
NOTES ON PROGRESSIONS AND CONVEX GEOMETRY

BEN GREEN

Abstract. Our purpose is to informally explain some parts of Chang’s paper on
Freiman’s theorem, [2], which depend on results in Bilu’s exposition of Freiman’s
original proof [1]. Specifically we prove that if P is a d-dimensional progression then
P is contained in a proper progression P̃ of dimension at most d and size no more than
dCd2 |P |. We also prove Chang’s bounds for Freiman’s theorem in the following form.
Suppose that A ⊆ Zm is a set with |A + A| 6 K|A|, and that ε > 0. Suppose that
|A| > CK6/ε. Then there is a proper progression P of dimension d 6 bK− 1+ εc and
size at most exp(CK2 log3 K)|A| such that A ⊆ P .

These notes may be regarded as a Chapter 4 to add to my earlier notes [3]. I intend to
integrate them properly at some point soon, and also to add a Chapter 5, in which I will
discuss my recent work with Tao [4] on the Freiman-Bilu theorem, and probably also a
Chapter 6, in which I will describe Tao’s ”universal ambient group” proof of Freiman’s
theorem. The resultant notes will then give a more-or-less complete discussion of our
current knowledge on Freiman’s theorem for sets of integers.

These notes were inspired by the original papers of Bilu and Chang (especially the paper
of Bilu, which we have followed very closely), and also by the forthcoming book of Tao
and Vu [5]. There is no original material here.

1. Some geometry of numbers

A centred progression of dimension d inside a lattice Λ in some Euclidean space is any
set having the form

P := {µ1v1 + · · ·+ µdvd : |µi| 6 Li},
where v1, . . . , vd ∈ Λ and the integer parameters L1, . . . , Ld are referred to as the side-
lengths of P . The size of P , size(P ), is defined to be

∏d
i=1(2Li + 1). Note that the size

of P need not equal its cardinality (though it does if P is proper : see below).

We will be concerned with various properties of progressions. It turns out to be natural
to view them in the somewhat more general context of convex progressions.

Definition 1.1 (Convex progressions). Suppose that B ⊆ Rd is a closed, centrally
symmetric, convex body. If B ∩ Zd spans Rd as a vector space then we say that B is
full. Suppose that B is full, and that φ : Zd → Zm is a homomorphism. Then we refer
to the image

X := φ(B ∩ Zd)

as a convex progression. If s > 1 is some integer and if the restriction φ|sB∩Zd is one-to-
one, then we say that X is s-proper. The size of X is simply size(X) := |B ∩ Zd|, and
the volume is vol(X) := vold(B). ♦

The author is a Clay Research Fellow, and is pleased to acknowledge the support of the Clay
Mathematics Institute. Some of this work was carried out while he was on a long-term visit to MIT.
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Remark. The size and volume of a convex progression are somewhat related; see Lemma
2.4 below. Note that the volume vol(P ) of a centred progression is 2dL1 . . . Ld. One
should really regard a convex progression as the pair (B, φ) rather than as the set X;
in this way the notions of size and of volume are well-defined.

It is clear that every centred progression is a convex progression: simply take B to be
the box

Q = Q(L1, . . . , Ld) :=
d∏

i=1

[−Li, Li] ⊆ Rd.

As we will see in this section, every convex progression both contains and is contained
within a centred progression reasonably economically. However, certain arguments and
results are more naturally formulated in the more general context of convex progressions.

Let us start by recalling some nomenclature concerning convex bodies and their be-
haviour as regards lattices. Let B be a closed, centrally symmetric convex body in Rd,
and let Λ be a lattice which spans Rd. We define the successive minima,

0 < λ1 6 λ2 6 . . . 6 λd,

of B with respect to Λ by

λk := inf{λ : λB contains k linearly independent elements of Λ}.
One imagines starting with a very small dilate εB, and “expanding” this slowly out-
wards. Every time we reach a value of λ for which dimR(λB ∩ Λ) increases, we make a
note of that value, and this gives the list of successive minima.

