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ABSTRACT

The aim of this thesis is to construct Einstein metrics
and Einstein-Weyl geometries explicitly mainly wvia the
holomorphic geometry of twistor spaces.

In Chapter I we construct a solution to the self-dual
Einstein equations with negative cosmological constant on the
four dimensional ball. This is achieved via the Lebrun
construction by considering the space of null geodesics on
the boundary of the ball - a 3-gphere with a left invariant
conformal structure,

In Chapter II we obtain a solution to Einstein's equations
with cosmological constant by solving the differential equations
directly. The metric is seen to contain the Eguchi-Hanson
I (II) solution with anti-self-dual Weyl tensor W and the
(Pseudo) Fubini-Study metric with self-dual Weyl tensor W™,

Our solution has Weyl tensor W' + W™, it is a K8hler metric,
and it is of Petrov type D. We show that in some cases the
metric is complete.

Following the ideas of Hitchin on the twistorial approach
to 3-dimensional Einstein-Weyl geometry we construct in Chapter
IIT1 a series of complex surfaces containing rational curves
with self-intersection number 2. These mini twistor spaces
are obtained by taking an n-fold covering of a neighbourhood
of a (l1,n)-curve in the quadric @P, x P branched along
the curve. We describe the correspdnding Einstein-Weyl
geometry on the parameter space of curves.
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Preface

Our constructions of Einstein metrics and Einstein-
Weyl spaces are mainly based on Penrose's twistor theory
and its generalizations by Atiyah, Hitchin, Lebrun and Ward
(4, 15, 16, 23, 24, 291. In this approach one studies the
geometry of rational curves (;¢Pl) in complex manifolds -
the twistor spaces. The differential equations, whose
solutions are generated by the holomorphic geometry, are
defined on the parameter space of the curves. A crucial
ingredient here is the theorem of Kodaira [22] on deforma-
tions of complex submanifolds. Often (part of) the
differential equations appear as integrability conditions
for holomorphic structures. The main idea is to rely on
the rigidity of the holomorphic geometry. Then, afterwards,
one can impose real structures to obtain real slices of the
differential geometry.

In chapter I we consider an example of the Lebrun
Construction [23]: Let Z be the space of unparametrized
null geodesics on a 3-dimensional complex manifold M with
complex conformal structure. Lebrun showed that 2 1is a
3-dimensional complex manifold (if M is geodesically
convex) . Points of M represent rational curves in 2
(with normal bundle 0(1) & 0(1)) and M is contained in
a 4-parameter family E of such curves, Lebrun also
proved that a unique metric g exists on E having M as
conformal infinity (the metric has a pole on M but the
restriction of the conformal structure coincides with the

given structure on M) and solving the self-dual Einstein



equations with cosmological constant 7 = -1:
Ric = -g, W =10 .

Our aim was to find the Einstein solution associated to a

left invariant metric

d52 = I,0, + I

2
1 + I,0

292 393

on the 3-sphere (the o¢'s are left invariant l-forms on
su(2) = s> and the 1I's are constants). The twistor
space is then the space of null geodesics for the complexi-
fication (SL(2,¢),dsz). The geodesics for such a left
invariant metric describe the motions of a rigid body with

moments of inertia (Il,12,13) - i.e. the geodesic flow is

determined by the Euler Equations [1]. We have been able to

construct the Einstein metric in the symmetric top case

(Il = I,): Then (S3,dsz) is known as the Berger sphere
{251 and is a normal reductive homogeneous Riemannian mani-
fold. Combining the classical mechanics point of view with
the homogeneous space description gives the null geodescis
in terms of physical quantities. The extra symmetry leads
to a description of Z as a line bundle over a neighbour-
hood of a plane section of the quadric surface. Such a
bundle also defines a U(l) monopole on 2EP3 (i.e. a
gauge potential A and a Higgs field V such that

