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Interfacial deflection and jetting of a paramagnetic
particle-laden fluid: theory and experiment

Scott S. H. Tsai,†ab Ian M. Griffiths,†c Zhenzhen Li,‡a Pilnam Kim§a

and Howard A. Stone*a

We describe the results of experiments and mathematical analysis of the deformation of a free surface by

an aggregate of magnetic particles. The systemwe study is differentiated from ferrofluid systems because it

contains regions rich with magnetic material as well as regions of negligible magnetic content. In our

experiments, the magnetic force from a spherical permanent magnet collects magnetic particles to a

liquid–air interface, and deforms the free surface to form a hump. The hump is composed of magnetic

and non-magnetic regions due to the particle collection. When the magnet distance falls below a

threshold value, we observe the transition of the hump to a jet. The mathematical model we develop,

which consists of a numerical solution and an asymptotic approximation, captures the shape of the

liquid–air interface during the deformation stage and a scaling prediction for the critical magnet

distance for the hump to become a jet.
1 Introduction

Magnetic nano- and microparticles arise in a wide range of
applications. Functionalized magnetic microparticles, in the
form of bulk dilute suspensions, are used to perform separa-
tions of biological material such as cells1,2 and can act as forcing
elements for microrheology.3–5 Recently, similar magnetic
microparticles have been used in microuidic devices for cell
sorting,6–8 blood cleansing,9 interfacial tensiometry,10 and
magneto-capillary self-assembly.11

When magnetic nanoparticles such as magnetite are sus-
pended at high concentration in aqueous or non-aqueous
carrier-uids, the entire system behaves as a continuum of
magnetic uid.12 The rheology and interfacial shape of these so-
called ferrouids can be tuned with external magnetic elds,
and such systems have been studied extensively.13–18 The
control of ferrouid properties using magnetic elds have
applications in mechanical sealing and acoustics,19 as well as in
non-traditional areas such as the folding of elastic material20

and controlled drug release.21

In the water-purication industry, where heavy-metal
removal from contaminated water has been a formidable
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challenge,22 a promising technique uses magnetic nano-
particles to remove heavy metals, such as arsenic, from water.
Through adsorption, arsenic attaches to magnetic nano-
particles that are dispersed in the contaminated water,23 and
the magnetically tagged clusters are collected with a magnetic
eld gradient.24 One possible mechanism for the safe collection
and transfer of these magnetic aggregates out of the water is to
use a magnetic eld to pull the aggregates to the liquid–air
interface, allow these aggregates to deform the interface, and
eventually transition into a jet to remove the magnetic material.

In this paper, we describe experiments that are motivated by
the industrial applications of forming and collecting aggregates
of magnetic material. The system we study differs from a pure
ferrouid system because it contains both magnetically domi-
nated and non-magnetic regions. Here, colloidal magnetic
particles are rst mixed with water, then collected at a liquid–air
Fig. 1 An image from the magnetic hump formation experiment (with a
drawing of the spherical magnet overlaid). The permanent magnet is placed a
distance L* from the flat interface. Magnetic microparticles collect below the
magnet and deform the liquid–air interface. The region where the magnetic
particles aggregate is bounded by a base radius R*.

This journal is ª The Royal Society of Chemistry 2013
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interface by an applied magnetic eld from a permanent
magnet (see Fig. 1).

We nd that, when the permanent magnet is held suitably
far from the uid at a constant distance, the deection of the
liquid–air interface is generally static. However, as we reduce
the distance, L*, between the magnet and the unperturbed uid
interface, we nd that there exists a threshold value below
which the hump destabilizes and forms a jet (see Fig. 2).

The paper is organized as follows. In Section 2 we begin by
describing the experimental methodology. In Section 3 we
derive a mathematical model to describe the collection and
arrangement of paramagnetic particles within the uid beneath
the external magnet, and the stable interfacial prole of
the particle and uid mixture that results. We compare the
predictions made by this model with the experimental data. The
complexity of this theory is reduced in Section 4 by exploiting
the typical small interfacial deection of the uid when the
system is in a stable conguration. The simplied model lends
itself to a tractable analysis of the system behaviour. In Section 5
we derive a scaling law utilizing the theoretical model that
predicts when jetting of the uid will occur. The simple trend
from the scaling law allows the experimental data to be
collapsed onto a single power-law curve. Finally, in Section 6 we
draw conclusions on the model predictions and their applica-
tion to real-world situations such as water purication.
2 Experimental methods

In our experiments, magnetic particles are collected at a liquid–
air interface by the magnetic eld gradient from a spherical
permanent magnet. Fig. 1 shows an experimental image of a
magnetic hump that is formed at the liquid–air interface,
overlaid with a drawing of the spherical permanent magnet.
(The actual magnet is too far from the hump to be included
in Fig. 1.)

