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Using these slides

These are slides from a talk I will give at the ICM in Madrid in August
2006. They contain a few deliberate inaccuracies which I will draw
attention to verbally in the talk. For the benefit of anyone wishing to use
these slides in the future, an accompanying document is available on my
webpage which draws attention to these points.
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The Hardy-Littlewood Method, I

Hardy and Littlewood developed their method in the early part of the 20th
century, initially to deal with Waring’s problem on representing

N = xk
1 + · · ·+ xk

s .

They also showed that

N = p1 + p2 + p3

for odd N, though an unproved assumption in the direction of GRH was
required.
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The Hardy-Littlewood Method, II

Vinogradov (1937) removed any dependence on GRH and simplified the
proof. Van der Corput and Chowla used the same method to show that

p1 + p3 = 2p2

has infinitely many nontrivial solutions (that is, the primes contain
infinitely many 3-term arithmetic progressions).

If one had to summarise the Hardy-Littlewood method in a short sentence,
one would say that it is “a method of harmonic analysis”. In this context
Fourier transforms are often referred to as exponential sums. Much of this
talk will be about “going beyond harmonic analysis”.
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The Hardy-Littlewood Method – Asymptotics

The method often gives, when it applies, an asymptotic for the number of
solutions. In the case of the primes, such asymptotics are most
conveniently stated using the von Mangoldt function:

Λ(n) :=

{
log p if n = pk , p prime;
0 otherwise.

Example (3-term APs: Chowla/Van der Corput)∑
n1,n26N

Λ(n1)Λ(n1 + n2)Λ(n1 + 2n2) = SN2 + o(N2)

as N →∞, where S = 2
∏
p>3

(
1− 1

(p − 1)2
)
≈ 1.32032.
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The Hardy-Littlewood Method – Asymptotics

It is not hard to recover unweighted counts from estimates involving Λ by
using the prime number theorem.

Example

3-term progressions, unweighted version

#{n1, n2 6 N : n1, n1 + n2, n1 + 2n2 are all prime}

= S
N2

(log N)3
+ o

(
N2

(log N)3

)
as N →∞, where S ≈ 1.32032 is the same constant as before.
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Systems of linear forms, I

How can we generalize the result of Chowla and Van der Corput, which
gave an asymptotic for∑

n1,n26N

Λ(n1)Λ(n1 + n2)Λ(n1 + 2n2)?

Let us be ambitious, and ask for an asymptotic in which
(n1, n1 + n2, n1 + 2n2) is replaced by Ψ, a general t-tuple of linear forms.

Asymptotic for linear forms in primes?

Is it true that∑
~n∈K

Λ(ψ1(~n))Λ(ψ2(~n)) . . .Λ(ψt(~n)) = SNd + oΨ(Nd)

as N →∞, for some easily describable S?

Ben Green (Clay/Cambridge) Generalizing Hardy-Littlewood August 20, 2006 7 / 31



Systems of linear forms, II

On the previous slide, the notation is as follows:

K ⊆ [−N,N]d is a convex body;

Each ψi is an affine linear form with integer coefficients, i.e. a map
from Zd to Z having the form

ψi (~n) = Li1n1 + · · ·+ Lidnd + li .

We use the letter Ψ to denote a system (ψi )
t
i=1 of linear forms like this.

In fact there is a conjecture, basically due to Dickson, which predicts that
there is such an asymptotic and gives a formula for S.
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Dickson’s conjecture, I

Suppose that Ψ = (ψi )
t
i=1 is a system of linear forms, and let

K ⊆ [−N,N]d be a convex body. For any integer q, we define the local
von Mangoldt function ΛZ/qZ : Z/qZ → R by

ΛZ/qZ(n) :=

{
q/φ(q) if n ∈ (Z/qZ)∗

0 otherwise

Definition (Local factors)

Let q > 1 be an integer. Define the local factor βq by

βq := E~n∈(Z/qZ)d ΛZ/qZ(ψ1(~n)) . . .ΛZ/qZ(ψt(~n)).

Define also
β∞ := vold(K ∩Ψ−1((R+)d)).
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Dickson’s conjecture, II

As on the last slide, let Ψ = (ψi )
d
i=1 be a system of linear forms, and let

K ⊆ [−N,N]d be a convex body.

Conjecture (Dickson’s conjecture)

We have ∑
~n∈K

Λ(ψ1(~n))Λ(ψ2(~n)) . . .Λ(ψt(~n)) = SNd + oΨ(Nd)

as N →∞, where S = β∞
∏

p βp.

