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Abstract

Let A be a small subset of a finite abelian group, and let R be the set of points at
which its Fourier transform is large. A result of Chang states that R has a great deal of
additive structure. We give a statement and proof of this result and an example which
shows that it is sharp. We also discuss some of the applications of it which have so far
been discovered. Finally we discuss some related open questions.

1. Introduction, notation and definitions. Harmonic analysis has been used to great
effect in additive number theory for over 150 years. In this article we will look at one specific
theme which has received attention of late. This is the principle that the large values of the
Fourier transform of a small set have a great deal of structure.

We begin by introducing a small amount of notation which is necessary for the discussion.
Throughout this paper N will be a large prime number and we will write ZN for the additive
group2 of residues modulo N . If E = {e1, . . . , eL} ⊆ ZN we write Span(E) for the set of all
sums s(ε) =

∑
j εjej with εj ∈ {−1, 0, 1}. We will write ωxN = e2πix/N . Often the subscript

N will be suppressed, as the value of N will be clear from the context. If f : ZN → C is a
function and r ∈ ZN then we define the Fourier transform of f at r by

f̂(r) =
∑
x

f(x)ωrx.

We will adopt the convenient notational practice of identifying sets with their characteristic
functions.

2. Chang’s structure theorem. In a recent paper [5] of Chang the following result is
stated3.

Theorem 1 (Chang) Let ρ, α ∈ [0, 1], Let A ⊆ ZN be a set of size αN and let R ⊆ ZN be

the set of all r for which |Â(r)| ≥ ρ|A|. Then there is a set E ⊆ ZN with |E| � ρ−2 log
(

1
α

)
such that R ⊆ Span(E).

1The author is a Fellow of Trinity College, Cambridge. Address: Trinity College, Cambridge CB2 1TQ,
England.

2Much of what we have to say can be generalised to arbitrary finite abelian groups. However in this article
we will eschew such generality and discuss instead the group ZN and, occasionally, the group Zn

2 .
3Chang’s paper seems to be the first place where this result is explicitly stated. However, similar ideas

can be found in an earlier paper of Bourgain [4], and the whole circle of ideas perhaps originated with Rudin
[14]. We will discuss Rudin’s inequality later in the paper.
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It is convenient to give a name to the situation covered by this theorem. Thus if A,R ⊆ ZN
and if ρ ∈ (0, 1) then we say that A is ρ-large at R if |Â(r)| ≥ ρ|A| for all r ∈ R.

Theorem 1 is an extremely interesting result. Parseval’s theorem implies that the set R has
size at most ρ−2α−1, but for small α this is much bigger than the size of E guaranteed by
Chang’s result. Theorem 1 may thus be viewed as saying that the “large spectrum” of a
small set is very highly structured.

There are already two rather different applications of this result in combinatorial number
theory. The first, in Chang’s original paper [5], concerns Freiman’s theorem on sets with
small sumset. The second, due to the author [7], concerns arithmetic progressions in sumsets.
We will discuss this application in §6.

In [5] Theorem 1 is derived from an inequality of Rudin. We will describe a proof of this result
in the next two sections. A rather different proof was shown to us by I.Z. Ruzsa (personal
communication), an account of which may be found in [9] (2). In §5 we give the deduction
of Theorem 1.

3. An inequality of Rudin. The main sources for this discussion were [10] and [14].
Let us begin by stating the inequality of Rudin that interests us. We say that a set Λ =
{λ1, . . . , λm} ⊆ ZN is dissociated4 if the only solution to the equation

ε1λ1 + · · ·+ εmλm = ε′1λ1 + · · ·+ ε′mλm

with εj, ε
′
j ∈ {−1, 0, 1} is the trivial solution εj = ε′j = 0.

In the statement of Rudin’s inequality, Λ will be assumed to be dissociated and we will
regard Λ and ZN as finite measure spaces (M1, µ1) and (M2, µ2) respectively. µ1 will be the
counting measure, so that µ1(M1) = |Λ|, while µ2 will be the normalised counting measure,
which means that µ2(M2) = 1. Write B(Mi) for the space of functions on Mi.