We plasma-treat the back face of a 35 mm diameter Petri-
dish to make it hydrophilic. The back face of the Petri-dish has
1 mm high walls that circle around the substrate to form a
shallow reservoir. We deposit magnetic mixtures into this
reservoir in all of our experiments.

In the interfacial deformation experiments, 1 mL of deion-
ized (DI) water, with density r ¼ 1000 kg m�3 and viscosity
hw ¼ 1 mPa s, is rst deposited into the reservoir. A 1 mL solu-
tion of water-based ferrouid (EMG805, Ferrotec, Tokyo, Japan)
is then injected into the reservoir using a micropipette to form
the magnetic mixture. Here the ferrouid is composed of 3.6%
Fig. 2 A set of images, taken at 50 ms intervals, of the magnetic hump–jet
transition. As the permanent magnet is moved sufficiently close to the magnetic
hump, the hump (a) destabilizes, and (b)–(d) transitions to a jet.

This journal is ª The Royal Society of Chemistry 2013
vol of 10 nm paramagnetic nanoparticles, suspended in a DI
water solution by anionic surfactants. Except for magnetic
effects, we treat the magnetic mixtures as having the properties
of water in all of our analysis because of the low concentration
of ferrouid used. (The ferrouid has density rm¼ 1200 kgm�3,
and viscosity hm ¼ 3 mPa s.)

In the jet formation experiments, a 1 mL magnetic solution,
which contains particles (Sigma-Aldrich, St. Louis, MI, USA) of
radius 5 mm, magnetic susceptibility c z 10�3, and concen-
tration 1012 beads per mL, is injected into the reservoir in place
of the ferrouid. We add the surfactant sodium dodecyl sulfate
(SDS, Sigma-Aldrich, St. Louis, MI, USA) to the water in some
experiments prior to mixing with magnetic particles to vary the
interfacial tension, g, and we measure the interfacial tension by
the pendant drop method.

Spherical permanent magnets (K. J. Magnetics, Jamison, PA,
USA), with radii R*

m z 2.4 or 3.2 mm and magnetization
M* z 106 A m�1, are used to supply the magnetic eld. In each
experiment, a single magnet is super-glued to the tip of a plastic
syringe, which is mounted to a motorized positioner. The
positioner allows us to control the distance, L*, between the
magnet and the undeformed liquid interface (see Fig. 1).

The magnet is slowly brought to the vicinity of the magnetic
uid mixture at the beginning of each experiment, aer which,
the entire system is allowed sufficient time (approximately 10
minutes) for the particles to aggregate and equilibrate to a static
hump at the liquid–air interface. We observe a distinct
boundary that separates the region with magnetic material and
the region outside, where there are nomagnetic particles. In the
interfacial deformation experiments, we measure a base radius
R* (Fig. 1), of the magnetic region, and track the position of the
liquid–air interface as we vary the magnet distance L*. In the
jetting experiments, we measure the critical magnet distance L*c
at which the magnetic hump transforms to a jet (see Fig. 2).

A DSLR camera (Nikon, Tokyo, Japan) is connected to a
macro lens (Sigma Corp., Fukushima, Japan) via a macro
bellows (Fotodiox, Waukegan, IL, USA) to take images of the
static magnetic hump. A Phantom V9 fastcamera (Vision
Research, Wayne, NJ, USA) is used in place of the DSLR when
the hump–jet transition experiments are conducted to capture
the jet formation. IMAGEJ soware is used to process and analyse
all experimental images.
3 Mathematical formulation
3.1 Governing equations for the magnetic deformation

The system we study is distinguished from purely ferrouid
systems by the presence of a non-magnetic region of the uid
that surrounds the magnetic region. The magnetic region is
dened as the volume where all of the magnetic particles are
collected, while the non-magnetic region contains no magnetic
particles. We choose to describe the system using cylindrical
polar coordinates, (r*, q*, z*), and assume that the set-up is both
stable and axisymmetric and thus independent of time and of
angle, q*. We assume that the paramagnetic particles are con-
tained within a domain bounded by the upper surface, given by
z* ¼ h*(r*), and a horizontal base z* ¼ h*(R*), so that r* ¼ R*
Soft Matter, 2013, 9, 8600–8608 | 8601
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Fig. 3 Schematic illustrating the volume occupied by paramagnetic particles.
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represents the radial extent occupied by the paramagnetic
particles, as illustrated in Fig. 3.

