A|, and by the preceding proposition
there is a subset A′ of A with |A′| " |A|/8 which is Freiman 8-isomorphic to a
subset of Z/pZ.

3.6. Bogolyubov’s lemma

Suppose that A ⊆ Z has doubling constant at most K. By applying Ruzsa’s model
lemma, we can locate a set S ⊆ Z/pZ with size σp, where σ " cK−C , which is
Freiman 8-isomorphic to a subset of A and, furthermore, for which |S| " 1

8 |A|. The
aim is now to find some structural properties of S which may be “pulled back”
under this Freiman 8-isomorphism in order to tell us something about A. This is a
little trickier than it might at first sight seem: a Freiman 8-isomorphism can only
“see” sums of at most 8 terms such as s1 ± · · · ± s8, and in particular it cannot see
all of the group Z/pZ.

The following result, known as Bogolyubov’s lemma, is what we need. Before
stating it we require a definition.

Definition 3.3 (Bohr sets in Z/pZ). Suppose that R = {r1, . . . , rk} is a set of
nonzero elements of Z/pZ and that ε > 0 is a parameter. Then we define the Bohr
set B(R, ε) with frequency set R and width ε by

B(R, ε) := {x ∈ Z/pZ : ‖rix/p‖R/Z ! ε for i = 1, . . . , k}.

The parameter k is said to be the dimension of the Bohr set.

Lemma 3.3 (Bogolyubov). Suppose that S is a subset of Z/pZ with cardinality σp.
Then 2S − 2S contains a Bohr set of dimension at most 4/σ2 and width at least
1
10 .

Proof. We use harmonic analysis on Z/pZ. Thus if f : Z/pZ → C is a function
then, as in Chapter 1, we define f̂(r) := Ex∈Z/pZf(x)e(−rx/p). We recall Parseval’s
identity, namely that

(Ex|f(x)|2)1/2 = ‖f‖2 = ‖f̂‖2 = (
∑

r

f̂(r))1/2.
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Let us also recall the notion of convolution: if g : Z/pZ is another function then we
write

f ∗ g(x) = Eyf(y)g(x− y),

whereupon we have the relation (f ∗ g)∧ = f̂ ĝ. In Chapter 1 we saw that ‖f‖U2 =
‖f ∗ ‖1/2

2 , which was at the time our justification for introducing the convolution.
The most basic reason for an additive combinatorialist to be interested in convolving
functions is the observation that if f = 1U and g = 1V then f ∗g has support U +V .
In other words, 1U ∗ 1V is a function supported on U + V whose Fourier transform
is easy to understand in terms of 1̂U and 1̂V .

We shall also require a further, very important, property of the Fourier transform:
the inversion formula. This states that f may be recovered from its Fourier trans-
form via the relation

f(x) =
∑

r

f̂(r)e(rx/p).

It is very easily proved using the orthogonality relations as in the proof of Lemma
1.4. Note that we are summing over r and not taking expectations: see the discus-
sion immediately following the proof of Lemma 1.4 for the reasons for this.

Returning to the proof of Bogolyubov’s lemma, note that f(x) = 1S ∗ 1S ∗ 1−S ∗
1−S(x) is supported on 2S − 2S. Note also that 1̂S(r) = 1̂−S(r), and so f̂(r) =
|1̂S(r)|4.

Let R be the set of all r %= 0 for which |1̂S(r)| " σ3/2/2. Since ‖1S‖2 = σ1/2,
it follows immediately from Parseval’s identity that |R| ! 4/σ2. We claim that
B(R, 1

10 ) ⊆ 2S−2S. To prove this, it suffices by our earlier discussion to show that
f(x) > 0 whenever x ∈ B(R, ε).

By the inversion formula and the fact that f is real we have

f(x) =
∑

r

|1̂S(r)|4e(rx/p) =
∑

r

|1̂S(r)|4 cos(2πrx/p).