Proposition 1 (Rudin) Let T : B(M1)→ B(M2) be the linear map which sends a sequence
(an)n∈Λ ∈ B(M1) to the function f(x) =

∑
n∈Λ anω

nx. Then for any p > 2 we have the bound

‖T‖2→p ≤ 12
√
p

on the L2–Lp norm of the operator T .

Written out in full, this means that

‖f‖pp = N−1
∑
x

∣∣∣∣∣∑
n∈Λ

anω
nx

∣∣∣∣∣
p

≤ (144p)p/2

(∑
n∈Λ

|an|2
)p/2

.

4The reader should be aware that various slightly different definitions will be encountered in the literature.
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The formulation we have used in Proposition 1 is, perhaps, more suggestive.

Observe that
(∑

n∈Λ |an|2
)1/2

is equal to ‖f‖2. The inequality may, therefore, be interpreted
as a statement to the effect that the L2 and Lp norms of a function whose spectrum is
dissociated are comparable.

In the next few paragraphs we show that Rudin’s inequality is true, on average, for modified
versions of f in which the an have been subjected to random and independent changes of
sign. This may seem like a curious thing to do, so we offer some motivation at the end of the
section.

Suppose then that Xj, j ∈ Λ are independent Bernoulli random variables taking values in
{±1} and let us consider the random function

X(x) =
∑
n∈Λ

anXnω
nx.

A sensible way to estimate E‖X‖pp is to write

E‖X‖pp = N−1
∑
x∈ZN

∫ ∞
0

P
(
|X(x)| ≥ t1/p

)
dt, (1)

recalling the availability of certain large deviation inequalities associated with the names of
Bernstein, Chernoff and Hoeffding. The following is a typical example:

Proposition 2 Let Z1, . . . , Zn be independent complex-valued random variables with zero
means and with |Zi| ≤ ai for all i = 1, . . . , n. Let t be a positive real number. Then

P (|Z1 + · · ·+ Zn| ≥ t) ≤ 2e−t
2/4

∑
|ai|2 .

See, for example, [9] (1).

Substituting into (1) gives

E‖X‖pp ≤ 2

∫ ∞
0

e−t
2/p/4

∑
|ai|2 ,

an expression which may be evaluated explicitly as

2p+1Γ

(
p+ 2

2

)(∑
|ai|2

)p/2
.

A short calculation using a sharp form of Stirling’s formula then yields

E‖X‖pp ≤ (6
√
p)p
(∑

|ai|2
)p/2

. (2)
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This is all very well, but there is no reason to suppose that the behaviour of f should be
linked in any way to that of the random function X. The dissociativity of Λ is exactly what
provides such a link, a fact that we shall endeavour to explain now.

We begin with the observation that the Lp norm of f(x) is the same as that of

f(x+ θ) =
∑
n∈Λ

anω
nθωnx

for any θ ∈ ZN that we may care to select. Suppose that for any choice of a sign function
ε : Λ → {±1} we could find a θ with ωnθ ≈ εn for all n ∈ Λ (we will not be precise about
what we mean by the approximate symbol ≈ here). Now (2) implies that there is a specific
choice of ε for which ∥∥∥∥∥∑

n

anεnω
nx

∥∥∥∥∥
p

≤ 6
√
p

(∑
n

|an|2
)1/2

. (3)

Selecting an appropriate θ would then allow us to recover an inequality of the desired form for
f . Now whether or not one can find such a θ is related to issues of simultaneous diophantine
approximation. Observe that if there is a “small” linear relation amongst the elements of
Λ - say, for example, {5, 7, 12} ⊆ Λ - then such a θ need not exist. One can prove using
Fourier analysis that this is necessary and sufficient; that is to say, if there are no small
linear relations then θ can always be found, whatever the choice of signs εn. The phrase
“no small linear relations” turns out to mean that Λ is linearly independent over a set such
as {−D,−D + 1, . . . , D} where D ∼ |Λ|. Unfortunately this is a stronger condition than
just dissociativity, but when it does hold f models the Lp behaviour of the randomised sum
X very closely. It turns out however that dissociativity is exactly what we need to make a
different approach to the comparison of f and X work.

4. Riesz products and Young’s inequality. It is convenient to have a notation for
twisted versions of f like those we encountered in (3). If ε : Λ → {±1} is a sign function
then write

fε =
∑
n∈Λ

anεnω
nx.