We begin our analysis with the non-magnetic region. Within
this region the uid is assumed to be non-magnetizable and so
the uid pressure, p*, is simply hydrostatic,

p* ¼ �rgz*. (1)

Here r is the uid density and g is the acceleration due to
gravity, and we have set p*¼ 0 at z*¼ 0 (the reference of the at
interface) without loss of generality. We can account for the
pressure drop across the interface and hydrostatic stresses by
the Young–Laplace equation,

p* ¼ 2k*g, (2)

on z* ¼ h*, where g is the interfacial tension in the non-
magnetic region and

2k* ¼ �
d2h*

dr*2
þ 1

r*

dh*

dr*
þ 1

r*

�
dh*

dr*

�3

�
1þ

�
dh*

dr*

�2�3=2
ð3Þ

is the interfacial curvature. Replacing the pressure with its
hydrostatic form (1) thus yields

2k*g ¼ �rgh*(r*). (4)

In themagnetic region, we treat the liquid as a ferrouid that
has a homogeneous magnetic susceptibility, c. We model the
magnetic region using the standard ferrouid equations
applied to a static uid of constant density equal to that in the
non-magnetic region, which gives,12

�V*p* + mocV*H*2 + rg ¼ 0. (5)

Here V* denotes the dimensional gradient operator,
mo z 1.257 � 10�6 m kg s�2 A2 represents the permeability of
free space, g ¼ �gẑ, where ẑ denotes the unit vector in the z*
direction, and H*2 ¼ H*$H*, where H* is the magnetic eld. In
obtaining this result we have assumed that the uid is linearly
magnetizable so that the magnetization, M*, may be written as
M* ¼ cH*. Integration of the z*-component of eqn (5) gives

�p* + mocH*2 � rg*z* ¼ c, (6)

where c is a constant of integration. Within this magnetic
region, the modied form of the Young–Laplace equation,12
8602 | Soft Matter, 2013, 9, 8600–8608
p*þ 1

2
moc

2
�
n̂$H*

�2 ¼ 2k*g; ð7Þ

provides a condition at the interface, z*¼ h*, where n̂ is the unit
outward normal vector to the interface (see Fig. 3). Note here we
have made the experimentally justied assumption that the
interfacial tension in the magnetic region is equal to that in the
non-magnetic surrounding region. Using (6) and (7) allows us to
eliminate p* to obtain

2k*gþ rg*h* ¼ mocH*2 þ 1

2
moc

2
�
n̂$H*

�2 � c: ð8Þ

The constant c is determined by matching the magnetic and
non-magnetic regions at r* ¼ R*, so that (8) becomes

2k*gþ rgh* ¼ moc
n
H*2 �H*2

��
r*¼R*

o
þ 1

2
moc

2
n
n̂$H*½ �2 � n̂$H*½ �2

���
r*¼R*

o
:

ð9Þ
Here the eld, H*, for a spherical magnet, is given by a known
solution of the magnetic eld of a uniformly magnetized
sphere,25 with a coordinate transformation to account for our
(r*, z*) cylindrical polar coordinate system,

H* ¼
M*R*

m

3ðz*� L*Þr*h
ðL*� z*Þ2 þ r*2

i5
2

8><
>:

9>=
>;r̂

þ 1

3

2M*R*
m

3ðz*� L*Þ2h
ðL*� z*Þ2 þ r*2

i5
2

� M*R*
m

3
r*2h

ðL*� z*Þ2 þ r*2
i5
2

8>><
>>:

9>>=
>>;ẑ;

ð10Þ
where M* is the magnetization of the magnet, R*

m is the radius
of the magnet, and r̂ denotes the unit vector in the r*
direction.