To bound this sum below, we divide it into three pieces: the term r = 0, the terms
withr ∈ R, and all other terms. Clearly

|1̂S(0)|4 = σ4.

Now if r ∈ R then cos(2πrx/p) " 0, and so we simply bound the sum of these
terms below by 0. Finally

∑

r/∈R∪{0}

|1̂S(r)|4 cos(2πrx/p) " −
∑

r/∈R∪0

|1̂S(r)|4 " −σ3

4

∑

r

|1̂S(r)|2,

and this is equal to σ4/4 by Parseval’s identity. Combining all of this we obtain

f(x) " σ4 + 0− σ4

4
> 0,

as required.
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3.7. Geometry of numbers and progressions in Bohr sets

The ultimate aim of this section is to investigate the structure of Bohr sets, and in
particular to establish that they contain large GAPs. In order to do this we must
first develop some tools from a a subject called the geometry of numbers.

In so far as we shall investigate it in this course, this is the study of lattice points
inside convex bodies. For us, K ⊆ Rd will be a centrally symmetric convex body,
that is to say a set such that −x and 1

2 (x + y) lie in K whenever x and y do. The
closed centrally symmetric convex bodies are exaactly the same thing as the unit
balls of norms on Rd, and let us recall that this is often a useful way of thinking
about them.

A lattice is a discrete subgroup of Rd. We shall assume some of the basic theory
of lattices as may be found in any number of books. In particular any lattice Λ
whose R-span is all of Rd has an integral basis v1, . . . ,vd, which means that Λ is
the direct sum Zv1 ⊕Zv2 ⊕ · · ·⊕Zvd, or in other words every element of Λ can be
written using integer coordinates relative to the basis v1, . . . ,vd. The determinant
det(Λ) is defined to be the determinant of the column matrix (v1, . . . ,vd), which
turns out not to depend on the particular choice of integral basis, or equivalently
the volume of the fundamental parallelepiped spanned by v1, . . . ,vd.

The following lemma is simple but surprisingly powerful. We say that Λ is nonde-
generate if det(Λ) %= 0, or equivalently if the R-span of Λ is all of Rd.

Lemma 3.4 (Blichfeldt’s Lemma). Suppose that Λ is a nondegenerate lattice and
that K is a set with vol(K) > det(Λ). Then there are two distinct points x,y ∈ K
with x− y ∈ Λ.

Proof. This is what is often called a “volume-packing argument”. By considering
the sets K ∩B(0, R) as R →∞, whose volumes tend to that of K, we may assume
that K lies inside some ball B(0, R). Now let us suppose that the conclusion is
false: then no translate of K contains two points of Λ, or in other words

∑

x

1K(x− t)1Λ(x) ! 1

for all t ∈ Rd. Let R′ be much bigger than R, and average this last inequality over
t lying in the ball B(0, R′) to obtain

∑

x

1Λ(x)
( 1
vol(B(0, R′))

∫

B(0,R′)
1K(x− t) dt

)
! 1.

Since K ⊆ B(0, R), the inner integral equals 1 if ‖x‖ ! R′ − R (and zero if
‖x‖ " R′ + R). Therefore

(3.1)
∑

x

1Λ(x)1B(0,R′−R)(x) dx ! vol(B(0, R′)).

However it is “clear” by tiling with fundamental parallelepipeds that

lim
r→∞

1
vol(B(0, r))

∑

x

1Λ(x)1B(0,r)(x) =
1

det(Λ)
.



3.7. GEOMETRY OF NUMBERS AND PROGRESSIONS IN BOHR SETS 27

Letting R′ →∞ in (3.1) and noting that vol(B(0, R′))/ vol(B(0, R′ −R)) → 1, we
obtain a contradiction.

