
On Runge’s Theorem

We spent several lectures studying approximation of functions on the real line by poly-

nomials. We proved, for example, that on a closed interval every continuous function

can be uniformly approximated by polymomials. In the complex plane, the situation is

different. Polynomials are holomorphic, and hence any sequence of polynomials which

converges uniformly on an open set converges to a holomorphic function on that set.

This follows from Morera’s theorem: you should take the opportunity to recall the

statement and proof of this theorem, as well as why it supplies a justification of the

preceding sentence. Thus, broadly speaking, a function f which is the uniform limit of

polynomials had better be holomorphic. However, this is not enough: on the interior

of the domain K = {z ∈ C : 1
2

6 z 6 2}, the function f(z) = 1
z

is holomorphic, but

it is not the uniform limit of any sequence of polynomials. This is because the integral

of f around the contour γ(t) = e2πit, 0 6 t 6 1, is equal to 2πi, but the integral of

any polynomial around γ is zero by Cauchy’s theorem. The problem is that f does not

extend to a holomorphic function inside γ, and this is possible because K as a “hole”.

Runge’s theorem states that in a sense these two ways in which a function can fail to

be uniformly approximable by polynomials are the only ones.

Theorem 1. Suppose that K is a compact subset of C, and that f is a function taking

complex values which is holomorphic on some domain Ω containing K. Suppose that

C \K is path-connected. Then f is uniformly approximable by polynomials.

The proof of this theorem splits naturally into two parts.

Part 1: Prove that f is uniformly approximated by rational functions, all of whose

poles lie outside of K. In fact, we can assume that each of these is a sum of functions

of the form c
α−z

, where α /∈ K.

Part 2: Prove that every function of the form f(z) = c
α−z

can be uniformly approxi-

mated by polynomials.

Why does Runge’s theorem follow from these observations? What is needed is the

following simple exercise. Here, and in the rest of what follows, we say that a function

is u.a.p. if it can be uniformly approximated by polynomials on K.

Lemma 1. Suppose that f and g are u.a.p. The so are f +g, fg and λf for any λ ∈ C.

Suppose furthermore than (fn) is a sequence of u.a.p. functions, converging uniformly

on K to a function f . Then f is also u.a.p.

Let us turn to the proof of parts 1 and 2.

To motivate the proof of part 1, let us recall how the proof of Taylor’s theorem goes.

Taylor’s theorem implies certain cases of Runge’s theorem, specifically those in which Ω

can be taken to be an open disc in the complex plane. (For the general case, however,
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2

it is useless – try using it to show that f(z) = 1
z

can be uniformly approximated by

polynomials on a “keyhole” set K of the form {z ∈ C : ε 6 |z| 6 10, ε 6 arg z 6 2π−ε}).
The proof of Taylor’s theorem goes as follows. Suppose, for simplicity of notation,

that f is holomorphic on an open set containing the unit circle contour γ mentioned

above. Then for |z| < 1 we have Cauchy’s integral formula

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw.

This may be rewritten as

f(z) =
1

2πi

∫
γ

f(w)dw

w
(1 +

z

w
+

z2

w2
+ . . . )

by the geometric series formula. The sum of the first N terms is a polynomial

pN(z) =
1

2πi

∫
γ

f(w)dw

w
(1 +

z

w
+

z2

w2
+ · · ·+ zN

wN
).

Since |w| = 1 on γ, the error |f(z) − pN(z)| is bounded above by C
∑

n>N |z|n, which

tends to zero uniformly on any compact set K contained inside γ.

Consider now a general compact set K contained in an open set Ω. The set Ω may

not be disc-shaped, and so Cauchy’s integral formula cannot be used in such an obvious

way. Drawing some pictures, however, it is “obvious” that there ought to be a nice

contour γ which circumscribes K, and which lies entirely in Ω and goes around each

point of K precisely once. We would then have

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw.

By the definition of path integral, this gives

f(z) =
1

2πi

∫ 1

0

f(γ(t))

γ(t)− z
γ′(t)dt.

We could then approximate the integral by a finite sum sampled at the points n/N , for

some large N , to get

f(z) ≈ 1

2πi

1

N

N−1∑
n=0

f(γ(n/N))

γ(n/N)− z
γ′(n/N). (0.1)

The right-hand side is now a rational function, and in fact it is a sum of functions of

the form c
α−z

. The poles α are at the points γ(n/N), which, because they lie on the

path γ, are outside K.

What must we do to make this rigorous? We must justify two things. Firstly, drawing

pictures is insufficient evidence for the existence of a nice contour γ. Secondly, we must

explain the meaning of the ≈ symbol in (0.1). We want, of course, for it to mean that

the right-hand side converges uniformly to f on K, as N →∞.
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In lectures, I constructed an appropriate path γ as follows (I recommend you draw or

remind yourself of pictures as you follow this). Since K is compact and C \Ω is closed,

there is some δ > 0 such that |x− y| > δ whenever x ∈ K and y /∈ Ω. Take a rectilinear

grid with squares of sidelength δ/10 (say). Each such square has a boundary, which

we consider to be a contour (traversed anticlockwise). Let C1, . . . , CJ be the complete

collection of these square contours having some intersection with K. Then we have

f(z) =
1

2πi

J∑
j=1

∫
Cj

f(w)

w − z
dw (0.2)

whenever z ∈ K, unless z actually lies on one of the contours Cj. Why? Well, z must

lie inside precisely one of the contours Cj, and then

f(z) =
1

2πi

∫
Cj

f(w)

w − z
dw

by Cauchy’s integral formula. For other contours Cj′ we have simply

1

2πi

∫
Cj′

f(w)

w − z
dw = 0,

by Cauchy’s formula (since f(w)/(w − z) is holomorphic inside Cj′).