A refinement is possible allowing for the possibility that the constant terms
of the ψi grow with N (cf. Vinogradov’s 3-primes theorem).
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Dickson’s conjecture, III: examples

Example (Progressions of length 3)

Take d = 2, Ψ = (n1, n1 + n2, n1 + 2n2) and K = [0,N]2.

S = 2
∏
p>3

(
1− 1

(p − 1)2
)
≈ 1.32032. Complexity = 1

Example (Progressions of length 4)

Take d = 2, Ψ = (n1, n1 + n2, n1 + 2n2, n1 + 3n2) and K = [0,N]2.

S =
9

2

∏
p>5

(
1− 3p − 1

(p − 1)3
)
≈ 2.85825. Complexity = 2

Example (Twin primes)

Take d = 1, Ψ = (n1, n1 + 2) and K = [0,N].

S = 2
∏
p>3

(
1− 1

(p − 1)2
)
≈ 1.32032. Complexity = ∞
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Complexity of a linear system

Definition (Complexity)

Let Ψ = (ψ1, . . . , ψt) be a system of affine-linear forms. If 1 6 i 6 t and
s > 0, we say that Ψ has i -complexity at most s if one can cover the t − 1
forms {ψj : j ∈ [t]\{i}} by s + 1 classes, such that ψi does not lie in the
affine-linear span of any of these classes. The complexity of the Ψ is
defined to be the least s for which the system has i-complexity at most s
for all 1 6 i 6 t, or ∞ if no such s exists.

Example (Progressions of length 4)

Take Ψ = (n1, n1 + n2, n1 + 2n2, n1 + 3n2). ψ1 = n1 does not lie in the
affine-linear span of any individual form ψ2, ψ3, ψ4, but it does lie in the
span of any two of these forms.
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Our results and goals

We hope to be able to prove Dickson’s conjecture for systems of
complexity s <∞. A system of linear forms only has infinite complexity if
some two of the forms are affine multiples of one another (e.g. n1, n1 +2).

Theorem (G.–Tao 2006)

Let s > 1 be an integer. Assume two conjectures, the Gowers Inverse
conjecture GI(s) and the Möbius Nilsequences conjecture MN(s). Then
Dickson’s conjecture holds for all linear systems of complexity s.

Theorem (H.-L. (1920s) + Vinogradov (1937) + ε)

The conjectures GI(1) and MN(1) are true.

Theorem (G.–Tao 2006)

The conjectures GI(2) and MN(2) are true.
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Structure and randomness

Fix a system Ψ = (ψi )
t
i=1 of linear forms with complexity s and a convex

body K ⊆ [−N,N]d . If f1, . . . , ft : {1, . . . ,N} → R are functions, define

T (f1, . . . , ft) :=
∑

~n∈K∩Zd

f1(ψ1(~n)) . . . ft(ψt(~n)).

We are interested in T (Λ, . . . ,Λ). The key idea is to decompose

Λ = Λ] + Λ[ = structured + pseudorandom

Then we may expand T (Λ, . . . ,Λ) as a sum of 2t terms. The term
T (Λ], . . . ,Λ]) gives the main term SNd in Dickson’s conjecture. The
other 2t − 1 terms, each of which involves at least one Λ[, are “error”
terms and we show they are o(Nd).
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A decomposition

The actual decomposition
Λ = Λ] + Λ[

is a fairly standard one in analytic number theory.

Recall that
Λ(n) = −

∑
d |n

µ(d) log d ,

where µ is the Möbius function

µ(n) =

{
(−1)k if n = p1 . . . pk is squarefree
0 otherwise.

We “morally” define

Λ] := −
∑

d |n,d<Nθ

µ(d) log d , Λ[ := −
∑

d |n,d>Nθ

µ(d) log d ,

for some small θ = θ(Ψ) (in real life there is some smoothing).
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Gowers norms, I

What do we mean by structured and pseudorandom?

Let f : Z/NZ → R be a function. Define

‖f ‖Uk :=
(
E

n∈Z/NZ,~h∈(Z/NZ)k

∏
~ω∈{0,1}k

f (n + ~ω · ~h)
)1/2k

.

In fact an extension to C-valued functions is possible by insertion of
appropriate bars. For example

‖f ‖U2 :=
(
En,h1,h2f (n)f (n + h1)f (n + h2)f (n + h1 + h2)

)1/4
.

This is a kind of sum of f over parallelograms.
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Gowers norms, II

The U3 norm expands explicitly as

‖f ‖U3 :=
(
En,h1,h2,h3f (n)f (n + h1)f (n + h2)f (n + h3)×
× f (n + h1 + h2)f (n + h1 + h3)f (n + h2 + h3)×

× f (n + h1 + h2 + h3)
)1/8

.