*dv = da) [181]. Moreover, the monopole is encoded in the
Einstein metric (in much the same way as the monopoles con-
tained in the Hawking solutions [11, 141]). This leads us

to the Einstein metric (we use the uniqueness in the Lebrun

construction) and to a more precise description of the space

— - . - - a a - _ = _ _



The approach in Chapter II is not twistor theoretical:
In Chapter I we found a line bundle P over a neighbourhood

of a plane section of the quadric P, x mpl. This bundle

1
gave a vacuum (A = 0) solution to Einstein's Equations.
In this chapter we show - by solving the equations directly -
that it is possible to encode a A-term into this solution.
More precisely, we obtain a family of Einstein metrics
depending on two parameters (a,l). When A = 0 we have
the Eguchi-Hanson I, II metrics (The Eguchi-Hanson II metric
is obtained essentially by replacing spherical functions
with hyperbolic functions). For a = 0 we get the (Pseudo)
Fubini study metric (depends on the sign of A). This
superposition is not self-dual (and therefore not generated
by a twistor space) but the Weyl curvature is the sum
W+ + W of the Weyl curvatures of the component metrics.
We show that the solution is a K#8hler metric. Indeed, our
metric was obtained in [12] by solving the K8&hler-Einstein
equations for the Kdhler potential, We prove that it is
possible to adjust the parameter a such that the metric,
Eguchi~Hanson II plus Pseudo Fubini Study, only has
removable bolt singularities.

In chapter III we follow the ideas in [16] on the
twistor theoretical approach to the Einstein-Weyl equations

in dimension 3:

L.y = Mg, .
R(ij) 913
(R(.') is the symmetrized Ricci tensor of the Weyl connection
1]
which preserves the conformal metric gij). From the point

of view of twistor theory we consider a complex surface with



a 3-parameter family of rational curves (with normal bundle

0(2)) - a mini twistor space. We construct a series of

such surfaces Sn by taking an n-fold covering of a
neighbourhood of a (l,n)-curve in the quadric EPl X EPl

branched along the curve (a (1,n)-curve meets mpl x {0}

once and {0} x mpl n times). The associated Weyl
geometry on the parameter space of curves is described
with special emphasis on the n = 2 case.

The twistor space of null geodesics for such an
Einstein-Weyl space is an open subset of the projective
tangent bundle of the mini twistor space S. The extra
structure - the contact form - which is needed to fix the
scale of the Einstein metric is induced from the canonical
l-form on T*S and it coincides with the form given by
the Lebrun construction. We know in particular that the
Einstein-Weyl spaces given by our mini twistor spaces Sn
appear as the conformal infinity of Einstein metrics with
cosmological constant A = -1, We haven't constructed
these metrics but it was because of this relation we
originally became interested in mini twistor spaces and
Einstein-Weyl geometry.

Shortly after having obtained our result in Chapter I
it was proved [27] that the Berger sphere is an Einstein-
Weyl space. Had we known this result earlier it is quite
possible that our approach to the Lebrun construction for
this conformal structure would have been via the projective

tangent bundle of the mini twistor space. We can describe



the mini twistor space for the Berger sphere as (part of)
MP3 modulo a (*-action induced from a conformal Killing
vector field on ZR4.

As a supplement to this preface the reader may consult

the introductions given to each chapter.



Chapter I

Einstein Metrics, Spinning Top Motions and Monopoles

1, Introduction

It has been known for some time that the self-dual
Einstein equations may be solved by converting the problem
into one of holomorphic geometry using the ideas of Penrose,
Atiyah, Hitchin and Ward [24, 2, 15, 29]. This twistorial
approach has been used to obtain vacuum solutions [14, 28]
and in [23] Lebrun has demonstrated how some Riemannian 3-
manifolds are naturally the conformal infinity of Einstein
4-manifolds with cosmological constant =1. The main
purpose of this chapter is to apply the Lebrun construction
2 2

2
1 + 02 + Ao3).

The idea is to consider the space Z of unparametrized

to the Berger sphere (S3,0

null geodesics of the complexified Berger sphere

(SL(2,¢),0§ + og + Acg). By taking the null geodesics
through points of SL(2,L) we obtain a 3-parameter family of
rational curves in 1Z,. From a theorm of Kodaira this family
of curves is seen to be contained in a 4-parameter worth of
curves. The set of such curves is the Einstein 4-manifold.
The intersection property of these curves determines the
conformal structure and the scale is fixed by a twisted
contact form given uniquely by the property that it vanishes
on the lines which correspond to points of SL(2,¢). The
real structure we use to identify SU(2) inside SL(2,L) is

carried over to the twistor space and gives a real slice of

the Einstein manifold. The Einstein metric is determined



(i) The conformal structure is self-dual. \

(ii) The metric has a pole of 2nd order on the 3

sphere and the conformal structure there is ( (1.1)
2 2 2

o4 t o, F AOB .

