
AN ARGUMENT OF SHKREDOV IN THE FINITE FIELD SETTING

BEN GREEN

Abstract. An argument of Skhredov can be adapted to show that if A ⊆ Fn
2×Fn

2 does
not contain a triple ((x, y), (x+d, y), (x, y+d)) with d 6= 0 then 2−2n|A| � (log n)−1/25.
The argument was outlined in the author’s survey article [1]. The purpose of this note
is to collect together the proofs that were omitted from that survey.

This is designed to be read as a supplement to [1, §5], and does not make a lot of sense
independently.

1. A preliminary lemma

Lemma 1.1. Let τ, κ ∈ (0, 1) be parameters, and let S1, . . . , Sk ⊆ Vn be sets. Write
ε(k) = κ2kτ−k/2. Suppose that |Si| = σiN and that each Si is ε(k − 1)-uniform. Then
for at least (1− 2kτ)Nk of the k-tuples (x1, . . . , xk) ∈ Vn we have

|
∑
d

S1(x1 + d)S2(x2 + d) . . . Sk(xk + d)− σ1 . . . σkN | 6 ε(k)N. (1.1)

Proof. We proceed by induction on k, the case k = 1 being trivial. For a fixed choice
of u = (x1, . . . , xk−1) write Fu(d) = S1(x1 + d)S2(x2 + d) . . . Sk−1(xk−1 + d). Then∑

d

S1(x1 + d)S2(x2 + d) . . . Sk(xk + d) = (Fu ∗ Sk)(xk).

Now observe that∑
xk

(
(Fu ∗ Sk)(xk)− σk

∑
d

Fu(d)

)2

= N−1
∑
ξ 6=0

|F̂u(ξ)|2|Ŝk(ξ)|2 6 ε(k − 1)2N3. (1.2)

Using the induction hypothesis, for at least (1− 2k−1τ)Nk−1 values of u we have

|
∑
d

Fu(d)− σ1 . . . σk−1N | 6 ε(k − 1)τN.

For these values of u, we have from (1.2) that∑
xk

((Fu ∗ Sk)(xk)− σ1 . . . σkN)2 6 4ε(k − 1)2N3.

For such a value of u, then, the number of xk for which |(Fu ∗ Sk)(xk) − σ1 . . . σkN | >
ε(k)N is no more than

4ε(k − 1)2

ε(k)2
N 6 2k−1τN.

The total number of (x1, . . . , xk) which are exceptions to (1.1) is thus at most

2k−1τNk + 2k−1τNk = 2kτNk,
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which is what we wanted to prove.

2. Proof of Proposition 5.6

For any three functions f1, f2, f3 : S → [−1, 1] write T (f1, f2, f3) = E(f1(x, y)f2(y +
z, y)f3(x, x + z)|x, y, z ∈ H). This operator T is clearly trilinear, and furthermore
|H|3T (A,A,A) is the number of corners in A. Write f = A − α, and observe that
T (A,A,A) = T (f, A,A) + αT (1, A,A). We are working under the assumption that
‖f‖4� 6 2−8α12; for brevity, write η = 2−8α12.

Now if we write g(z) = E(1A(s, t)|s, t ∈ H, s + t = z) we clearly have T (1, A,A) =
Eg(z)2, and this is at least α2β2

1β
2
2 by the Cauchy-Schwarz inequality. Thus we have

T (A,A,A) > T (f, A,A) + α3β2
1β

2
2 . (2.1)

To conclude the proof we place an upper bound on T (f, A,A) by invoking the as yet
unused hypothesis that ‖f‖� is small.

To do this, we apply the Cauchy-Schwarz inequality twice. First of all we have

T (f, A,A) = E
(
A(y + z, y)E(E1(y + z)f(x, y)A(x, x+ z) |x) | y, z

)
6 E(E1(y + z)E2(y)|y, z)1/2 × (2.2)

× E(E1(y + z)A(x, x+ z)A(x′, x′ + z)f(x, y)f(x′, y)|x, x′, y, z)1/2.