Write pε(x) for the Riesz product

pε(x) = 2
∏
n∈Λ

(
1 + εn

2

(
ωnx + ω−nx

))
.

Claim 1 We have f = fε ∗ pε.

Proof of claim. This can be established by a fairly straightforward computation. We have

fε ∗ pε(x) = 2N−1
∑
y

∑
m∈Λ

amεmω
m(x−y)

∏
n∈Λ

(
1 + εn

2

(
ωny + ω−ny

))
. (4)

4



Multiplying out the product and changing the order of summation, one is confronted with a
weighted sum of terms of the form∑

y

ω(n1+···+nr−n′
1−···−n′

s−m)y, (5)

where the ni, n
′
i are distinct elements of Λ and m ∈ Λ. The dissociativity of Λ implies that

such a sum is zero unless r = 1, s = 0 and m = n1, in which case it equals N . It is easy to
see that the weight attached to (5) in this case (in the expanded out version of (4)) is

N−1an1ε
2
n1
ωn1x = N−1an1ω

n1x,

and the claim follows quickly.

Now the Riesz product pε is non-negative, and so ‖pε‖1 is simply N−1
∑

x pε(x). This sum
may easily be calculated by expanding out another product and using dissociativity, and it
turns out that ‖pε‖1 = 2. Thus by Young’s inequality and the claim we have

‖f‖p = ‖fε ∗ pε‖p
≤ ‖fε‖p‖pε‖1

= 2‖fε‖p (6)

for any p ≥ 2 and any choice of sign function ε. Now (2) implies that there is a specific choice
of ε for which

‖fε‖p ≤ 6
√
p

(∑
n

|an|2
)1/2

.

Thus

‖f‖p ≤ 12
√
p

(∑
n

|an|2
)1/2

,

and Proposition 1 follows immediately.

5. Completion of the proof of Chang’s theorem. In this section we derive Theorem 1
from Proposition 1. It turns out that the dual form of Proposition 1 is easier to work with
in this context. This takes the form

‖T ∗‖p′→2 ≤ 12
√
p, (7)

where p′ is the dual exponent of p. Here T ∗ : B(M2)→ B(M1) is the adjoint of T , which is
easily seen to be given by

T ∗f(n) = N−1
∑
x

f(x)ωnx
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for n ∈ Λ.

Now recall that we are interested in a set A ⊆ ZN with cardinality αN , and we have written
R for the set of all r ∈ ZN for which |Â(r)| ≥ ρ|A|. We wish to show that R has lots of
structure, and we do this by proving that it does not contain a very large unstructured subset.
To this end let Λ be a maximal dissociated subset of R, and apply (7) with p = log(1/α) and
f equal to the characteristic function of A. It is easy to check that

‖T ∗A‖2 = N−1

(∑
n∈Λ

|Â(n)|2
)1/2

≥ ρα|Λ|1/2

and that
‖A‖p′ = α1/p′ = α1−1/p ≤ eα.

It follows immediately that
|Λ| � ρ−2 log(1/α).

Thus Λ, some maximal dissociated subset of R, is rather small. The maximality implies that
the addition of any new r ∈ R will spoil the dissociativity property. It is easy to see that this
implies that each r is expressible as

∑
j ηjλj, where η ∈ {−2,−1,−1

2
, 0, 1

2
, 1, 2}, and Theorem

1 follows on taking E = 1
2
Λ ∪ Λ ∪ 2Λ.

6. Chang’s theorem and progressions in sumsets. In this section we discuss the paper
[7]. At various points we will use the function ‖ . ‖ : ZN → R defined as follows. If x is a
residue class modulo N , pick a representative x for x from the interval {−(N−1)/2, . . . , (N−
1)/2}. Set ‖x‖ = |x/N |.

The main result of [7] is the following improvement of a result of Bourgain [4].

Theorem 2 Let C,D ⊆ ZN have cardinalities γN and δN respectively. Then there is an
absolute constant c > 0 such that C +D contains an AP of length at least

exp
(
c
(
(γδ logN)1/2 − log logN

))
.

