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This collection of open problems has been circulated since 2018 when, encouraged
by Sean Prendiville, I prepared a draft for the Arithmetic Ramsey Theory workshop
in Manchester. That document was itself an expanded version of a manuscript I
circulated among students starting in 2013.

The choice of problems is personal. Many are connected with topics I have
worked on, but by no means all. For the most part I have avoided particularly
notorious open problems (the Riemann Hypothesis, twin prime conjecture, and so
on), although many of the problems are very well-known to people in the relevant
field. I would like this document to stimulate further research, rather than be simply
a compendium of things we do not know. For that reason I have also tried to steer
clear of problems which are ‘obviously hopeless’, though progress on a number of
entries does currently look a rather distant prospect.

To keep the bibliography to a reasonable length I have not given a full history
for each problem, but hopefully there is sufficient information for anyone interested
in a problem to follow up in more detail.
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I intend1 to try and keep this document somewhat up-to-date as progress is made.
The list has already been referenced in print a number of times, and for that reason
I intend to keep the original numbering even if problems are completely solved. In
many cases where the original problem has been solved, other open questions are
mentioned in the comments following the problem statement.

It is a pleasure to acknowledge collections of open problems that have particularly
influenced me in the past. Foremost amongst these is Richard Guy’s wonderful book
Unsolved problems in number theory [152]. This was the first ‘serious’ mathematical
book I owned, and I find it as entertaining to flick through now as I did as a 16-year
old. I also mention Hugh Montgomery’s collection [209], and the many collections
of Paul Erdős, recently indexed on the web by Tom Bloom [30].

Finally, I am grateful to those who commented on earlier versions of the notes:
James Aaronson, Noga Alon, Ryan Alweiss, Adrian Beker, Tom Bloom, Jop Briët,
Zachary Chase, David Conlon, Sean Eberhard, Zach Hunter, Gil Kalai, Vsevolod
Lev, Sofia Lindqvist, Freddie Manners, Sarah Peluse, Sean Prendiville, Ashwin Sah,
Tom Sanders, Mehtaab Sawhney, George Shakan, Benny Sudakov, Aled Walker,
Trevor Wooley and Yufei Zhao.

Notation. We write [N ] = {1, . . . , N}. If A,B are sets in some abelian group
then we write A + B = {a + b : a ∈ A, b ∈ B}. If X,Y are real-valued quantities
then X ≪ Y and X = O(Y ) both mean that |X| ⩽ CY for some absolute constant
C.

1. Sum-free sets, product-free sets

Problem 1. Let A be a set of n positive integers. Does A contain a sum-free set
of size at least n/3 + Ω(n), where Ω(n) → ∞ as n→ ∞?

Comments. This is a pretty old and increasingly notorious problem, first men-
tioned over 50 years ago in [99] . The best known bounds are in Bourgain’s paper
[39], where he shows that there is necessarily a sum-free set of size n+2

3 . In fact, he
shows that there is a sum-free set of size at least

n

3
+

c

log n
∥1A∥ℓ̂1 ,

where

∥1A∥ℓ̂1 :=

∫ 1

0

|
∑
a∈A

e2πiaθ|dθ.

Thus a structural description of sets for which ∥1A∥ℓ̂1 ⩽ K log n would be very
relevant (see Problem 83 below). In fact, Eberhard, Manners and I (unpublished)

1Perhaps once a year or so
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worked out a proof that Problem 1 has a positive solution assuming that any set with
this property has symmetric difference o(n) with a ± union of OK(1) progressions.

Let f : R/Z → R be the function taking the value −1 on [ 13 ,
2
3 ] and 1

2 elsewhere.
Does there exist some θ ∈ R/Z such that

(1.1)
∑
a∈A

f(aθ) < −Ω(n)?

(Here Ω(n) → ∞ as n→ ∞.) Is it in fact the case that

(1.2)
∫ 1

0

|
∑
a∈A

f(aθ)|dθ > Ω(n)?

Observe that (1.2) implies (1.1), since
∫ 1

0

∑
a∈A f(aθ)dθ = 0, and that (1.1) implies

a positive solution to Problem 1, since the set {a ∈ A : f(aθ) = −1} is sum-free.
Eberhard, Manners and I convinced ourselves, using Bourgain’s ideas, that (1.2)

is also a consequence of a sufficiently good structural understanding of sets for
which ∥1A∥ℓ̂1 ⩽ K log n.

Note that f is piecewise constant, not identically zero and
∫
f = 0. Perhaps

these are the only relevant features. If so, it is perhaps slightly more natural to ask
about (1.1) and (1.2) with f : R/Z → R instead being the function taking the value
−1 on [ 14 ,

3
4 ] and 1 elsewhere, though this problem is not applicable to Problem 1.

It should also be noted that Bourgain [39] did (in a rather deep argument) make
progress for the function f(x) = 1

4 − 1[ 18 ,
3
8 ]

, but made crucial use of the asymmetry
of this function.

Returning to Problem 1 itself, it is known [85, 88] that there do exist sets with
no sum-free set of size larger than ( 13 + o(1))n. However, the o(1) term in these
results is more-or-less ineffective; it would be interesting to get a reasonable bound.

Problem 2. Let A ⊂ Z be a set of n integers. Is there a set S ⊂ A of size (log n)100

with S+̂S disjoint from A?

Comments. Here S+̂S denotes the restricted sumset {s1+s2 : s1, s2 ∈ S, s1 ̸= s2}.
Problems of this type are also at least 50 years old, being once again mentioned in
[99] (and attributed to joint discussions of Erdős and Moser). It is known from very
recent work of Sanders [251] that there is always such an S with |S| ⩾ (log n)1+c.
By contrast the best-known upper bound is due to Ruzsa [243], showing that one
cannot in general hope to take |S| bigger than eC

√
logn.

Problem 3. Suppose that A ⊂ [0, 1] is open and has measure greater than 1
3 . Is

there a solution to xy = z?

Comments. I do not have a reference for this problem; it was suggested during
the work that led to [88]. For any θ, the set Aθ := {x : θ log x ∈ ( 13 ,

2
3 )(mod 1)} is
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product-free, and µ(Aθ) =
t

t2+t+1 where t = e1/3θ. This tends to 1
3 as θ → ∞, so

1
3 cannot be replaced by any smaller number.

Problem 4. (Solved) What is the largest product-free set in the alternating group
An?

Comments. Over 20 years ago, Ed Crane pointed out to me that if one takes
m ∼

√
n and considers the set S ⊂ An of all permutations σ such that σ(1) ∈

{2, . . . ,m} and σ(2), . . . , σ(m) ∈ {m + 1, . . . , n}. It is clear that S is product-
free, and it is easily checked that the density of S in An is ∼ n−1/2. In the other
direction, Eberhard [86] showed in a very nice paper that every subset of An of
density > Cn−1/2(log n)7/2 does contain three elements x, y, z with xy = z. Thus
the remaining challenge is to remove the log term. Moreover, Eberhard’s work gives
very little information about the structure of the extremal sets. Update 2022. This
question has been solved (together with a stability result characterising sets close
to the extremum) by Keevash, Lifschiz and Minzer [178].

Problem 5. Which finite groups have the smallest biggest product-free sets?

Comments. 20 years ago, Kedlaya [175] observed, refining some work of Babai and
Sós, that it follows from the classification of finite simple groups that every finite
group G of order n has a product-free subset of size ≫ n11/14. It may well be that
this exponent is sharp. To show this, it follows by inspection of Kedlaya’s paper that
one would need to show that the Ree groups 2G2(q), q = 32m+1, which have order
∼ q7, infinitely often have no product-free set of size ≫ q11/2. Certainly working
with these groups in any direct way is likely to be very challenging, although the
dimensions of their smallest representations are understood. A good model problem
would be to determine the largest product-free subsets of SL2(Fp), since explicit
computation in this group and with its representations are quite tractable. For this
problem, I believe the best-known upper bound is O(n8/9), due to Gowers. For
more on these problems, see Kedlaya’s more recent survey [176].

Problem 6. Fix an integer d. What is the largest sum-free subset of [N ]d?

Comments. This problem was raised in an unpublished note of Peter Cameron
from 2002 [53], as well as (in the case d = 2) in [54, Problem 424], where it is attrib-
uted to Harut Aydinian. Writing fd(N) for the quantity in question, the most inter-
esting part of the question seems to be determining cd := lim supN→∞N−dfd(N).
It is very well-known and easy that c1 = 1

2 . Elsholtz and Rackham [96] showed
that c2 = 3

5 , and gave lower bounds for larger d. In general, it seems to be believed
that a ‘slice’ {(x1, . . . , xd) : u ⩽ x1 + · · · + xd < 2u} is optimal, where u is chosen
to maximise the number of points in this set.
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Update 2023. Lepsveridze and Sun [177] have determined c3, c4 and c5, and
have confirmed that the slice example mentioned above is asymptotically optimal
in these cases. They also raise the (strictly easier) question of determining the
measure of the largest measurable sum-free subset of [0, 1]d, and solve this question
for d ⩽ 5.

Problem 7. Define Ulam’s sequence 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, . . . as fol-
lows: u1 = 1, u2 = 2, and un+1 is the smallest number expressible as a sum ui+uj ,
i < j ⩽ n, in a unique way. Does this sequence have positive density? Can one
explain the curious Fourier properties of this sequence?

Comments. The first problem was asked by Ulam [276]. The second problem here
refers to the observations of Steinerberger [265], where data is presented to suggest
that there is a number α ≈ 2.5714474995 such that the sequence αun(mod 2π) has
an interesting distribution function. Steinerberger’s paper may be consulted for
more information.

A (somewhat) related class of sequence may be defined as follows. Start with
some ‘seed’ set of values u1 < · · · < um. For n ⩾ m, define un+1 to be the smallest
integer greater than un not of the form ui + uj for i, j ⩽ n. This construction
was considered by Dickson. A variant construction considered by Queneau is to
define un+1 to be the smallest integer greater than un and not of the form ui + uj

with i < j ⩽ n. For both variants, the following question appears to be open:
is un+1 − un eventually periodic? For references and computations showing that
periodicity (if present) can be very slow to appear, see [111, 152].

Problem 8. Suppose that A ⊂ [N ] has no more than εN2 solutions to x+ y = z.
It is known [134] that one may remove ε′N elements of A to leave a sum-free set,
where ε′ → 0 as ε → 0. But is there a bound for ε′ in terms of ε which is at least
vaguely reasonable?

Comments. This concerns the so-called arithmetic removal lemma. Until a few
years ago I would have said that one should first consider the model problem over
Fn

2 . However, Fox and L. M. Lovász [115] have used the Croot-Lev-Pach method to
show that in that case ε′ can be taken to be εC , and even obtain the optimal value
of C. By contrast it is known that in [N ] there cannot be a polynomial bound.
Aaronson [1] has shown, adapting the ideas of Fox and Lovász, that the problem
is essentially equivalent to determining the size of the largest additive matching in
Z/NZ, that is to say collection of triples (xi, yi, zi)i=1,...,t with xi + yj + zk = 0 iff
i = j = k.

It would be remiss not to mention the better-known cousin of this problem, the
triangle-removal problem from graph theory. Suppose that a graph on N vertices
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has εN3 triangles. Then Ruzsa and Szemerédi showed that one may remove ε′N2

edges from the graph so that the remaining graph is triangle-free, where ε′ → 0 as
ε→ 0. Is there a bound for ε′ in terms of ε which is vaguely reasonable? See [114]
for the best known bounds, which are of ‘tower’ type (but with a relatively small
tower height).

2. Arithmetic progressions and other configurations

Notwithstanding the remarks in the introduction, let me briefly run over the
open problems connected with the determination of rk(N), the largest subset of [N ]

without nontrivial k-term progressions, and rk(G), the analogous quantity with G
a finite abelian group.

Problem 9. Problems about progressions.

(i) (Solved) Is r3(N) ≪ N(logN)−10?
(ii) Is r5(N) ≪ N(logN)−c?
(iii) Is r4(Fn

5 ) ≪ N1−c, where N = 5n?

Comments. Update 2024. In a remarkable breakthrough, Kelley and Meka [180]
have proved an upper bound of the shape r3(N) ≪ Ne−c(logN)β , and Bloom and
Sisask [32] have shown that one can take β = 1

9 . Note that a classical example
of Behrend [25] from 1946 gives a lower bound r3(N) ≫ Ne−c(logN)1/2 ; in terms
of the rough form of the bound this is still the best known, though in 2024 [91]
Elsholtz, Hunter, Proske and Sauermann gave a construction with a smaller value
of c. Several commentators have remarked that the work of Kelley and Meka has
essentially resolved the issue of how r3(N) behaves, but I respectfully disagree:
to a certain extent the impact of their bound is enhanced by the numerology of
the problem, and over finite fields their methods still only give a bound r3(F

n
3 ) ≪

3ne−nc

, which looks much further from the conjectured truth.
Indeed, much stronger bounds of the form r3(F

n
3 ) ≪ (3 − ε)n are known in

the finite field setting due the breakthough of Croot-Lev-Pach [78] and Ellenberg-
Gijswijt [93].

Regarding (ii), the trick of Green and Tao [151] which worked for r4 is not avail-
able for 5-term progressions, and nor are sufficiently good bounds on the requisite
inverse theorem for the Gowers U4-norm. Therefore this seems extremely difficult.

Update 2024. Leng, Sah and Sawhney [192] have established a bound rk(N) ≪
Ne−(log logN)ck for all k ⩾ 5 which, while not as strong as (ii), is a significant
advance over the bound rk(N) ≪ N(log logN)−ck of Gowers, which had stood for
25 years.

Finally, (iii) evidently includes the Croot-Lev-Pach and Ellenberg-Gijswijt re-
sults (over F5). However, is it possible to use their methods to prove such a result
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about four-term progressions? Despite some initial optimism, this has not been
achieved at present.

Problem 10. Let S ⊂ N be random. Under what conditions is Roth’s theorem
for progressions of length 3 true with common differences in S?

Comments. Of course, one may also ask the question for longer progressions. A
set S for which the conclusion of Szemerédi’s theorem for progressions of length k

holds, but with the common difference of the progressions restricted to lie in S, is
called a set of (k − 1)-recurrence. Thus Problem 10 is asking for conditions under
which a random set is a set of 2-recurrence.

The most optimistic conjecture here, suggested in [119] and [118, Problem 31] is
that if n is chosen to lie in S with probability ω(n)/n, where ω(n) → ∞, then S is
almost surely a set of r-recurrence for all r ⩾ 1.