Suppose now that K ⊆ Rd is a centrally-symmetric convex body and that Λ is
a lattice. We define the successive minima λ1, . . . ,λd of K with respect to Λ by
defining λk to be the infimum of all those λ for which the dilate λK contains k
linearly independent elements of Λ. Note in particular that the closure λkK does
then contain k independent elements of Λ. We may use this observation to pick
a directional basis for Λ with respect to K; choose b1,b2, . . . in sequence so that
bk ∈ λkK ∩ Λ, and such that the vectors b1, . . .bk span a k-dimensional subspace
of Rd.

The directional basis b1, . . . ,bd is manifestly a basis for Rd consisting of elements
of Λ, but we caution that it need not be an integral basis for Λ. One of the questions
on the second example sheet asks you to find an example.

We turn now to one of the most important results in the subject, with one of the
more mysterious proofs I have come across.

Theorem 3.3 (Minkowski’s second theorem). Suppose that K ⊆ Rd is a cen-
trally symmetric convex body and that Λ is a nondegenerate lattice. Let the suc-
cessive minima of K with respect to Λ be λ1, . . . ,λd. Then we have the inequality
λ1 . . . λd vol(K) ! 2d det(Λ).

Proof. It is convenient to assume, by passing from K to its interior K◦ if necessary,
that K is open. This does not affect any aspect of the statement of the theorem.
Fix a directional basis b1, . . . ,bd for Λ with respect to K. The openness of K has
the nice consequence that λkK∩Λ is spanned (over R) by the vectors b1, . . . ,bk−1.
Indeed if it were not we could choose some further vector b in λkK ∩ Λ, and by
the openness this would in fact lie in (λk − ε)K ∩Λ for some ε > 0, contrary to the
definition of the successive minima λk.

Write each given x in coordinates relative to the basis vectors bi as x1b1+· · ·+xdbd.
We now define some rather unusual maps φj : K → K, by mapping x ∈ K to the
centre of gravity of the slice of K which contains x and is parallel to the subspace
spanned by b1, . . . ,bj−1 (for j = 1, φ1(x) = x). Next, we define a map φ : K → Rd

by

φ(x) =
d∑

j=1

(λj − λj−1)φj(x),

where we are operating with the convention that λ0 = 0. Let us make a few further
observations concerning the φj and φ. In coordinates we have φj(x) =

∑
i cij(x)bi,

where cij(x) = xi for i " j, and cij depends only on xj , . . . , xd for i < j. It follows
that

φ(x) =
d∑

i=1

bi (λixi + ψj (xi+1, . . . , xd))
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for certain continuous functions ψj . It follows easily that vol(φ(K)) = λ1 . . . λd vol(K),
the determinant of the Jacobian of the transformation x′i = λixi + ψi(xi+1, . . . , xd)
being particularly easy to evaluate due to the matrix being upper triangular.

Suppose, as a hypothesis for contradiction, that λ1 . . . λd vol(K) > 2d det(Λ). By
Blichfeldt’s lemma and the preceding observation this means that φ(K) contains
two elements φ(x) and φ(y) which differ by an element of 2 · Λ = {2λ : λ ∈ Λ},
and this means that 1

2 (φ(x) − φ(y)) ∈ Λ. Write x =
∑

xibi and y =
∑

yibi, and
suppose that k is the largest index such that xk %= yk. Then we have φi(x) = φi(y)
for i > k, so that

φ(x)− φ(y)
2

=
n∑

j=1

(λj − λj−1)
(

φj(x)− φj(y)
2

)

=
k∑

j=1

(λj − λj−1)
(

φj(x)− φj(y)
2

)
.

This has two consequences. First of all the convexity of K implies that 1
2 (φj(x)−

φj(y)) ∈ K for all j, and hence (again by convexity) 1
2 (φ(x) − φ(y)) ∈ λkK.

Secondly we may easily evaluate the coefficient of bk when 1
2 (φ(x)−φ(y)) is written

in terms of our directional basis. It is exactly λk(xk − yk)/2. In particular this is
non-zero, which is contrary to our earlier observation that Λ ∩ λkK is spanned by
b1, . . . ,bk−1.

