Counting Sumsets and Sum-Free Sets, I
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1. Introduction. Let p be a prime number and write Z,, for the group of residues modulo p.
Write SF(Z,) for the collection of all sum-free subsets of Z,, by which we mean sets A C Z,
for which (A + A) N A = (). Equivalently, A is sumfree if there are no solutions to z +y = z
with z,y, 2 € A. The question of estimating |SF(Z,)| was addressed in [4] and [5]. In [5] the
following result was proved:

Theorem 1 (Lev, Schoen) Let p be a sufficiently large prime. Then we have
LTI+ o) < IsF(Z,)] < 2w,

Another rather natural enumeration problem does not seem to have been considered in
the literature. Write SS(Z,) for the collection of sumsets in Z,, that is to say sets A C Z,
which are exactly equal to B + B for some B C Z,. Jacques Verstrate asked the first author
to estimate |SS(Z,)|.

The objective of this paper is to prove the following theorem, which improves on the upper
bound of Lev and Schoen and goes some distance towards answering the question of Verstrate.

Theorem 2 Let p be prime. Then we have
(i) [SF(Z,)] < 2v/3n0);
(i) 22915 < [35(2,)] < 21
where k(p)/p — 0 as p — oo and in fact we can take
w(p) < plloglogp)**(logp)*/".

2. Granular structure of sets. In this section we will state and prove a proposition which
is central to our argument. Before doing so we introduce some notation. If f : Z, -+ R
is a function and n € Z, then write r(f,n) for the autoconvolution Y, f(m)f(n —m). In
the special case that s = xg is the characteristic function of a set, r(s,n) is the number of
ordered pairs (s1,s3) € S? with s; + s, = n. In the proposition there will be sets A4, A" and
Ay; we use the letters a,a’ and a; respectively to denote their characteristic functions.

Finally, let L be a positive integer and consider the partition of Z, into intervals J; =
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{iL+1,...,(i+ 1)L} of length exactly L together with a leftover interval J of length less
than L. We say that a set B C Z, is L-granular if some dilate of B is a union of some of the
intervals .J;.

Proposition 3 Let A C Z, have size ap, let €1,e2,¢5 be positive real numbers and L a

positive integer. Suppose that

—4_-2_-1

p > (4L)256a erter et
Then there is a set A" C Z, with the following properties:
(i) [ANA] < ep;
(ii) A+ A contains all x for which r(d',z) > 9p, with at most £3p exceptions;
(iii) A" is L-granular.
Proof. Let f be the Fourier transform of the characteristic function of A, so that

fx) = >_ e(nz/p)

neA

for all z € Z,. Take a small positive § (our choice will be § = ze?e 2exa~?). Let R,
|R| = k, be the set of all r # 0 for which |f(r)| > dp. We will find a d € Z) such that the
function

1 L—1 .
9(@) = 57— j%l) e(jdx/p)
satisfies
f (@)1 = g(2)?| < dp (1)

for all . This automatically holds for x = 0, as g(x) = 1, and also whenever |f(x)| < dp,
since g(x) € [—1,1]. We will now select d so that (1) holds for the remainder of Z,, which is
to say the elements of R.

For any = € Z, we may estimate 1 — g(x) as follows. Writing ||#|| for the distance of ¢ from
the nearest integer we have the inequality 1 — cos 2mt < 272||¢||%. It follows that

1-g(z) = 2L Z( SQWj;dx)
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Hence

2| f(x)|[1 = g(x)]
14L2||dz /p|)?| f (z)]

[f (@)L = g(2)?]

<
<

and so, by our earlier remarks, a sufficient condition for (1) to hold is that

1 (6 1/2
rtol < 3 (171

for all » € R. It follows by a standard application of the pigeonhole principle that such a d

exists if
1/2
) | )

We claim that this inequality is a consequence of the hypothesis on p, L, 1,25 and €3 in the
statement of the proposition. Indeed, observe that Parseval’s identity implies that

Y < ap? (4)

reR

reR

from which the arithmetic-geometric mean inequality gives

G (%)/

reR

It follows that the right side of (3) is at most
(4La1/45_1/2k_1/4)k, (5)

256L%
e

of (4) is the inequality k& < «/02, and hence (5) is itself bounded above by (4L)*/%. Recalling
our choice of ¢ confirms the claim, and hence there is a d for which (1) holds.

which is an increasing function of k& in the range k < ( ) 5z. However another consequence

By dilating A if necessary we may assume that d = 1. Recall that we partitioned Z, into
intervals Ji, ..., J,, of length exactly L together with a leftover interval J of length less than
L. Define A’ to be the union of all the J; for which |AN J;| > £/L/2. Property (iii) of the
proposition follows immediately from this definition. The remainder of the proof consists in
checking properties (i) and (ii).