The system (4) and (9) comprises two second-order equations
and is solved by imposing four boundary conditions, namely
zero gradient of the deformed interface at the centre of the
hump due to symmetry, zero deection of the uid interface in
the far eld, and matching interface deection and gradient at
the point r* ¼ R*:

dh*ð0Þ
dr*

¼ 0; h*ðr*/NÞ/0;

h*ðR*�Þ ¼ h*
�
R*þ

�
;

dh*ðR*�Þ
dr*

¼ dh*
�
R*þ

�
dr*

:

ð11a� dÞ

For a given experiment, the paramagnetic beads occupy a
volume, V*, given by

ð2p
0

ðR*
0

r*ðh*ðr*Þ � h*ðR*ÞÞdr*dq* ¼ V*; ð12Þ

as illustrated in Fig. 3. This equation determines the radial
extent occupied by the paramagnetic particles, R*, and closes
the system.
This journal is ª The Royal Society of Chemistry 2013
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3.2 Non-dimensionalization

We non-dimensionalize the system via
Fig. 4 Comparison of the numerical solution to eqn (15) subject to (19) and (20)
(solid lines) with experimental data (points). After depositing the 1 mL of water
and 1 mL of ferrofluid on the substrate, the magnet is brought to the vicinity of the
mixture until a static shape is achieved. Results from two static magnetic defor-
mation profiles with R*m z 3.2 mm, g z 0.07 N m�1, and V* z 0.47 mm3 are
shown: (a) L*z 6.33 mm, giving az 0.28, Bz 0.45 and 3z 0.015; (b) L*z 5.65
mm, giving a z 0.27, B z 0.32, and 3 z 0.024. The results show excellent
agreement between the experiments and the numerical predictions.
h* ¼ h*ch, r* ¼ R*
cr, R* ¼ R*

cR, (13a–c)

where

h*c
2 ¼ mocM*2R*

m
6V*

18pgL*6
; R*

c
2 ¼ V*

2ph*c
: ð14a;bÞ

Here, h*c is a characteristic interfacial deection, and captures
the dominant balance between the paramagnetic attraction and
the surface tension, and R*

c expresses the typical radial spread of
the paramagnetic material.

Substitution of the expression for the magnetic eld, eqn
(10), into eqn (9) and employing the non-dimensionalization
(13) leads to

h00 þ 1

r
h0 þ 32

a2

1

r
h03

�
1þ 32

a2
h02
�3
2

� Bh

¼ 4ð3hðRÞ � 1Þ2 þ a2R2	
ð3hðRÞ � 1Þ2 þ a2R2


4 � 4ð3h� 1Þ2 þ a2r2	
ð3h� 1Þ2 þ a2r2


4
2
64

3
75

þc

2

9
	
1� 3hðRÞÞ2a4R2 þ 32ðh0ðRÞÞ2ð2ð1� 3hðRÞÞ þ a2R2


2
	
ð1� 3hðRÞÞ2 þ a2R2


5	
a2 þ 32ðh0ðRÞÞ2



2
64

�
9ð1� 3hÞ2a4r2 þ 32ðh0Þ2

	
2ð1� 3hÞ þ a2r2


2
	
ð1� 3hÞ2 þ a2r2


5	
a2 þ 32ðh0Þ2



3
75 ð15aÞ

for r # R, and,

h00 þ 1

r
h0 þ 32

a2

1

r
h03

�
1þ 32

a2
h02
�3
2

� Bh ¼ 0; ð15bÞ

for r $ R, where primes denote differentiation. The system is
thus characterized by three dimensionless parameters: the
Bond number

B ¼ rgR*
c
2

g
¼ 3rgL*3

M*R*
m
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V*

2pmocg

s
; ð16Þ

which represents the ratio of buoyancy to surface tension;

a ¼ R*
c

L*
¼
 

9gL*2V*

2pmocM*2R*
m
6

!1=4

; ð17Þ

which denotes the ratio of the typical radial spread to magnet
distance, and provides a representation of the total volume of
magnetic material; and
This journal is ª The Royal Society of Chemistry 2013
3 ¼ h*c
L*

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mocM*2R*

m
6V*

18pgL*8

s
; ð18Þ

which denotes the aspect ratio of the hump. For all of the
experiments conducted, we nd that, for stable interfacial
proles, 3 is always small, with the uid jetting well before an
order-one aspect ratio of the interfacial prole can be achieved.
We exploit this feature in an asymptotic analysis in Section 4.

The dimensionless counterparts to the boundary conditions
(11) are

h0(0) ¼ 0, h(r / N) ¼ 0, h(R�) ¼ h(R+), h0(R�) ¼ h0(R+).