Our foray into the geometry of numbers had a specific purpose, namely to clarify
the structure of Bohr sets. To conclude this section we record the following corollary
in that vein. This will be the only result we need in subsequent work.

Corollary 3.2 (Structure of Bohr sets). Suppose that R = {r1, . . . , rk} ⊆ Z/pZ is
a set of k frequencies, and that ε < 1/2 is a parameter. Then the Bohr set B(R, ε)
contains a proper GAP of dimension k and size at least (ε/k)kp.

Proof. Consider the lattice Λ = pZk + (r1, . . . , rk)Z. Since p is prime, this may
be written as a direct sum pZk ⊕ {0, 1, . . . , p − 1} · (r1, . . . , rk), a presentation
which makes it fairly easy to see that det(Λ) = pk−1. Let K ⊆ Rk be the box
{x : ‖x‖∞ ! ε}, that is to say the set of all x with |x1|, . . . , |xk| ! ε. This is
a closed, centrally symmetric, convex body. Let b1, . . . ,bk be a directional basis
for Λ, and let λ1, . . . ,λk be the successive minima. From the basic definitions of
these objects we know that ‖bi‖∞ ! ελi for all i = 1, . . . , k. Set Li := 01/λik1 for
i = 1, . . . , k. Then if 0 ! li < Li we have ‖libi‖∞ ! ε/k and whence

‖l1b1 + · · · + lkbk‖∞ ! ε.

Now each bi lies in Λ and hence is congruent to xi(r1, . . . , rk)(mod p) for some xi,
0 ! xi < p. Abusing notation sightly, we think of these xi as lying in Z/pZ. The
preceding observation implies that

‖ (l1x1 + · · · + lkxk)ri

p
‖R/Z ! ε
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for each i, or in other words the GAP {l1x1 + · · ·+ lkxk : 0 ! li < Li} is contained
in the Bohr set B(R, ε).

It remains to prove a lower bound on the size of this progression and also to establish
its properness. The lower bound on the size is easy: it is at least k−k(λ1 . . . λk)−1,
which, by Minkowski’s Second Theorem and the fact that det(Λ) = pk−1 and
vol(K) = (2ε)k, is at least (ε/k)kp.

To establish the properness, suppose that

l1x1 + · · · + lkxk = l′1x1 + · · · + l′kxk(mod p),

where |li|, |l′i| < 01/kλi1. Then the vector

b = (l1 − l′1)b1 + · · · + (lk − l′k)bk

lies in pZk and furthermore

‖b‖∞ !
k∑

i=1

2
⌊

1
λik

⌋
‖bi‖∞ ! 2εp.

Since we are assuming that ε < 1/2 it follows that b = 0 and hence, due to the
linear independence of the bi, that li = l′i for all i. Therefore the progression is
indeed proper.

3.8. Chang’s covering argument and the conclusion of the proof

Ruzsa’s model lemma, Bogolyubov’s lemma and Corollary 3.2 allow us to proceed
from a set A ⊆ Z with σ[A] ! K to the conclusion that 2A − 2A contains a large
GAP. We will go over the details a little later, but let us first supply the final
piece in the proof of the Frĕıman-Ruzsa theorem, a covering lemma of Chang which
allows us to use this information to efficiently place A inside a GAP.

Lemma 3.5 (Chang). Let K " 2 and that η ! 1/2. Suppose that A is a finite
subset of Z with σ[A] ! K and that 2A− 2A contains a proper GAP P of size η|A|
and dimension d. Then A is contained in a GAP of size at most 2dη−CKC |A| and
dimension at most d + CKC log(1/η).