We may also, during this process, write down successive vectors b1, . . . , bd ∈ Λ in such
a way that dimR Span(b1, . . . , bi) = i. Such a collection of vectors bi forms a basis for
Rd, and this basis is rather natural if one is interested in studying the body B. We call
it a directional basis.

We write ‖ · ‖B for the natural norm associated to B, that is to say

‖v‖B := inf{λ : v ∈ λB}.
Note, then, that with this notation we have

‖bi‖B = λi.

Example (brought to my attention by Joseph Myers in 1999). Let d = 5, and suppose
that B is the open unit ball {x ∈ R5 : ‖x‖2 < 1. Let Λ be the lattice spanned by Z5

and v := (1
2
, 1

2
, 1

2
, 1

2
, 1

2
). Then it is easy to check that λ1 = · · · = λ5 = 1. An example

of a direction basis is given by bi = ei, that is to say the standard basis vectors. Note,
however, that the bi do not form an integral basis for Λ, since v /∈

⊕5
i=1 Zbi.

It is very useful to have an integral basis for Λ which is natural for studying B. We
prove that there is such a basis in Lemma 1.3 below. The argument is due to Mahler.

Lemma 1.2 (Extending an integral basis). Suppose that V is a d-dimensional vector
space, and that Λ ⊆ V is a lattice. Suppose that V ′ 6 V is a codimension 1 subspace,
and that Λ′ := Λ∩ V ′ has an integral basis {f1, . . . , fd−1}. Then there is a vector v ∈ Λ
such that {f1, . . . , fd−1, v} is an integral basis for Λ.
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Proof. Applying a suitable isomorphism τ : V → Rd, we may assume that fi = ei,
where the ei are the standard basis vectors (so that Λ′ = Zd−1 ×{0}). Let πd : Rd → R
be projection onto the coordinate vector ed. Pick a vector v ∈ Λ such that l := πd(v)
is positive, yet as small as possible. Suppose that v′ ∈ Λ. Then we may find an integer
m such that 0 6 πd(v

′ − mv) < l. Since l was assumed to be minimal we must have
πd(v

′ −mv) = 0, which means that v′ ∈ mv + (Zd−1 × {0}). The result follows.

Remark. An inductive application of this lemma proves the well-known result that every
lattice has an integral basis.

Lemma 1.3 (Mahler). There is an integral basis w1, . . . , wd for Λ such that ‖wi‖B 6 iλi

for i = 1, . . . , d.

Proof. Pick a directional basis b1, . . . , bd. This, recall, is a particular collection of
elements of Λ which span Rd. Set

Vi := Span(b1, . . . , bi),

and define Λi := Λ ∩ Vi. Suppose that the vectors w1, . . . , wj−1 have been selected
so that they form an integral basis for Λj−1, and so that the requisite inequalities
‖wi‖B 6 iλi are satisfied. Now apply Lemma 1.2 with V = Vj, V

′ = Vj−1 and the
integral basis {w1, . . . , wj−1} for Λ′ = Λj−1. By that lemma we may find w∗ such that
{w1, . . . , wj−1, w

∗} is an integral basis for Λj.

Now we may write

w∗ = t1b1 + · · ·+ tjbj (1.1)

for some real numbers t1, . . . , tj. In particular

w∗ − tjbj ∈ Vj−1. (1.2)

Since bj ∈ Λj, we also have

bj = λ1w1 + · · ·+ λj−1wj−1 + λ∗w∗,

for some integers λ1, . . . , λj−1, λ
∗. Thus

λ∗w∗ − bj ∈ Vj−1.

Comparing this with (1.2) we see that λ∗ 6= 0 and that tj = 1/λ∗. In particular,

|tj| 6 1. (1.3)

Note that w∗ may be replaced by w∗∗ := w∗ − µ1w1 − · · · − µd−1wd−1, for arbitrary
integers µ1, . . . , µd−1. Recalling (1.1), we may choose the µi so that

w∗∗ = u1b1 + · · ·+ uj−1bj−1 + tjbj,

where |ui| 6 1 for i = 1, . . . , j − 1. Recalling (1.3), we have the bound

‖w∗‖B 6
j−1∑
i=1

|uj|‖bi‖B + |tj|‖bj‖B 6 λ1 + · · ·+ λj 6 jλj.