This looks a little technical. It is perhaps easier to think of γ and δ as being fixed positive
reals: then the theorem says that for large N the sumset C + D contains a progression of
length ec

′√logN .

The first step of the argument involves the introduction of a concept that we called, in [7],
hereditary non-uniformity (HNU). Roughly speaking, a set A ⊆ ZN was said to be HNU if
every subset B ⊆ A has a large Fourier coefficient. As pointed out to us by Gowers (personal
communication, and see also [16]), this is not quite the “right” definition. It is more natural
to consider, instead of subsets of A, arbitrary functions supported on A. Before stating the
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lemma which explains this, we introduce two very temporary pieces of notation. Let A be a
subset of ZN , write A◦ for its complement and let c be a positive real. We say that A has
property P (c) if, for any function f supported on A, we have

sup
r 6=0
|f̂(r)| ≥ c

∣∣∣∣∣∑
x

f(x)

∣∣∣∣∣ . (8)

We say that A has property Q(c) if there is a function g supported on A◦ for which

c
∑
r 6=0

|ĝ(r)| ≤

∣∣∣∣∣∑
x

g(x)

∣∣∣∣∣ . (9)

Lemma 1 The properties P (c) and Q(c) coincide.

Proof. We begin by proving that P (c)⇒ Q(c), which is the easier of the two implications.
It is also the only part of the lemma which is actually used in proving Theorem 2. Suppose
then that A has the property Q(c), and let g be a function supported on A◦ and satisfying
(9). If f is any function supported on A then we have

∑
x f(x)g(x) = 0, which implies that∑

r f̂(r)ĝ(r) = 0. By the triangle inequalty, this gives

sup
r 6=0
|f̂(r)|

∑
r 6=0

|ĝ(r)| ≥

∣∣∣∣∣∑
x

f(x)

∣∣∣∣∣
∣∣∣∣∣∑
x

g(x)

∣∣∣∣∣ .
Thus indeed A has property P (c).

To prove that P (c) ⇒ Q(c) we use the (finite-dimensional) Hahn-Banach thorem. Suppose
that A has property P (c). Write X for the space of all C-valued functions on ZN , and define

a seminorm γ : X → R≥0 by γ(f) = c−1 supr 6=0 |f̂(r)| (this has all the properties of a norm,
except that γ(1) = 0). Let Y be the space spanned by the complex-valued functions on A◦

and the constant function 1, and define a linear functional T : Y → R by

T (f + λ1) =
∑
x

f(x). (10)

for all f supported on A◦ and λ ∈ C. Since A has property P (c), this satisfies

|Tf | ≤ γ(f)

for all f ∈ Y . By the Hahn-Banach theorem we may extend T to a functional T ′ on all of X
which satisfies the same bound,

|T ′f | ≤ γ(f). (11)
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This functional will be of the form T ′f = 〈f, ψ〉 for some function ψ : ZN → C, and it is
clear from (10) that ψ(x) = 1 for all x ∈ A◦. We claim that the function g = ψ − 1 satisfies
(9). To see this, observe that by (11) we have, for any function f : ZN → R, the bound∑

x

f(x)ψ(x) ≤ c−1 sup
r 6=0
|f̂(r)|. (12)

Take f to be the following function, defined by specifying its Fourier transform:

f̂(r) =

{
N exp(i arg ψ̂(r)) r 6= 0
0 r = 0.

The left-hand side of (12) is then just
∑

r 6=0 |ψ̂(r)|, which is equal to
∑

r 6=0 |ĝ(r)|. Thus

LHS of (12) =
∑
r 6=0

|ĝ(r)|.

On the other hand supr 6=0 |f̂(r)| is at most N . Furthermore, since
∑
ψ(x) = T ′1 = 0, we

have |
∑
g(x)| = N . Thus

RHS of (12) ≤ c−1
∣∣∣∑ g(x)

∣∣∣ .
The proof is complete.

We shall say that a set A is c-hereditarily non-uniform (HNU) if it has the property P (c) (or
Q(c)). Note once again that this notion is rather stronger than that used in the paper [7].

Using the easy direction of Lemma 1, we can demystify the connection between sumsets and
HNU sets.

Lemma 2 Let C,D ⊆ ZN have |C| = γN and |D| = δN . Let A be the complement of C+D.
Then A is

√
γδ-HNU.