(iii) The cosmological constant is -1. J

The Berger sphere can be realized as a normal reductive
homogeneous Riemannian manifold. This allows a very elegant
discription of the geodesics [ 25]. From another point of

view the geodesics describe the motions of a symmetric top

where (1,1,)) are the moments of inertia along the body

axes [1]. By combining these two descriptions we can

specify each null geodesic in terms of physical quantities.

We now associate to each geodesic the four conserved quantities
(ml,mz,m3,Q3) where m is the angular momentum in space and
93 is the angular velocity about the third body axis. They
are seen to be homogeneous coordinates for points on a

quadric in P The metric on the Berger sphere has four

3
Killingvector fields (Kl,...,K4) where (Kl'Kz'K3) are

the right invariant vector fields corresponding to the left
invariant l-forms (01,02,03) and Ky is the left invariant
field corresponding to O3e Now, the space Z of null
geodesics is 3-complex dimensional and the action by K4 on
a geodesic does not change the guantities (5,93). This
leads us to the description of Z as a line bundle over

the quadric. Since the Lebrun construction works only for
geodesically convex manifolds we will have to restrict to a
neighbourhood in SL(Z,C). The rational curves of

geodesics through points are mapped onto plane sections

of the guadric but the 3-sphere worth of curves is mapped

- - S Mli 2 k. v vrre =~



describing 7z as a line bundle trivial over plane sections

of the quadric and defined in a neighbourhood of a plane

section. Then the Berger sphere at infinity is the Hopf
fibration
S3 N SZ

representing sections of 72 over a 2 sphere of plane
sections of the quadric.

We find the condition for such a line bundle to be a
twistor space and we construct a line bundle P which in
some sense contains most of the information. Now, we
bring in the monopole aspect. The quadric is the mini
twistor space of S3 (or IRP3) with canonical metric and
line bundles on the quadric of the type described above
give U(l) monopoles on S3 (or EP3) (18], i.e. a gauge

potential A and a Higgs field V such that
*dVv = dA.
Furthermore, if the line bundle is a twistor space the

conformal structure is of the form

3

g = vas> + v i@t + a)?

3 3

where dS is the canonical metric on S7. The bundle

P gives the monopole
(V,A) = (cot X, cos 6 d¢).

We now seek an Einstein solution with conformal structure

given as above by the monopole

(V,a) = (¢ + m cot X, m cos O d¢).



The solution we get satisfies the conditions in (1 1)
when ¢ = m2 = l/x - 1. Notice that there are two 3-
spheres involved: The standard 3-sphere f{or LEP3 = S3/il)
parametrizing real plane sections of the quadric and the
Berger sphere given by sections of a line bundle over a
2-sphere worth of plane sections of the quadric.

The line bundle corresponding to the Higgs field V = i
is 0(1,-1). We restrict this bundle to a neighbourhood
of a plane section. and lift it to some power to introduce
the moment of inertia A. Then, by tensoring with the
bundle P we obtain the twistor space 2 of unpara-
metrized null geodesics. Thus, we have solved the
problem the other way round: The description of Z as a
line bundle leads us to the Einstein solution which then
gives a more precise description of Z.

The Einstein metric, which we believe is a novelty,
is seen to be built up by the Taub-NUT metric and the
Eguchi-Hanson I metric and in the limit A > 1 we get the
hyperbolic 4-space. These aspects are also seen on the
twistor space level. This involves limiting processes

of bundles over quadrics converging towards bundles over

the cone in much the same way as discussed by Atiyah in (3 1].
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2. The Lebrun Construction

We shall review briefly the main ideas of the Lebrun con-
struction, Lebrun proves that for a geodescially convex com-
plex 3-manifold M with holomorphic metric the space of un-
parametrized null geodesic is a complex 3-manifold 2.
Furthermore, the geodesics which pass through a point x ¢ M
define a rational curve ZPX in Z with normal bunlde

N =0(1) @ 0(1) where 0(1) *ﬂPl is the hyperplane section
4

~

line bundle. Now, HOGPl,O(N)) = and HlGPl,O(N)) = 0

so by a theorem of Kodairal7, 221 it follows that the family of
curves is contained in a 4-parameter family E and since
HlGPl,O(N ® N*)) = 0 all nearby curves have normal bundle

0(1) & 0(1). We now have the following theorem of Hitchin

and Ward [16, 29].

Theorem (2.1). There is a 1 - 1 correspondence between

self-dual solutions to Einstein's equations
Ric = Ag

and complex 3-manifolds Z as above with a holomorphic
section 0 e HO(Z,Ql Q K_%).