Next, observe that

E(E1(y + z)A(x, x+ z)A(x′, x′ + z)f(x, y)f(x′, y)|x, x′, y, z)

= E
(
A(x, x+ z)A(x′, x′ + z)E(E1(y + z)E2(x+ z)E2(x

′ + z)f(x, y)f(x′, y)|y)|x, x′, z
)

6 E
(
E1(x)E1(x

′)E2(x+ z)E2(x
′ + z)|x, x′, z

)1/2

×

× E
(
ω(x, x′, y, y′)f(x, y)f(x′, y)f(x, y′)f(x′, y′)|x, x′, y, y′

)1/2

, (2.3)

where
ω(x, x′, y, y′) = E(E1(x+ z)E1(x

′ + z)E2(y + z)E2(y
′ + z)|z).

Since E(E1(y + z)E2(y)|y, z) = β1β2 and (by a simple adaptation of [1, Lemma 3.2]

E(E1(x)E1(x
′)E2(x+ z)E2(x

′ + z)|x, x′, z) 6 2β2
1β

2
2 ,

we get from (2.2),(2.3) that

T (f, A,A)4 6 2β4
1β

4
2E(ω(x, x′, y, y′)f(x, y)f(x′, y)f(x, y′)f(x′, y′)|x, x′, y, y′). (2.4)

A short check confirms that our uniformity assumptions on E1 and E2 are sufficient to
apply the case k = 4 of Lemma 1.1 with τ = 2−4β4

1β
4
2η and κ = 2−12β12

1 β
12
2 η

3. This
allows us to conclude that the weight function ω(x, x′, y, y′) is roughly constant, in the
sense that |ω(x, x′, y, y′)−β2

1β
2
2 | 6 β4

1β
4
2η with probability at least 1−β4

1β
4
2η. This allows

us to estimate the right-hand-side of (2.4) using the fact that ‖f‖� is small. Indeed it
is easy to see that∣∣E(ω(x, x′, y, y′)− β2

1β
2
2)f(x, y)f(x′, y)f(x, y′)f(x′, y′)|x, x′, y, y′

∣∣ 6 3β4
1β

4
2η,
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and so (2.4) and the smallness of ‖f‖� imply that

|T (f, A,A)| 6 2β2
1β

2
2η

1/4.

Comparing with (2.1), we get

T (A,A,A) > (α3β2
1β

2
2 − 2β2

1β
2
2η

1/4) > α3β2
1β

2
2/2,

which is what we wanted to prove.

3. proof of proposition 5.7

Shkredov employs a spectral argument to prove this. We take a more elementary ap-
proach, which is perhaps best phrased in the language of graph theory.

Suppose that |E1| = M1, |E2| = M2. We define a certain bipartite graph G associated
with the set A. This will be a graph on disjoint vertex sets X, Y , which we consider
to be copies of E1, E2. We will abuse notation somewhat by identifying X with E1

and Y with E2. We say that xy ∈ E(G) precisely if (x, y) ∈ A, and observe that
|E(G)| = αM1M2. We may associate to any sub-product set S ′ = F1 × F2 the pair of
sets F1 = X ′ ⊆ X and F2 = Y ′ ⊆ Y . The density of δS′(A) is then simply the edge
density

δ(X ′, Y ′) := E(1xy∈E(G)|x ∈ X ′, y ∈ Y ′),
and so our objective is to make this large for sets X ′, Y ′ which are not too small. Note
also that the number of rectangles in A, ‖A‖4�, is precisely C4(G), the number of 4-cycles
in G.

We will use some standard notation of graph theory. If v is a vertex then N (v) denotes
the neighbourhood of v, whilst d(v) = |N (v)| is the degree of v. It will be important in
later arguments to assume that d(v) is roughly constant on both X and Y . Fortunately,
if d(v) is not roughly constant in this sense then it is relatively easy to find sets X ′, Y ′

such that δ(X ′, Y ′) is large.