Proof. All one has to do is check that C+D has property Q(
√
γδ). This is easy; by Parseval’s

identity and the Cauchy-Schwarz inequality one can satisfy (9) by taking g = C ∗D.

For the remainder of the discussion we will assume for simplicity that γ = δ = 1
4
; this does not

simplify the argument, but keeps the number of unspecified variables down. The heart of [7]
is the following proposition, which in combination with Lemma 2 leads quickly to Theorem
2.

Proposition 3 Suppose that A is 1
4
-HNU. Then A◦, the complement of A, contains an AP

of length at least e
√

logN/128.
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The proof of this goes roughly as follows. Suppose that A is HNU. Then every B ⊆ A must
be non-uniform in the sense of having a large Fourier coefficient. Take B to be as close to
uniform as possible among all subsets of A having a certain size. That is, fix β ∈ R and let
B ⊆ A have

sup
r 6=0
|B̂(r)|

minimal subject to |B| = bβNc. If the value of this minimum is η|B| then we have η ≥ 1/4
from the definition of HNU. The value of β gets chosen at the end of the proof to optimise
the argument; it turns out that a sensible choice is β = e−

√
logN/64.

The idea is now that we try to modify the set B to give a new subset B′ ⊆ A of the same size
but which is more uniform than B. Of course this is impossible, so there must be something
wrong with any such modification technique that we might care to write down.

One way of modifying B is as follows. Choose small random subsets Y ⊆ B and X ⊆ ZN of
the same size t = 218 logN . Form the (multi)set B0 = (B \ Y ) ∪ X. What are the Fourier
coefficients of B1? Applying a Bernstein-type inequality similar to that in Proposition 2, it
is not hard to see that with positive probability Ŷ (r) ≈ tB̂(r)/|B| and that X̂(r) is small
compared with t for all r 6= 0. Picking specific X and Y for which these rough statements
hold, we see that

|B̂0(r)| ≤ |B̂(r)| (13)

for all r 6= 0, which certainly implies that

sup
r 6=0
|B̂0(r)| ≤ sup

r 6=0
|B̂(r)|.

Naturally this does not violate the extremal property of B, because B0 need not be a subset
of A. However we can try and modify it by changing the elements x1, . . . , xt of X. Let us
try changing x1 to x1 + h1 to give a set B1. Then

B̂1(r) = B̂0(r) + ωrx1
(
ωrh1 − 1

)
.

Now if ‖rh1‖ were small for all r then this would differ insignificantly from B̂0(r). If we
performed t such operations, changing each xj to xj + hj in turn to give sets B2, . . . , Bt,

then we might still have |B̂t(r)| ≤ |B̂(r)|. Sadly there is no h1 with this property. However

for many r we are not at all concerned about changing B̂0(r) quite substantially. Indeed

if |B̂(r)| ≤ η|B|/2 then, by (13), we also have |B̂0(r)| ≤ η|B|/2. Hence after t arbitrary
modifications we would still have

|B̂t(r)| < η|B|

provided that 2t < η|B|/2. This holds by a huge margin because t is so small, and so we come

to the following key realisation. Let R be the set of r ∈ ZN \ 0 for which |B̂(r)| ≥ η|B|/2. If
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we can find h1, . . . , ht such that ‖rhj‖ is small for all r ∈ R, and for which the modified set
Bt is a subset of A, then we will have violated the extremality of B.

Thus we are interested in H, the set of all h for which ‖rh‖ is small for all r ∈ R. At
this point we invoke Theorem 1, which tells us that R lies in Span(E) for some set E of
cardinality � η−2 log(1/β). Note that in this setting Theorem 1 is extremely powerful as β
is so small; a straightforward application of Parseval’s theorem would be hopeless. Using a
classical application of the pigeonhole principle due to Dirichlet it is easy to see that there
is an arithmetic progression P of length ∼ N c/ log(1/β) such that ‖eh‖ is small for all e ∈ E
and h ∈ P . The fact that R ⊆ Span(E) tells us that P ⊆ H, provided that the different
occurences of the word “small” are replaced by appropriate numerical values.