Setting wj := w∗∗, we see that {w1, . . . , wj} is an integral basis for Λj in which each wi

satisfies the bound ‖wi‖B 6 iλi. We may conclude by induction.
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Remark. Actually, it is easy to see that we may insist on slightly more, namely that
‖wi‖B 6 iλi/2 for i > 2. This improvement will be of little consequence to us here,
however.

Let {wi} be a Mahler basis for Λ with respect to B. We are going to establish (somewhat
loose) necessary and sufficient conditions on the size of coefficients µ1, . . . , µd ∈ Z in
order that the vector x = µ1w1 + · · ·+ µdwd lies in B ∩ Λ.

Lemma 1.4 (Containment in B ∩ Λ). Let x = µ1w1 + · · · + µdwd be an element of Λ,
where µi ∈ Z. Then

(i) If |µi| 6 1/diλi for all i, then x ∈ B ∩ Λ.
(ii) If x ∈ B ∩ Λ then |µi| 6 (d!)2/iλi for all i.

Proof. The proof of (i) involves nothing more than the triangle inequality. Indeed if
µi 6 1/diλi for all i then

‖x‖B 6
d∑

i=1

|µi|‖wi‖B 6
d∑

i=1

|µi|iλi 6 1.

The proof of (ii) is rather more subtle, and involves Minkowski’s second theorem. This
was proved in [3, Ch. 3]; it is the bound

λ1 . . . λdvol(B) 6 2d det(Λ).

Now note that the octahedron O spanned by ±x and the vectors ±wj/jλj, j 6= i, lies
in B. Since the wi are an integral basis for Λ, we have

vol(B) > vol(O) =
2dµi

d!
∏

j 6=i jλj

det(Λ).

The result follows immediately from Minkowski’s second theorem.

Finally, we may conclude the main result of this section, which provides a link between
progressions and convex bodies.

Lemma 1.5. Let B be a symmetric convex body in Rd, and let Λ be a lattice of dimension
d. Then there is a progression P ⊆ B ∩ Λ such that B ∩ Λ ⊆ d(d!)2P .

Proof. Define P to be the progression

P := {µ1w1 + · · ·+ µdwd : |µi| 6 1/diλi for i = 1, . . . , d}.
The result follows immediately from the previous lemma.

2. Progressions inside proper progressions

Our aim in this section is to prove the following result, which may be found in [1] and
which is used in [2].

Theorem 2.1 (Progressions inside proper progressions). Suppose that P ⊆ Zm is a
centred progression of dimension d. Let t > 1 be an integer. Then there is a t-proper

progression P̃ of dimension d̃ 6 d such that P ⊆ P̃ , and such that

size(P̃ ) 6 (2t)dd6d2

size(P ).
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Roughly speaking, we proceed by dimension reduction, which could work as follows. If
P = P0 is not proper then there is some non-trivial relation

d∑
i=1

µivi =
d∑

i=1

µ′ivi

involving the elements of P0, and we may use this to place it inside a progression P1

of dimension d − 1 and having size not much bigger than |P0|. If P1 is not proper, we
repeat the process, and so on until we reach a progression which is proper (note that
any 1-dimensional progression is proper). It turns out that this procedure is a little
inefficient, though it does work (cf. [5, Ch. 5]). It is rather better to replace the chain

P = P0 ⊆ P1 ⊆ P2 ⊆ · · · ⊆ Pk,

dim(Pi) = d− i, of progressions by a chain

P = X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xk, (2.1)

dim(Xi) = d − i of convex progressions1. Only when this process has terminated do
we place the final convex progression inside a true progression P ′. To ensure that P ′

is proper we require each Xi to be s-proper for rather large s, and this is a somewhat
inefficient feature of the argument.

Lemma 2.2 (Dimension reduction for convex progressions). Suppose that X ⊆ Zm is
a convex progression of dimension d which is not s proper. Then there is a convex
progression X ′ of dimension d− 1 such that X ⊆ X ′, and for which

vol(X ′) 6 sd vol(X).