The best that is known is the result of Briët and Gopi [47], improving on earlier
work of Christ and of Frantzikinakis–Lesigne–Wierdl, showing that if P(n ∈ S) ≫
ω(n) logn

n1/⌈k/2⌉ then Szemerédi’s theorem for progressions of length k holds (almost
surely as n→ ∞) with common differences in S.

The case k = 3 (Roth’s theorem with differences in S) is perhaps the most
interesting in the first instance, and here the bound of Briët and Gopi is no stronger
than the earlier results. A particular model problem would be to show that if
P(n ∈ S) = n−0.51 then Roth’s theorem holds with common difference in S.

Update 2023. Briët and Castro-Silva [46] have advanced the bounds for k odd,
showing that if P(n ∈ S) ≫ n−2/k+o(1) then Szemerédi’s theorem for progressions
of length k holds (almost surely) with common differences in S. In particular, they
resolve the model problem mentioned here.

It is a curious fact that, by the Bergelson–Leibman theorem, Roth’s theorem
is known with common differences restricted to much sparser sets S, for example
S = {13, 23, 33, 43, . . . }. However, the proof of that theorem seems to crucially
exploit the fact that the derivatives of the sequence are eventually constant.

The conjecture in [118, 119] is motivated by the suggestion that the set of cor-
relation functions of the form σ(d) := En1A(n)1A(n+ d)1A(n+2d) (where here we
are taking k = 3 for simplicity) should have ‘low complexity’, since one expects σ(d)
to be approximated in some sense by highly algebraic objects called nilsequences.
However, recent examples of Briët-Labib [49] and Briët and me [48] show that
the situation in that regard is more complicated than previously thought. Those
examples do not, however, seem to impact on Problem 10 itself.

Finally we remark that Altman [10] has also shown that in finite field models
the random set S must be significantly larger for Roth’s theorem with common
differences in S to hold.
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Problem 11. (Mostly solved) Find reasonable bounds for the maximal density of
a set A ⊂ {1, . . . , N} not containing:

(i) A 3-term progression with common difference a square minus one;
(ii) A 3-term progression with common difference a prime minus one.

Comments. Of course one may ask more general questions – for example, for
reasonable bounds for the polynomial Szemerédi theorem of Bergelson and Leib-
man in general. Peluse [217] has obtained the first quantitative bounds (of shape
N(log logN)−c, c = c(p1, . . . , pk)) for configurations (x+p1(d), . . . , x+pk(d)) where
the pi have distinct degrees. The case of configurations (x, x+ d, x+ d2) was previ-
ously handled by Peluse and Prendiville [219]. In this case (and in the more general
cases covered by Peluse’s work) it is in fact plausible that every set of size N0.99

contains such a configuration – no counterexample to this appears to be known.
However, this is not currently known even for the subconfiguration (x, x + d2), a
problem discussed in more detail below (Problem 65).

Finally let me remark that Prendiville [231] has obtained bounds for certain
special cases. He showed that if A ⊂ [N ] contains no x, x + d2, x + 2d2 then
|A| ≪ N(log logN)−c.

Update 2021. Concerning (ii), Tao and Teräväinen [272, Theorem 1.8] established
an upper bound of Ne−(log log logN)c .

Update 2023. Depending on one’s definition of ‘reasonable’, problem (i) has
been resolved by Peluse, Sah and Sawhney [220], who obtain an upper bound
N(logmN)−1 for this problem (where the notation means the m-fold iterated log-
arithm, and their method gives m ∼ 200). They indicate that ‘plausible improve-
ments in the quantitative aspects of the theory of nilsequences’ should yield the
significantly better bound Ne−(log logN)c , which I would certainly concede is ‘rea-
sonable’ in the context of these problems.

Problem 12. Let G be an abelian group of size N , and suppose that A ⊂ G has
density α. Are there at least α15N10 tuples (x1, . . . , x5, y1, . . . , y5) ∈ G10 such that
xi + yj ∈ A whenever j ∈ {i, i+ 1, i+ 2}?

Comments. This is very closely related to the Cayley graph case of simplest
unknown instance of Sidorenko’s conjecture for graphs, that of the ‘Möbius ladder’
K5,5 \ C10.

Problem 13 (4-term APs in uniform sets.). Suppose that A ⊂ Z/NZ has density
α and is Fourier uniform (that is, all Fourier coefficients of 1A −α are o(N)). Does
A contain at least ≫ α100N2 4-term arithmetic progressions?

Comments. Gowers [126] has shown that this is not true if 100 is replaced by
4.01. In view of the ‘arithmetic regularity lemma’ it is natural to consider sets A
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coming from a 2-step nilsequence, that is to say A has the form {n : gn ∈ S} where
g ∈ G and S ⊂ Γ \G is an open set.

Update 2023. This problem has been considered in an interesting paper of Deng,
Tidor and Zhao [82]. First of all, they improve the exponent 4.01 mentioned above
to 3 + 1

2 log3(22) ≈ 4.406. More interestingly, they make the following conjecture,
and show that it implies a negative answer to the main problem.

Conjecture [82, Conjecture 1.6]. For all N , there is a colouring of {1, . . . , N}
with No(1) colours with no symmetrically coloured 4-term progression (that is,
progression x, x + d, x + 2d, x + 3d in which x, x + 3d have the same colour, and
x+ d, x+ 2d have the same colour).

Problem 14. (Solved) Define the 2-colour van der Waerden numbers W (k, r) to
be the least quantities such that if {1, . . . ,W (k, r)} is coloured red and blue then
there is either a red k-term progression or a blue r-term progression. Is W (k, r) a
polynomial in r, for fixed k? Is W (3, r) ≪ r2?

Comments. I initially heard this question from Ron Graham, and I was certain
that the answer should be no, for the following reason: Colour the points of a
Behrend set in [n] of size ∼ ne−c

√
logn red, and the complement blue. One maybe

expects this Behrend set to look in certain ways like a random set, in which case
there should not be any blue progressions of length longer than ∼ ec

√
logn or so.

However, this expectation is entirely wrong: the complement of any Behrend set
in fact contains extremely long progressions, and I was not able to modify the
construction (or any other construction) to get around this. I now believe that the
answer to this question may be affirmative.

For numerical work on the problem, see [5]. Here, the exact value of W (3, r) is
obtained for r ⩽ 19, and conjectured values are given for 20 ⩽ r ⩽ 30. It is observed
that we do not have W (3, r) ⩽ r2, the first counterexample being r = 24. I am
told that in forthcoming work of Aaronson, Even-Zohar, Fox, Peluse, Sauermann,
Taczala and S. Walker it will be shown that W (3, r) ≫ r2.

Update 2021. I [140] resolved this question in the negative by proving a lower
bound of shape W (3, r) ≫ ec(log r)4/3−o(1)

. This was subsequently improved to
W (3, r) ≫ ec(log r)2−o(1)

by Hunter [163], a bound which is plausibly very close to
the truth. Note that the work of Kelley and Meka [180] gives a corresponding upper
bound W (3, r) ≪ eC(log r)C . It remains an interesting open problem to actually
write down a colouring showing (say) W (3, r) ⩾ 2r2 for some r. One might think
that simulations of the (probabilistic) approach in [140] or [163] would achieve this,
but this does not seem computationally straightforward.

Problem 15. Does there exist a Lipschitz function f : N → Z whose graph
Γ = {(n, f(n)) : n ∈ Z} ⊂ Z2 is free of 3-term progressions?
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Comments. The same question but with the domain restricted to [N ] (for arbi-
trary large N , and with the Lipschitz constant maxn |f(n+1)−f(n)| not depending
on N) is still interesting. I first heard this question from Jacob Fox in 2005, then
again from Natasha Morrison in around 2014. It has recently been considered in
print by Brown, Jungić and Poelstra [51].

The answer is yes for 4-term progressions. This is established by Cassaigne,
Currie, Schaeffer and Shallit [58], who write in the language of combinatorics on
words. They construct an infinite word x1x2x3 · · · in the alphabet {0, 1, 3, 4} which
avoids ‘additive cubes’, by which they mean blocks of the form b1b2b3 where b1, b2, b3
have the same length and the same sum of elements (for example, b1 = 01334,
b2 = 44030, b3 = 11144). One may then define f(n) = x1+ · · ·+xn. In their paper,
they explicitly mention that Problem 15 (formulated in terms of combinatorics on
words) is unsolved.

(The finitary version of) Problem 15 has a somewhat similar flavour to the case
k = 3 of Problem 14, in the sense that one is asked to construct a set of size
∼ N , free of 3-term progressions, inside an ambient set of size ∼ N2, with certain
additional properties. Once again it is tempting to start with a Behrend set and
modify it, but for similar reasons this seems to be impossible.

Problem 16. What is the largest subset of [N ] with no solution to x+3y = 2z+2w

in distinct integers x, y, z, w?

Comments. This question was asked by Ruzsa [239, Section 9]. Writing f(N)

for the number in question, so far as I know the best bounds known are N1/2 ≪
f(N) ≪ Ne−c(logN)1/7 , the lower bound being in Ruzsa’s paper and the upper
bound being due to Schoen and Sisask [253] (see in particular Section 9 of their
paper).

In a somewhat similar vein, Yufei Zhao (personal communication) asked me
whether there is a subset of {1, . . . , N} of size N1/3−o(1) with no nontrivial solutions
to x+ 2y + 3z = x′ + 2y′ + 3z′.

Problem 17. Suppose that A ⊂ Fn
3 is a set of density α. Under what conditions on

α is A guaranteed to contain a 3-term progression with nonzero common difference
in {0, 1}n? For fixed α, must A contain ≫α 6n such progressions?

Comments. My thanks go to Vsevelod Lev for reminding me of the first problem.
It is known, as a consequence of the density Hales-Jewett Theorem, that if α → 0

sufficiently slowly as n→ ∞ then there must be such a progression. However, this
may even by true with α = (1− c)n for some c > 0. Regarding the second problem,
a recent reference is [154], where it is shown that this is true for sets invariant under
the permutation action of Sn on Fn

3 . Other related problems are also considered in
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that paper. For both of these questions, one may replace 3 by an arbitrary prime
q.

Update 2023. Bhangale, Khot and Minzer [28], with a very difficult argument,
showed that a set A ⊂ Fn

p free of progressions with common difference in {0, 1, 2}n

has density ≪p (log log log n)−cp .

Now we turn to a small selection of multidimensional questions.

Problem 18. Suppose that G is a finite group, and let A ⊂ G×G be a subset of
density α. Is it true that there are ≫α |G|3 triples x, y, g such that (x, y), (gx, y), (x, gy)
all lie in A?

Comments. This problem was raised by Tim Austin: see [13, Question 2]. Austin
calls triples of the stated type naïve corners.

Another type of corner is the configuration {(x, y), (xg, y), (x, gy)}, which Austin
calls a BMZ corner (after Bergelson, McCutcheon and Zhang). For these corners,
Solymosi [263] has answered the corresponding question.

One may consider the situation in which G is quasirandom in the sense of Gowers
[125], for example G = PSL2(Fp) for large p. It is natural to speculate that any
subset of G×G of size |G|2−δ (for some sufficiently small δ > 0) contains a nontrivial
corner of both types. Austin [13, Theorem B] proves this for naïve corners, but his
bounds for BMZ corners [13, Theorem C] are weaker.

Problem 19. (Solved) What is C, the infimum of all exponents c for which the
following is true, uniformly for 0 < α < 1? Suppose that A ⊂ Fn

2 is a set of density
α. Write N := 2n. Then there is some d such that A contains ≫ αcN2 corners
(x, y), (x, y + d), (x+ d, y).

Comments. Mandache [201] showed that 3.13 ⩽ C ⩽ 4 (and so in particular C
cannot be 3, a fact noted earlier by Qing Chu [63] in the ergodic-theoretic setting).
Moreover he showed (essentially) that the problem is equivalent to the following
one, which is a pure probability problem: determine the infimum of

E(E(f |X,Y )E(f |Y,Z)E(f |X,Z))

over all f : [0, 1]3 → [0, 1] (piecewise constant, say) with mean α. Here, X,Y, Z ∼
U[0, 1] are independent random variables.

Update 2019. This question has been resolved by Fox, Sah, Sawhney, Stoner,
and Zhao [117], showing that C = 4. However, in their paper they mention that
the corresponding question for squares (x, y), (x, y + d), (x+ d, y), (x+ d, y + d) is
wide open (and here it is not even clear that C exists).

Problem 20. Find reasonable bounds for instances of the multidimensional Sze-
merédi theorem.
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Comments. The minimum definition of ‘reasonable’ is probably a density of finite
logarithmic type (logmN)−1, where logmN denotes the m-fold iterated logarithm
of N , where N is the size of the underlying structure in which one is working
(either G×G for some abelian group, or {1, . . . , n}×{1, . . . , n}). In full generality,
obtaining such a bound currently seems hopeless. The most basic open problem at
the moment seems to be that we do not currently have such bounds for the largest
subset of Fn

p ×Fn
p not containing a ‘square’ (x, y), (x+h, y), (x, y+h), (x+h, y+h).

The problem of finding such bounds for 3-dimensional corners (x, y, z), (x+h, y, z),
(x, y + h, z), (x, y, z + h) is also open, and at least as hard.

For two-dimensional corners (x, y), (x + h, y), (x, y + h) we have the bounds of
Shkredov [258], who showed that such corners are present in any subset of [N ]2 of
density (log logN)−c, but no lower bound better than e−c

√
logn is known.

Beyond this, in 2022 Peluse studied ‘L-shaped’ configurations (x, y), (x + h, y),
(x + 2h, y), (x, y + h), showing in [218] that a density ≫p (logmN)−1 is sufficient
to guarantee such configurations in Fn

p × Fn
p .

Returning to corners, Yufei Zhao has remarked to me that we do not have good
bounds for the corresponding problem in which the corners need not be axis parallel.
Representing the points of [N ]2 by Gaussian integers, this is equivalent to solving
(x− y) = i(y − z), and so this problem is perhaps closer in spirit to finding 3-term
progressions in the integers. It ought to be possible to prove an upper bound of
shape N2(logN)−c (in fact, an upper bound of shape N2(log logN)−c is known
[230] for the much harder problem of non-axis parallel squares) but it is unclear
whether a lower bound of N2−o(1) can be expected. Update 2021: Pilatte [223] has
obtained an upper bound of ≪ N2(logN)−1−c for some c > 0 using methods of
Bloom and Sisask.

Curiously, the corresponding question with ‘skew corners’ (x, y), (x, y+h), (x+
h, y′) seems completely wide-open, with Pratt [229] remarking that the best-known
upper bound comes from Shkredov’s work mentioned above, and that the best
known lower bound is ≫ N(logN)(log logN)−1/2 by work of Petrov [287]. Pratt
[229, Conjecture 1.2] asks whether an upper bound N1+o(1) might be true, and
he links the question to Problem 36. Update 2024. Pohoata and Zakharov [227]
improved the lower bound to N5/4, and shortly afterwards Beker [26] improved the
lower bound to N2e−c

√
logN and the upper bound to ≪ N2(logN)−c.

