AN ARGUMENT OF SHKREDOV IN THE FINITE FIELD SETTING

BEN GREEN

ABSTRACT. An argument of Skhredov can be adapted to show that if A C F3 xF5 does
not contain a triple ((z,y), (z+d,y), (x, y+d)) with d # 0 then 272"|A| < (logn)~1/%.
The argument was outlined in the author’s survey article [1]. The purpose of this note
is to collect together the proofs that were omitted from that survey.

This is designed to be read as a supplement to [1, §5], and does not make a lot of sense
independently.

1. A PRELIMINARY LEMMA

Lemma 1.1. Let 7,k € (0,1) be parameters, and let Sy, ..., S, C V, be sets. Write
e(k) = k2F77k/2. Suppose that |S;| = o;N and that each S; is e(k — 1)-uniform. Then
for at least (1 — 287)N* of the k-tuples (x1,...,x3) € V,, we have

1> 811+ d)Sa(w2 + d) ... Sk +d) — 01...0xN| < £(k)N. (1.1)

Proof. We proceed by induction on k, the case k = 1 being trivial. For a fixed choice
of u = (l’l, . ,[L’k_l) write Fu(d) = 51(1‘1 + d)SQ(IQ + d) .. Sk_1<l’k_1 + d) Then

> 81wy + d)Sa(w2 + d) ... S(w + d) = (Fu x Si) (k).

Now observe that

Z((Fu*sm(:ck)—akZFu(d)) = NN [FL(OPISe©)) < ek —1)2N°. (1.2)

Ty §#£0

Using the induction hypothesis, for at least (1 — 2"~ 17)N*~! values of u we have

1> Fu(d)—o1...0,1N| < e(k = 1)7N.
d

For these values of u, we have from (1.2) that
> ((Fy* Sk)(ar) — o1...0xN)* < de(k — 1)°N?,
T

For such a value of u, then, the number of z; for which |(F, * Sk)(xg) — o1...0N| >
e(k)N is no more than

12
de(k — 1) < 211N
e(k)?

The total number of (z1,...,z,) which are exceptions to (1.1) is thus at most
2Pl NF 4 28 1r NF = 2k NP,
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2 BEN GREEN
which is what we wanted to prove. O

2. PROOF OF PROPOSITION 5.6

For any three functions fi, fo, f3 : & — [—1,1] write T(f1, fo, f3) = E(f1(z,y)f2(y +
z,y)fs(z,x + 2)|x,y,z € H). This operator T is clearly trilinear, and furthermore
|H]’T(A, A, A) is the number of corners in A. Write f = A — «, and observe that
T(AAJA) = T(f,A,A) + oT(1, A, A). We are working under the assumption that
I fIIE < 278a!?; for brevity, write n = 273a!2.

Now if we write g(z) = E(1a(s,t)|s,t € H,s +t = z) we clearly have T'(1, A, A) =
Eg(z)?, and this is at least o?8252 by the Cauchy-Schwarz inequality. Thus we have

T(A,AA) = T(f, A A) + o’ B B3 (2.1)
To conclude the proof we place an upper bound on T'(f, A, A) by invoking the as yet
unused hypothesis that || f||o is small.

To do this, we apply the Cauchy-Schwarz inequality twice. First of all we have
T(A44) = B(Al+ 2 )BEG -+ 2) ) Al +2) [0

< E(BEi(y + 2)Bs(y)ly, 2)* x (22)
x E(Ei(y+ 2)A(x,x + 2)A(z’, 2" + 2) f(z, ) f (', y)|z, 2"y, 2)Y2.
Next, observe that
E(Ei(y + 2)A(z, x + 2)A(2', 2" + 2) f(z,y) f (2, y) |z, 2, y, 2)

— B( Al o+ DAG + BBy + ) Balo + DB + S )l )
1/2
< E (E1 (x)E1(2")Ey(x + 2) Ey(2' + 2)|x, 2, z) X