Proof. Suppose that X = φ(B∩Zd). We will construct B ⊆ Rd−1 and a homomorphism
φ : Zd−1 → Zm, and then define X ′ := φ′(B ∩ Zd−1).

Now our assumption that X is not s-proper implies that there is a vector x ∈ 2sB∩Zd,
e 6= 0, such that φ(x) 6= 0. Write x = (x1, . . . , xd) in coordinates relative to the standard
basis vectors e1, . . . , ed. We may assume (since φ is linear) that hcf(x1, . . . , xd) = 1. This
means that we may complete {x} to an integral basis {f1, . . . , fd−1, x} for Zd.

Let τ : Rd → Rd be the linear endomorphism for which τ(fi) = ei and τ(x) = ed. Note
that τ preserves Zd, and hence is unimodular (has determinant ±1). Let π : Rd → Rd−1

be the projection onto the first d− 1 coordinates. Define

B′ := π(τ(B))

and define φ′ : Zd−1 → Z by

φ′(π(τ(v)) = φ(v).

Define

X ′ := φ′(B′ ∩ Zd−1).

Note that φ′, though defined implicitly, is well-defined since if π(τ(v1)) = π(τ(v′1)) then
v1 − v′1 ∈ Ze, which means that φ(v1) = φ(v′1).

1Actually here, as in other parts of these notes, there are other “categories” that one might consider
using. Tao (personal communication) mentioned ellipsoids; one might also look at “round” convex
bodies which contain an inscribed unit sphere, and so on. Each seems to have its own advantages.
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B′ is manifestly a full, centrally symmetric, convex body in Rd−1. We must show
that φ(B ∩ Zd) ⊆ φ(B′ ∩ Zd−1). This is trivial; we have the inclusion πτ(B ∩ Zd) ⊆
πτ(B)) ∩ Zd−1, whence

φ(B ∩ Zd) = φ′((πτ(B ∩ Zd)) ⊆ φ′(πτ(B) ∩ Zd−1) = φ′(B′ ∩ Zd−1).

It remains to establish an upper bound for the volume of B′. To do this, let us first
note that e ∈ 2sB, and so τ(B) contains the vectors ± 1

2s
ed. Since τ(B) is convex, it

contains the suspension S, defined to be the convex hull of B′ = πτ(B) and the vectors
± 1

2s
ed. A well-known geometrical lemma (following from the fact that the volume of a

the simplex conv(0, e1, . . . , ed) is 1/d) implies that

vold(S) =
1

sd
vold−1(B

′).

Now (as we remarked), S ⊆ τ(B). Since τ is unimodular, we have

vol(X ′) = vold−1(B
′) = sd vold(S) 6 sd vold(B) = sd vol(X),

which is what we wanted to prove.

Iterating this lemma, we come up with the following result, stating that convex pro-
gressions are contained in (very) proper convex progressions.

Lemma 2.3. Suppose that X ⊆ Zm is a convex progression of dimension d. Then there
is an s-proper convex progression X ′ of dimension d′ 6 d such that X ⊆ X ′, and for
which

vol(X ′) 6 sdd! vol(X).

We are almost ready to prove Theorem 2.1. Before we can do that, however, we must
relate the size and the volume of a convex progression. In fact, we only require a bound
in one direction. The following is [5, Lemma 3.26].

Lemma 2.4. Suppose that X is a convex progression. Then

size(X)

vol(X)
6

3dd!

2d
.

Proof. Write X = φ(B ∩ Zd). Then (by definition) size(X) = |B ∩ Zd| and vol(X) =
vold(B). Now B is full, and so there exist d linearly independent vectors v1, . . . , vd ∈
B ∩ Zd. We may choose these so that the interior O◦ of the octahedron O spanned
by ±v1, . . . ,±vd contains no point of Zd \ {0}, for example by selecting O to be the
octahedron of minimal volume with vertices in B ∩ Zd. By convexity we have O ⊆ B.
Now the fact that O◦ ∩ Zd = {0} implies that the translates x + 1

2
O◦, x ∈ B ∩ Zd, are

all disjoint. Since they are all contained in 3
2
B, this leads to the inequality

|B ∩ Zd| 6
vold(

3
2
B)

vold(
1
2
O)

=
3dvold(B)

vold(O)
.