Finally, Zachary Chase remarked on the following question asked by Jordan
Ellenberg: what is the size of the largest subset of [N ]2 with no isosceles triangle
(triangles of area zero are allowed)? It is between N1−o(1) (put a Behrend set on a
single vertical line) and N2−o(1), but nothing more seems to be known.

Finally, we turn to some questions about partition regularity.
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Problem 21. Suppose that a1, . . . , ak are integers which do not satisfy Rado’s
condition: thus if

∑
i∈I ai = 0 then I = ∅. It then follows from Rado’s theorem

that the equation a1x1 + · · · + akxk is not partition regular. Write c(a1, . . . , ak)
for the least number of colours required in order to colour N so that there is no
monochromatic solution to a1x1+ · · ·+akxk = 0. Is c(a1, . . . , ak) bounded in terms
of k only?

Comments. This problem, which is known as Rado’s boundedness conjecture,
dates back to 1933 [232]. The answer was shown to be affirmative for k = 3 by
Fox and Kleitman [116], who showed that c(a1, a2, a3) ⩽ 24 (I am not sure this is
sharp; it might be interesting to determine the sharp constant). It is open for all
k ⩾ 4. Let me also highlight a question [116, Conjecture 5] of Fox and Kleitman,
which they call a ‘modular analogue’ of Rado’s Boundedness Conjecture. Let p be
a prime, and suppose that a1, . . . , ak are integers with

∑
i∈I ai ≡ 0(mod p) only

when I = ∅. Does there exist an f(k)-colouring of (Z/pZ)∗ with no monochromatic
solution to a1x1 + · · · + akxk = 0? This seems to be open even when k = 3; I
suspect the answer may be negative.

Milićević [94, Conjecture 11.1] conjectures the following 2-adic variant. For any
k ∈ N, there exists K = K(k) such that the following is true. Let r be a positive
integer, and let a1, . . . , ak ∈ Z/2rZ. Let d be the largest integer such that

∑
i∈I ai ≡

0(mod 2d) for some non-empty subset I ⊂ [k]. Then there is a K-colouring of
Z/2rZ such that all monochromatic solutions x = (x1, . . . , xk) to the equation
a1x1 + · · · + akxk = 0 satisfy xi ≡ 0(mod 2r−d) for all i = 1, . . . , k. Milićević
remarks that, if true, this would imply the Rado boundedness conjecture by a
compactness argument.

Problem 22. If {1, . . . , N} is r-coloured then, for N ⩾ N0(r), there are integers
x, y ⩾ 3 such that x + y, xy have the same colour. Find reasonable bounds for
N0(r).

Comments. The existence of N0(r) was established only recently, in a celebrated
paper of Moreira [210] (who in fact established that x can also be the same colour).
The main proof in [210] gives no bound, since it uses topological dynamics. How-
ever, the ‘elementary proof’ given in Section 5 of Moreira’s paper does in principle
give a bound, albeit an extremely weak one, not least because the known bounds
for van der Waerden’s theorem are so weak.

Let me also mention the famous question of Hindman: if N is finitely coloured,
are there x, y, x + y, xy all of the same colour? (In fact, Hindman asked whether
for any k there are x1, . . . , xk with all sums

∑
i∈I xi and all products

∏
i∈I xi the

same colour for all nonempty I ⊆ [k], with the preceding question being the case
k = 2.)
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Update 2022. Bowen and Sabok [41] solved the analogue of Hindman’s question
(in the case k = 2) where N is replaced by Q, and Bowen [40] has solved the
2-colour case in the integers, showing that if N is coloured red-blue then there are
infinitely many pairs x, y with x, y, x+ y, xy the same colour. In 2023 Alweiss [11]
solved the analogue of the full Hindman question where N is replaced by Q, that
is to say with k arbitrary.

It seems possible that in any finite colouring of N, for any k there are x1, . . . , xk
with all of the elementary symmetric functions of the xi being the same colour.

Problem 23. (Solved) Suppose that N is finitely coloured. Are there x, y of the
same colour such that x2 + y2 is a square?

Comments. This is a weaker version of the famous question asking whether x2 +
y2 = z2 is partition-regular. (In that problem, z must also be the same colour.)
Update 2023. This problem has now been resolved by Frantzikinakis, Klurman and
Moreira [120]. The question of whether x2 + y2 = z2 is partition regular remains
wide open.

Problem 24. If A is a set of n integers, what is the maximum number of affine
translates of the set {0, 1, 3} that can A contain?

Comments. This problem was apparently raised by Ganguly. I heard it from
Robin Pemantle. It seems likely that the answer is ( 13 + o(1))n2, but this is not
known. Aaronson’s paper [2] should be consulted for more information.

3. Sumsets and bases

Problem 25. For which values of k is the following true: whenever we partition
[N ] = A1 ∪ · · · ∪Ak, |

⋃k
i=1(Ai+̂Ai)| ⩾ 1

10N?

Comments. So far as I know, all that is known is the following: for k ≪ log logN ,
this is true, whilst for k ≫ N/ logN , it need not be. These results are contained
in a 1989 paper of Erdős, Sárközy and Sós [107]. The truth of this statement even
for constant k answered a question of Roth from at least 30 or so years earlier.
Ruzsa [241] constructs partitions A1 ∪ · · · ∪Ak of an N -element set, k = N/m, for
which the union |

⋃k
i=1(Ai+̂Ai)| is as small as about Om(N1/2). It ought to be

possible to make these into partitions of [N ] by a Freiman isomorphism/random
covering argument. Ruzsa does not clarify the m-dependence in his article, though
this should not be too hard to do if desired.

Problem 26. Let A1, . . . , A100 be ‘cubes’ in Fn
3 , that is to say images of {0, 1}n

under a linear automorphism of Fn
3 . Is it true that A1 + · · ·+A100 = Fn

3 ?
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Comments. I only recently learned about this problem (from Peter Keevash) but
it is in fact 25 years old, and appears in a paper of Jaeger, Linial, Payan and Tarsi
[165]. Of course they make a more general conjecture (with F3 replaced by Fp) and
in the case of F3 it may well be the case that the result holds with 100 replaced by
3. It was shown by Alon, Linial and Meshulam [8] that if 100 is replaced by ∼ log n

then the result is true, but so far as I am aware nothing better is known.

Problem 27. What is the size of the smallest set A ⊂ Z/pZ (with at least two
elements) for which no element in the sumset A+A has a unique representation?

Comments. Both Andrew Granville (personal communication) and Swastik Kop-
party (open problems session, Harvard 2017) asked me this question.

Update 2023. Bedert [24] has made significant progress on this question, showing
that the answer lies between ω(p) log p (for some function ω(p) tending to ∞ with
p) and O(log2 p). This improves previous bounds of c log p and O(

√
p) respectively.

Problem 28. Suppose that X,Y are two finitely-supported independent random
variables taking integer values, and such that X+Y is uniformly distributed on its
range. Are X and Y themselves uniformly distributed on their ranges?

Comments. This attractive question was asked by Emmanuel Amlot on Stackex-
change, and then subsequently attracted some attention on Math Overflow [286].
There are certainly many examples of such X and Y , for example X could be
uniformly distributed on {n, 2n, 3n, · · · , (n− 1)n} and Y on {0, 1, . . . , n− 1}.

Problem 29. Suppose that A is a K-approximate group (not necessarily abelian).
Is there S ⊂ A, |S| ≫ K−O(1)|A|, with S8 ⊂ A4?

Comments. For the definition of K-approximate group, see for example [136].
Such a conclusion is known with |S| ≫K |A| (but not with a polynomial bound)
by an argument of Sanders. See [44, Problem 6.5].

Shachar Lovett once mentioned to me the following vaguely related question:
suppose that A ⊂ Fn

2 is a set of density 1
3 . Is there a set B with 4B := B + B +

B +B ⊂ A+A, and with 4B having density at least 1
100 in Fn

2 ?

Problem 30. Given a set A ⊂ Z with D(A) ⩽ K, find a large structured subset
A′ which ‘obviously’ has D(A′) ⩽ K + ε (Here, D(A) := |A−A|/|A|).

Comments. To illustrate what is meant here, let me state a result of Eberhard,
Manners and me [88, Section 6]: if |A−A| ⩽ (4− ε)|A|, then there is a progression
P of length ≫ε |A| on which A has density > 1

2 . Then A′ := A∩P ‘obviously’ has
D(A′) ⩽ 4. One can imagine a more general such result. One could also ask for
bounds; in the proof of the result just stated for doubling close to 4, the constant
in the ≫ε 1 is essentially ineffective.



16 BEN GREEN

4. Sidon sets and related questions

Given a set A in an abelian group, write rA(n) for the number of representations
of n as a sum of two elements of A, representations such as n = x+y = y+x being
counted as the same. A Sidon set or B2-set is one for which rA(n) ⩽ 1 for all n.
One should note that there is a different notion of Sidon set in harmonic analysis,
the study of which was very much to the fore in the 1970s and 1980s (the topic
of a whole book [195]). Even more confusingly, this is also a notion of ‘additive
non-structure’, but a more stringent one than that of a B2-set. This notion appears
in Problem 96 below.

There are a large number of questions about Sidon sets and related matters,
most of which have seen very little progress for 40 years or more. Paul Erdős wrote
on this topic many times: see, for example, [103]. Another good source is [152,
Section C].

Problem 31. Write F (N) for the largest Sidon subset of [N ]. Improve, at least
for infinitely many N , the bounds N1/2 +O(1) ⩽ F (N) ⩽ N1/2 +N1/4 +O(1).

Comments. Erdős stated this problem many times. The upper bound is due to
Lindstrom from 1939. In my first paper [130] I gave an alternative (but equivalent)
proof using Fourier analysis, which I was sure could be tweaked to at least give a
small improvement, but I never managed this.

Update 2021. Balogh, Füredi and Roy [15] obtained a small improvement, getting
an upper bound of F (N) ⩽ N1/2 + 0.998N1/4 for large N . In 2023, the constant
here was further improved to 0.98183 in [57].

It might be remarked that the situation is far less clear in other settings. For
example, I am fairly sure that it is not known whether or not there exists a Sidon
subset of Z/pZ of size (1 + o(1))

√
p, for all p, or even whether, if G is an abelian

group of size n, there always exists a Sidon subset of G of size 0.01
√
n.

Another very nice old problem is whether there is a Sidon subset of {0, 1}n of size
N0.51, where N = 2n. The best-known upper bound, so far as I know, is N0.5753

in a paper of Cohen, Litsyn and Zémor [68].
The lower bound in Problem 31 comes from taking a Sidon subset of Z/qZ of

size √
q + O(1) (for which there are several constructions, for different qs) and

‘unwrapping’. One feels that, after a suitable dilation, it ought to be possible to do
this more efficiently. Moreover, this might be quite a general phenomenon. This
motivates the following question.

Problem 32. Let p be a prime and let A ⊂ Z/pZ be a set of size √
p. Is there a

dilate of A with a gap of length 100
√
p?



100 OPEN PROBLEMS 17

Comments. Shakan [257] has used the polynomial method to show that this is
true with 100 replaced by 2, but this appears to be the limit of his method.

One can formulate variants of this problem in which √
p is replaced by an arbi-

trary function ω(p), and one is looking for a dilate with a gap of length 100p/ω(p).
In the regime ω(p) ∼ cp, this is Szemerédi’s theorem; in the regime ω(p) ⩽ c log p,
this is basically Dirichlet’s lower bound for the size of Bohr sets. Even what happens
in the regime ω(p) ∼ 10 log p is unclear.

Tom Sanders pointed out to me that things are much easier in the finite field
model Fn

2 . Indeed, if |A| ∼
√
N , where N = 2n, then by an averaging argument

one may find a coset H of some subspace of size ∼ 1
10n

√
N on which A has at most

1
10n < dimH points; but then these points sit inside a proper coset of H, and so
Ac contains a coset of dimension dimH − 1, and hence of size ⩾ 100

√
N provided

n is sufficiently large.
As regards the connection to Problem 31, so far as I am aware it is not currently

known that there are infinitely many primes p for which Z/pZ admits a Sidon set
of size √

p + O(1), thus a positive solution to this would not immediately imply a
better lower bound in Problem 31.

Problem 33. Are there infinitely many q for which there is a set A ⊂ Z/qZ,
|A| = (

√
2 + o(1))q1/2, with A+A = Z/qZ?

Comments. Potentially yes, but I’m not sure I know how to construct such sets.
One could also ask the same question but with q = p restricted to be a prime. Then,
the set S = {(x, x2) : x ∈ A} ∪ {(1, 0)} determines a line in every direction. It is
easy to see that no set of size smaller than (

√
2 + o(1))p1/2 can have this property.

The question of whether this bound is sharp was asked by Granville [77, Problem
5.2] and, more recently, by Caprace and de la Harpe [55, Question 6.1].

Certainly the most famous problem in the general sphere of Sidon sets is the
question of Erdős and Turán. If A ⊂ N is a set with rA(n) ⩽ r for some r, is
rA(n) = 0 for infinitely many n? In the contrapositive, if every sufficiently large n
is a sum of two elements of A, are there n which can be so written in arbitrarily
many ways? In fact, is this true under the weaker assumption that the nth element
of A is at most Cn2? Rather than including this famous problem as one of this
list, I instead state the following vague question which most likely is the key to
answering it in the affirmative, but which also seems impossibly hard.

Problem 34. Suppose that A ⊂ [N ] is a set of size ⩾ c
√
N for which rA(n) ⩽ r

for all n. What can be said about the structure of A?

Comments. Whilst all known constructions are at least somewhat algebraic, even
formulating a conjecture (even in the case c ≈ 1 and r = 1) seems hopeless. See
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the paper [89] of Eberhard and Manners giving an overview and unified view of
the known constructions. Their paper is an enjoyable read but does not leave one
optimistic about a reasonable answer to Problem 34, even in the case r = 1 and
c = 1− ε.

There are some purely real-variable questions concerning autoconvolutions which
come from trying to put bounds on various generalisations of Sidon sets. In some
of these questions it is quite surprising how wide apart the bounds are.

Problem 35. In this problem, we consider the class F of all integrable functions
f : [0, 1] → R⩾0 with

∫
f = 1. Let 1 < p ⩽ ∞. Estimate cp := inff∈F ∥f ∗ f∥p.