Lemma 3.1. Let ε1, ε2 ∈ (0, 1), and suppose that there are either at least ε1M1 vertices
x ∈ X such that |d(x) − αM2| > ε2M2, or else at least ε2M2 vertices y ∈ Y such that
|d(y)−αM1| > ε1M1. Then we may find X ′ ⊆ X, Y ′ ⊆ Y with |X ′| > min(ε1/2, ε2/2)M1,
|Y ′| > min(ε1/2, ε2/2)M2 such that δ(X ′, Y ′) > α + ε1ε2/2.

Proof. By symmetry we may assume that we are in the first situation, that is at least
ε1M1 vertices x ∈ X have |d(x)− αM2| > ε2M2. Suppose first that d(x) > (α + ε2)M2

for at least ε2M1/2 values of x ∈ X. Let X ′ be the set of such x, and set Y ′ = Y . Then
it is clear that δ(X ′, Y ′) > α + ε2.

Alternatively, suppose that d(x) < (α− ε2)M2 for at least ε1M1/2 values of x ∈ X. Let
X0 be the set of such x, and set X ′ = X \X0, Y

′ = Y . Set |X ′| = κM . Counting edges
in G, we have the bound

(α− ε2)(1− κ) + κ > α,

which quickly leads to κ > ε2. Furthermore we know that κ 6 1− ε1/2, and so

δ(X ′, Y ′) >
αM − (α− ε2)|X0|

|X ′|
= α + ε2(

1

κ
− 1) > α + ε1ε2/2.
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We are now more-or-less free to work under the assumption that d(v) is roughly constant
on both classes X and Y . We may use this to deduce, from the fact that ‖A − α‖� is
large, that A has significantly more than α4M2

1M
2
2 rectangles.

Lemma 3.2. Suppose that ‖A−α‖4� > η, and that the degrees d(v) are roughly constant
in the sense that |d(x)− αM2| 6 ηM2/56 for all but at most ηM1/56 values of x ∈ X,
and |d(y) − αM1| 6 ηM1/56 for all but at most ηM2/56 values of y ∈ Y . Then
‖A‖4� > α4 + η/2.

Proof. Write f = A− α, and expand ‖A‖4� as a sum of 16 terms by writing A = α+ f .
There is a main term α4, the term ‖f‖4� which we know to be at least η, plus 14 other
terms which after a change of variables if necessary may each be written in the form

αE(f(x′, y)g(x, y′)h(x′, y′)|x, x′ ∈ X, y, y′ ∈ Y ), (3.1)

where ‖g‖∞, ‖h‖∞ 6 1. We estimate each of these terms by

|E(f(x′, y)g(x, y′)h(x′, y′)|x, x′ ∈ X, y, y′ ∈ Y )| 6 E(|E(f(x′, y)|y ∈ Y )| | x′ ∈ X).
(3.2)

But E(f(x′, y)|y ∈ Y ) is exactly (d(x′) − αM2)/M2, which bounded in absolute value
by η/56 with the possible exception of ηM1/56 values of x′. Thus

E(|E(f(x′, y)|y ∈ Y )| | x′ ∈ X) 6 η/56 + η/56 6 η/28,

which leads in view of (3.2) to the upper bound of η/28 for the expression (3.1). The
sum of fourteen such expressions appearing in the expansion of ‖A‖4� does not, therefore,
contribute more than η/2.

Lemma 3.3. Suppose that ‖A‖4� > α4 + η/2. Suppose also that the degrees of the
graph G are roughly constant in the sense that |d(x)−αM2| 6 ηM2/32 with the possible
exception of ηM1/8 values of x ∈ X, and |d(y) − αM1| 6 ηM1/32 with the possible
exception of ηM2/8 values of y ∈ Y . Then there are sets X ′ ⊆ X. Y ′ ⊆ Y such that
|X ′| > ηM1/32, |Y ′| > ηM2/32 and such that δ(X ′, Y ′) > α + η/8.