This means that 6 1is a holomorphic l-form with values
in the bundle K—% where K 1is the canonical line bundle of
Z. The l-form defines an Einstein metric on the open set of

lines on which 1;9 # 0 where i, :ZPX + 7 is the inclusion.

Lebrun constructs a l-form © uniquely determined by the

property that i*0 = 0 when x M. This form satisfies

*
X
6Ade #0 on E

KR K_l = 0 and is constant because of all the compact lines

- M (8 A d6 is a holomorphic section of

in %) and is therefore called a contact form . The constant

8 A d8 1is the cosmological constant A of the Einstein metric.
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Z 1is the twistor space of E . The conformal

structure of E is obtained in the following way: If

X ¢ E and .Px < Z 1is the corresponding curve then, from

Kodaira's theorem, we have TXE z HO(PX,O(N)). We define
the null cone in Tgﬁ as the set of sections which
vanish somewhere on IPX. Since holomorphic sections of

N = 0(l) ® 0(1L) are given by a pair of linear forms the
vanishing condition is quadratic. Using the contact

form © we construct two symplectic forms €1r € with

2

1 [ 82 is then the

desired metric on E - M with M as conformal infinity.

single poles on M < E . The product ¢

If M is the complexification of a real analytic 3-manifold
M the real structure is carried over to give a real slice

E of E. I1f M is not geodesically convex we may cover
it with geodesically convex neighbourhoods and do the
construction for each region. Using the fact that E is
unigque at the germ level we may patch together to obtain

M as the conformal infinity of an Einstein space E with

cosmological constant -1.

Example (2.2). Now, we shall identify the space of null

geodesics on the 3-sphere with canonical metric. We find
the contact form and show how theorem (2.1) applies in a
concrete situation.
The 3-sphere with canonical metric may be thought of
as the Lie group SU(2) with bi-invariant metric
2 2 2

o] + 05 + 03 The null geodesics for the complexification

SL(2,L) are given by

z >~ A exp zf



12,

where A ¢ SL(2,C) and e N ={Q e sl(2,&)|det Q@ = 0}.
Since both trace § = 0 and det Q = 0 we must have
92 = 0 for elements of N . This gives the following

description of the space Z of unparametrized. null

geodesics:
Z = (SL{2,C) x N )/ ~

where (Al,Ql) ~ (AZ,QZ) if Q4 and 92 are proportional

and A2 = Al(l + z Ql) for some 2z ¢ C.

Theorem (2.3). The space of unparametrized null geodesics

for SL(2,T) with bi-invariant metric is the 3-dimensional

complex projective space minus two lines.

proof. The proportional classes of N define a conic
P(N) which is isomorphic to a projective line IPl. This
isomorphism can be realized by associating to 0 ¢ N the
kernel of the matrix Q acting on ¢2. Thus, £ € P(N)
corresponds to (21’22) eZPl iff
Z

Q [zé} =0 .
Now, let (zl,...,z4) be homogeneous coordinates in ZP3
and consider the lines

Ll : zl =0 = zz; L2 : z3 =0 = 24 .
Define

F : Z —>]P3\(Ll U L2)
by

F(A,Q) = (Zl""’z4)
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F is obviously well defined and maps Z onto

IP3\(Ll U L2). Assume F(Al,Q) = F(Az, Q) and
Z
S =
9] 42) =0
Then,
-1 1]
(Al A2 1) [22] =0
and ATYA. -1 ¢ N Hence, A.TA. - 1 = 20 for some
1 72 * ' 172
.z ¢ ©C and therefore A2 = Al(l + z0Q) so F 1is an
isomorphism.

The geodesics passing through A are represented by

the line ]PA:

Then SL(2,&) is contained in the 4-manifold GL(2,T) of
lines in :1P3\(Ll U L2). The canonical bundle of jP3 is
1

0(-4) and we get an element 6 "of HO(Z,Q R 0(2)) by

6 = zld22 - zzdz‘l - z3dz4 +z4dz3 .

On a line ZPA, A ¢ GL(2,C) we have

8 = (1 - det A)(zldz2 - ZZdzl)'

Thus, ©6 vanishes on the lines ZPA, A ¢ SL(2,&) so it
must be the unique contact form from the Lebrun construction.
The real structure 7T : GL(2,L) - GL(2,E) given by

A~ (A*)nl defines S8U(2) inside SL(2,&) and induces



the familiar real structure 1 : (21’22’23’24) > (-zz,zl,—z4,z3)
on 1Z.