The result now follows from the observation that any nondegenerate octahedron with
vertices in Zd has volume at least 2d/d!.

Remark. In fact one can also prove the lower bound

1

2d
6

size(X)

vol(X)



PROGRESSIONS AND CONVEX GEOMETRY 7

by another elementary covering argument; see [5, Ch. 3] for details.

We move on now to the proof of Theorem 2.1. In view of later applications, it makes
sense to prove the following more general result which has Theorem 2.1 as a trivial
corollary.

Theorem 2.5 (Convex inside proper). Suppose that X = φ(B ∩ Rd) is a convex pro-

gression. Let t > 1 be an integer. Then there is some d̃ 6 d and a t-proper centred

progression P̃ of dimension d̃ such that X ⊆ P̃ , and which satisfies the estimate

size(P̃ ) 6 (2t)dd6d2

vol(X).

Proof. Apply Lemma 2.3 with s := d(d!)2t. This gives us an s-proper convex progression
X ′ of dimension d′ 6 d, such that X ⊆ X ′ and

vol(X ′) 6 sdd! vol(X). (2.2)

WriteX ′ = φ′(B′∩Zd′
). Now Lemma 1.5 implies that there is a progression P ′ ⊆ B′∩Zd′

such that B′ ∩ Zd′ ⊆ d(d!)2P ′. Write P ′′ := d(d!)2P ′. The fact that φ′|sB′∩Zd′ is one-to-

one implies that φ′|tP ′′∩Zd′ is one-to-one, and therefore the progression P̃ := φ′(P ′′) is
t-proper and contains X.

It remains to bound the size of P̃ . Since P ′ ⊆ B′ ∩ Zd′
, it follows from Lemma 2.4 and

(2.2) that

size(P ′) 6 size(X ′) 6
3dd!

2d
vol(X ′) 6

(3s

2

)d
(d!)2vol(X).

But since P ′ is proper we clearly have

size(P̃ ) 6
(
d(d!)2

)d
size(P ′).

Putting these bounds together, recalling that s = d(d!)2t and making some crude sim-
plifications, the result follows.

3. Chang’s version of Freiman’s theorem

In this section we use Theorem 2.5 to make a deduction concerning Freiman’s theorem.
The following is shown in Chang’s paper [2]; see also [3].

Proposition 3.1 (Chang). Suppose that A ⊆ Z is a set with |A + A| 6 K|A|. Then
there is a progression P of dimension d 6 CK2 log3K and size at most2

|P | 6 exp(CK2 log2K)|A| (3.1)

such that A ⊆ P .

In the last few pages of [2] it is shown how one can bootstrap this to a theorem in
which the bound on the dimension is d 6 bK− 1c, the progression P is proper, and the
containment bound (3.1) is not substantially worse. It is this refined result we discuss
here.

2In fact in the notes [3] the explicit value C = 220 is obtained; as a rule, I am too old and lazy
nowadays to worry overly much about explcit constants.



8 BEN GREEN

Theorem 3.2 (Chang). Suppose that A ⊆ Z is a set with |A+ A| 6 K|A|. Let ε > 0,
and suppose that |A| > N0(K, ε), where we can take N0(K) := CK6/ε. Then there is a

t-proper progression P̃ of dimension d̃ 6 bK − 1 + εc and size at most

|P̃ | 6 tK exp(CK2 log3K)|A|. (3.2)

such that A ⊆ P ′.

Remarks. In any application that I can imagine, t would be taken to be some absolute
constant, in which case the tK term here may be absorbed into the exp(CK2 log3K)
term.

The dependence on ε, which does not feature in Chang’s formulation of this result, has
been introduced so that the function N0(K, ε) behaves reasonably. The result still holds
with ε = 0, but the function N0(K, 0) necessarily behaves very erratically. Consider,
for example, the set

A = {1, . . . ,m} ∪ {M},
whereM � m. It is easy to check that |A+A| = 3m, and so A has doubling 3m/(m+1).
It is clear, however, that A is not economically contained in an arithmetic progression.
This example implies that N0(3 − η, 0) > 3/η, and so N0(K, 0) is not bounded as
K → 3−; a similar phenomenon may be observed just to the left of any positive integer
K > 4.