This is a kind of sum of f over 3-dimensional parallelepipeds.
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Generalised von Neumann Theorems

Suppose we are thinking about a system Ψ = (ψi )
t
i=1 of complexity s.

Recall the associated average

T (f1, . . . , ft) := E~n∈(Z/NZ)d f1(ψ1(~n)) . . . ft(ψt(~n)).

The (s + 1)st Gowers norm ‖ · ‖Us+1 controls such averages.

Theorem (Generalised von Neumann theorem)

For “reasonably general” functions f1, . . . , ft : Z/NZ → R and for any i we
have the estimate |T (f1, . . . , fi , . . . , ft)| � ‖fi‖Us+1 .

Functions bounded by 1 are “reasonably general”. So (essentially) is Λ.
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The Inverse Question for the Gowers Norms

Key point

If we are studying a system Ψ = (ψi )
t
i=1 of complexity s, then a function

f : Z/NZ → C should be thought of as pseudorandom if ‖f ‖Us+1 is small.

The Inverse Question for the Gowers Norms

Let f : Z/NZ → C be a function with ‖f ‖∞ 6 1, and let δ > 0. Suppose
that

‖f ‖Us+1 > δ.

What can we say about f ?

In fact we need to ask the same question for “reasonable” functions f
which are not bounded by 1 (such as f = Λ[), but let us start with the
bounded case.
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Inverse theorem for U2

Using Fourier analysis (or “exponential sums” in the usual parlance of the
Hardy-Littlewood method) one may prove the following.

Theorem (Inverse theorem for U2)

Suppose that f : Z/NZ → C is a function with ‖f ‖∞ 6 1. Suppose that
‖f ‖U2 > δ. Then there is some θ ∈ R/Z such that

|En6N f (n)e(θn)| > δ2.

Recall that e(α) := e2πiα.

We won’t give the (easy) proof, but the key fact is the existence of the
formula ‖f ‖U2 = ‖f̂ ‖4 involving the discrete Fourier transform on Z/NZ.
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Inverse theorem for U3, I

An inverse theorem for the U3 norm cannot be so simple.

Example (Quadratic phases)

Write f (n) := e(n2
√

2). Then ‖f ‖U3 = 1. However, for every θ ∈ R/Z,

|En6N f (n)e(θn)| = o(1).

Indeed, writing φ(n) = n2
√

2,

‖f ‖8
U3 = En,h1,h2,h3e(φ(n)− φ(n + h1)− φ(n + h2)− φ(n + h3)

+ φ(n + h1 + h2) + φ(n + h1 + h3) + φ(n + h2 + h3)

− φ(n + h1 + h2 + h3))

= En,h1,h2,h3e(φ′′′(h1, h2, h3)) = 1.
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Inverse theorem for U3, II

In fact an inverse theorem for the U3-norm must look rather exotic.

Example (Generalised quadratic phases)

Write f (n) = e({n
√

2}{n
√

3}), for n = 1, . . . ,N. Then ‖f ‖U3 � 1, but f
does not correlate with any genuinely linear or quadratic phase function.

Theorem (G.–Tao, 2005)

Suppose that f : Z/NZ → C has ‖f ‖∞ 6 1, and that ‖f ‖U3 > δ. Then
there exists a generalised quadratic polynomial

φ(n) =
∑

r ,s6C(δ)

βrs{θrn}{θsn}+
∑

r6C(δ)

γr{θrn},

where βrs , γr , θr ∈ R, such that

|En6N f (n)e(φ(n))| �δ 1.

Ben Green (Clay/Cambridge) Generalizing Hardy-Littlewood August 20, 2006 22 / 31



Inverse theorem for the U3-norm, III

The last theorem wasn’t very pretty. It turns out that generalised
quadratics like e({n

√
2}{n

√
3}) may be interpreted in a natural way in

terms of 2-step nilsequences.

Definition (Nilsequences)

Let G be a connected, simply-connected Lie Group which is s-step
nilpotent. Thus if we write G0 = G1 = G and Gi+1 = [G ,Gi ] for i > 1
then we have Gs+1 = {1}. Let Γ ⊆ G be a discrete, cocompact subgroup.
The quotient G/Γ is called an s-step nilmanifold. The group G acts on
G/Γ by left multiplication. For any x ∈ G/Γ and g ∈ G we may consider
the orbit (gn · x)n∈N of x under multiplication by g . If F : G/Γ → C is a
bounded, Lipschitz function then we call the sequence (F (gn · x))n∈N an
s-step nilsequence.
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Inverse theorem for the U3-norm, IV

As we remarked, generalised quadratics such as e({n
√

2}{n
√

3}) can be
interpreted in terms of 2-step nilsequences, in particular 2-step

nilsequences arising from the Heisenberg group G =
(

1 R R
0 1 R
0 0 1

)
.