Let us now briefly show how theorem (2.1l) applies to

give the Hyperbolic 4-space. A real point
a b
A = o
-b a

in GL(2,&) corresponds to a real line ZPA:

gz a + b;l

Ly = -b +_é1;l
in IP3 where Ly = zi+l/zl’ i=1, 2, 3 are affine co-

ordinates on .P3. A tangent vector X ¢ TA corresponds to

a section of the normal bundle

L ] 5 - 5
X =7, —m + [, —
where
L, = a+t bgl
53 = b *ag
and 5%— are the projection of the vector fields 5%—
i i

onto the normal bundle of the line ZPA. Now we have the

Wronskian
gzdg3 - ;Bdgz : ﬂPA + 0(2)
and the contact form

6 : T, »~ 0(2).

14,



(A twistor space always has canonical bundle K = 0(-4)
on a line). Then assuming ize # 0, we may define a

symplectic structure

. . _l

. . . . . _ . o ~

Furthermore, if Ker 6 ¢ TZ 1is the bundle annihilated by 6,

then, on a line for which iie # 0, the composite map
Ker 6 - TZ - N

is an isomorphism. Also, df 1is a well defined twisted

2-form when restricted to Ker 9. Then, let ¢ be the

2
symplectic form on the normal bundle induced by d6 and the

15,

isomorphism Ker 6 = N. The metric g 1is now given by
(X,X) = €, (2,,02) €, (zomy =om)
g [ = El C21€3 52 3C2' 8C3 .
On a line iPA we have
6 = z2(1 - det A)dg
1 1
so
2
9z
-1,.2, _ 1
6 "(21) = T-3eta
and we get
o 3 + bb
1- (aa+bb)
. L) — 3 0
Furthermore, ﬂPA is spanned by bgzg + a8C3 + §EE and
Ker 0 1is spanned by
_ 9 3 _ _ 3 _ = 3
€1 = C28;1 + 9L 4 = ~bz, 3;2 + aEZ) 3T 4
mod. TP, .
9 3 3 = 2 A
€, = Lan— = == = =(1 + bg,) — - at, =
2 38;1 9Z, 3 9z, 3 3z,



l6.

Hence, tne isomorphism F : Ker 6 = N may be given by

. ) )
F(el) = -bg, EE; + (1 - aCz) EYa
3
F(e,) = -(1 + bz.,) J Eg—a—-
2 3 8@2 3 3z, °
3
We then have
db(e;,e,) = e,(F(eg), F(e,))
which gives
9 9 1
€ ( ’ ) = - .
2795,7 9837 1 (aF+bb)
Thus, 1f we put a = xl + ix2, b = x3 + ix4, xk eR, Kk =1,...,4,

we obtain the hyperbolic metric

defined on the ball

4
{xe]R4l z x]2{< 1}
k=1

and having the 3-sphere as conformal infinity.

Remark: From the twistorial picture we know that the metric
is regular on a collar near S3 and it is only after having
obtained the metric that we notice how it extends all the

way to the origin.
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3. Geodesics on the Berger Sphere

Consider a left invariant metric on SU(2)

Here the 1I's are constants and the o's are left invariant

g

l-forms satisfying dci = The geodesics are no

€i5k%5 * %=
longer the l-parameter sub-groups. There are, however,
other ways to describe the geodesics: Let A(t) be a geodesic

1

in SU(2) and let Q(t) = A(t) A(t). Define M(t) e su(2)

by
g(,R) = -% Trace M * Q,
Then the geodesic spray is given by the equations

M(t) = [M(t),R(t)] (3.1)

A(t)

A(t)Q(t) (3.2)

The geodesics describe the motions of a free rigid body

about a fixed point. 2 1is the angular velocity and M

the angular momentum in body coordinates. (Il,12,13) are

the moments of inertia with respect to the body axes and (3.1)

are the Euler equations. The angular momentum in space

m = AMA (3.3)

is a conserved quantity [1l]. If we use the o0's to
identify su(2) with R> we have
(Ml'MZ’M3) = (IlQl,IZQZ,I3Q3).

Euler's equations can be solved using elliptic functions,

but in the case of symmetric top 'Il = Iz, we can give the

the following elegantdescription [25]: Let G = SU(2) X R
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' o 2 2
IR0L= . e—itoc;Btlte:lR and o° + B = 1}.