1/2
x E(w(x,x’,y,y')ﬂx,y>f<as',y)f(m,y’>f<w',y'>|x,x',y,y') , (2.3)

where
w(z, ', y,y) = E(E(z+ 2)E1 (2’ + 2)Ey(y + 2) Ex(y + 2)]2).
Since E(E, (y + 2)Es(y)|y, 2) = B1P2 and (by a simple adaptation of [1, Lemma 3.2]
E(E(2)E(2))Ey(z + 2) By (2’ + )|z, 2, 2) < 28353,
we get from (2.2),(2.3) that

T(f, A, A) <28/ B E(w(z, o'y, o ) f (e, ) f (2 ) () (@ )| sy, ). (2.4)
A short check confirms that our uniformity assumptions on E; and E, are sufficient to
apply the case k = 4 of Lemma 1.1 with 7 = 27*3{83n and k = 27'125{283%n>. This
allows us to conclude that the weight function w(x,z’,y,y’) is roughly constant, in the
sense that |w(z, ', y,y') — B2 82| < (1 B3n with probability at least 1— 37 33n. This allows
us to estimate the right-hand-side of (2.4) using the fact that || f]|g is small. Indeed it
is easy to see that

[E(w(z, 2’ y,y") — B163) [z, y) [ y) fa. ) f(@' )|z, 2y, | < 361Bam,
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and so (2.4) and the smallness of || f||g imply that
(T(f, A, A)] < 267830
Comparing with (2.1), we get
T(A, A, A) > (o815 — 281850'") > o 8163 /2,

which is what we wanted to prove. O

3. PROOF OF PROPOSITION 5.7

Shkredov employs a spectral argument to prove this. We take a more elementary ap-
proach, which is perhaps best phrased in the language of graph theory.

Suppose that |Ey| = M, |Es| = M,. We define a certain bipartite graph G associated
with the set A. This will be a graph on disjoint vertex sets X,Y, which we consider
to be copies of Ei, F5. We will abuse notation somewhat by identifying X with F,
and Y with Fy. We say that zy € E(G) precisely if (z,y) € A, and observe that
|E(G)| = aMiMs. We may associate to any sub-product set &’ = F} x Fy the pair of
sets F1 = X' C X and Fy, = Y’ C Y. The density of ds/(4y is then simply the edge
density
6<X/7 Y/) = IE<:I-9[,’Z/6E(G)|'r S X/a ye Y’),

and so our objective is to make this large for sets X', Y’ which are not too small. Note
also that the number of rectangles in A, || A||%, is precisely C4(G), the number of 4-cycles
in G.

We will use some standard notation of graph theory. If v is a vertex then N (v) denotes
the neighbourhood of v, whilst d(v) = |N'(v)] is the degree of v. It will be important in
later arguments to assume that d(v) is roughly constant on both X and Y. Fortunately,
if d(v) is not roughly constant in this sense then it is relatively easy to find sets X', Y’
such that §(X’,Y”) is large.

Lemma 3.1. Let €1,¢5 € (0,1), and suppose that there are either at least €, M, vertices
x € X such that |d(x) — aMs| > eaMs, or else at least eaMsy vertices y € Y such that
|d(y)—aMy| > e M. Then we may find X' C X, Y CY with | X'| > min(e;1/2, e3/2) M,
|Y'| > min(e; /2, €2/2) My such that §(X',Y") > a + €1€2/2.

Proof. By symmetry we may assume that we are in the first situation, that is at least
€1 M, vertices © € X have |d(z) — aMsy| > e2Ms. Suppose first that d(z) > (o + €)M
for at least e; M /2 values of x € X. Let X’ be the set of such z, and set Y/ =Y. Then
it is clear that 6(X',Y") > o + €.

Alternatively, suppose that d(z) < (a — €2) Ms for at least €;M; /2 values of x € X. Let
X be the set of such z, and set X' = X \ X, Y’ =Y. Set | X'| = kM. Counting edges
in GG, we have the bound
(a—e)(l—kK)+ kK = a,
which quickly leads to k > €5. Furthermore we know that x < 1 — €;/2, and so
aM — (o — €)| Xy

1
(5(X/,Y/) > |X’| :OC+EQ<E—1) 20["‘6162/2. |
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We are now more-or-less free to work under the assumption that d(v) is roughly constant
on both classes X and Y. We may use this to deduce, from the fact that ||A — «||g is
large, that A has significantly more than a* M?2M?2 rectangles.