Proof. We describe an algorithm for selecting some non-negative integer t and
subsets Si, i ! t, of A. Let L be a positive integer to be specified later. Set P0 = P .
Let R0 be a maximal subset of A for which the translates P0 + x, x ∈ R0, are all
disjoint. If |R0| ! L then set t = 0 and S0 = R0, and terminate the algorithm.
Otherwise take S0 to be any subset of R0 of cardinality L, and set P1 = P0 + S0.
Take R1 to be a maximal subset of A for which the translates P1 + x, x ∈ R1, are
all distinct. If |R1| ! L then set t = 1 and S1 = R1 and terminate the algorithm.
Otherwise choose S1 ⊆ R1 with |S1| = L and set P2 = P1 + S1. Continue in this
way.

We claim that for a suitably chosen L this is a finite algorithm. Indeed the fact
that the translates Pi + x, x ∈ Si, are all disjoint means that |Pi+1| = |Pi||Si| for
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i ! t− 1. It follows that

(3.2) |Pt| " |P ||S0| . . . |St−1| " ηLtn.

Observe, however, that
Pt ⊆ P + A + A + · · · + A,

where there are t copies of A. Since P ⊆ 2A−2A this means that Pt ⊆ (t+2)A−2A,
and hence by Corollary 2.1, the bounded for iterated sumsets under the assumption
of small doubling, we have |Pt| ! KC(t+4)|A|. If L = K2C , then, the algorithm can
last no more than t steps where t ! C log(1/η) (this is a slightly crude estimate).

Let us examine what happens when the algorithm finishes. Then we have a set
Rt ⊆ A, |Rt| ! L, which is maximal subject to the translates Pt + x, x ∈ Rt, being
disjoint. In other words if a ∈ A then there is x ∈ Rt such that (Pt+a)∩(Pt+x) %= ∅,
and so

(3.3) A ⊆ Pt − Pt + Rt ⊆ (P − P ) + (S0 − S0) + · · · + (St−1 − St−1) + Rt.

Now it is clear that for any finite set S the difference set S − S is contained in a
GAP S of dimension at most |S| and size at most 3|S|, namely the one in which
the xi are the elements of S and the “lengths” Li are all 1. It follows from (3.3)
that A ⊆ Q, where Q is the multidimensional progression

Q = P − P + S0 + · · · + St−1 + Rt.

The dimension of Q satisfies

dim(Q) ! dim(P ) +
t−1∑

i=0

|Si| + |Rt| ! d + L(t + 1) ! d + CKC log(1/η).

To estimate the size of Q, note that the properness of P implies that |P−P | = 2d|P |.
Hence

|Q| ! |P − P | ·
t−1∏

i=0

3|Si| · 3|Rt| ! 2d3L(t+1)|P |.

The claimed bound follows immediately from a crude application of the estimate
t ! C log(1/η), the choice of L = K2C , and the fact that P ⊆ 2A − 2A (which
means that |P | ! KC |A| by Corollary 2.1).

We are now in a position to conclude the proof of the Frĕıman-Ruzsa theorem,
which is merely a pleasant putting-together of the facts we have just assembled.
Suppose that A ⊆ Z is a set with σ[A] ! K. Then:

(i) There is a set A′ ⊆ A with |A′| " |A|/8 which is Freiman 8-isomorphic
to a set S ⊆ Z/pZ, where p is a prime with p ! CKC |A| (Ruzsa’s model
lemma, Corollary 3.1);

(ii) 2S − 2S contains a Bohr set B(R, 1
10 ) with |R| ! CKC (Bogolyubov’s

lemma, Lemma 3.3);
(iii) That Bohr set in turn contains a proper GAP, P , with dimension at most

CKC and size at least exp(−CKC)|A| (Geometry of numbers, Corollary
3.2);
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(iv) The set 2A − 2A contains a proper GAP, P̃ , with dimension at most
CKC and size at least exp(−CKC)|A| (Basic facts about Freiman ho-
momorphisms, specifically Proposition 3.2 (iii), (iv) and (v)), and

(v) A is contained in a GAP with dimension at most CKC and size at most
exp(CKC)|A| (Chang’s covering lemma, Lemma 3.5).

This concludes the proof of the Frĕıman-Ruzsa theorem: it is one of the classics of
this or any other subject.