(19a–d)

The dimensionless radial spread of the paramagnetic
material, R, which appears in (15a) and (19c,d) is also unknown
a priori, and is determined by satisfying the dimensionless
version of (12) that enforces the volume conservation of para-
magnetic beads, ðR

0

rhðrÞdr ¼ 1þ 1

2
R2hðRÞ: ð20Þ
Soft Matter, 2013, 9, 8600–8608 | 8603
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The numerical solution to eqn (15) is obtained using an
Adams–Bashforth multistep method, and solving for the
appropriate value of h(0) that satises the volume constraint
(20). The results are compared in Fig. 4 with data obtained for
an experiment where 1 mL of water and 1 mL of ferrouid are
placed on the substrate and in the region of inuence of the
magnetic eld until a static hump shape is achieved. As the
magnet is brought closer to the free surface, the deection of
the height of the magnetic hump increases.

In our comparison with the experimental data, we t only
once, for the magnetic product cM*2, aer which the numerical
system is then fully determined. The calculation determines the
magnitude of the characteristic hump height, hc. In this
experiment, we nd that cM*2 z 9.6 � 108 A2 m�2. Typically
c z O(10�3) and M* z O(106 A m�1). The results show
extremely good agreement between the numerical solutions and
the experiments. Specically, we observe that the numerical
solution is able to capture not only the height and width of the
hump, but the inection in the interfacial prole.

Whilst the numerical solution is in excellent agreement
with the experimental data, the iterative procedure employed
to determine the solution is somewhat arduous and, more-
over, it is difficult to use this to gain insight into the para-
metric dependence of the system behaviour. With this
observation in mind we proceed in the following section to
seek a simplied analytic solution for the interfacial prole,
by exploiting the typically small ratio of vertical deection of
the uid surface to the horizontal extent occupied by the
paramagnetic particles, that is, 3, and the smallness of the
magnetic susceptibility, c.
Fig. 5 Comparison of the numerical solution to eqn (15) subject to (19) and (20)
(solid line) and the analytic asymptotic result (25a) and (25b) (dashed line) for the
same experimental set-up as shown in Fig. 4(a), with az 0.28, Bz 0.45, and 3z

0.015, illustrating an outstanding agreement.
4 An asymptotic approximation to the
interfacial profile

The interfacial curvature is generally small when the system is
in an equilibrium conguration prior to the jetting of the uid,
which manifests itself in the smallness of the parameter 3. We
may exploit this feature by analysing the governing eqn (15) and
boundary conditions (19) and (20) asymptotically in the limit
3 / 0. In addition, the magnetic susceptibility, c, is also typi-
cally small, of the order 10�3. Thus, we neglect terms pre-
multiplied by 3 or c in (15) to obtain the simplied linear system
for h,

h00 þ 1

r
h0 � Bh ¼ 4þ a2R2

ð1þ a2R2Þ4 �
4þ a2r2

ð1þ a2r2Þ4; r#R; ð21aÞ

h00 þ 1

r
h0 � Bh ¼ 0; r$R; ð21bÞ

subject to the ve boundary conditions

h0ð0Þ ¼ 0; hðR�Þ ¼ h
�
Rþ�; h0ðR�Þ ¼ h0

�
Rþ�;

hðr/NÞ ¼ 0;

ð1
0

rhðrÞdr ¼ 1þ 1

2
R2hðRÞ:

ð22a� eÞ

This boundary value problem now depends only on two
dimensionless parameters, namely a and B.
8604 | Soft Matter, 2013, 9, 8600–8608
We rst solve (21b) subject to (22d) to yield

hðrÞ ¼ AK0

	 ffiffiffiffi
B

p
r


; ð23Þ

where K0 denotes the modied Bessel function of the second
kind and A is a constant to be determined. Manipulation of (23)
and use of (22b,c) provides a Neumann boundary condition
satised by the prole for r # R,ffiffiffiffi

B
p

K1

	 ffiffiffiffi
B

p
R


hðRÞ þ K0

	 ffiffiffiffi
B

p
R


h0ðRÞ ¼ 0: ð24Þ

We are then le to solve the decoupled problem (21a) subject
to (22a) and (24). This system may be solved via the method
of variation of parameters to provide the height prole, h, for
r # R,26

h ¼ K0

� ffiffiffiffi
B

p
r
� ðr

0

sI0

	 ffiffiffiffi
B

p
s

 4þ a2s2

ð1þ a2s2Þ4 �
4þ a2R2

ð1þ a2R2Þ4
!
ds

þ I0
� ffiffiffiffi

B
p

r
� ðR

r

sK0

	 ffiffiffiffi
B

p
s

 4þ a2s2

ð1þ a2s2Þ4 �
4þ a2R2

ð1þ a2R2Þ4
!
ds:

ð25aÞ

The constant A may then be determined using (22b) to give
the prole for r $ R,

hðrÞ ¼ K0

� ffiffiffiffi
B

p
r
�

�
ðR
0

sI0

	 ffiffiffiffi
B

p
s

 4þ a2s2

ð1þ a2s2Þ4 �
4þ a2R2

ð1þ a2R2Þ4
!
ds:

ð25bÞ

Finally, the parameter R is determined by conservation of
volume, (22e), giving the integral relation� ffiffiffiffi

B
p

K0

� ffiffiffiffi
B

p
R
�þ RK1

� ffiffiffiffi
B

p
R
��

�
ðR
0

sI0

	 ffiffiffiffi
B

p
s

 4þ a2s2

ð1þ a2s2Þ4 �
4þ a2R2

ð1þ a2R2Þ4
!
ds

¼ 3R4a2ð5þ 4R2a2 þ R4a4Þ
4
ffiffiffiffi
B

p ð1þ R2a2Þ4 �
ffiffiffiffi
B

p
:

ð26Þ

The analytic solution for the magnetic hump prole, (25a) is
shown in Fig. 5, for the same experimental set-up as presented
in Fig. 4(a). We observe an outstanding agreement between the
This journal is ª The Royal Society of Chemistry 2013
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Fig. 6 Dependence of the radial extent, R , occupied by the paramagnetic
particles on distance between the external magnet and the fluid, L for (a) A ¼ 5
(dashed), 20 (dot-dashed), 40 (solid), with B ¼ 1 and V ¼ 0.1; (b) B ¼ 0.5
(dashed), 5 (dot-dashed), 10 (solid), with A ¼ 20 and V ¼ 0.1; (c) V ¼ 0.05
(dashed), 0.1 (dot-dashed), 0.2 (solid), with A ¼ 20 and B ¼ 1. We observe that
R / N at a finite value of L , given by (30).
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asymptotic solution and the full numerical solution to (15)
subject to (19) and (20). This success motivates us to utilize the
asymptotic model (25) and (26) to study in more detail the
dependence of the interfacial prole on the key physical
parameters.

Of particular interest is the behaviour of a given experi-
mental set-up upon variations in the position of the magnet
from the uid in its undeformed state, L*. To understand this
behaviour it is helpful to restate the mathematical model in
terms of the following new parameters:

B ¼ rgR*
m
2

g
; A ¼ 2pcmoM

2

9rgR*
m

; L ¼ L*

R*
m

; V ¼ V*

R3
m

; ð27Þ

Assuming that the size of the external magnet is xed, vari-
ations in:B capture changes in the surface tension of the uid;
A provides a dimensionless representation of the strength of
the external magnet; L gives the dimensionless distance
between the magnet centre and the uid interface in its
undisturbed state; and V provides a dimensionless measure of
the volume of paramagnetic particles contained within the
uid. In terms of these parameters,

B ¼
�
BV L 6

A

�1=2

; a ¼
�
L 2V
A

�1=4

: ð28Þ

It is also appropriate to rescale R and h via

R ¼ R*
m

R*
c

R ¼
�

L6

4AVB

�1=6

R ; ð29aÞ

h ¼ R*
m

h*c
H ¼

�
AVB
p2L

�1=2

H : ð29bÞ

Despite no longer being in its most compact form, express-
ing the system in terms of these new variables is helpful in
characterizing the behaviour with respect to the variables that
we are most easily able to adjust experimentally.