Lemma 3.2. Suppose that ||A—«al||} = n, and that the degrees d(v) are roughly constant
in the sense that |d(z) — aMs| < nMy/56 for all but at most nM;/56 values of x € X,
and |d(y) — aMy| < nM,/56 for all but at most nMy/56 values of y € Y. Then
IANIE = o +n/2.

Proof. Write f = A — a, and expand || A||} as a sum of 16 terms by writing A = a + f.

There is a main term o, the term || f||&, which we know to be at least 1, plus 14 other
terms which after a change of variables if necessary may each be written in the form

aB(f (2, y)g(x,y )W, y)|x, 2" € X, y,y €Y), (3.1)
where ||g||os [|2]lc < 1. We estimate each of these terms by
E(f(",y)g(x,y )h(2’,y )|z, 2" € Xy, € V) SE(E(f(2", y)ly € Y)| | 2" € X)(- )
3.2
But E(f(2',y)|ly € Y) is exactly (d(z') — aMs)/Ms, which bounded in absolute value
by /56 with the possible exception of nM; /56 values of 2’. Thus

E(IE(f (", y)ly € Y)| | 2" € X) < n/56 +1/56 < /28,

which leads in view of (3.2) to the upper bound of /28 for the expression (3.1). The
sum of fourteen such expressions appearing in the expansion of || A||, does not, therefore,
contribute more than 7/2. O

Lemma 3.3. Suppose that ||Al|Y > o' + n/2. Suppose also that the degrees of the
graph G are roughly constant in the sense that |d(z) — aMs| < nMs/32 with the possible
exception of nMy/8 wvalues of x € X, and |d(y) — aM;| < nMy/32 with the possible
exception of nMs /8 values of y € Y. Then there are sets X' C X. Y' CY such that
| X' = nM,/32, |Y'| = nMy/32 and such that 6(X',Y') > a4+ n/8.

Proof. For each pair (z,y) € X XY write e(x,y) for the number of edges between N (z)
and N (y). It is clear that

Y. elz,y) = Ci(G) = (o +n/2) M M3, (3:3)

zy€E(G)
Let Xy be the set of all z € X for which |d(z) — aMs| < nM,/32, and define Yy C Y
similarly. By assumption we have | X§| < nM;/8, |Y| < nM>/8 and so the total number

of edges incident to X§ U Y is at most nM;M,/8. Thus at the cost of replacing n by
n/2 we may ignore such edges and replace (3.3) by

Z e(z,y) = (o +n/4)MEMS;.
2y€ B(G):we Xo,yeYo
In particular, there are choices of x € X,y € Y} for which
e(z,y) = (o 4+ n/4a) M Ms,.
Setting Y/ = N(z), X' = N(y) and observing that |X'| < (a + n/32)M;, [Y'| <
(av +1/32)M,, we establish
ad +n/da

" e

> a+n/8.
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Applying the fact that z € Xo,y € Yy once more, we have the crude bounds | X’| >
alMy/2 > nM,;/32 and |Y'| > nM,/32. O

Proof of Proposition 5.7. Suppose first that there are at least nM; /56 vertices x € X
for which |d(x) — aMsy| > nMs/56. Then we may apply Lemma 3.1 to get sets Fy, Fy
with |Fj| > 27%nM; such that the density of A on &' = F| x F} is at least a + 271p2
The same applies under the assumption that there are at least nM,/56 vertices y € Y
for which |d(y) — aM;| > nM;/56.

If neither of these two alternatives holds then Lemma 3.2 is applicable, and we deduce
that ||A|lY, > a* + n/2. This is one of the hypotheses of Lemma 3.3. The other
assumption, that d(v) is roughly constant, is also satisfied and so we may find F, F
with |F;| > nM;/32 such that the density of A on &' = F} x F} is at least a +7/8. O

4. PROOF OF PROPOSITION 5.8

Set 6 = 0102. We will describe an algorithm, leading to a decomposition of W x W into

cells ' '
wxw=|Jo", CO = (W 4 D) 5 (WO 4 ¢y, (4.1)

i€

After the jth stage of the algorithm the index set will be Z;, and each W@ will be

a subspace of dimension at least n — j. The (j + 1)st stage of the algorithm involves

partitioning some of the cells C¥ into four subcells, in which the subspaces W are

reduced in dimension by one. To describe our algorithm we need some notation. For

each i write D\ = Fn (WO +¢), DI = F,n (W +¢7), and define the two densities
8" =P(z € Dz e WO 41y,
(59 =P(z € Dgi)|x cWw® 4 tgi)).
Write 60 = 6{76{" for the density of Fy x Fy on CV. Note that
Z meas(C )5 = 4.