Comments. The case p = 2 received attention in my first paper [130], where (in
slightly different language) the bound c2 ⩾ 0.7559 . . . was obtained. Some remarks
were made in that paper about the nature of the optimal functions f , which appear
to be extremely regular.

The best-known lower bound for c∞ is 0.64, due to due Cloninger and Steiner-
berger [65] (note that their c is 2c∞). The best-known upper bound is c∞ ⩽

0.75049 . . . and this appears in Matolcsi and Vinuesa [205]. By contrast to the case
p = 2, the functions constructed here are highly pathological.

Note that by Young’s inequality we have c∞ ⩾ c22.

To conclude this section we formulate one of a number of questions of an additive-
combinatorial nature which come up in the theory of fast matrix multiplication.

Problem 36. Do the following exist, for arbitrarily large n? An abelian group
H with |H| = n2+o(1), together with subsets A1, . . . , An, B1, . . . , Bn satisfying
|Ai||Bi| ⩾ n2−o(1) and |Ai + Bi| = |Ai||Bi|, such that the sets Ai + Bi are dis-
joint from the sets Aj +Bk (j ̸= k)?

Comments. This is [71, Problem 4.7]. If true, it would imply that the exponent
of matrix multiplication is 2, that is to say two n × n matrices can be composed
with n2+o(1) multiplications. In [71] and other papers on the topic one may find
other questions of this broad type, including in nonabelian groups.

Bonus problems on Sidon sets and related matters.
Klurman and Pohoata asked the following. Let A ⊂ Z be a set of size n. Does

A either contain an additive or a multiplicative Sidon set of size n1/2+δ, for some
δ > 0? Shkredov [259] show that this is true if the notion of Sidon is replaced by
g-Sidon for some g = O(1). He also showed, as did Roche-Newton and Warren
[233], and Peluse and I (unpublished), that one cannot take δ > 1/6.

Erdős, Sárközy and Sós asked whether there is an infinite Sidon set in N which
is an asymptotic basis of order 3.
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Update 2023. This last question has been resolved in the affirmative by Pilatte
[222].

5. Covering and packing

Problem 37. What is the smallest subset of N containing, for each d = 1, . . . , N ,
an arithmetic progression of length k with common difference d?

Comments. Writing Fk(N) for this quantity, it is conjectured that Fk(N) ≫k

N1−ck , with ck → 0 as k → ∞. One should not expect this problem to be easy,
as it was shown by Ruzsa and me [146] to be equivalent to the so-called arith-
metic Kakeya conjecture of Katz and Tao (which implies the Kakeya conjecture in
Euclidean space).

Problem 38. What is the largest subset A ⊂ Fn
7 for which A − A intersects

{−1, 0, 1}n only at 0?

Comments. This is a notorious open problem, that of the Shannon capacity of
the 7-cycle. I am mentioning it here to draw attention to the fact that it is an
additive combinatorics problem, not a graph theory problem. The current best
bounds seem to be that (C1 − o(1))n ⩽ |A| ⩽ (C2 + o(1))n, where the lower bound
C1 = (367)1/5 ≈ 3.2578 comes from examples (see [228, Section 9.1]) and the upper
bound C2 = 7 cos(π/7)/(1 + cos(π/7)) ≈ 3.3177 is from Lovász’s celebrated paper
[196, Corollary 5].

Problem 39. If A ⊂ Z/pZ is random, |A| = √
p, can we almost surely cover Z/pZ

with 100
√
p translates of A?

Comments. This is a problem I posed in Barbados in 2010. I do not know how to
answer this even with 100 replaced by 1.01. Similar questions are interesting with
√
p replaced by pθ for any θ ⩽ 1

2 . A problem in much the same vein, but possibly
more natural, is to take a group G and choose A ⊂ G × G, |A| = |G| at random.
For references to related matters see [34].

Problem 40. Let r be a fixed positive integer, and let H(r) be the Hamming
ball of radius r in Fn

2 . Let f(r) be the smallest constant such that there exists an
infinite sequence of ns together with subspaces Vn ⩽ Fn

2 with Vn +H(r) = Fn
2 and

|Vn| = (f(r) + o(1)) 2n

|H(r)| . Does f(r) → ∞?

Comments. This is a very basic problem about linear covering codes, for which
[67] (particularly Chapter 12) may be consulted.

The only value known is f(1) = 1. This follows from the existence of the Ham-
ming code: let n = 2m− 1, and take Vn to be the kernel of the m× (2m− 1) matrix
in which the columns are the non-zero vectors in Fm

2 . An easy exercise confirms
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that every element of Fn
2 has a unique representation in Vn + H(1) (that is, the

Hamming code is perfect).
Considering a product of r copies of this example with n = r(2m−1) shows that

f(r) ⩽ rr/r! ∼ er (and in particular f(r) is finite). I am not sure whether any
substantially better bound is known or not.

The possibility that f(r) = 1 for all r has not been ruled out, but it is not known
whether f(2) = 1 (the best-known upper bound is f(2) ⩽ 1.4238). [79]).

One may ask the same question without the ‘linear’, that is to say where the
Vn may be arbitrary subsets of Fn

2 . Writing f̃(r) for the corresponding function,
we evidently have f̃(r) ⩽ f(r). Here is is known [266]) that f̃(2) = 1, but again it
could be the case that f̃(r) → ∞.

Finally, one can ask what happens for all n, rather than merely an infinite
sequence. For further references on this, see the book [67] cited above.

Problem 41. How many rotated (about the origin) copies of the ‘pyjama set’
{(x, y) ∈ R2 : dist(x,Z) ⩽ ε} are needed to cover R2?

Comments. Manners [202], solving the ‘pyjama problem’, proved that there is
some finite set of rotations with this property. His proof uses topological dynamics
and is ineffective. I am not aware of any nontrivial lower bounds: in particular, is
ε−C rotations enough?

Problem 42. Can the Cohn–Elkies scheme be used to prove the optimal bound
for circle-packings?

Comments. Cohn and Elkies [69] put forward a general scheme for obtaining
upper bounds on the density of sphere packings in Rd, and conjectured that it is
optimal when d = 1, 2, 8, 24. They proved this when d = 1, and famously Viazovska
[277] established the case d = 8 and, in joint work with Cohn, Kumar, Miller and
Radchenko [70], this was adapted to d = 24.

The case d = 2 amounts to constructing a radial function f : R2 → R with
f(x) ⩽ 0 for |x| ⩾ 2, f̂(t) ⩾ 0 for all t, f̂(0) > 0, and f(0)

f̂(0)
=

√
3
6 . Such a function

must vanish at the hexagonal lattice Λ (except at zero), and its Fourier transform
must vanish at the dual lattice Λ∗ (again, except at zero).

See [252] for some related discussion.

6. Sieving

The sieve problems I plan to mention are really packing and covering problems
in the spirit of the last chapter, but in the specific case that the sets for packing
with a residue classes modulo primes. They are largely of what might be called
a slightly unconventional nature. For a nice selection of open questions in more
‘traditional’ sieve theory, I recommend the ICM survey of Maynard [207].
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Problem 43. Let N be a large integer. For each prime p with N0.51 ⩽ p < 2N0.51,
pick some residue a(p) ∈ Z/pZ. Is it true that

#{n ∈ [N ] : n ≡ a(p)(mod p) for some p} ≫ N1−o(1)?

Comments. This problem is formulated in [139, Section 4]. I think of it as a
kind of ‘Kakeya problem in dimension 2 + ε’. One can make many other related
conjectures. One of my favourites is raised in [9]: if A ⊂ Z/pZ is a set of size
⌊p/2⌋, does some dilate of A have no gaps of length more than p0.49? To see the
relation to problems of the type considered here, note that the complement of such
a set would have to have a progression of length p0.49, for each common difference
d ∈ (Z/pZ)∗.

A minor variant of Problem 43 asks the same, but now with p allowed to vary
in a range such as N0.51 ⩽ p < N0.52. Obtaining a lower bound N1−o(1) here is
certainly no harder than Problem 43, but I do not know how to do it. In fact, for
this problem there may even be a lower bound of cN .

One can of course ask similar questions with 0.51 replaced by other exponents
α. For α < 1

2 these questions are straightforward by an inclusion exclusion or
Cauchy-Schwarz argument, for much the same reason that it is relatively easy to
establish the Kakeya conjecture in the plane. On the other hand I have observed
(unpublished) that by arguments of Bourgain, progress for α ≈ 1 would imply the
Kakeya conjecture.

To conclude these remarks, let me mention a toy problem related to the way in
which pairs of residue classes a(p1)(mod p1) and a(p2)(mod p2) interact. It came up
from a study of Problem 48, but seems to be concerned with the same phenomena
that apparently make Problem 43 hard. Suppose that for all primes p with X ⩽

p < 2X one has a residue class a(p)(mod p). For distinct primes p1, p2 in this
range, let f(p1, p2) ∈ Z/p1p2Z be the unique solution to f(p1, p2) ≡ a(pi)(mod pi),
i = 1, 2. What can be said about the function a if |EX⩽p⩽2Xe(

f(p1,p2)
p1p2

)| ⩾ 0.99?
Perhaps a() must be almost constant. More ambitiously, one could replace 0.99 by
0.01 or even smaller quantities.

Problem 44. Sieve [N ] by removing half the residue classes mod pi, for primes
2 ⩽ p1 < p2 < · · · < p1000 < N9/10. Does the remaining set have size at most 1

10N?

Comments. This is raised in [101, Section 6, Problem 3]. Erdős remarks that
the answer is affirmative if the primes are all less than N1/2, by the large sieve. I
must admit that I do not know anything about this problem other than what Erdős
wrote nearly 40 years ago; this part of his paper does not appear to have been cited
since. The same comment applies to the next problem.
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Problem 45. Can we pick residue classes ap(mod p), one for each prime p ⩽ N ,
such that every integer ⩽ N lies in at least 10 of them?

Comments. This is raised in [101, Section 6, Problem 6]. Erdős remarks that he
does not know how to answer it with 10 replaced by 2.

Problem 46. What is the largest y for which one may cover the interval [y] by
residue classes ap(mod p), one for each prime p ⩽ x?

Comments. This is the Jacobsthal problem, and it is somewhat notorious. It is
known [113] that y ≫ x log x log log log x

log log x , and any improvement upon this would lead
to a better bound for the largest gap between consecutive primes. The best upper
bound is y ≪ x2, due to Iwaniec [164]. It seems very likely that one must have
y ≪ x1+o(1). A proof of this would not give a better upper bound on gaps between
primes, merely on the capability of one method for producing them.

Erdős and Ruzsa [106] and Hildebrand [161] mention the following elegant prob-
lem of a similar type: can one cover [x] with residue classes a(p)(mod p), p ⩽ x,
at most one for each prime p, and with

∑
1
p ⩽ K? Erdős and Ruzsa suggest that

in fact the answer is no, and moreover that the uncovered set should have size at
least c(K)x.

Problem 47. Suppose that a large sieve process leaves a set of quadratic size. Is
that set quadratic?

Comments. Questions of this type are known as the inverse large sieve prob-
lem. There are many questions here, but the following very particular instance
is probably the simplest. Suppose that A ⊂ N is a set with the property that
|A(mod p)| ⩽ 1

2 (p+ 1) for all sufficiently large p. The large sieve then implies that
|A ∩ [X]| ≪ X1/2, and this is clearly sharp because one could take A to be the
set of squares or the image of Z under some other quadratic map ϕ : Q → Q.
However, is it true that either |A ∩ [X]| ≪ X1/2

log100 X
, or A is contained in the image

of Z under a quadratic map ϕ : Q → Q? For background on this question see
[144, 160, 280, 281].

Problem 48. Suppose that a small sieve process leaves a set of maximal size.
What is the structure of that set?

Comments. It is not at all clear to me what a good formulation of this question,
the inverse small sieve problem, should be. One could, for example, consider a
linear sieve in which precisely one residue class a(p)(mod p) is removed from [X]

for each prime p ⩽
√
X (or even for somewhat larger primes as well), leaving a

set S. The Selberg sieve or the Rosser–Iwaniec sieve yield a bound |S| ⩽ (2 +

o(1))X/ logX. Selberg [255] observed that one cannot hope to beat such a bound
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without eliminating the possibility of a Siegel zero, a notorious open problem in
number theory. (To see roughly why, imagine that all primes were 3(mod 4), which
would correspond to a very extreme type of Siegel zero. Then there would be
∼ 4N/ logN values of k ⩽ N for which 4k+3 is a prime > N0.9. Suppose without
loss of generality that at least 2N/ logN of these ks are odd. Then, setting a(2) = 0

and a(p) = − 3
4 (mod p) for p odd, we see that k ̸= a(p)(mod p) for all p ⩽

√
N .)

One possible form of the inverse small sieve problem would then to be ask whether
examples of this type (that is, ‘coming from a Siegel zero’) are essentially the only
ones; if that could be shown, then for instance under the GRH one could improve
the upper bound on |S|.

More realistic, but still seemingly very difficult, might be to ask about sieves
of dimension κ < 1, where one only takes a fraction κ of all primes p. In the
case κ = 1

2 , for example, the optimal bound on S is known and one might ask
for a characterisation of the extremal examples. This has some resemblance to the
inverse large sieve problem, since the extremal examples are related to sums of
squares. See [256, Sections 16, 19] for more on this.

An attempt I made to analyse the error term in the Selberg sieve led to problems
very similar to the last one mentioned in the remarks to Problem 43.

7. Additive combinatorics

Many questions in earlier sections are, or involve, additive combinatorics, but
this section is devoted to questions more purely in that realm.

Problem 49. (Solved) Suppose that A ⊂ Fn
2 is a set with |A + A| ⩽ K|A|. Is it

true that A is covered by KO(1) translates of a subspace of size ⩽ |A|?

Comments. This is known as Marton’s conjecture or the ‘Polynomial Freiman–
Ruzsa conjecture’ (PFR) (in finite fields). Many equivalent forms of it are known;
see, for example [135] as well as [149, 197]. One of my favourites (due to Ruzsa) is
as follows: if f : Fn

2 → Fn
2 is such that f(x) + f(y)− f(x+ y) takes values in a set

S of size K, is there some linear function f̃ : Fn
2 → Fn

2 such that f − f̃ takes values
in a set S̃ of size O(KC)? Tao and I [271] gave an example showing that we need
not have S̃ ⊂ CS for any C, and Aaronson [3] analysed a different example of the
same phenomenon due to Farah [109].

The best upper bounds for these problems, of shape exp(logC K), may be found
in celebrated work of Sanders [249].

Update 2023. This has been solved by Gowers, Manners, Tao and me [127].
An analogue of the conjecture may be formulated for subsets of Z, but this takes

a little setting up and care is needed. The basic idea is that a large piece of A
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should be contained in a set isomorphic to the lattice points inside an ellipsoid; see
[199, 203]. In this setting the conjecture remains wide open.