As the distance between the external magnet and the uid is
increased, by increasing L , the radial extent over which the
paramagnetic particles occupy, R , may be determined using
eqn (26), with the appropriate parameter substitutions (28). As
we would expect, this radial extent increases with increasing
distance between the magnet and the uid, as the hump
becomes less pronounced and the particles spread out (Fig. 6).
However, interestingly, we identify a critical nite distance, L c,
at which point R / N. For L > L c no such solution for R
exists. We notice that L c depends on A and L but not on B
(shown in Fig. 6). We may identify the dependence of L c on the
system parameters by taking the limit as R/ N in (26). In this
limit, the integral component tends to zero and we are le with
the simple relationship

L c ¼
�
3

4

�1=8�A
V

�1=4

: ð30Þ

When the distance between themagnet and the uid exceeds
this critical value, our assumption that the paramagnetic
particles are contained within the hump generated by the
This journal is ª The Royal Society of Chemistry 2013
magnetic eld (that is, above z¼ 0) no longer holds, and instead
the particles now become dispersed into the bulk solution,
beneath z ¼ 0. Since the ability to collect particles is not inu-
enced by the shape of the interface this offers an explanation for
the independence of the critical separation, L c, on surface
tension (i.e., B). The relationship (30) thus provides a quanti-
tative prediction of when the particles are constrained to a
localized region by the external magnetic eld. Such a predic-
tion may prove useful in scenarios in which containment of
Soft Matter, 2013, 9, 8600–8608 | 8605
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particulates is important, such as in water purication
applications.

For any of the given congurations described above, we may
determine the corresponding maximum interfacial deection,
at the centre of the hump. Eqn (25a) gives a maximum dimen-
sionless interfacial deection of

hmax ¼ hð0Þ

¼
ðR
0

sK0

	 ffiffiffiffi
B

p
s

 4þ a2s2

ð1þ a2s2Þ4 �
4þ a2R2

ð1þ a2R2Þ4
!
ds;

ð31Þ
Fig. 7 The maximum interfacial deflection,H max¼H (0), determined using (29),
(28) and (31), versus L for (a) A ¼ 5 (dashed), 20 (dot-dashed) 40 (solid),
with B ¼ 1 and V ¼ 0.1; (b) B ¼ 0.5 (dashed), 5 (dot-dashed) 10 (solid), with
A ¼ 20 and V ¼ 0.1; (c) V ¼ 0.05 (dashed), 0.1 (dot-dashed) 0.2 (solid), with
A ¼ 20 and B ¼ 1.

Fig. 8 The maximum interfacial deflection, H max ¼ H (0), determined using
(29) and (31), versus L (solid line) compared with data for the experimental
set-up with R*m z 3.2 mm, g z 0.07 N m�1, and V* z 0.47 mm3, giving A z 27,
B z 1.4, and V z 0.093.

8606 | Soft Matter, 2013, 9, 8600–8608
which may be used to determine H max ¼ H (0) using (28)
and (29).

The result (31) provides a simple expression for the
maximum interfacial deection for a given experimental set-up
and allows for ready graphical visualization (Fig. 7). Here we see
that the interfacial deection increases with increasing
magnetic eld strength (increasing A ), decreasing surface
tension (increasing B), and increasing volume of magnetic
material (increasing V ). We compare in Fig. 8 the predictions of
this simple formula with experimental data. Here, the external
magnet is moved successively closer to the interface and the
maximum deection is recorded, until the surface tension of
the uid can no longer constrain the paramagnetic particles
and jetting occurs. The general trend of the experimental data is
shown to be captured well by the theory for the ten data points
recorded at the furthest distances between the magnet and the
interface before we observe a deviation, with the model pre-
dicting a smaller deection than that observed experimentally.
The position at which this deviation occurs is also identied
with an apparent transition in the system behaviour, whereby
the magnitude of the deection increases much more rapidly as
the magnet is moved successively closer. We postulate that it is
at this transition point that the interface becomes unstable,
which leads to the difference between experimental observation
and theoretical predication. Indeed, experimental observations
show that, as the magnet approaches the uid it becomes
increasingly difficult to ascertain when a steady prole exists:
the prole is oen observed to jet several tens of minutes aer
moving the external magnet an increment closer. This obser-
vation further reinforces the hypothesis that proles in the
region where theoretical prediction and experimental observa-
tion deviate are indeed unstable.
5 Scaling model for the jetting transition

In this nal section we utilize the theory developed so far to
extract a scaling law to predict the parametric regimes under
which jetting occurs. Recall from Section 3.2 we identied the
natural scaling for the interfacial deection,
This journal is ª The Royal Society of Chemistry 2013
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h*c
2 ¼ mocM*2R*

m
6V*

18pgL*6
; ð32Þ

that captures the dominant balance between the paramagnetic
attraction and the surface tension. Experimental observations
suggest that the values of the interfacial deection and the
radial extent occupied by the paramagnetic particles do not vary
signicantly for different experimental congurations just prior
to jetting. Motivated by these characteristics we assume that the
parameter h*c in (32) may be treated as approximately constant
at the point of jetting for any given experiment. Eqn (32) then
determines an approximate scaling relationship between the
remaining parameters that we vary in our experiments, namely
R*
m, g, and the critical distance between the external magnet

and the unperturbed surface below which jetting occurs, L*c:

L*
czC

R*
m

g
1
6

; ð33Þ

where C is a dimensional scaling constant that is set by the
variables we have xed in our experiments.