In this way it is possible to reformulate our inverse theorem for the
U3-norm in terms of nilmanifolds. We omit the details.

Theorem (The GI(2) conjecture, G.–Tao, 2005)

Let f : Z/NZ → C be a function with ‖f ‖∞ 6 1. Suppose that
‖f ‖U3 > δ. Then there is a 2-step nilsequence (F (gn · x))n∈N on some
2-step nilmanifold G/Γ such that

|En∈Z/NZf (n)F (gn · x)| � 1.

Everything in sight – the dimension of G/Γ, the Lipschitz constant of F ,
and the implied constant in the � notation – depends only on δ.
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The Gowers Inverse Conjectures GI(s)

Given the last slide, it is not hard to guess the formulation.

Conjecture (Gowers Inverse conjecture GI(s))

Let f : Z/NZ → C be a function with ‖f ‖∞ 6 1. Suppose that
‖f ‖Us+1 > δ. Then there is an s-step nilsequence (F (gn · x))n∈N on some
s-step nilmanifold G/Γ such that

|En∈Z/NZf (n)F (gn · x)| � 1.

Everything in sight – the dimension of G/Γ, the Lipschitz constant of F ,
and the implied constant in the � notation – depends only on δ.
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Bootstrapping the GI(s) conjecture

The GI(s) conjecture does not say anything useful about the function
f = Λ, which is not bounded.

Theorem (Bootstrapped GI(s), G.–Tao 2006)

The Gowers Inverse conjecture GI(s) implies a stronger version of itself, in
which the function f : Z/NZ → R need not be bounded by 1. Instead, it
need only be bounded by a “pseudorandom measure”.

We will not define the term “pseudorandom measure” here. The existence
of pseudorandom measures bounding Λ, or rather a somewhat modified
version of Λ, was one of the key ingredients in our paper The primes
contain arbitrarily long arithmetic progressions.
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Gowers norms – summary

Summary

To study linear systems of complexity s, for example in the primes, the
right “harmonics” to use are the s-step nilsequences. These may be
brought into play via the Gowers norms ‖ · ‖Us+1 .
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Recall......

We talked about a decomposition

Λ = Λ] + Λ[

= structured + pseudorandom

where we “morally” defined

Λ] := −
∑

d |n,d<Nθ

µ(d) log d , Λ[ := −
∑

d |n,d>Nθ

µ(d) log d ,

for some small θ = θ(Ψ).

We now know, in terms of the Gowers norms, what an appropriate notion
of “pseudorandom” is. Our task, then, is to establish that

‖Λ[‖Us+1 is small.
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Möbius and Nilsequences, I

To show that
‖Λ[‖Us+1 is small,

it suffices (assuming GI(s), and hence bootstrapped GI(s)) to show that

|En6NΛ[(n)F (gn · x)| is small

for every fixed s-step nilsequence (F (gn · x))n∈N.

Substituting in the definition of Λ[ and rearranging, one may reduce this to
showing that

|En6Nµ(n)F (gn · x)| is really rather small

for every fixed s-step nilsequence (F (gn · x))n∈N.

Ben Green (Clay/Cambridge) Generalizing Hardy-Littlewood August 20, 2006 29 / 31



Möbius and Nilsequences, II

Conjecture (Möbius-Nilsequences conjecture, MN(s))

Fix an s-step nilmanifold G/Γ and a bounded Lipschitz function
F : G/Γ → C. Then we have the estimate

|En6Nµ(n)F (gn · x)| �A log−A N

as N →∞, for any A > 0.

This accords well with the well-known “Möbius randomness heuristic”:

Möbius randomness heuristic

Let F : N → R be any bounded “low complexity” function. Then we expect

|En6Nµ(n)F (n)| to be small.
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Future plans

Prove the GI(s) and MN(s) conjectures.
This is work in progress. We are close to the “finite field model”
version of GI(s), certainly for s = 3. The techniques we used for
MN(2) ought to extend to MN(3),MN(4), . . .

Quantitative issues; error terms.
Relevant to this would be good bounds in Freiman’s theorem, in
particular the “Polynomial Freiman-Ruzsa conjecture”.

A more conceptual way of discovering nilsequences?
No serious ideas in this direction at present.

Look at non-linear equations in the primes.
p1p2 − p3p4 = 2 would be extremely interesting!
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