On the Lie-algebra LG we have the metric

<(X,V), (¥Y,W)> = =% Trace XY + VW

X, Y ¢ su(2) and V,W ¢ R. Define Zi=(0i*'0)' i=1,2,3; Z4=(Oll)l

. * 0 1 * 0 l * l 0
where o, = e O, = , O, = .
1 -1 0 2 i o0 3 0 -i

Then (Zl,...,Z4) is an orthonormal basis for LG and
X = aZ3 + BZ4Aspan the Lie algebra UR@ of :Ra' Moreover,

URu has an orthogonal complement in LG:
LMu = gpan {BZ3 = gy Zl,Zz} .

Since the metric is AdG-invariant LMa is AdiRa—invariant.
Hence G/Ra is a normal reductive homogeneous space.
Therefore, the canonical connection and the Levi Civita

connection have the same geodesics:

t »~ (g exp o tv) -IROL

g e« G, V¢ LMu' Now, consider the composite maps:
proj - (id x {0}) : SU(2) -~ G ~ GR, - (3.4)

Then, since (SU(2) x {0}) nIRu =1 x {0}, we obtain an

isomorphism SU(2) = GﬂRa. Furthermore, we get an isometry

if we give SU(2) the metric

where A = B° < 1,

If we complexify to obtain

(SL(2,C) * @)/¢,



¢ = , Bz|lz e ©, o° + 8% = 1},
0 e-izu

then, a null geodesic is given by

zM
z > (Ae™ ", z0 - zaBQ3) ° Ga
_ 2
where M = lel + QZZ2 + B Q3Z3, A ¢ SL(2,%) and
2 2 2.2 _

Now we may use (3.4) to pull back geodesics to

(sL(2,T), Gi + og + Aog). Let CA denote the conic
zi + zg + Azg = 0. Then the space of unparametrized

null geodesics is
Z = (SL(2,L) x CX)/geodesic foliation

and the lifted null geodesics are represented by

z > AeZMH(z) = ezmAH(z)
(3.5)
z ~ Ad(H(z) hya
ei(l—A)Q3z 0
where (A,Q) ¢ SL(2,T) X CA’ H(z) = . ei(A—l)Q3z
Remark (3.6). The space Z 1is only well defined if we

restrict to a geodesically convex neighbourhood in SL(2,C).

19.
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4, Null geodesics and line bundles on the quadric

We define a map
m s SL(2,&) x CX +.P3 (4.1)
by mT(A,Q) = (ml,mz,m3,93). Then:

2 2 2
ml + m2 + m3

Il
1
N

Trace m

I
e
=

N

Trace

252

=
3

2 2
1 + 92 + A°Q
A

2
A l)Q3
so T maps into the quadric

QX s 27+ z. + 22

S4A1-Nzi=0. (4.2)

Furthermore, since (5,93) are conserved quantities the map
factorises through 7. The subgroup
Z 0
K={a-= -1 | 2z e T*}
0 z
gives a right action on the bundle of null directions

SL(2,T) x C, by

A

(A,Q) ~ (Aa,a_lﬂa) .

Moreover,

-1
AeZMH(z) *a = Aaeza Ma H(z)

so the action commutes with the geodesic flow (3.5). (This
action corresponds to the flow of the Killing vector field
K4 - the left invariant vector field dual to 03). Then,

since we obviously have

ﬂ(Aa,a_lQa) = 7w (A,Q)
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we obtain a regular map

T 3 Z > Q (4.3)

from the 3-dimensional complex manifold 2Z of unparametrized

geodesics to the quadric with the orbits of K4 as the

fibre,
Let us see what happens to the curves of geodesics
through points of SL(2,L) : If OA e S0(3,L) corresponds

to A ¢ SL(2,L) under the adjoint representation, we have

from (3.3)

my 1

m2 = OA . 92 .

m3 XQ3
Let (a,B,Y)T denote the third column of OA‘ Then, from
the orthogonality of OA we get

om; + Bmz + Ym, = AQ3 . (4.4)

Therefore, the 3-parameter family of lines corresponding
to points of SL(Z,E) is mapped onto the 2-parameter family
of conics obtained by intersection of the quadric Qx with
the planes in (4.4) where az + 82 + y2 = 1.