Proof. For each pair (x, y) ∈ X×Y write e(x, y) for the number of edges between N (x)
and N (y). It is clear that∑

xy∈E(G)

e(x, y) = C4(G) > (α4 + η/2)M2
1M

2
2 . (3.3)

Let X0 be the set of all x ∈ X for which |d(x) − αM2| 6 ηM2/32, and define Y0 ⊆ Y
similarly. By assumption we have |Xc

0| 6 ηM1/8, |Y c
0 | 6 ηM2/8 and so the total number

of edges incident to Xc
0 ∪ Y c

0 is at most ηM1M2/8. Thus at the cost of replacing η by
η/2 we may ignore such edges and replace (3.3) by∑

xy∈E(G):x∈X0,y∈Y0

e(x, y) > (α4 + η/4)M2
1M

2
2 .

In particular, there are choices of x ∈ X0, y ∈ Y0 for which

e(x, y) > (α3 + η/4α)M1M2.

Setting Y ′ = N (x), X ′ = N (y) and observing that |X ′| 6 (α + η/32)M1, |Y ′| 6
(α + η/32)M2, we establish

δ(X ′, Y ′) >
α3 + η/4α

(α + η/32)2
> α + η/8.
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Applying the fact that x ∈ X0, y ∈ Y0 once more, we have the crude bounds |X ′| >
αM1/2 > ηM1/32 and |Y ′| > ηM2/32.

Proof of Proposition 5.7. Suppose first that there are at least ηM1/56 vertices x ∈ X
for which |d(x) − αM2| > ηM2/56. Then we may apply Lemma 3.1 to get sets F1, F2

with |Fi| > 2−8ηMi such that the density of A on S ′ = F1 × F2 is at least α + 2−14η2.
The same applies under the assumption that there are at least ηM2/56 vertices y ∈ Y
for which |d(y)− αM1| > ηM1/56.

If neither of these two alternatives holds then Lemma 3.2 is applicable, and we deduce
that ‖A‖4� > α4 + η/2. This is one of the hypotheses of Lemma 3.3. The other
assumption, that d(v) is roughly constant, is also satisfied and so we may find F1, F2

with |Fi| > ηMi/32 such that the density of A on S ′ = F1 × F2 is at least α + η/8.

4. proof of proposition 5.8

Set δ = δ1δ2. We will describe an algorithm, leading to a decomposition of W ×W into
cells

W ×W =
⋃
i∈I

C(i), C(i) = (W (i) + t
(i)
1 )× (W (i) + t

(i)
2 ). (4.1)

After the jth stage of the algorithm the index set will be Ij, and each W (i) will be
a subspace of dimension at least n − j. The (j + 1)st stage of the algorithm involves
partitioning some of the cells C(i) into four subcells, in which the subspaces W (i) are
reduced in dimension by one. To describe our algorithm we need some notation. For

each i write D
(i)
1 = F1∩(W (i)+t

(i)
1 ), D

(i)
2 = F2∩(W (i)+t

(i)
2 ), and define the two densities

δ
(i)
1 = P(x ∈ D(i)

1 |x ∈ W (i) + t
(i)
1 ),

δ
(i)
2 = P(x ∈ D(i)

2 |x ∈ W (i) + t
(i)
2 ).

Write δ(i) = δ
(i)
1 δ

(i)
2 for the density of F1 × F2 on C(i). Note that∑

i

meas(C(i))δ(i) = δ.

We say that C(i) has expired if δ(i) < δτ/2. We divide the unexpired cells into two

classes. C(i) is a uniform cell if both D
(i)
1 − t

(i)
1 and D

(i)
2 − t

(i)
2 are σ-uniform as subsets

of W (i). Otherwise, it is non-uniform. Note that by definition all non-uniform cells are
unexpired. Finally, if J ⊆ I corresponds to any subcollection of cells, we define the
measure of J , meas(J ), by

meas(J ) = P(x ∈
⋃
i∈J

C(i)|x ∈ W ×W ).

