
Some minor arcs estimates related to the paper “Roth’s theorem in the primes”.

This set of notes is intended to supply details of some estimates required in the paper [2]
of the title. It is normal, when writing a paper, to prove the results contained therein com-
pletely. In this case, however, we found that the estimates we needed were very close to
results contained in [1, 3, 4]. The estimates are of a type which are likely to be “clear” to
most analytic number theorists reading [2], and of the sort that will probably not interest
any analysts reading that paper. This, together with the opportunity to practise nested
subscripts in LATEX, is why we have chosen to record them separately here.

The estimates we discuss here could be useful to anyone who has an additive problem concern-
ing the primes restricted to an arithmetic progression p ≡ b(mod m), so long as no attempt
is being made to obtain results with a strong dependence on m.

The treatment that follows is brief and rough. Furthermore we have made no effort to ensure
that the present notes can be read independently of [2].

1. Two preliminary lemmata. We begin with two estimates of a type which were de-
scribed in [2] as being “of a standard type”.

Lemma 1 Let K be a positive integer, and suppose that q ≥ 100K, (a, q) = 1 and |θ−a/q| ≤
K/q2. Then ∑

1≤n≤X

min(Y, ‖θn‖−1) � K

(
XY

q
+ Y + (X + q) log q

)
.

Proof. Observe that for any j the numbers

(j + 1)θ, . . . , (j + bq/2Kc)θ (1)

are 1/2q-separated modulo 1. Indeed if they were not we should be able to find an integer
l, 0 < |l| ≤ bq/2Kc, with ‖lθ‖ < 1/2q. But then |lθ − al/q| ≤ |l|/q2 ≤ 1/2q, and al 6= 0
(mod q), which is impossible. Divide the sum over 1 ≤ n ≤ X into at most 1 + 4XK/q
ranges of type (1). Over each such range R, we have∑

n∈R

min(Y, ‖θn‖−1) ≤
q∑

i=0

min(Y, 2q/i)

≤ Y + q log q.

Thus the whole sum over 1 ≤ n ≤ X is � (1 + XK/q)(Y + q log q), a bound of the form
stated.

Lemma 2 Let K be a positive integer, and suppose that q ≥ 100K, (a, q) = 1 and |θ−a/q| ≤
K/q2. Then ∑

1≤n≤V

min(U/n, ‖θn‖−1) � K2 log V log q

(
U

q
+ V + q

)
.
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Proof. Divide the sum over n into the range 1 ≤ n ≤ bq/2Kc plus dyadic ranges 2i ≤ n <
2i+1 for 2i ranging between about q/K and V . The numbers ‖θn‖, n = 1, . . . , bq/2Kc, are
1/2q-separated and so one has

bq/2Kc∑
n=1

‖θn‖−1 �
q∑

i=1

q/i � q log q.

For each range 2i ≤ n < 2i+1 use the bound of Lemma 1. This gives

V∑
n=bq/2Kc

min(U/n, ‖θn‖−1) � K
∑

i:2i∈[q/4K,2V ]

(
U

q
+

U

2i
+ 2i log q + q log q

)

� K2

(
U log V

q
+ V log q + q log q log V

)
.

The lemma follows.

2. A minor arcs estimate. The estimate we refer to, which was used in [2], is the following.

Lemma 3 Suppose that a, q are positive integers with (a, q) = 1, and let θ be a real number
such that |θ − a/q| ≤ 1/q2. Suppose that q ≥ 100m2. Then

λ∧b,m,N(θ) � m6(log N)4
(
q−1/2 + N−1/5 + N−1/2q1/2

)
. (2)

Thus if θ ∈ m then λ∧b,m,N(θ) = O((log N)−A).

Let Λ be von Mangoldt’s function: Λ(n) = log p if n = pk is a prime power, and 0 otherwise.
We will begin (and almost end) by obtaining the following estimate.