Problem 50. Suppose that A ⊂ Fn
2 be a set of density α. Does 10A contain a

coset of some subspace of dimension at least n−O(log(1/α))?

Comments. This is often known as the Polynomial Bogolyubov conjecture (over
finite fields). It may well be true with 3A in place of 10A, but the latter would
be fine for most applications. It implies the polynomial Freiman-Ruzsa conjecture,
and seems to be strictly stronger than it; in particular, it is not addressed by the
methods of [127]. Currently, the best bounds known are n− O(log4+o(1)(1/α)) by
work of Sanders [249]. One may also ask whether 2A contains 99% of some coset
of a subspace of codimension n−O(log(1/α)), which would trivially imply that 4A
contains such a subspace. In some ways I feel this is the most natural question
in this circle of problems. Update 2024. Kościuszko [188, Theorem 9], building on
unpublished work of Konyagin, has shown that for every η > 0 there is some m
such that mA−mA contains a subspace of dimension at least n−O(log3+η(1/α)).

One may ask related questions for subsets of [N ], but these are presumably
at least as hard. The basic form of such a question would be whether, if A ⊂
[N ] has density α, 2A − 2A contains a Bohr set of constant width and dimension
O(log(1/α)). A consequence of this (equally unsolved) would be that 2A − 2A

contains an arithmetic progression of size N c log(1/α).
There is also a natural question for subsets of (R/Z)d: if A ⊂ (R/Z)d is an

open set of measure α, does 10A− 10A contains a closed subtorus of codimension
O(log(1/α))? Qualitatively, results of this type are known [43].

Problem 51. Suppose that A ⊂ Fn
2 is a set of density α. What is the largest size

of coset guaranteed to be contained in 2A?

Comments. Adding just two copies of a set, as opposed to three or more, leads
to less structure. It is known that 2A must contain a coset of dimension ≫α n, but
need not contain one of dimension n−

√
n. See [133, Chapter 14] for a discussion of

both directions. The behaviour as α → 1
2

− is also interesting [248]: in that paper
(Question 5.1) Sanders asks whether, if α ⩾ 1

2 −
K√
n
, then 2A must contain a coset

of codimension OK(1).
As with other problems in this section, Problem 51 has an analogue for subsets

of [N ], with ‘coset’ replaced by ‘arithmetic progression’. In this setting, the lower
bound is ∼ ec(logN)1/2 [132] and the upper bound ∼ ec(logN)2/3 [238].

Problem 52. Suppose that A ⊂ Fn
2 is a set with an additive complement of size

K (that is, for which there is another set S ⊂ Fn
2 , |S| = K, with A + S = Fn

2 ).
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Does 2A contain a coset of codimension OK(1)? Could it even contain a coset of
codimension O(logK)?

Comments. It is quite mysterious that even the weaker, qualitative, statement is
seemingly not known. The stronger statement (with codimension O(logK)) implies
the polynomial Bogolyubov conjecture, Problem 50 above (by the Ruzsa covering
lemma; apply the statement with 2A in place of A).

This problem also has an obvious analogue in [N ]. Even in the case S =

{1, . . . ,K} (in which case A is syndetic with gaps bounded by K) we do not
seem to know much, though it is natural to conjecture that A − A contains a
progression of length N cK . The problem feels closely connected with a notori-
ous question of Katznelson: if A ⊂ Z is syndetic, does A − A contain a Bohr set
{n ∈ Z : ∥θn∥T ⩽ ε}, for some ε > 0? One should, however, note that the infinitary
setting for problems about difference sets can be quite different to the finite one.
For more on Katznelson’s question and its history, see the introduction to [122].

Tom Sanders reminded me that, around 17 years ago, I established [131] the
following very specific result related to the above: if A ⊂ Z/pZ and if, for all
a ∈ A, at least one of a + 2, a + 3 lies in A, then A − A contains a progression of
length ≫ √

p.

Problem 53. Suppose that Fn
2 is partitioned in to sets A1, . . . , AK . Does 2Ai

contain a coset of codimension OK(1) for some i?

Comments. This would easily imply a positive solution to the previous problem.
It does not seem to be known even for K = 3. Note that a Hamming ball B :=

{x : x1 + · · · + xn ⩽ n
2 −

√
n} has the property that 2B does not contain a coset

of codimension OK(1), and so a subcase of this problem is to show that three
Hamming balls A1, A2, A3 (relative to different bases) cannot cover Fn

2 .
For all I know, Problem 53 could again be true with O(logK) in place of OK(1),

which would again imply the polynomial Bogolyubov and Freiman–Ruzsa conjec-
tures.

As with Problem 52, there are analogies with Katznelson’s question. Indeed,
in [122, Question C2] it is shown that an equivalent form of that question is the
following: If N is partitioned into sets A1, . . . , AK , does Ai − Ai contain a Bohr
set?

Problem 54. Let K ⊂ RN be a balanced compact set (that is, λK ⊂ K when
|λ| ⩽ 1) and suppose that the normalised Gaussian measure γ∞(K) is at least 0.99.
Does 10K (say) contain a compact convex set C with γ∞(C) ⩾ 0.01?

Comments. This question is raised by Talagrand [268]. He raised the question
again in [269] and offered 1000 dollars for a solution. The answer is no if 10K is



26 BEN GREEN

replaced by 2K, so there seems to be a strong formal similarity with the questions
mentioned above. This is presumably why several people have mentioned it to me
over the years.

Problem 55. Let p be an odd prime and suppose that f : Fn
p × Fn

p → C is
a function bounded pointwise by 1. Suppose that Eh∥∆(h,h)f∥4□ ⩾ δ. Does f
correlate with a function of the form a(x)b(y)c(x+ y)(−1)q(x,y)?

Comments. We could take q asymmetric by absorbing the symmetric part into
the other terms. Here ∆(h,h)f(x, y) = f(x, y)f(x+ h, y + h), and ∥ · ∥□ is the box
norm, thus this norm is counting configurations (x, y), (x + k, y), (x, y + ℓ), (x +

k, y+ ℓ), (x+h, y+h), (x+k+h, y+h), (x+h, y+ ℓ+h), (x+k+h, y+ ℓ+h). This
appears to be the simplest ‘Gowers-type norm’ for which an inverse theorem is not
known, and as such is relevant, though not directly, to Problem 20. For discussion,
and a link to group cohomology, see [12, Example 1.6].

Problem 56. Bounds for the inverse theorem for Gowers norms.

Comments. This has been considered one of the biggest open question in the
subject and it may be asked for finite fields and over the integers.

Over finite fields, the question is simpler to state and it is natural to make the
following ‘Polynomial Gowers Inverse Conjecture’. Fix an integer s ⩾ 1, and let
p > s. Suppose that f : Fn

p → C is a function with |f(x)| ⩽ 1 for all x, and
that ∥f∥Us+1 ⩾ δ (the definition of the Gowers norm may be found in several
places, including the works cited below). Then there is a form ψ of degree s such
that |Ex∈Fn

p
f(x)e(−2πiψ(x)/p)| ≫ δOs(1). Such a statement is not known for any

s ⩾ 2. Indeed, it was shown independently by Tao and me [149] and by Lovett [197]
that the case s = 2 of this assertion is equivalent to Marton’s Conjecture (Problem
49) for Fn

p . Update 2023. Polynomially effective bounds for the case s = 2 are now
known as a consequence of the solution of Marton’s conjecture in [127, 128].

For s = 3, quantitative bounds (of double exponential type) were obtained by
Gowers and Milićević [129], but for s ⩾ 4 only qualitative bounds are known, from
remarkable work of Bergelson, Tao and Ziegler [27].

In the case s = 3, the problem is very closely related to the following attractive
question. Suppose that f : Fn

p → Matn(Fp) is a map with image in the n × n

matrices over Fp, and that rank(f(x+ y)− f(x)− f(y)) ⩽ r for all x, y. Is there a
linear map f̃ : Fn

p → Matn(Fp) with f − f̃ taking values in the matrices of rank at
most 10r (say)? See [174, Question 1.5] for further discussion.

The assumption p > s can be removed, but care is required with the statement
[148, 198] and significant further difficulties arise in the proof [246, 273].

Update 2024. Until very recently, the situation for the ∥ · ∥Us+1[N ]-norm over the
integers was worse.



100 OPEN PROBLEMS 27

In the case s = 2 quantitative (but not optimal) bounds were established by
Tao and me [147], and Manners [204] established the first quantitative bounds for
general s, of double exponential type.

In a significant breakthrough, Leng, Sah and Sawhney [191] established a ‘quasi–
polynomial’ inverse theorem for the ∥ · ∥Us+1[N ]-norms for all s ⩾ 3. That is, if
f : [N ] → C is a 1-bounded function such that ∥f∥Us+1[N ] ⩾ δ, show that there is
a polynomial nilsequence ϕ(p(n)) attached to some nilmanifold G/Γ of complexity
at most C and dimension ≪ logC(1/δ), with ϕ having Lipschitz constant bounded
by 1, and with |En⩽Nf(n)ϕ(p(n))| ≫ exp(− logC(1/δ)). (For an explanation of the
terms here, see for example [190].)

It is possible that a truly polynomial statement may hold, but such a statement
has not even been properly formulated at the moment.

Problem 57. Let G be an abelian group, and consider the space Φ(G) of all
functions on G which are convex combinations of functions of the form

ϕ(g) := Ex1+x2+x3=gf1(x2, x3)f2(x1, x3)f3(x1, x2)

with ∥fi∥∞ ⩽ 1. Let Φ′(G) be the space of functions defined similarly, but with
f3(x1, x2) now required to be a function of x1 + x2. Do Φ(G) and Φ′(G) coincide?

Comments. One would guess that the answer is probably ‘no’. The motivation for
this problem is that both Φ(G) and Φ′(G) are notions of ‘quadratically structured
function’ that have been considered in the literature; Φ(G) is a ‘generalised con-
volution algebra’ as considered by Conlon-Fox-Zhao [73, Section 5], whereas Φ′(G)

consists of Tao’s so-called UAP2(G)-functions [270]. (This last equivalence is not
obvious; I have some unpublished notes on it.)

8. Additive and combinatorial number theory

Problem 58. Suppose that A,B ⊂ {1, . . . , N} both have size N0.49. Does A+B

contain a composite number?

Comments. This is one of my favourite open questions. It arises from an old
question of Ostmann, called the ‘inverse Goldbach problem’: do there exist infinite
sets A,B such that A + B coincides with the primes from some point on? The
answer to this question is surely no, and a positive answer to Problem (58) would
imply this by work of Elsholtz [95]. Adam Harper and me [144] showed that a
positive solution follows from a reasonable understanding of the inverse large sieve,
which is Problem 47 above.

As a general point, one can ask many questions pertaining to sumsets of sets
below the square-root threshold, and our understanding is close to negligible for all
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of them. For example, do there exist A,B ⊂ Z/pZ with |A|, |B| ∼ p0.49 such that
a+ b is always a quadratic residue?

Problem 59. Is every n ⩽ N the sum of two integers, all of whose prime factors
are at most Nε?

Comments. This was asked by Erdős, several times I think, but certainly in a
collection [102] from 1981 one finds the following problem, which is essentially
equivalent: ‘An old conjecture of mine states that if f(n) is the least integer not
of the form a + b with P (a, b) ⩽ n then for every k and for n > n0(k) we have
f(n) > nk. This conjecture does not look hard but I could not get anywhere with
it’.

The reason that the problem ‘does not look hard’ is perhaps that the set of
integers less than N , all of whose prime factors are at most Nε, has positive density
(depending on ε). However, the problem seems closely related to other notorious
binary problems such as the Goldbach conjecture. I believe the record is still Balog’s
exponent 4/9

√
e ≈ 0.2695, obtained 30 years ago in [14].

Trevor Wooley has pointed out the following, which he says is well-known. If
p ≡ 3(mod 4), and if p is the sum of two pε-smooth numbers, then there is some
quadratic non-residue mod p of size at most pε. Thus, to answer the problem for
all ε > 0 is at least as hard as the notorious Vinogradov least quadratic non-residue
problem (at least, the version of that problem restricted to primes p ≡ 3(mod 4)).
The best unconditional exponent for that problem is 1/4

√
e, which is therefore a

serious barrier for our problem. That said, the Vinogradov problem is known under
GRH, so it may also be interesting to explore our problem with that assumption.

Problem 60. Is there an absolute constant c > 0 such that, if A ⊂ N is a set of
squares of size at least 2, then |A+A| ⩾ |A|1+c?

Comments. This is quite a well-known problem, and is strictly easier than a very
old question of Hardy and Littlewood, which asks whether the squares are a Λ(p)-
set for some 2 < p < 4. (Nowadays, however, the sumset question probably seems
more basic to most readers.) It may even be that c can be taken arbitrarily close
to 1, for sufficiently large sets A.

A positive answer to Problem 60 obviously implies that if P is an arithmetic
progression of length n then the number of squares in P is at most O(nκ) for
some κ < 1. Rudin [235] conjectured that in fact this is even true with κ = 1

2 .
Whilst the weaker statement with κ < 1 is known (see [33] with κ = 2

3 + o(1),
and, [35] with κ = 3

5 + o(1)), all known proofs involve serious statements about the
number of rational points on various curves. Thus one expects that Problem 60
must necessarily involve such ingredients as well. In particular, Solymosi [262] has
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observed that an affirmative answer to Problem 60 would follow if one could show
that the squares do not contain an ‘affine cube’ {x+ω1h1+ · · ·+ωdhd : ω1, . . . , ωd ∈
{0, 1}} for some d, a problem which feels purely diophantine.

A very comprehensive resource for this circle of problems is the nice paper of
Cilleruelo and Granville [64].

Problem 61. Suppose that A+A contains the first n squares. Is |A| ⩾ n1−o(1)?

Comments. Benny Sudakov reminded me of this question, which was considered
by Erdős and Newman [104] . For some discussion, see [7, Theorem 1.6]. It seems
that the best known results are the relatively simple observations in [104], where
it is shown that necessarily |A| ⩾ n2/3−o(1), whilst in the other direction there do
exist such A with |A| ≪C n/ logC n, for any C.

Problem 62. Let p be a large prime, and let A be the set of all primes less than
p. Is every x ∈ {1, . . . , p− 1} congruent to some product a1a2?

Comments. This is a problem of Erdős, Odlyzko and Sárközy [105] from 1987.
Walker [279] showed that the result if true if one instead considers 6-fold products
a1a2 · · · a6. of at most 6 primes, and Shparlinski [260] has improved the 6 to a 5.
If one wants products of exactly k primes then it seems that the best value of k
known is 20, contained in the thesis of Walker.