The algorithm may now be described. At step j we will have an indexing set Ij and a
partition Fn2 × Fn2 =

⋃
i∈Ij C

(i). The cells C(i) can be expired, uniform or non-uniform,

and we denote the corresponding subsets of Ij by Ej, Uj and Nj respectively. If it so
happens that

meas(Nj) < τδ/4 (4.2)

then we STOP the algorithm at step j. Otherwise, we subdivide the cells in Nj, whilst
leaving the cells in Ej and Uj unmodified. Note that in order for a cell C(i) to lie
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in Nj it must have undergone a subdivision at every step of the algorithm so far,
which means that dimW (i) = n − j for such cells. Without loss of generality there

are at least τ
8
22j values of i for which D

(i)
1 − t

(i)
1 is not σ-uniform as a subset of W (i).

Recall that δ
(i)
1 denotes the density of D

(i)
1 − t

(i)
1 on W (i). Using [1, Lemma 3.4 (1)],

we may choose a codimension one subspace H(i) ⊆ W (i) such that the mean square

of the densities of D
(i)
1 − t

(i)
1 on H(i) and W (i) \ H(i) is at least δ

(i)2
1 + σ2. The cell

C(i) = (W (i) + t
(i)
1 )× (W (i) + t

(i)
2 ) gets divided into four subcells which we temporarily

denote by C(i1), C(i2), C(i3) and C(i4). Each is a coset of H(i) ×H(i). Observe that

1

4
(δ

(i1)2
1 + δ

(i2)2
1 + δ

(i3)2
1 + δ

(i4)2
1 ) > δ2 + σ2. (4.3)

We claim that the algorithm just described terminates after at most 16σ−2δ−1τ−1 steps.
To see this, define the index I of the partition (4.1) to be the quantity

ind(I) =
1

2

∑
i∈I

meas({i})(δ(i)21 + δ
(i)2
2 ),

a kind of mean square density. With this definition and (4.3) one sees that ind(Ij+1) >
ind(Ij) + 1

16
τδσ2. It being clear that necessarily ind(I) 6 1, one indeed sees that after

at most 16σ−2δ−1τ−1 steps the algorithm must STOP.

Suppose that the algorithm stops at step K, K 6 16σ−2δ−1τ−1. This means that
meas(NK) < τδ/4. We will show that one of the cells of the partition (4.1) gives us a
subspace W with the properties claimed in the proposition. Observe that so far the set
A ⊆ F1 × F2 has played no role. That is about to change, and in anticipation let us
define

α(i) = P((x1, x2) ∈ A|(x1, x2) ∈ C(i) ∩ (F1 × F2)).

Note that the density of A ∩ C(i) relative to C(i) is α(i)δ(i).

To start with, we observe that∑
i∈EK

meas(C(i))α(i)δ(i) < δτ/2,

which means that∑
i∈UK∪NK

meas(C(i))α(i)δ(i) > δ(α + τ)− δτ/2 > δ(α + τ/2).

Suppose, as a hypothesis for contradiction, that α(i) < α+ τ/4 for all i ∈ UK . Then we
would have

δ(α + τ/2) 6
∑
i∈UK

meas(C(i))α(i)δ(i) +
∑
i∈NK

meas(C(i))α(i)δ(i)

< (α + τ/4)
∑
i

meas(C(i))δ(i) + τδ/4

= δ(α + τ/2),

a contradiction. Thus there is at least one value of i ∈ UK for which α(i) > α + τ/4.

Taking W = W (i), t1 = t
(i)
1 , t2 = t

(i)
2 we have now simultaneously satisfied (1),(2) and
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(3) (Observe that (1) is a consequence of the fact that i ∈ UK , and so in particular C(i)

is not expired).
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