Lemma 4 Suppose that (a, q) = 1, that q ≥ 100K and that |θ − a/q| ≤ Kq−2. Then∑
x≤N

x≡b(mod m)

Λ(x)e(θx) � K2(log N)4

(
N

q1/2
+ N4/5m3/5 + N1/2q1/2

)
.

Proof. Let us quote an identity from [1]. This identity, very closely related to an identity of
Vaughan [4], will be instantly memorable to every reader who sets eyes on it. Let 1 ≤ U ≤
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√
N be a parameter to be chosen later. Then∑

x≤N
x≡b(mod m)

Λ(x)e(θx) =
∑
x≤U

x≡b(mod m)

Λ(x)e(θx)

+
∑

xy≤N
x≤U

xy≡b(mod m)

µ(x)(log y)e(θxy)

+
∑

xy≤N
x≤U2

xy≡b(mod m)

f(x)e(θxy)

+
∑

xy≤N
x,y>U

xy≡b(mod m)

µ(x)g(y)e(θxy), (3)

where
f(x) =

∑
x=uv
uv≤U

µ(u)Λ(v) (4)

and
g(y) =

∑
y=uv
v>U

Λ(v). (5)

We will refer to the four terms in (3) in imaginative fashion as the first, second, third and
fourth terms. Observe that both ‖f‖∞ and ‖g‖∞ are at most log N . We shall derive bounds
for general bilinear forms of the fype appearing in the first, second, third and fourth terms
using only this kind of L∞ information on the coefficients.

Lemma 5 Let f : Z → C be any function. Suppose that q ≥ 100K, (a, q) = 1 and that
|θ − a/q| ≤ Kq−2. Suppose also that N ≥ 4mL. Then∑

xy≤N
L≤x<2L

y≥T
xy≡b(mod m)

f(x)e(θxy) � K2(log N)2

(
N

q
+ Lm + q

)
‖f‖∞.

Proof. Assume without loss of generality that ‖f‖∞ = 1. By the triangle inequality, the
sum S in question is at most

∑
L≤x<2L
(x,m)=1

∣∣∣∣∣∣∣∣
∑

T≤y≤N/x
y≡bx−1(mod m)

e(θxy)

∣∣∣∣∣∣∣∣ .
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Now the inner sum here is a geometric progression with common ratio e(θxm) and length
≤ 2N/mx (this fact relies on the assumption about m, L, N in the statement of the lemma).
Thus we have, using Lemma 2,

S �
∑

L≤x<2L
(x,m)=1

min

(
N

mx
, ‖θxm‖−1

)

≤
∑

x′≤2Lm

min

(
N

x′
, ‖θx′‖−1

)
� K2(log N)2

(
N

q
+ Lm + q

)
.

This concludes the proof of the Lemma.

Lemma 6 Let f, g : Z → C be any two functions. Suppose that q ≥ 100K, (a, q) = 1, that
|θ − a/q| ≤ Kq−2, that m ≥ 4L and that N ≥ 4Lm. Then∑

xy≤N
L≤x<2L

xy≡b(mod m)

f(x)g(y)e(θxy)

� K2‖f‖∞‖g‖∞
(

N

q1/2
+

N1/2L1/2

m1/2
+

m1/2N log q

L1/2
+ N1/2q1/2 log q

)
.

Proof. Again, suppose without loss of generality that ‖f‖∞, ‖g‖∞ ≤ 1. Write the sum as

S =
∑

b1,b2(mod m)
b1b2≡b(mod m)

Sb1,b2 , (6)

where
Sb1,b2 =

∑
xy≤N

L≤x<2L
x≡b1(mod m)
y≡b2(mod m)

f(x)g(y)e(θxy).
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Using Cauchy-Schwarz in the variable x, one gets

|Sb1,b2|2 � L

m

∑
L≤x<2L

x≡b1(mod m)

∣∣∣∣∣∣∣∣
∑

y≤N/x
y≡b2(mod m)

g(y)e(θxy)