We say that C) has expired if ) < 67/2. We divide the unexpired cells into two
classes. C% is a uniform cell if both D%i) — tgi) and Dgi) — tg) are o-uniform as subsets
of W Otherwise, it is non-uniform. Note that by definition all non-uniform cells are
unexpired. Finally, if J C Z corresponds to any subcollection of cells, we define the
measure of J, meas(J), by

meas(J) = P(x € U COlz € W x W).
ieJ

The algorithm may now be described. At step j we will have an indexing set Z; and a
partition F§ x I} = Uz‘te C®. The cells C® can be expired, uniform or non-uniform,
and we denote the corresponding subsets of Z; by &;, U; and N respectively. If it so
happens that

meas(N;) < 70/4 (4.2)
then we STOP the algorithm at step j. Otherwise, we subdivide the cells in N, whilst
leaving the cells in & and U; unmodified. Note that in order for a cell C to lie
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in N it must have undergone a subdivision at every step of the algorithm so far,
which means that dim W® = n — j for such cells. Without loss of generality there
are at least £2% values of ¢ for which Dgi) — t(li) is not o-uniform as a subset of W®.
Recall that 6?) denotes the density of Dgi) — tgi) on W@ Using [1, Lemma 3.4 (1)],
we may choose a codimension one subspace H® C W® such that the mean square
of the densities of DI — ¢ on H® and W® \ HO is at least 6{"? + 2. The cell
CO = WO 4+ ¢y x (WO 4 {7 gets divided into four subcells which we temporarily
denote by C), C02) C03) and C). Each is a coset of H® x H® . Observe that

1

1(551’1)2 +5£i2)2 —1—5?3)2 +5£i4)2) > 62 + o2 (4'3)

We claim that the algorithm just described terminates after at most 1602617~ steps.
To see this, define the index T of the partition (4.1) to be the quantity

_ 1 . i i
ind(Z) = Z meas({i})(0\"? 4 6%,
1€l
a kind of mean square density. With this definition and (4.3) one sees that ind(Z;41) >

ind(Z;) + 75760, It being clear that necessarily ind(Z) < 1, one indeed sees that after
at most 160726 1771 steps the algorithm must STOP.

Suppose that the algorithm stops at step K, K < 16025 '77!. This means that
meas(Ny) < 76/4. We will show that one of the cells of the partition (4.1) gives us a
subspace W with the properties claimed in the proposition. Observe that so far the set

A C F} x F; has played no role. That is about to change, and in anticipation let us
define

oD = P((x1,25) € A|(x1,32) € COY N (Fy x Fy)).
Note that the density of AN C® relative to C® is a5,

To start with, we observe that
Z meas(C)aW§® < §7/2,
1€EK
which means that
Z meas(C™)a6® > §(a+ 1) — 67/2 > §(a + 7/2).
€U UNEK

Suppose, as a hypothesis for contradiction, that a® < o+ 7/4 for all i € Ug. Then we
would have

da+71/2) < Z meas(C)as® + Z meas(C'?)a®

i€l iENK
< (a+T/4)Zmeas(C(i))(5(i)—I—T(5/4
= 0(a+71/2),

a contradiction. Thus there is at least one value of i € Uy for which a® > o + T /4.
Taking W = WO t; = 1V ¢, =t we have now simultaneously satisfied (1),(2) and
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(3) (Observe that (1) is a consequence of the fact that i € Uy, and so in particular C
is not expired). O

REFERENCES

[1] B.J. Green, Finite field models in additive number theory, submitted to Surveys in Combinatorics
2005.
[2] ID. Shkredov, On a problem of Gowers, preprint.

TRINITY COLLEGE, CAMBRIDGE, CB2 1TQ
E-mail address: bjg23@hermes.cam.ac.uk