Consider again the expression (0.2). Each contour Cj is comprised of four edges.

However, in forming the sum over all j = 1, . . . , J , the contributions from many of

these edges cancel out. Indeed, if an edge of some contour meets K then it will be

traversed twice, once in each direction. Therefore the sum (0.2) collapses to a sum

f(z) =
1

2πi

J ′∑
j=1

∫
Ej

f(w)

w − z
dw, (0.3)

where each Ej is now an “edge”, that is to say a straight line segment of length δ/10,

which lies entirely in Ω but does not intersect K.

We will operate with this union of edges Ej as a substitute for the contour γ, whose

existence was somewhat speculative and not rigorously justified. Note (draw yourself

an appropriate picture!) that the union of the edges Ej may not be connected, but this

will be of no consequence. Although we verified the formula (0.3) only when z ∈ K does

not lie on some contour Cj, it is actually true for all values of z ∈ K. This is because

both sides are continuous functions of z ∈ K (we leave the detailed proof of this as an

exercise).

We turn now to the issue of approximating these integrals along Ej with discrete

sums. Let us begin by reminding ourselves of a slightly simpler setting, in which we
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want to approximate ∫ 1

0

F (t)dt ≈ 1

N

N−1∑
n=0

F (n/N),

where F : [0, 1] → C is some continuous function. The error in making this approxima-

tion is easily seen (draw a graph if this is helpful) to be bounded by sup|x−y|61/N |F (x)−
F (y)|. By uniform continuity, this tends to 0 as N →∞.

The situation we care about is the one in which the integral to be approximated is

1

2πi

∫ 1

0

f(φ(t))

φ(t)− z
dt,

where φ(t) is a parametrisation of one of the straight-line segments Ej. This is covered

by the preceding remarks, because the function t 7→ f(φ(t))/(φ(t) − z) is continuous.

However, we also want to know that the rate of convergence as N → ∞ is uniform in

z ∈ K. To get this additional fact, note that the function

F (z, t) =
f(φ(t))

φ(t)− z

is continuous on K×[0, 1], since φ(t) lies on Ej, which does not intersect K. However K×
[0, 1] is compact, and so F is uniformly continuous. This means that sup|x−y|61/N |F (z, x)−
F (z, y)| → 0, uniformly in z ∈ K. This is the statement we need in order to approximate

the integrals in (0.3) by sums of rational functions.

This completes our discussion of part 1 of the proof of Runge’s theorem.

Remember that the task in part 2 is to show that if α /∈ K then the function 1
α−z

is u.a.p. The strategy for proving this is rather beautiful. Writing S for the set of all

α ∈ C \K for which this is so, we shall establish that

(i) S is not empty;

(ii) if α ∈ S and β is “near” α then β ∈ S;

(iii) hence S is all of C \K.

The proof of (i) is not difficult. If |α| is very large then we have

1

α− z
=

1

α
(1 +

z

α
+

z2

α2
+ . . . )

by the geometric series formula. This sum is uniformly convergent on the domain

|z| 6 1
2
|α| (say), and if |α| is large enough this domain will contain K.

The proof of (ii) (which of course we have not stated precisely yet) is in many ways

quite similar. Note that
1

β − z
=

1

(α− z)(1− α−β
α−z

)
.
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However if |α− β| < |α− z| then we may expand

1

1− α−β
α−z

= 1 +
α− β

α− z
+

(α− β

α− z

)2
+ . . . .

Furthermore convergence is uniform in z ∈ K if |α − β| < d(α, K) = infz∈K |α − z|.
However, each partial sum

1 +
α− β

α− z
+

(α− β

α− z

)2
+ · · ·+

(α− β

α− z

)N

is u.a.p., by repeated applications of Lemma 1 and the assumption that 1/(α − z) is

u.a.p..

We have established the followiung precise version of (ii): if α ∈ S, and if |β − α| <
d(α, K), then β ∈ S.

Finally, we address (iii). Let β ∈ C \K be arbitrary; our aim is to show that β ∈ S.

Let us start with some arbitrary α ∈ S, which we know exists by (i). Since C \ K

is path-connected, there is a continuous path φ : [0, 1] → C \ K with φ(0) = α and

φ(1) = β. Since φ is continuous and [0, 1] is compact, the image φ([0, 1]) is also compact

and hence closed. Therefore, since φ([0, 1]) is disjoint from K, there is some δ > 0 such

that d(φ(t), K) > δ for all t ∈ [0, 1]. Furthermore, since φ is uniformly continuous, there

is some finite set of points 0 = t0 < t1 < · · · < tm = 1 such that |φ(ti+1)− φ(ti)| < δ for

all i.

We know that φ(t0) = α ∈ S. By repeated application of (the precise form of) (ii), we

conclude in turn that φ(t1), φ(t2), . . . all lie in S. Finally, we see that φ(tm) = φ(1) = β

does indeed lie in S.

This concludes the proof of part 2 of Runge’s theorem, and hence the whole theorem.