Let us start working with the conclusions of Proposition 3.1. We have a set A with
|A| > N0(K, ε) and |A + A| 6 K|A|, and it is known to be contained in P , a (not
necessarily proper) progression of dimension d � K2 log2K and size bounded by

exp(CK2 log2K)|A|. Pick an arbitrary a ∈ A, and consider the set Ã = A − a. It

is clear that this set is contained in a centred progression P̃ with the same dimension
as P and size no more than 2d size(P ).

Dropping the tildes, we assume from now on that 0 ∈ A and that P is centred. P may
therefore be represented as a convex progression, thus P = φ(B∩Zd), where B is a box
and vol(P ) 6 size(P ). Applying Lemma 2.3 with s = 2, we may find some d1 6 d and
a 2-proper convex progression X1 such that P ⊆ X1 and

vol(X1) 6 2dd!vol(P ) 6 exp(CK2 log3K)|A|. (3.3)

Write X1 = φ1(B1 ∩ Zd1), where φ1|2B1∩Zd1 is one-to-one. Then we see that the map
φ1|B1∩Zd1 is a Freiman isomorphism, and so the inverse image Y := φ−1(A) has |Y | = |A|
and |Y + Y | = |A+A| 6 K|Y |. Our next task is to prove the rather remarkable result
that Y is contained in an affine subspace of dimension at most bK − 1 + εc.

It is rather convenient to drop the subscript 1 henceforth. Thus we write X := X1,
d1 := d, B1 := B. All we need recall is the bound (3.3).

Proposition 3.3 (Freiman’s Lemma). Suppose that A ⊆ Rr is not contained in an
affine subspace. Then we have the lower bound

|A+ A| > (r + 1)|A| − 1
2
r(r + 1). (3.4)

In particular if r 6 CK3 and if |A| > N0(K, ε) = CK6/ε, then in fact

r 6 bK − 1 + εc. (3.5)
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Proof. The set A + A obviously has the same size as the set m(A) := 1
2
(A + A)

of midpoints of line segments of A (note that A ⊆ m(A)). Let F (r, n) denote the
minimum value of |m(A)| amongst all sets A ⊆ Rr which are not contained in an affine
subspace and for which |A| = n. Consider an extreme point a on the convex hull of
A. The set A′ := A \ {a} is either contained in an (r − 1)-dimensional affine subspace,
or it is not. In the former case we clearly have m(A) > m(A′) + n, since none of the
midpoints of the line segments [ax], x ∈ A, lies in m(A′). In the latter case we have
m(A) > m(A′)+ r+1. Indeed if S is the r-face nearest to a then none of the midpoints
of the segments [ax], x ∈ S, lie in m(A′), and nor does a.

Both of the cases here are compatible with the inequality

F (r, n) > min(F (r − 1, n− 1) + n, F (r, n− 1) + r + 1).

It follows by induction on r + n that

F (r, n) > (r + 1)n− 1
2
r(r + 1),

which immediately implies (3.4). The bound (3.5) follows after a short computation.

Recall now the paragraph before the statement of Proposition 3.3, where we had a full,
centrally symmetric convex body B ⊆ Rd and a set Y ⊆ B∩Zd such that |Y +Y | 6 K|Y |
and |Y | > N0(K, ε). Since d is known to be O(K2 log2K), and hence certainly at most
CK3, Proposition 3.3 applies and we may conclude that Y is contained in B′, the
intersection of B with some subspace H 6 Rd of dimension d′ = bK− 1+ εc. Note that
0 ∈ A, and so H really can be taken to be a linear subspace, rather than just an affine
subspace. It certainly follows that A is contained in a convex progression of dimension
at most d′; our task now is to show that the volume of this convex progression can be
taken to be reasonably small.