Fig. 9(a) shows the critical magnet distance, L*c, for the jetting
transition, plotted with varying external magnet radii and
interfacial tensions in the water–air system (achieved via the
addition of surfactant SDS, as described in Section 2). In
general, increasing the interfacial tension results in a lower
threshold distance L*c, as larger magnetic forces are required to
destabilize the magnetic hump. Similarly, using a smaller
Fig. 9 (a) The experimental threshold magnet distance for the hump–jet tran-
sition, L*c, for two different magnet sizes R*m z 2.4 mm (triangles), R*m z 3.2 mm
(squares), with V* z 0.47 mm3, plotted against the liquid–air interfacial tension,
g; (b) L*c plotted against R*m/g

1/6 for the data presented in (a), and the scaling fit
L*c z CR*m/g

1/6 with C z 0.75.

This journal is ª The Royal Society of Chemistry 2013
magnet to produce a magnetic jet requires the magnet to be
placed closer to the interface before jetting is observed. In
Fig. 9(b) the critical distance for jetting, L*c is replotted versus the
parametric group R*

m/g*
1/6 predicted by our scaling law (33). The

data is shown to collapse well onto this predicted scaling law.
Thus, we may conclude that the scaling choice made for the
numerical model in Section 3 provides the appropriate balance
between the competing effects that constitute the development
of an instability in the uid interface and a transition to jetting,
and gives a simple prediction for when jetting will occur.
6 Conclusions

In this paper we have studied the experimental results of the
deformation of a free surface by an aggregate of magnetic
particles. The system studied possesses a clear distinction from
a conventional ferrouid systems since it comprises both
regions rich with magnetic material as well as regions of
negligible magnetic content. The deection of the interface
arises as a result of the magnetic eld induced by a spherical
permanent magnet held above the uid. This force causes the
magnetic particles to collect at the liquid–air interface and
deform the free surface. The result is a hump that is composed
of both magnetic and non-magnetic regions due to the particle
accumulation.

In addition, we derived a mathematical model that describes
the behaviour of the magnetic-particle-laden uid and the
particle-free uid regions. The model predicts the shape of the
interface observed experimentally, capturing the main experi-
mental measurements including the height of the hump and
radial spread of the particles and the characteristic shape of the
interface.

We used the smallness of the interfacial curvature and
magnetic susceptibility to derive an asymptotic model whose
results were almost indistinguishable from the predictions of
the full numerical system. The reduced model enabled a
detailed analysis of the dependence of the system behaviour on
the key variables. In particular, this theory provided an implicit
integral relation that determines the radial spread of the para-
magnetic particles, as well as an explicit result for the maximum
interfacial deection. The former result led to a novel prediction
for the critical distance of the external magnet from the uid
interface, beyond which, the paramagnetic particles are no
longer enclosed within the hump, but instead are dispersed into
the bulk uid. The results of the asymptotic model were
compared with experimental data for the deection of the uid
interface as the external magnet is brought successively closer
to the uid. The predictions were shown to agree for distances
between the magnet and the uid that exceed a critical value.
Below this value we postulated that the deviation in prediction
and theory may be indicative of the development of an inter-
facial instability.

We concluded by deriving a theoretical scaling law that
predicts the transition to jetting that is observed when the
external magnet is closer than a critical distance from the uid.
The prediction allowed us to collapse data from a series of
independent experiments onto a single power law.
Soft Matter, 2013, 9, 8600–8608 | 8607
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The results of this paper provide simple expressions that can
be used to determine the typical deection of a uid containing
paramagnetic particles, in the presence of an external magnet,
the radial extent that these particles pervade, and the transition
of the uid to jetting and removal of the paramagnetic material.
Such results may be useful in more complicated congurations
where the control of particle transport and removal using
magnetic separation is important, such as in the removal of
heavy metals and the purication of water, or in drug delivery.
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