We begin with property (i). If z € A\ A’ then either z € J or else |[AN J;| < e1L/2, where
x € J;. For each i there clearly cannot be more than €;L/2 points x € A with the latter
property, and so we estimate

1A\ Al seip+ L

<
< ep.
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To establish property (ii) we define a function a; by

1

L AN (P +n),

ai(n) = ax*xp)(n) =

|P|

where P = {—(L — 1),...,L — 1}. Observe that the Fourier transform of a;, f;, is equal to
the product of f and ¢g. Thus we have, by two applications of Parseval, that

Slram) —r(@n)l = 7 Y|f@) - il 7|
= p ' Sl (1 - g@)?)’
< ! (sl - o)) S1)
= ap (swp £~ 9(e)]) ©)

(1) therefore implies that
> |r(a,n) — r(ay,n))® < ad®p’. (7)

Now if n € A’ then there is an interval of length L containing n (and hence contained in
[n—(L—1),n+ (L —1)]) which contains at least ;L /2 points of A. Hence a;(n) is certainly
at least £1/4, and so ai;(n) > e1a(n)/4 for all values of n. It follows immediately that
r(ai,n) > &2r(a,n)/16 for all n, and hence that if 7(a,n) > eop then r(a;,n) > e2syp/16.
We are to show that there are not many points n for which this is true whilst r(a,n) = 0.
Letting B denote the set of these “bad” points, observe that n € B implies that

4.2,2
2 €189
_ > 1Tl
Substituting into (7) gives the bound
2560:6>
B
|B| < R
(this explains our choice of 0). This is property (ii). O

3. A corollary to a theorem of Pollard. The object of this section is to prove Proposition
5. This proposition is a simple corollary of the following theorem of Pollard [6].

Theorem 4 (Pollard) Let B C Z,, and let N,, 1 < r < |B|, denote the number of elements
n € Z, for which r(B,n) > r. Then

Ni+...+ N, > r(min(p,2|B|) —r).



Proposition 5 Let B C Z, have cardinality at most p/2. Let K be a positive integer,
and write Sg(B) = {n : r(B,n) > K} for the set of K-popular sums in B + B. Then

|Sk(B)| = min(2|B|,p) — 2V/Kp.

Proof. In the notation of Theoremd4, we have N; < |Sk(B)| for j > K. Thus, if r > K, we
have
r(min(2|Bl,p) —r) < Ny +...+ N, < Kp+ |Sk(B)|r.

Taking » = /K p gives the bound claimed. O

4. Proof of Theorem2. Upper bounds. We are now in a position to derive the upper
bounds in Theorem 2. We begin with the upper bound for |SF(Z,)|. Observe, first of all,
that the number of subsets of Z, having cardinality at most p/17 is O(2"/?). Let us therefore
assume that A C Z, is sumfree and that |A| > p/17. Letting 1,2, 3 be positive reals and
L a positive integer to be chosen later we may, for p sufficiently large, apply Proposition 3
to get a set A’ satisfying the conclusions of that proposition. We will count sumfree sets A
by counting pairs (A’, A). It is not hard to see that

number of choices for A’ < p2¢/.

Supposing now that A’ is given we consider seperately the two cases |A’| > p/3 and |A'| < p/3.
In the first case we use Proposition 3(ii), which says that A + A contains S.,,(A’), with the
exception of at most e3p points. Since A is sumfree, this means that A must be a subset of
Seop(A")¢ together with at most e3p points. Proposition 5 tells us that

. 2p
|S,p(A")| > min(2|A],p) — 25;/219 > EN 26$/2p.

Thus, if |A'| > p/3,
number of choices for A < 2P/3exp (C’ (5;/2 + 3 log(l/eg)) p) .

If |A'| < p/3 things are easier. Proposition 3(i) tells us that A is a subset of A’ together with
at most £1p extra points. Thus in this case

number of choices forA < 2P/3exp (Ceylog(1/e1)p).
Hence if Proposition 3 applies with e, = e3 = ¢/ log(1/e), €2 = €* and L = 1+ [1/¢], then we

have the bound
ISF(Z,)| < 2¢/3+Ce,

A short calculation confirms that we can take ¢ = O ((log log p)2/3 (logp)_l/g).

Slightly suprisingly the proof of the upper bound for |[SS(Z,)| is almost identical. The only
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difference is that in the case |A'| > p/3 we use the fact that (A + A)¢ must be a subset
of S.,,(A")¢ together with at most e3p points, and observe that sumsets X + X and their
complements (X + X)¢ are in 1-1 correspondence. This completes the proof of the upper
bound part of Theorem 2. O

5. A lower bound for [SS(Z,)|. In this section we prove the lower bound in Theorem?2.
We do not give a lower bound for |SF(Z,)| as this has already been done in [5] and we do
not see how to improve on it.