In order to do this, we first make sure that B is appropriately “round3”. To do this,
we simply apply an endomorphism τ : Rd → Rd with | det τ | = 1 such that the Mahler
basis {w1, . . . , wd} of Zd with respect to B is mapped to the standard orthonormal basis

{e1, . . . , ed}. Write B̃ := τ(B), and set φ̃ := φ ◦ τ−1. Note that the convex progression

X̃ := φ̃(B̃ ∩ Zd) is, as a set of points4, precisely the same as X.

Recall that wi ∈ iλiB for all i = 1, . . . , d, where λ1 6 . . . 6 λd are the successive minima

of B with respect to Zd. Since B is full, we have λi 6 1 for all i. It follows that B̃
contains the points ±ei/i, i = 1, . . . , d, and hence the octahedron O spanned by these
points.

Now the Cauchy-Schwarz inequality implies that if x2
1 + · · ·+ x2

d 6 d3 then x1 + 2x2 +

· · ·+ dxd 6 1. It follows that O, and hence B̃, contains the Euclidean ball B(0, d−3/2).

Once more we drop tildes for notational convenience, redefining B := B̃, X := X̃ and

φ := φ̃. The gain from our previous situation is that we have replaced the knowledge

3This is all rather close to John’s theorem, but we persist in using just the tools we have already
created, viz. Minkowski’s second theorem and the Mahler basis.

4As we remarked earlier, X and X̃ should not, technically, be regarded as the same convex
progression.
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that B is full with the fact that B(0, d−3/2) ⊆ B. The convex body B might now
reasonably be described as “round”. The next lemma is [1, Lemma 6.5].

Lemma 3.4 (Sections of round convex bodies). Suppose that B ⊆ Rm is a centrally
symmetric convex body and that B(0, ρ) ⊆ B. Suppose that H 6 Rm is a subspace of
dimension m− r. Write B′ = B ∩H. Then we have

volm−r(B
′) 6

m!

(m− r)!ρr
volm(B).

Proof. Set H0 := H, B0 := B′ and m0 := m − r. Now there must be some point
x1 ∈ B(0, ρ) whose distance from H0 is at least ρ. Set H1 := SpanR(H, x1) and m1 :=
m − r + 1. Then B1 := B ∩H1 contains the section B0 and the points ±x, and hence
the convex hull of these points, which is a double-sided cone. The volume of this cone
is 2ρvolm0(B0)/m1, and thus

volm1(B1) >
ρ

m− r + 1
volm0(B0).

Continuing inductively, we obtain

volmj
(Bj) >

ρj

(m− r + 1) . . . (m− r + j)
volm0(B0).

Taking j = r gives the result.

Let us return now to the paragraph immediately following Proposition 3.3. We had
A ⊆ φ(B ∩ Zd), and we are now in a position to assume that B is round in the sense
that B(0, d−3/2) ⊆ B. Recall that d is subject to the bound

d 6 CK2 log2K. (3.6)

We observed that Y := φ−1(A) was, being Freiman isomorphic to A, subject to the
doubling estimate |Y +Y | 6 K|Y |. We concluded that Y ⊆ B′ := B∩H, where H 6 Rd

is subspace of dimension d′ = bK−1+εc. By relaxing this condition to d′ 6 bK−1+εc
if necessary, we may assume that the lattice Λ′ := H ∩Zd is d′-dimensional, and that B′

is full with respect to Λ′. Write φ′ := φ|H , and let ψ : H → Rd′
be any endomorphism

such that ψ(Λ′) = Zd′
. It is clear that | det(ψ)| 6 1. Define

B′′ := ψ(B′)

and

φ′′ := φ′ ◦ ψ−1.

Then A is contained in the coset progression X ′′ := φ′′(B′′ ∩ Zd′
). We estimate the

volume of X ′′. Note first of all that, since | det(ψ)| 6 1, we have

vol(X ′′) := vold′(B′′) 6 vold′(B′).

However Lemma 3.4 and the fact that B(0, d−3/2) ⊆ B tell us that

vold′(B) 6 d!d3d/2vold(B) = d!d3d/2vol(X).

Combining these estimates with (3.3) leads to

vol(X ′′) 6 exp(CK2 log3K)|A|. (3.7)

Now simply apply Theorem 2.5, and we are done.
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