Update 2023. Matomäki and Teräväinen [206] have made significant progress on
this question, reducing k to 3.

Problem 63. Let A be the smallest set containing 2 and 3 and such that a1a2−1 ∈
A if a1, a2 ∈ A. Does A have positive density?

Comments. Erdős [100] attributes this to Hofstadter. The answer is probably
yes. A proof of this may have to involve some computation (as well as, presumably,
theoretical arguments) since the statement fails if a = 2 and b = 3 are replaced by,
say, a = 9 and b = 10, since the size of the ‘words’ of a given length (for example,
a(ab− 1)− 1 has length 3) grows much more quickly than the number of them.

Problem 64. Do there exist infinitely many primes for which p − 2 has an odd
number of prime factors?

Comments. The same question may be asked with p−1 (and this is probably more
natural) but with p − 2 the question is a weak form of the twin prime conjecture.
The set of integers S with an odd number of prime factors has density 1

2 , so one is
‘only’ asking for infinitely many primes in a set (S + 1) of density 1

2 .

Problem 65. Is there c > 0 with the following property: whenever A ⊂ [N ] is a
set of size N1−c, A−A contains a nonzero square? What about A−A containing
a prime minus one?
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Comments. Both problems were originally considered by Sárközy.
It is known [226] that a condition |A| > N(logN)−ω(N), ω(N) → ∞, is sufficient

for A−A to contain a square.
Update 2020. Bloom and Maynard [31] have shown that we may take ω(N) =

c log log logN here, which is currently the best known bound. In the other direction,
Ruzsa [237] showed that for A−A to contain a square one cannot have c > 0.267.
Most likely, this is closer to the truth; that is, if A − A contains no square then
|A| ⩽ N1−c for some c > 0. This is a challenging open question, and even the
(presumably much easier) analogue for subsets of Z/qZ is not known uniformly in
q, the problematic cases being when q is a product of primes ≡ 3(mod 4). For more
on this, see [112].

Turning to shifted primes, Ruzsa and Sanders [244] show that A−A contains p−1

under the weaker condition |A| > N exp(−c(logN)1/4), and in June 2019 R. Wang
[282] improved the exponent here to 1/3. The biggest set known with A − A not
containing p − 1 has, I believe, size NC/ log logN = No(1); see [236]. Update 2022.
I [142] obtained an upper bound of shape |A| ≪ N1−c for this problem, for some
c > 0. Thorner and Zaman [275] showed that c = 10−18 is permissible, and I [143]
showed that one can take c = 1

12 − o(1) assuming GRH.
Returning to the squares, the following presumably easier question is also open:

if A ⊂ [N ] is a set of size N1−c, does 100A− 100A contain a nonzero square?
In the function field setting, I obtained polynomially effective bounds for squares

using the polynomial method of Croot–Lev–Pach [138]. However, the method does
not work for primes (irreducibles). Thus, I believe the following is open: let A be
a set consisting of (1.999)n polynomials over F2, all of degree ⩽ n. Do there exist
a1, a2 ∈ A such that a1 − a2 − 1 is irreducible? Update 2022. Whilst this is still
open, it ought to follow from the methods of [142].

Problem 66. Is there always a sum of two squares between X − 1
10X

1/4 and X?

Comments. I am including this mainly because it is in Littlewood’s list [193]
(Problem 2), Montgomery’s list [209] and the first problem paper of Erdős [98]
(Problem 15), where he already describes it as ‘an old problem’. There is a well-
known, almost trivial, argument showing a bound of O(X1/4) on the left: subtract
off the greatest square u2 less than X, then subtract off the greatest square v2

less than X − u2. Sofia Lindqvist and I [145] have a somewhat different argument,
giving a sum of two almost equal squares within O(X1/4) of X.

Problem 67. Bounds for Waring’s problem over finite fields.

Comments. To my mind the most interesting questions about the actual Waring’s
problem (over the integers) concern G(k), the least s such that all sufficiently large
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positive integers are the sum of s non-negative kth powers. It has been known
since work of Vinogradov in 1935 that G(k) ≪ k log k, and famously Wooley [283]
reduced the implied constant to 1 + o(1), still the best known. It has long been a
vague dream of additive combinatorialists (suggested by Freiman, and articulated
more recently by Gowers [124]) that the structure theory of set addition could have
something to say about this problem, but nothing definite has ever been done in
this direction, and it is not clear how promising the idea is.

The same question may be asked over finite fields, and one might hope that this
provides a fertile testing ground for ideas. I believe a reasonable analogue of G(k)
is Gfin(k), defined as follows. Fix a prime p ∈ (k, 2k) (in small characteristic, excep-
tional phenomena occur; see [194]). What is the least s such that, for sufficiently
large d, every polynomial over Fp of degree d may be written as the sum of at most s
kth powers of polynomials of degree ⩽ d/k? The bound Gfin(k) ⩽ (1+ o(1))k log k,
matching what is known over the integers, was obtained by Liu and Wooley [194].
Any improvement to this would be of interest.

9. Discrete and combinatorial geometry

Problem 68. Suppose that A ⊂ F2
p is a set meeting every line in at most 2 points.

Is it true that all except o(p) points of A lie on a cubic curve?

Comments. There is an absolutely vast literature on ‘arcs’, which is the name
given to sets with no-three in a line. However, I could not find this question asked,
or really even hinted at, in that literature, which is more concerned with exact
quantities for small p. I asked it myself in [137]. It is more natural to formulate
the question in projective space.

The largest no-3-in-a-line set (arc) is a conic of size p+O(1), and Voloch [278],
building on work of Segre, showed that any arc of size > 44

45p lies in a conic. Below
the threshold 1

2p there are genuinely cubic examples. The would-be solver should
also note that the result is false in Fq with q = p2, where there exist ‘hermitian
quadrics’.

There are many further problems on no-three-in-a-line sets, on which one would
expect a positive solution to Problem 68 to shed some light. One of my favourites is
the following. Denoting by fd(p) the size of the largest no-three-in-a-line set in Fd

p,
one has f2(p) ∼ p and f3(p) ∼ p2. Is f4(p) = o(p3), or even O(p2+o(1))? The point
here is that in dimension 4 and above, low-dimensional algebraic examples are forced
to contain whole lines. All that is known is a slight improvement f4(p) ⩽ (1− c)p3

on the trivial bound, due to Nagy and Szőnyi [212].
Another problem is to determine the largest subset of F2

p with no four on a
line; at the moment there is a factor of 2 discrepancy between the lower bounds of
(1 + o(1))p and the upper bound (2 + o(1))p.
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More generally than in the statement of the problem, one may conjecture that
if A ⊂ F2

p meets every line in O(1) points then all but o(p) points lie on a curve of
degree O(1). This may help with the following beautiful problem: let PG(2, q) be
the projective plane over Fq. Is there a set B ⊂ PG(2, q) (a ‘blocking set’) meeting
every line in at least 1, but at most 1000, points? It seems this problem is originally
due to Erdős (see [108]). If q is not prime then, in many cases, there can be such
sets: see [121, p 283] for several references. However, as q ranges over sufficiently
large primes it is speculated that no such set exists.

Problem 69. Fix a number k. Let A ⊂ R2 be a set of n points, with no more
than k on any line. Suppose that, for at least δn2 pairs of points (x, y) ∈ A × A,
the line xy contains a third point of A. Is there some cubic curve containing at
least cn points of A, for some c = c(k, δ) > 0?

Comments. Very little is known, except when δ = 1−O(1/n), in which case the
statement follows from the main results of [150]. The statement is also known for
sets A lying on curves of higher (but essentially constant) degree [92]; this could well
be an important ingredient in any proof. Let us also note the following beautiful
result of Barak, Dvir, Wigderson and Yehudayoff [17]: if a set A ⊂ Cd has ⩾ δn2

collinear triples and no k on a line, it has a subset of size ≫δ,k n of dimension
≪ δ−2. I have often thought this should be relevant to Problem 69 but have not
managed to establish a connection.

Elekes and Szabó [92] make the following conjecture, which is much weaker than
Problem 69 (but should hold without the assumption of no more than k points on
a line): if A has cn2 collinear triples, do some 10 points of A lie on a cubic curve?
(Note that there is a cubic curve through any 9 points.)

I was led to this question by consideration of the following two beautiful prob-
lems, both of which ought to follow from a positive solution to it or closely-related
questions.

Problem 70. Fix integers k, ℓ. Is it true that, given a set of n ⩾ n0(k, ℓ) points
in R2, either some k of them lie on a line, or some ℓ of them are ‘mutually visible’,
that is to say that line segment joining them contains no other point from the set?

Comments. This question was first raised in [172]. It is known for ℓ ⩽ 5, see [4].
The link to Problem 69 is that if A does not have ℓ mutually visible points then

one may easily see that it has ≫ℓ n
2 collinear triples.

Problem 71. Suppose that A ⊂ R2 is a set of size n with cn2 collinear 4-tuples.
Does it contain 5 points on a line?

Comments. This question was asked by Erdős on numerous occasions. Much
more should be true (e.g., 100 points on a line). The link to Problem 69 is that the
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assumption of many collinear 4 tuples certainly implies many collinear triples and
so, assuming no 5 on a line, a positive proportion of A lies on a cubic curve. By an
iterative argument one may put almost all of A on a union of cubic curves. However,
one may verify that such a set cannot, after all, have many collinear 4-tuples. See
[92].

A construction of Solymosi and Stojaković [264] shows that one may have as
e−c

√
lognn2 collinear 4-tuples without a collinear 5-tuple. It ought to be the case

that one can modify this construction so that no more than O(1) of the points lies
on a cubic curve, but I was not able to do this. Indeed, trying to do this led to
Problems 73 and 74 below.

Problem 72. What is the largest subset of the grid [N ]2 with no three points in a
line? In particular, for N sufficiently large is it impossible to have a set of size 2N

with this property?

Comments. Specific cases of this problem date back to Dudeney over 100 years
ago. Despite initial appearances, it has a very different flavour to, for example,
Problem 68, as lines meeting the grid [N ]2 often contain very few points. For a
bibliography, see [152, Problem F4]. In particular, we note that there do exist such
configurations of 2N points for N up to around 50. It was shown in [155] that for
arbitrary N one can have ( 32 + o(1))N such points, and my personal suspicion is
that this is optimal. It is possible that any no-three-in-a-line subset of [N ]2 is either
small, or has a large subset which reduces (mod p) to a set of points on a curve in
F2

p. It might be interesting to formulate a precise conjecture of this type and see
whether it can be used to show that the construction of [155] is optimal. I would
find this a lot more convincing than the heuristic given by Guy and Kelly [153].

An interesting related question is the following: is there a subset A ⊂ Z2 with
no three points on a line, and with |A∩ [−N,N ]2| ⩾ cN for some absolute constant
c > 0 and all sufficiently large N? The answer to this may well be no, as conjectured
by Erde [94, Conjecture 5.1]. This seems plausible to me, due to the vague intuition
that examples of large no-three-in-a-line subsets of [−N,N ]2 may have to come
from constructions (mod p), with the value of p being somehow tied to N . On the
other hand, Nagy, Nagy and Woodroofe [214] take the contrary view, and provide
numerical evidence based on greedy constructions that c may exist and be at least
around 0.8.

Problem 73. Let Γ be a smooth codimension 2 surface in Rn. Must Γ intersect
some 2-dimensional plane in 5 points, if n is sufficiently large?

Comments. Obviously there is a more general problem here, where the codimen-
sion of Γ is d and one wants to know that some d-dimension plane intersects Γ in
f(n, d) points.
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I intend the question to be local, as opposed to being about global topological
properties of Γ. Thus for the purposes of this problem one can take Γ = {(x, f(x)) :
x ∈ (−1, 1)n−2} for some smooth function f : (−2, 2)n−2 → R2 with f(0) = 0, say.

More or less all I know is that f(n, 1) = 2 (this is obvious, for an example take a
convex hypersurface) and that f(n, d) ⩾ 2d for large enough n (this is less obvious,
but it follows from essentially the same argument which shows that a sufficiently
large set in an abelian group contains a ‘Hilbert cube’ x+ ε1u1 + · · ·+ εdud).

In particular, I do not know whether f(n, 2) is bounded independently of n. It
is at least true that f(n, d) is finite for all n, d. A proof was sketched by René
Thom [274] in a rather obscure paper. The details were worked out in a paper of
Chaperon and Mayer [59]. Explicit constructions are given in the work of Dvir and
Lovett [84].

Problem 74. What is the largest subset of [N ]d with no 5 points on a 2-plane?

Comments. It was consideration of this problem which led me to Problem 73
above. I do not know if there can be such a set of size Nd−100. A more-or-less
equivalent formulation is to find the largest subset of [N ]d with no 5 points on
a conic (since conics are planar, and though any 5 points in the plane there is a
conic).

Questions of this type seem related to the following question asked by Bays
and Breuillard [23]: do there exist arbitrarily large finite sets A ⊂ R2 with |A +

A| = |A|1+o(1), but which are in ‘general position’ in the sense that for every d,
maxC:degC=d |A ∩ C| is bounded? It is important to note that this is required for
every d. If one just requires d = 1, for example then an example of Pach [215]
suffices.

Problem 75. Let X ⊂ R2 be a set of n points. Does there exist a line ℓ through
at least two points of X such that the numbers of points on either side of ℓ differ
by at most 100?

Comments. I read this in Alon [181, Problem 364], but Gil Kalai [171] has directed
me to a blog post he prepared on this topic in 2010. In particular, that the answer
to the question is affirmative both he and Pinchasi [224, Problem 7.1] refer to as the
Kupitz-Perles conjecture. Pinchasi [224] has shown that it is true with 100 replaced
by O(log log n); this is the best-known upper bound for the problem. Alon (see
[224]) has given an example to show that it is not true with 100 replaced by 2.

Conlon and Lim [74] give a negative answer to a variant of this problem with
‘pseudolines’; their paper may be consulted for further references.
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Problem 76. Let A be a set of n points in the plane. Can one select a set A′

of n/2 points, with the property that any axis-parallel rectangle containing 1000
points of A contains at least one point of A′?

Comments. This problem was told to me by Nets Katz a number of years ago.
I believe it is instance of a well-known problem in discrepancy theory, namely
whether weak ε-nets for axis-parallel boxes of size O(1/ε) exist. Certainly a search
for those terms will yield the relevant papers, of which [6] seems to be particularly
pertinent; if I understand correctly (though I should caution that this is far from
my expertise), they show that the answer is ‘yes’ if 1000 is replaced by C log log n.
Noga Alon remarked to me that if A′ is required to be a subset of A then the answer
is no. See Lemma 3.1 of [216].