Lemma 6 Let p be large. Let Py, Py be two arithmetic progressions in Z, with length L = | £ |
and common differences dy, ds. Suppose that dy # +ds. Then |Py N Py| < p/4+ 4.

Proof. Without loss of generality we may take P, = {0,1,...,L — 1} and P, = {a,a +
d,...,a+ (L —1)d}, where 2 < d < p/2. Colour each A € {0,...,L — 1} red or blue
according to whether a + Ad € P; or not. This divides {0,...,L — 1} into monochromatic
strings. The length of each red string is at most N; = [L/d], and that of each blue string
is at least Ny = |[(p — L)/d|. |Py N P is the number of red elements, and we can bound
this above by partitioning into consecutive red/blue blocks. Allowing for the possibility that
both end blocks may be red we have

N, L

PNP| < —2 4
Py 2|_N1+Nz

Ni. (8)
Observe that N7 < N,. Indeed if this is not the case then (p — L)/d < L/d+ 1. If L < p/4
this is impossible, so we must have L € [p/4,p/3] and d > p — 2L > p/3. Thus N; = 1, and
we must have Ny = 0. This, however, is also impossible.

It follows that Ni/(Ny+ Ny) < 1/2, and so if N; < p/12+ 1 the result is immediate from(8).
If N; > p/12+ 1 then we must have d = 2,3 or 4. These cases are easy to check by hand. O

Remark. A much more precise result than this could be obtained, but some quite tedious
calculations would almost certainly be required.

Let L = |p/3] —1,and let P ={a+d,a+2d,...,a+ 2Ld} be an arithmetic progression of
length 2L. We say that a set X C Z, ezactly contains P if P C X but neither of the points
aora+ (2L +1)d lie in X.

Lemma 7 Let P be any progression of length 2L. Then there are at least 2P/ sets of the
form A+ A which exactly contain P.

Proof. By dilating and translating we may assume that P = {1,...,2L}. All of our sets A
will be of the form B U {2L + 1}, where B C [L] = {1,...,L}. Observe that distinct sets B
give rise to distinct sumsets A + A, and that A + A never contains either 0 or 2L + 1. We
will show that there are many choices of B for which A + A contains P.
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Choose a set B by including the elements 1,2,...,14and L—13,..., L—1, L automatically
and picking every element in {15, ..., L — 14} independently at random with probability 1/2.
The elements 2,3,...,28 and 2L — 26,...,2L all liein B + B. Let x € {29,...,L}. Then,
with an obvious abuse of notation, there are at least [x/2] disjoint pairs (u,v) € [L]* with
u+ v = z. Thus we see that

3\ - l2/2]
P(xr¢ B+ B) < (Z) .
Similar statements hold for x € {L +1,...,2L — 27} and hence the probability that B + B
does not contain all of P is at most
3\ - lo/2]
9 e
2@

z>29

which is less than 1/2. It follows that there are at least 272 sets B C [L] for which B + B
contains P, and the lemma follows immediately from the remarks at the start of the proof.]

There are very few sets which exactly contain two different progressions 1 and ()5 of length
2L. Such progressions must have distinct common differences, and so Lemma 6 applies to
give that |Q$ N Q5| < 2 +10. It follows that |1 U Q2| > 22 — 10, and so the number of

X C Z, which exactly contain two different progressions is certainly o (2”/ 3).
The lower bound in Theorem 2 follows at once by applying Lemma 7 for each of the
p(p — 1)/2 choices for P. O

Concluding remarks. We think it quite likely that |[SF(Z,)| = O(p2?/?) and |SS(Z,)| =
O(p?2P/?), but do not see how to prove this. It may be that establishing this is similar in
difficulty to proving the well-known conjecture of Cameron and Erdds concerning sum-free
subsets of [n] = {1,...,n}:

Conjecture 8 (Cameron — Erd8s) The number of sum-free subsets of [n] is O(2"/?).

The bound O(2%/2+°(™) for this problem was proved independently by Alon [1], Calkin [2]
and Erdés and Granville (unpublished).

It is natural to ask whether the methods of our paper extend to abelian groups in general.
The answer is that they do, but not in a straightforward way, and our second paper will focus
on the difficulties that arise. A particular problem is that px(G), the maximal density of a
sumfree subset of G, is not known for all groups. The survey article [3] may be consulted
for more details, but we remark that problems arise when all prime factors of n are of the
form 3k + 1. For example it is clear that u (Zg;) > 30/91, but it does not seem to be known
whether or not equality holds for all n.
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