∣∣∣∣∣∣∣∣
2

� L

m

∑
L≤x<2L

x≡b1(mod m)

∑
y≤N/x

y≡b2(mod m)

∑
y′≤N/x

y′≡b2(mod m)

g(y)g(y′)e(θx(y − y′))

≤ L

m

∑
y≤N/L

y≡b2(mod m)

∑
y′≤N/L

y′≡b2(mod m)

∣∣∣∣∣∣∣∣∣∣
∑

L≤x<2L
x≡b1(mod m)

x≤min(N/y,N/y′)

e(θx(y − y′))

∣∣∣∣∣∣∣∣∣∣
.

Now the inner sum here is a geometric progression with common difference e(θm(y−y′)) and
length at most 2L/m. Thus

|Sb1,b2|2 � L

m

∑
y≤N/L

y≡b2(mod m)

∑
y′≤N/L

y′≡b2(mod m)

min

(
L

m
, ‖θm(y − y′)‖−1

)

� N

m2

∑
0≤j≤N/L

min

(
L

m
, ‖θmj‖−1

)

� N

m2

∑
i≤mN/L

min

(
L

m
, ‖θi‖−1

)

≤ NK

m2

(
N

q
+

L

m
+

(
mN

L
+ q

)
log q

)
The lemma follows quickly from this and (6).

Now we use Lemmas 5 and 6 to estimate the terms in (3). The first term does not need these
lemmas.

first term � U. (7)
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To estimate the second term we use “partial summation”, getting

second term =
∑

xy≤N
x≤U

xy≡b(mod m)

µ(x)e(θxy)

∫ y

1

dt

t

�
∫ N

1

dt

t

∣∣∣∣ ∑
xy≤N
x≤U
y≥t

xy≡b(mod m)

µ(y)e(θxy)

∣∣∣∣.

To estimate the sum, use Lemma 5 and a dyadic decomposition over the range x ≤ U ,

confirming that it is at � K2(log N)3
(

N
q

+ Um + q
)
. Integrating over t adds an extra

logarithm, and so

second term � K2(log N)4

(
N

q
+ Um + q

)
.

The third term may be estimated by dividing the range x ≤ U2 into dyadic ranges 2i ≤ x <
2i+1 for i = 0, . . . , log U and using Lemma 5. One gets

third term � K2(log N)4

(
N

q
+ U2m + q

)
. (8)

The fourth term may be estimated by dividing the range U ≤ x ≤ N/U into dyadic ranges
and using Lemma 6. One gets

fourth term � K2(log N)4

(
N

q1/2
+

m1/2N

U1/2
+ N1/2q

)
. (9)

Putting all this together, and absorbing terms which are obviously smaller than other terms
into those terms, gives

∑
x≤N

x≡b(mod m)

Λ(x)e(θx) � K2(log N)4

(
N

q1/2
+ U2m +

m1/2N

U1/2
+ N1/2q1/2

)
.

Set U = N2/5m−1/5, and we get Lemma 4.

It remains to derive Lemma 3 from Lemma 4. Suppose then that |θ − a/q| ≤ q−2. Observe
that

λ∧b,m,N(θ) =
φ(m)

mN

∑
n≤N

mn+b is prime

log(mn + b)e(nθ).
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It is easy to see from this that

λ∧b,m,N(θ) =
φ(m)

mN
e(−θb/m)

∑
x≤Nm

x≡b(mod m)

Λ(x)e(θx/m) + O(N−1/2).

Now we can apply Lemma 4 with θ′ = θ/m, noting that this satisfies the estimate |θ′ −
a/qm| ≤ q−2, and hence certainly some estimate of the form |θ′ − a′/q′| ≤ Kq′−2 where
(a′, q′) = 1 and K ≤ m2. The requirement, in Lemma 3, that q ≥ 100m2 means that
certainly q′ ≥ q ≥ 100K, a condition required in Lemma 4. It is easy to check that one gets
an estimate of the required form.
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