Problem 77. Given n points in the unit disc, must there be a triangle of area at
most n−2+o(1) determined by them?

Comments. This is ‘Heilbronn’s triangle problem’ and it is rather notorious. Kom-
lós, Pintz and Szemerédi [183] showed that the o(1)-term is necessary, and in the
other direction [182] they showed that there must be a triangle of area at most
n−8/7+o(1). I am not aware of any progress since then. It is worth remarking that
the problem was a favourite of Klaus Roth [234].

Update 2023. Cohen, Pohoata and Zakharov [66] have improved the bound to
n−8/7−c for some c > 0 (they obtain c = 1

2000 ).

10. Nonabelian questions and group theory

Problem 78. (Solved) Let ε > 0. Suppose A ⊂ SO(3) is open and has sufficiently
small (in terms of ε) normalised Haar measure. Is µ(A ·A) ⩾ (4− ε)µ(A)?

Comments. Nothing better is possible, as follows by considering small neigh-
bourhoods of a 1-dimensional subgroup. This question arose in conversations with
Emmanuel Breuillard.

Jing and Tran [166, Theorem 1.3] obtained the bound µ(A · A) ⩾ (2 + η)µ(A),
provided that µ(A) is sufficiently small, where η ∼ 10−12. This is already a highly
nontrivial result.

Interestingly, the question becomes easier in noncompact groups. For example,
with SO(3) replaced by SL2(R), it is shown in [167] that µ(A · A) ⩾ 4µ(A). The
feature of SL2(R) which makes this possible is the presence of the affine group
Aff(R), which is solvable and sits in a short exact sequence 1 → R → Aff(R) →
R → 1. This allows one to bring in tools related to the Brunn-Minkowski theorem.

Update 2023. The original question has been resolved positively by Jing, Tran
and Zhang [168]. Their argument is very elaborate and makes heavy use of model
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theory as well as the earlier work [166], and so does not give explicit bounds. They
[168, Conjecture 1.3] make the rather precise conjecture that in fact µ(A · A) ⩾

min(1, 4µ(A)(1 − µ(A))). Machado [200] subsequently obtained a rather precise
result in an arbitrary compact connected Lie group.

Problem 79. Pick x1, . . . , xk ∈ An (the alternating group on n letters) at random.
Is it true that, almost surely as n→ ∞, the random walk on this set of generators
and their inverses equidistributes in time O(n log n)?

Comments. The statement is one equivalent form of what it means to be an
expanding set of generators. This may even be true for k = 2, although it is not
known if this statement is true for any pair of elements in An.

The statement about equidistribution of the random walk is one of the known
equivalent definitions of being an expanding set of generators. Thus an alternative
formulation of the question is: do k random elements of An form an expanding set
of generators?

At present this seems a pretty hopeless problem. It would imply that (a.s.
as n → ∞) the diameter of An with respect to the generating set x1, . . . , xk is
O(n log n). By contrast, the best known upper bound for this is O(n2 logC n), due
to Helfgott, Seress and Zuk [159].

Problem 80. Find bounds in the classification theorem for approximate groups.

Comments. The theorem being referred to is [43]. This theorem is ineffective due
to the use of an ultraproduct argument.

11. Harmonic analysis

Problem 81. Let A be a set of size n integers. Is there some θ such that∑
a∈A cos(aθ) ⩽ −c

√
n?

Comments. This is Chowla’s cosine problem. First posed explicitly in 1965 [62],
it has its genesis in a question from 1948 asked by Ankeny and Chowla.

The best known result is due to Ruzsa [242], who showed that −e−c
√
logn is

attainable. Ruzsa remarked to me in 2001 that almost nothing is known for the more
general sum of cosines λ1 cos r1t+ · · ·+ λn cos rnt in which λ1, . . . , λn ∈ [0.99, 1.01]

(say).
There is a corresponding problem for sines, but it is somewhat more obscure.

The question here is whether there is some θ such that |
∑

a∈A sin(aθ)| ⩾ n1/2+c.
Montgomery [209, Problem 54] attributes this question to Bohr. So far as I am
aware, the best example known is of a set showing that we cannot take c ⩾ 1

6 , due
to Bourgain in a somewhat difficult to find paper [38]. By contrast, Konyagin [185]
has shown that there is some θ such that |

∑
a∈A sin(aθ)| ≫ n1/2(log n/ log log n)1/2.
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See also the remarks to Problem 1, where related problems are discussed with
cos replaced by piecewise constant functions f .

Problem 82. Let A ⊂ Z be a set of size n. For how many θ ∈ R/Z must we have∑
a∈A cos(aθ) = 0?

Comments. This is [193, Problem 22]. He says ‘probably n−1, or not much less’.
This is false (depending on how one defines ‘not much less’): there are examples with
at most n5/6+o(1) zeros, due to Borwein, Erdélyi, Ferguson and Lockhart [36]. This
has recently been improved to O(n2/3 log2/3 n) by Juškevičius and Sahasrabudhe
[169].

It is known (see [97, 245] that the number of zeros does tend to infinity with n,
albeit very slowly (the bound (log log log n)1/2−o(1) is obtained in [245]).

Problem 83. Describe the rough structure of sets A ⊂ Z with |A| = n and
∥1̂A∥1 ⩽ K log n.

Comments. This is the ‘inverse Littlewood problem’; Littlewood conjectured, and
McGehee-Pigno-Smith and Konyagin indepently proved, that ∥1̂A∥1 ≫ log n. It is
natural to conjecture that A has symmetric difference o(n) with a ± combination of
OK(1) characteristic functions of progressions. More precise conclusions should pre-
sumably be possible, but one has to be careful: for instance, if P is a 2-dimensional
progression with sidelength ∼ e

√
logn then ∥1̂S∥1 ≪ log n.

A solution to this problem would be extremely relevant to Problem 1, as men-
tioned there, as well as to the further problems (1.1), (1.2) mentioned in the remarks
to that problem. It may also be relevant (and it would be good to have a formal
deduction of this type) to the currently unresolved Strong Littlewood Conjecture,
which states that ∥1̂A∥1 ⩾ (1+o(1))∥1̂P ∥1 = ( 4

π2 +o(1)) log n, where P is a progres-
sion of length n. (In fact, I believe that the even stronger statement ∥1̂A∥1 ⩾ ∥1̂P ∥1
is thought to hold.)

There are also interesting questions of this type in finite fields. For example,
if A ⊂ Fn

2 has
∑

r |1̂A(r)| ⩽ M then Sanders [250] showed 1A is a ± sum of
exp(M3+o(1)) indicator functions of cosets. However, the true dependence may
well be polynomial.

Let us also mention the ‘Littlewood–Gowers problem’: if A ⊂ Z/pZ has density
1
2 , what is the smallest possible value of

∑
r |1̂A(r)|? The example of an arithmetic

progression shows that it can be ≪ log p, but the best known lower bound is
≫ (log p)1/2−ε, due to Sanders [247].

Problem 84. (Solved) Is there a function f : {1, . . . , N} → {−1, 1} with |f̂(θ)| ⩾
c
√
N for all θ?
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Comments. This problem is more usually stated in terms of polynomials: is there
a polynomial P (z) =

∑N−1
i=0 εiz

i with ±1 coefficients such that |P (z)| ⩾ c
√
N for all

z on the unit circle? Note that a random choice of P fails to work quite dramatically
(there are z with |P (z)| ∼ N−1/2+o(1), as shown by Konyagin [184]; this is basically
a kind of manifestation of the ‘birthday paradox’.)

Update 2019. This problem, though not the further problems below, has now
been solved in very nice work of Balister, Bollobás, Morris, Sahasrabudhe and Tiba
[16].

This is a weak version of a fairly notorious problem of Littlewood, which asks
whether there is in fact such a polynomial with |P (z)| = (1+ o(1))

√
N always; the

answer to this may well be no. In fact, it is conjectured (the ‘merit factor problem
of Golay’) that

∫ 1

0
|P (z)|4dz ⩾ (1+c)N2 for some universal c > 0. See [37] for much

more information on this, which is again a somewhat notorious open problem.
Continuing the ‘ultra-flat’ theme but in a somewhat different context, I am not

sure if it known whether or not there exists, for infinitely many q, a subset A ⊂ Z/qZ

of size ∼ q1/3, all of whose nontrivial Fourier coefficients have size O(q1/6). (Note
that O(q1/6 log q) follows quite easily from a random construction.) This is very
closely related to [209, Problem 13], where it is observed (by Ruzsa) that Sidon sets
give examples of size ∼ q1/2.

Finally, let me mention that, so far as I am aware, it is not known that the
Liouville function λ (restricted to [N ]) does not have this property, though it surely
does not since one expects it to behave somewhat like a random sequence of ±1

signs. In fact I am not sure even sure that λ is known not to satisfy the stronger
property |

∑N
n=1 λ(n)e

2πinθ| = (1 + o(1))
√
N . Consideration of the fourth moment

is tempting here, but it is unclear to me how to bound it from below. Zachary Chase
(personal communication) remarked to me that this property must fail at either N
or 2N , on account of the relation

∑
n⩽2N λ(n)+

∑
n⩽2N λ(n)eπin = −2

∑
n⩽N λ(n).

12. Miscellany

This final section contains a miscellaneous selection of further problems of wildly
differing scope, importance and (presumably) difficulty.

Problem 85. Suppose that A is an open subset of [0, 1]2 with measure α. Are
there four points in A determining an axis-parallel rectangle with area ⩾ cα2?

Comments. This is often known as ‘Carbery’s rectangle problem’, though it ap-
pears in a joint paper of Carbery, Christ and Wright. See [56, Section 6]. It is
quite easy to show using Cauchy-Schwarz that there must be such a rectangle with
area ≫ α2(log 1/α)−1. In the other direction, the example of a diagonal stripe of
width ∼ α shows that one could not hope for better. A related discrete problem is
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as follows: does there exist a set A ⊂ [N ], |A| ⩾ 100
√
N , such that if an additive

quadruple x, x+ h1, x+ h2, x+ h1 + h2 lies in A then |h1||h2| ⩽ N?
Problem 85 and related problems are considered by Keleti [179]. One might

instead ask for an axis parallel rectangle R, all four vertices in A, and with |A∩R| ≫
αC . It is known that there is such an R with C = 4, but this need not be so with
C = 3, an example Keleti attributes to Reiman.

In dimension 3 and above, these problems are wide open, even without any
restriction the area (volume) of cuboids. In particular one may formulate the ‘box
problem’: what is the largest density of a subset of [n]3 not containing the eight
vertices of a cuboid? The answer is between n−1/3 and n−1/4 (up to constants):
see [173]. Note that this problem is essentially a hypergraph Túran problem, that
of determining ex(n,K3

2,2,2) in the language used there. As such, it goes back to
questions raised by Erdős in 1965. It seems to be believed (cf. [211, Conjecture
1.4]) that the upper bound represents the truth. A recent reference, giving a new
construction of the n−1/3 lower bound of [173], improved lower bounds in higher
dimensions and a useful overview of the literature, is [75].

Problem 86. Let c > 0. Let A be a set of n (distinct) integers. Does there exist
θ such that no interval of length 1

n in R/Z contains more than nc of the numbers
θa(mod 1), a ∈ A?

Comments. This is only known for c > 1
3 ; see [187]. The problem is raised as [209,

Problem 17 (4)], where it is attributed to Komlós and Ruzsa. This problem feels
not unrelated to questions like Problem 43, but I do not know a direct connection.

Problem 87. Let p(k) be the limit as n → ∞ of the probability that a random
permutation on [n] preserves some set of size k. Is p(k) a decreasing function of k?
Is p(k) = (C + o(1))k−α(log k)−3/2 for some absolute constant C?

Comments. I first learned of this problem from a paper of Britnell and Wildon
[50]. In a joint paper with Eberhard and Ford [87] it was proven that p(k) is
bounded above and below by constant multiples of k−α(log k)−3/2, which of course
makes the second question very reasonable. This second question is a model for
the following natural question: how many distinct elements are there in the N ×N
multiplication table?

It is quite easy to see, given known results about the Poisson behaviour of per-
mutations, that

p(k) = 1−
∑

(a1,...,ak)∈Ωk

k∏
i=1

e−1/i (1/i)
ai

ai!
,

where Ωk is the (finite) set of all tuples of non-negative integers for which a′1 +

2a′2 + · · ·+ ka′k ̸= k whenever a′i ⩽ ai. For example, Ω1 = {(0)}, so p(1) = 1− 1
e .
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Here is a related model problem (the relation becomes clearer upon studying
[87]). Pick a random set of integers A by including i in A with probability 1

i log 2 .
(Thus A is a random lacunary sequence, with growth rate like that of the powers
of 2). Let Σ(A) be the set of all finite sums of distinct elements of A. Is it true
that 1

n |Σ(A) ∩ [n]| ∼ C(log n)−1/2 as n→ ∞?

Problem 88. Consider a set S ⊂ [N ]3 with the property that any two distinct
elements s, s′ of S are comparable, which means that s− s′ has either two (strictly)
positive indices or two (strictly) negative ones. Is |S| ⩽ N2−δ for some δ > 0?

Comments. This is perhaps the most basic of a host of questions considered
by Gowers and Long [123], motivated by a question of Po-Shen Loh. It can be
formulated as a question about the maximum independent set in a graph on vertex
set [n]3 in which two vertices x, y are joined if x, y are not comparable, which means
that (x1, x2, x3) is joined to (for example) all (x1, x′2, x′3) with x′2 < x2 and x′3 > x3.
One reason the problem is hard (it seems to me) is that it asks to go below the
threshold for which a spectral bound (‘Delsarte’s method’) on the independence
number might be possible.

Here is a modular version which, while not as natural, has a similar flavour
and more symmetry. Let S ⊂ F3

p be set consisting of all triples (0, y, z) where
y,−z ∈ {1, . . . , 12 (p− 1)}, together with the other five similar classes (e.g. (z, 0, y)

satisfying the same property). Suppose that A−A is disjoint from S. Is |A| ⩽ p2−δ?

Problem 89. Let A ⊂ Fn
2 . If V is a subspace of Fn

2 , write α(V ) for the density of
A on V . Is there some V of moderately small codimension on which α is stable in
the sense that |α(V )− α(V ′)| ⩽ ε whenever V ′ is a codimension 1 subspace of V ?

Comments. This is an arithmetic variant of an open question in graph theory
raised by Conlon and Fox [72, Lemma 3.6]. In that lemma, they show that every
graph G on n vertices contains an ε-regular subset on n′ vertices, where n′/n ⩾

2−ε−(10/ε)4

, and they go on to say ‘while our bound gives a double exponential
dependence, we suspect that the truth is more likely to be a single exponential. We
leave this as an open problem.’