The above shows that any set Bt formed by replacing xj with xj + hj (j = 1, . . . , t), hj ∈ P ,

has supr 6=0 |B̂t(r)| < η|B|. By the extremal property of B, there can be no choice of the hj for
which Bt ⊆ A. Roughly speaking it seems reasonable that this can only be the case if some
progression xj + P has very small intersection with A, which in turn forces A◦ to contain a
long AP. Turning this into a rigourous statement requires a couple of further tricks, for which
we refer the reader to [7]. Details aside, we have completed the proof of Proposition 3 and
hence of Theorem 3.

Let us make a few remarks about the use of Theorem 1 here. We wanted to say something
about the set H of all h ∈ ZN such that ‖rh‖ ≤ ε, say, for all r ∈ R. Such a set is usually
called a Bohr neighbourhood and denoted by B(R, ε) in honour of mathematician and Danish
football legend Harald Bohr. By Dirichlet’s argument such a set will contain an AP of length
at least εN1/|R|. Suppose, however, we know that R ⊆ Span(E). Then it is easy to see that

B (E, ε/|E|) ⊆ B(R, ε),

so that B(R, ε) contains an AP of length at least εN1/|E|/|E|. If |E| is much less than |R|
then this represents a significant improvement. Chang’s theorem, as applied to the proof of
Theorem 2, put us in exactly such a situation. A similar situation arises in the proof [5] of
Freiman’s theorem for which Theorem 1 was originally intended.

7. Miscellaneous further remarks. To conclude this article we collect together a number
of items related to what we have discussed.

i. Chang’s theorem is sharp. Let us begin by mentioning that Chang’s theorem is in a
sense best possible. The following theorem from [8] illustrates this (the reader may care to
recall the definition of ρ-large):

Theorem 3 (Chang’s theorem is sharp) Let α, ρ be positive real numbers satisfying α ≤
1/8, ρ ≤ 1/32 and

ρ−2 log(1/α) ≤ logN

log logN
. (14)
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Then there is a set A ⊆ ZN with |A| = bαNc which is ρ-large at R, where R is not contained
in Span(E) for any set E with |E| ≤ 2−12ρ−2 log(1/α).

ii. Sumsets in Fn2 . It is becoming increasingly apparent that for many problems concerning
integers it is advantageous to start by thinking about the corresponding problems in Fn2 , where
arguments are typically much cleaner. Example of this are Freiman’s theorem (compare [5]
with [17]) and Roth’s theorem on 3-term arithmetic progressions (here one should work in
Fn3 ). The same is true of the problem of locating structures in sumsets which we considered
in §6. Indeed, one can adapt the method of [7] as described in that section to prove the
following result about sumsets in Fn2 .

Theorem 4 Suppose that γ, δ are real numbers with γδ ≥ 1/
√
n, and that C,D are subsets

of Fn2 with cardinalities γN and δN , where N = 2n. Then C + D contains a translate of
some subspace of Fn2 having dimension at least γδn/80.

The details were given in [9] (3). In place of Rudin’s inequality one may use a celebrated
inequality of Beckner [2].

iii. Upper bounds on progressions in sumsets. We have not yet said anything about
whether Theorem 2 is at all sharp. In other words, might it be the case that if C,D are
large subsets of ZN then C + D contains an arithmetic progression of length substantially
longer than e

√
logN? A curious feature of this problem, which makes it different from many

problems in combinatorics, is that the extremal examples are neither random nor particularly
regular. Indeed, if C,D are large random subsets of ZN then C + D = ZN , whereas if C,D
are arithmetic progressions then obviously C + D also contains a long progression. What is
needed is something rather different, and this was provided by Ruzsa [15].

Proposition 4 (Ruzsa) For any ε > 0 there is a set C ⊆ ZN with |C| >
(

1
2
− ε
)
N but

such that C + C does not contain an AP of length e(logN)2/3+ε
.

Ruzsa calls his examples niveau sets. After learning about Proposition 4 one might think
that Theorem 2 is not far short of the truth. My opinion is that this is somewhat of an
illusion. The reason for this is that Ruzsa’s argument, when adapted to Fn2 , gives a bound
which differs substantially from that implied by Theorem 4. Let us give the argument here,
because it takes a very simple form5.