This leads us to try to represent 2 as a line
bundle over the quadric trivial over plane sections. The
sections of Z over plane sections of the quadric give the
4-parameter space of curves in Z with the Berger sphere
represented as sections over some 2-parameter subfamily of
conics. Such a line bundle is a twistor space if the

normal bundle of the curves is 0(1l) @& 0(1l). We shall

now describe this condition on the bundle: Consider the



following situation : L. is a line bundle over a surface

S trivial over a curve C c 8. NC is the normal
bundle of C in S. Let ¢ be a section that trivializes
L over C and let C =0(C) c L. NE denotes the

normal bundle of C in L. Then, the pull back O*NE is
a rank two bundle over C and it is an extension

0+ L% o*N 8 Ng > 0 (4.5)

of the restriction of L to C with NC . Such an
extension is represented by a class in Hl(C,O(Né R L)).
If we try to extend o to the first formal neighbourhood
of the curve we meet an obstruction in Hl(C,O(Né R L)).

To see this, we consider first the exact sequence of

sheaves

0 ~ yz/y > 0/y2 +~ 0/y = 0 (4.6)

where y 1is the ideal sheaf of C. The sheaves in (4.6)

can be described as follows [13]:
0/y = OC’ holomorphic functions on C.

O/y2 = O(l)’ holomorphic functions on the first

formal neighbourhood of C

y2/y = O(Né), sheaf of sections of the conormal bundle

of C in S.
Tensoring (4.6) with L gives the exact sequence

0 ~ O(Né R L) -0 )(L) > OC(L) + 0.

(1

From the associated long exact sequence

22,



o fo) 1
> 1%(C,0 4, (1)) > HO(C,0(L) $ wtc,omz e ) >

we get the obstruction 6§ (o) e Hl(C,O(Né & L)) to extend

g € HO(C,O(L)) to the first formal neighbourhood of C.

proposition (4.7). The element in Hl(C,O(Né)) which
represents the extension (4.5) is the obstruction to

extend ¢ to the first formal neighbourhood.

Proof. Note that Hl(C,O(N* QR L)) = Hl(C,O(N*)) because

L is trivial on C. Now let (U;) be a cover of S

i‘iel

such that:

(i) On Ui we have coordinates (xi,wi) and if

Ui n C#¢ then C is given by W, = 0.

(ii) We have trivializations

Y, ¢ Uy X &> LjU,

and y.(p,z) = 20(p) 1if p e U, n C.
i i

~

Then points on C have coordinates (xi,O,l) and

if wij is the transition function on Ui n Uj’
wij(xi,O) = 1. Now, locally
- (3 3 3
IL = span 13x’ 3w’ 32)
TC = span ’—é (x,0)
| 9X !
TE = span f—g (x,0,19
p 9x rere

so locally,

23.



_ 9
NC = span [5§ (X,O)]
N~ = span —é (x,0,1) 2 (x,0,1)
C oW rer '3z e

L|C = span.%%-(x,O))

where ~ indicates that we have projected the vector fields

into the quotient - that is, we compute modulo 9

ax °
Thus, the transitionmatrix for O*NE
Aij : Ui n Uj n C > GL(2,Q)
is given by
) 9 _ 9 2
4 - 4 .
azJ &NJ le &dl ij
We get
..
N
1 awj(xJ,O)
A .,0) = . ¢
13(x3' ) oW, . .0)
0 awj i’

Let oi : Ui +~ & define local extensions of o on Ui n C.

Then to first order

Oi (x' le)

+ a, L)W
5 1 al(xj)wJ

O'j (X-rwj) =1 + aj (XJ)W

J J
and
L Bwi- 0 :
. . . . = + . w.) " (XL .
1+ al(xj) W ( —sai (XJ, ) JQ (1—+ajb%)WQ

Hence, the obstruction class

ai(xj) - aj(gj)

is equal to the extension class
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_._._j_ (X.,O)
i 3

and the proposition is proved.

@
3

Remark: 5@1 is the transition function for Né and
i
oV . . oY .. OW.
wll - le J
awi awj awi
Y, . Y, -
, ij ij .
showing that e H N represents a class in
i j

Hl(C,O(Né)).

Now, suppose C EjPl is a plane section of the

quadric and S is a neighbourhood of C covered by two

patches Uyr Uy Then N, = 0(2). Let ¢12 be the
transition function for a bundle L over S. Assume L
to be trivial over plane sections. Then the extension

(4.5) becomes
0->0->N>0(2) ~» 0

where N is the normal bundle of a section of L over

a plane section. This extension is represented by a
class in HlGPl, 0(-2)) = @. If we choose coordinates as
above, the elements in HlCPl,O(—Z)) are represented by
%, u e @C. u = 0 corresponds to the trivial extension

0 ® 0(2) and u # 0 represents an extension
0 -0~ 0(l) @ o(l) » 0(2) -~ 0.