Manners showed that one can have such a V of codimension exponential in 1/ε.
In the other direction, there are examples to show that the codimension must grow
like a power of 1/ε.

Problem 90. Suppose that A ⊂ Z/pZ is a set of density 1
2 . Under what conditions

on K can A be almost invariant under all maps ϕ(x) = ax+ b, |a|, |b| ⩽ K?

Comments. This problem was considered by Eberhard, Mrazović and me (unpub-
lished). By ‘almost invariant’ we mean |A△ϕ(A)| = o(p). One can have K → ∞
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(but slowly, something like logc p); this is related to the fact that the affine group
over Fp is amenable. In the other direction, we showed that K cannot be as large
as p1/100.

Problem 91. (Solved) Take a random graph G(n, 12 ). Is there almost surely a
bipartition of G into two sets of n/2 vertices with the property that 99% of vertices
have more neighbours on their own side than on the other?

Comments. Told to me by Benny Sudakov, this question was apparently asked
by Füredi in 1988.

Update 2021. Ferber, Kwan, Narayanan, Sah and Sawhney [110] have shown that
this is indeed true. However (personal communication) they believe it is possible
that the result is true with 99 percent replaced by 100 percent. That is, is there
almost surely a bipartition of G into two sets of n/2 vertices with the property that
all vertices have more neighbours on their own side than on the other?

Update 2023. Minzer, Sah and Sawhney [208] have comprehensively dispatched
this problem, in fact finding a critical value of γ ≈ 0.17566 such that almost surely
there is a bipartition in which every vertex has ⩾ (γ− o(1))

√
n more neighbours in

its own part than in the other part.

Problem 92. I have a string x ∈ {0, 1}n. Let x̃ be the random string obtained by
deleting bits from x independently at random with probability 1

2 (thus, for example,
if n = 8 and x = 00110110, it might be the case that x̃ = 0111, generated by deleting
bits 2, 3, 5, 8.) An instance of x̃ is called a ‘trace’. How many independent traces
x̃1, . . . , x̃m are needed before one can reconstruct x with probability 0.9?

Comments. This problem is known as the trace reconstruction problem. I heard
it from Yuval Peres in 2012, but it goes back to work of Levenshtein from the early
2000s. Independent work of Nazarov-Peres [213] and of De-O’Donnell-Servedio [80]
on the topic gives the best known upper bound, showing that m = eCn1/3

suffices.
Update 2020. Chase [61] has improved this to en

1/5 logC n.
Simple examples (see [21, §4.2]) show that m must grow at least linearly in n,

and very recently Zachary Chase [60], improving on work of Holden and Lyons
[162], improved this to m ⩾ n3/2(log n)−16.

A related wide-open problem is that of reconstruction a binary string of length
n from the multiset of all

(
n
k

)
substrings of length k, the so-called k-deck. In [189],

it is shown that k ⩾ C
√
n suffices (see also [254] for a different proof of a bound

weaker by only a logarithm). In [83], it is shown that k ⩾ ec
√
logn may not be

enough (I thank Zachary Chase for these references).

Problem 93. Is a random polynomial with coefficients in {0, 1} and nonzero con-
stant term almost surely irreducible?
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Comments. More precisely, writing pn for the probability that 1 + a1x + · · · +
an−1x

n−1 + xn is irreducible, where the ai are i.i.d. Bernouilli random variables,
does pn → 1?

Unconditionally, the best bound known is pn ≫ 1/ log n, due to Konyagin [186].
Very recently Breuillard and Varjú [45] have established the conjecture conditional
upon the Grand Riemann Hypothesis. It should also be noted that Bary-Soroker
and Kozma [20] gave an unconditional proof of the corresponding result in which
the ai are selected uniformly from {1, . . . , 210}. This depends on 210 being the
product of four primes, and so their argument does not apply with 211.

Update 2023. Bary-Soroker, Koukoulopoulos and Kozma [19, Theorem 1] have
made further progression on this question, establishing a corresponding result with
{1, 2, . . . , 210} replaced by {0, 1, . . . ,M} for any M ⩾ 34 (and so, in particular,
answering the question above withM = 211). Moreover, they prove a positive lower
bound δ on the irreducibility probability of a random polynomial with coefficients
in {0, 1, . . . ,M} for all 1 ⩽M ⩽ 33. It is also worth remarking on the short paper
[18], where it is shown that a random polynomial with coefficients in {±1} has
irreducibility probability tending to 1 along a certain infinite sequence of degrees
n.

Problem 94. Let A ⊂ R be a set of positive measure. Does A contain an affine
copy of {1, 12 ,

1
4 , . . . }?

Comments. This is a special case of the Erdős similarity problem; see [267] for a
survey.

Problem 95. (Solved) Are a positive proportion of positive integers a sum of two
palindromes?

Comments. Of course one must specify a base g (say g = 10) in which one is
working.

Baxter, Cilleruelo and Luca [22] have shown that in base g ⩾ 5, every positive
integer is a sum of three palindromes. They also show that for g ⩾ 2 the number
of n ⩽ X which are the sum of two palindromes is ⩾ Xe−cg

√
logX , and for g ⩾ 3 is

at most (1− cg)X, where cg > 0. They also raise the question of whether this set
has positive density.

They remark that it would be interesting to extend their result on sums of three
palindromes to the bases g = 2, 3, 4. They suggest that for g = 3, 4 the same result
should hold, but when g = 2 they observe that 101100002 is not the sum of two or
three palindromes. The arguably more interesting question of what can be said if
one allows finitely many exceptions is not raised in the paper.

Update 2024. D. Zakharov [285] has shown that the answer to Problem 95 is
negative, showing that the number of n ⩽ X which are the sum of two base g
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palindromes is ⩽ X/ logcX for some constant c > 0. There remains the question
of narrowing the gap between this and the result of [22] mentioned above.

Problem 96. Is every set Λ ⊂ Z either a Sidon set, or a set of analyticity?

Comments. This problem, known as the Dichotomy Problem, was raised in the
1960s in the subject of commutative harmonic analysis. It is important to note
that the notion of Sidon set here is not the one featured in Section 4, but rather
the harmonic analysis notion: Λ is Sidon if and only if the Fourier algebra A(Λ) =
{(f̂(λ))λ∈Λ : f ∈ L1(T)} coincides with c0(Λ), the algebra of sequences tending
to zero. By contrast, Λ is a set of analyticity if only analytic functions F act on
A(Λ). Much of the classical literature on these problems is difficult to penetrate for
a modern reader (at least, it is for me). For more on the problem, I recommend,
at least to the reader with passable French, the relatively recent paper of Kahane
and Katznelson [170]. In that paper they show that a random set Λ in which
P(n ∈ Λ) = pn is almost surely Sidon if npn is bounded, and almost surely a set of
analyticity if npn → ∞.

A beautiful open question is whether every Sidon subset of Z (in the commutative
harmonic analysis sense) is a finite union of independent sets, that is to say sets
A ⊂ Z, all of whose finite subset sums are distinct (for example, the powers of two).
In celebrated work from the 1980s, Pisier [225] showed that S ⊂ Z is Sidon if and
only if it has the following property (⋆): there is a δ > 0 such that, if S′ ⊂ S is
finite, then S′ contains an independent set A with |A| ⩾ δ|S′|. The open question is
then the completely combinatorial question of whether every set with property (⋆)
is a finite union of independent sets. I should say that I am not sufficiently expert
on these topics to say with any certainty what the relationship (if any) between
this question and the dichotomy problem is.

I included this problem here in memory of Jean Bourgain, who once told me he
considered it a beautiful open question, and lamented that it might never be solved
since to a large extent the subject had fallen out of fashion. Let me conclude these
comments with another question of Bourgain, asked to Péter Varjú in 2013 [288]:
Is it possible to find n points in the unit square such that the 1/n-neighborhood
of any line contains no more than C of them for some absolute constant C? More
information on this question may be found in [81].

Problem 97. In how many ways (asymptotically) Q(n) may n non-attacking
queens be placed on an n× n chessboard?

Comments. This is the n queens problem. Though very recreational in its state-
ment, it certainly hides some interesting mathematics. This is most clearly seen for
the ‘modular’ version of the problem, in which the chessboard is toroidal and one
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defines T (n) to be the number of ways to place n non-attacking queens on an n×n
board.

There has been significant recent progress on the problem of estimating Q(n) and
T (n). Regarding the former, Simkin [261] showed that Q(n) = ((1 + o(1))ne−α)n,
where α ≈ 1.94 × 10−3 is a constant given in terms of an entropy optimisation
problem (the explicit solution of which remains an open problem). Using very
different methods, in a monumental paper Bowtell and Keevash [42] showed that
T (n) = ((1 + o(1))ne−3)n when n ≡ 1 or 5 modulo 6 (there are no configurations
in the other cases).

The problem of obtaining an asymptotic (rather than an asymptotic for the log)
remains open. In the toroidal case, the problem is equivalent to the following.
Identify (Z/nZ)n with the space of functions f : {1, . . . , n} → Z/nZ, and let
S ⊂ (Z/nZ)n be the set of bijections. How many pairs (π1, π2) ∈ (Z/nZ)n are
there with π1, π2, π1 + π2, π1 − π2 ∈ S?

This is, of course, very reminiscent of questions about four-term arithmetic pro-
gressions, and one suspects that the Gowers U3-norm of 1S or related objects will
come into play. For further comments, and for an ingenious solution to the problem
in which only π1, π2 and π1 − π2 are required to lie in S, see [90].

Problem 98. Let d ⩾ 3 be an odd integer. Give bounds on ν(d) such that
if n > ν(d) the following is true: given any homogeneous polynomial F (x) =

F (x1, . . . , xn) ∈ Z[x1, . . . , xn] of degree d, there is some x ∈ Zn \ {0} such that
F (x) = 0.

Comments. That ν(d) exists at all is highly nontrivial and is a famous result of
Birch [29]. It was 40 years before Wooley [284] gave the first explicit values of ν(d),
which have tower-type growth in d. So far as I am aware it is considered possible
that ν(d) = d2, but even the local variant of this (that is, finding solutions in Qp

rather than Q) is wide open (see, for instance, [157]).
It is known that ν(3) ⩽ 13 by work of Heath-Brown [156].

Problem 99. As Problem 98 illustrates, finding a single solution to a polynomial
equation F (x1, . . . , xn) = C (say) can be very difficult, and asymptotically enu-
merating such solutions inside (say) a box [X]n is still harder. Nonetheless, one
may ask about going yet further, and pose the question of estimating the number
of solutions with the xi constrained to lie in some set A ⊂ [X]. In particular, what
conditions on A ensure that the number of such solutions is roughly αn times the
number of solutions in [X], where α := |A|/X is the density of A in [X], imagining
here that α ∈ (0, 1) is fixed and X is large?
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When F is linear (and n ⩾ 3) such a condition is that A has no large Fourier
coefficients, that is to say X−1

∣∣∑
x⩽X(1A(x) − α)e(θx)

∣∣ = o(1) uniformly in θ.
Some questions are

(i) What can be said when degF = 2 and n = 7, at least in the ‘generic’ case?
(ii) What is the least value of n for which one can say something in the case

degF = 3, at least in the ‘generic’ case?
(iii) What about specific interesting cases such as F (x1, x2, x3, x4) = x21+x

2
2+

x23 + x24?

Comments. Generic here might mean one of two different things. What happens
for a ‘random’ F with coefficients selected from a large box? What happens for
F whose coefficients lie outside some positive codimension algebraic set? I mostly
have in mind the latter interpretation, which offers the chance of saying something
for particular explicit F , but the former case may also be interesting. In both cases
one wants a conclusion for all A, that is to say the allowed F cannot depend on A.

Regarding item (i), in the case n = 8 it should probably follow using the methods
of [141] that in the generic case it is enough for A not to correlate with progressions,
i.e. X−1

∣∣∑
x∈X(1A(x)−α)1P (x)

∣∣ = o(1) for all progressions P ⊂ [X], but it seems
hard to reduce the number of variables to 7. On the other hand, I would guess that
in the generic case n = 5 (or perhaps even fewer) variables should suffice for such
a statement.

I know very little about (ii). Presumably, some value of n could be provided by
adapting the methods of Cook and Magyar [76] but this is not in the literature so
far as I am aware.

Finally, (iii) seems very difficult (and it would be very interesting, as it could
well shed light on the well-known problem of showing that numbers ≡ 4(mod 24)

are p21 + p22 + p23 + p24). One would certainly need to assume that A has no large
quadratic Fourier coefficients, X−1

∣∣∑
x⩽X(1A(x) − α)e(θx2)

∣∣ = o(1), and for the
analogous question with 5 or more variables a condition of this nature is sufficient
(this may be extracted from [52]).

When I prepared the first version of these notes, the following problem seemed
not especially well-known. Now it seems to be considered a major unsolved problem
in group theory.

Problem 100. Is every group well-approximated by finite groups?

Comments. There are really two questions here, namely is every group sofic?
and is every group hyperlinear? Here is a precise statement of the latter question.
Suppose that G is a group. Is the following true? For every finite set A ⊂ G

containing the identity eG and for every ε > 0, there is some unitary group U(n)
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and a map ϕ : A → U(n) such that ϕ(eG) = In, such that ϕ is an ‘approximate
homomorphism’ in the sense that ∥ϕ(a1a2) − ϕ(a1)ϕ(a2)∥ < ε for all a1, a2 ∈ A

such that a1a2 ∈ A, whilst ϕ is ‘nontrivial’ in the sense that ∥ϕ(a) − In∥ ⩾ 1 for
all a ∈ A, a ̸= eG. (Here ∥ − ∥ is the ℓ2-to-ℓ2 operator norm. Also, the constant
1 is unimportant, since a certain amplification trick shows that the concept is the
same if 1 is replaced by any other constant in (0,

√
2); see [221, p. 458].)

Roughly speaking, the notion of sofic replaces the unitary group U(n) here with
the symmetric group Sym(n), endowed with normalised Hamming distance. It
is known that all sofic groups are hyperlinear, but the reverse implication is not
known. See [221].

The Higman group ⟨a1, a2, a3, a4|aai+1

i = a2i , i ∈ Z/4Z⟩ (where here xy := y−1xy)
is not known to be either hyperlinear or sofic. Helfgott and Juschenko [158] showed
that if the Higman group is sofic then some very strange functions f : Z/pZ → Z/pZ

must exist. Namely, given ε > 0, if p is sufficiently large in terms of ε then there
is f with f(x + 1) = 2f(x) for at least (1 − ε)p values of x ∈ Z/pZ, and also
f ◦ f ◦ f ◦ f(x) = x for all x.
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