Proposition 5 (Niveau sets in Fn2) There is a set C ⊆ Fn2 with |C| > N/4, but such that
C + C does not contain a translate of any subspace with dimension more than n−

√
n.

5Ruzsa’s paper is, by contrast, something of a tour de force. This is because in ZN one does not have the
notion of independence, and one is forced to work with the weaker notion of dissociativity instead. In the
context of these constructions, this presents a significant barrier.
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Proof. Let C be the set of all vectors x ∈ Fn2 with at least n/2 +
√
n/2 ones with respect

to the standard basis. By the central limit theorem the number of ones in a random vector
(x1, . . . , xn) is roughly normally distributed with mean n/2 and standard deviation

√
n/2,

and so for large n we have γ ≥ 1/4. Now any vector x ∈ C +C must have at least
√
n zeros.

Using this fact, we shall prove that C +C meets all translates of all (n−b
√
nc)-dimensional

subspaces. Indeed, write d = b
√
nc and suppose that U is a translate of some subspace of

dimension n = d. U can be written as

U = {a0 + λ1a1 + · · ·+ λn−dan−d : λi ∈ F2} ,

where the ai are linearly independent. Write ai in component form as (a
(j)
i )nj=1. The column

rank of the matrix (aij) is n − d, and hence so is the row rank. Without loss of generality,

suppose that the first n− d rows (a
(j)
1 , . . . , a

(j)
n−d), j = 1, . . . , n− d, are linearly independent.

Then we can solve the n− d equations

a
(j)
0 + λ1a

(j)
1 + · · ·+ λn−da

(j)
n−d = 1

for the λi, giving a vector in U with no more than d zeros.

iv. Spectral structure of large sets. Chang’s theorem tell’s us nothing useful about the
structure of R, the set of points at which |Â(r)| ≥ ρ|A|, where A ⊆ ZN has cardinality bN/2c.
It turns out that in fact nothing can be said over and above the trivial bound |R| � ρ−2

coming from Parseval’s identity. A result in this direction was proved in [8], but it later came
to the author’s attention that better results follow from earlier approaches of de Leeuw,
Kahane and Katznelson [6] and Nazarov [13]. Nazarov’s argument is nicely described in the
article [1], from which one can extract the following result.

Theorem 5 (Nazarov) Let αr, r ∈ ZN , be positive reals satisfying
∑

r α
2
r ≤ N/1600. Then

there is a function f : ZN → [0, 1] such that |f | =
∑

x f(x) = N/2, and so that

|f̂(r)| ≥ αr|f |

for all r ∈ ZN .

Roughly speaking, this beautiful result says that the only information one can infer concerning
the large spectrum of a large subset of ZN comes directly from Parseval’s theorem. 6

v. L1-norms of exponential sums. Lemma 1 introduced the notion of a set supporting a
function whose Fourier transform has small L1-norm. In this section we mention a couple of
open problems relating to sets such that the Fourier transform of the set itself has small L1

norm.
6Admittedly, the function f is not quite the characteristic function of a set. One can use f to create a set

A by picking each x ∈ ZN to lie in A independently at random with probability f(x). A theorem of Spencer

[19] then allows one to conclude that Â is very similar to f̂ . However, I do not see how to get Theorem 5
with f equal to the characteristic function of a set using only this observation.
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Problem 1 (Strong Littlewood conjecture) Let λ1, . . . , λN be distinct positive integers.
Is it true that ∥∥∥∥∥

N∑
n=1

e(λnθ)

∥∥∥∥∥
1

≥

∥∥∥∥∥
N∑
n=1

e(nθ)

∥∥∥∥∥
1

?

It was shown that this holds if one replaces ≥ by �. This result, proved independently by
Konyagin [11] and McGehee, Pigno and Smith [12], solved a famous conjecture which had
been known as Littlewood’s conjecture.

Problem 2 (Chowla’s cosine problem) Let λ1, . . . , λN be distinct positive integers. How
large can

min
θ∈[0,1)

N∑
n=1

e(λnθ)

be?

Improving an approach of Bourgain [3], Ruzsa [18] has shown that the minimum cannot be
greater than −e−c

√
logN . The truth may be more like −

√
N .
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