Hence, the bundle L gives a twistor space iff

9997
L4 = B
W (XIO) =y H 7£ 0. (4.8)



5. The Line Bundle P

We look for twistor spaces given as line bundles over
a neighbourhood of a plane section of the quadric QA in
(4.2). The twistor space is left invariant because it
consists of geodesics for a left invariant metric. This

motivates our next step: Let 1w be the projection (4.1).

Then
_ -1
T(AB ,Q) = (AmA T,Q3)
where m = BMB L. Thus, we get an induced action on the
quadric QA given by
(zl,...z4) > (Zl’ ., z3,z4)
where
z 2
21 =08 " %
z Z4
and OA ¢ S0(3,L) corresponds to A . SL(2,Q). It is

easily seen that the only i-dimensional orbit is the plane
section Zy = 0. Now, let S be a neighbourhood of the

plane section 2z, - Az, =0,say. Then the left invariant divisor

D : z, = 0 splits into two divisors Dl’Da where D1 D,

=D S -. The bundle represented by the difference D, - D

1 2
is obviously trivial on plane sections. We call this bundle
P. We want to prove that P 1is a twistor space: On QA

we have the four lines (v2 = A(1 - A))



5. The Line Bundle P

We look for twistor spaces given as line bundles over
a neighbourhood of a plane section of the quadric Qy in .
(4.2). The twistor space is left invariant becausevit
consists of geodesics for a left invariant metric. This
motivates our next step: Let 1w Dbe the érojection (4.1).

Then

(B ,Q) = (Ama"h,Q,)

where m = BMB—l. Thus, we get an induced action on the

quadric QA given by

(zl,...z4) - (zl, ., 23,24)

where

2 2
f = OA . Z -
-Z3 z

ahd OA e SO(3,) corresponds to A  SL(2,Q). It is
easily seen that the only l-dimensional orbit is the plane

section z, = 0. Now, let S be a neighbourhood of the

plane section zy - Az, =0,say. Then the left invariant divisor

D:z, = 0 splits into two divisors bl r Dy whera

DfJEb=DDS . The bundle represented by the difference Dl - D2
is obviously trivial on plane sections. We call this bundle
P. We want to prove that P is a twistor space: On Qx

we have the four lines (V2 = A(1 - 1))
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Kl : 22 + iz3 = 0 A zl + i\)z4 = 0

12 Pz, + iz3 = 0 A zl - i\)z4 = 0
(5.1)
my i Z, = izy = 0 A z, - i\)z4 =0
m, : 2, = iz5 =04 z; 4 ivz, =0
We can define coordinates

i zl+}\z4 i zl-)\z4
X = Lz +iz. ' W= Y z.+iz

2)°% “2 3 2072 “2 3

on QA\(SLl U 22) and similarly on QA\(ml U m2). Then we
have coordinates on QA except at the points (xiv,0,0,1)

and therefore coordinates on 8.

Q,l ml
D2:Z4=0
A/ B 2y
Dl:z4 =0
.
C /D 2
zl—kz4=0

a(0,1,i,0); B(iv,0,0,1); C(-iv,0,0,1); D(0,1,-1i,0)

Shrinking the coordinate patches Ul, U2 we may assume:

Ul c Q)\\(Qll U 12)

U, < Q>\(ml v m,) .

Ul U U2

divisor D

covers S, Dy c Uj\U, and D, c U,\U;. The

1 is then represented by (fl’fz) where
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ll 22, + iz3 = 0 A z5 + i\)z4 =0
22 2oz, + iz3 = 0 A zl - i\)z4 = 0
(5.1)
ml Pz, - 123 = 0 A zl - i\)z4 =0
M, 3 2, = iz3 = 0 A zZy + i\)z4 =0
We can define coordinates
.- zl+Xz4 ] e i zl—)\z4
ZA% 22+1z3 ZA% 22+lZ3
on Qx\(ll u 22) and similarly on 'QA\(ml U mz). Then we
have coordinates on QA except at the points (+iv,0,0,1)

and therefore coordinates on S.

Ql my
D2:Z4=
A/ B )
Dl:Z4 = 0
n
c 5 2
zl—kz4=0

A(Olllilo); 'B(i\))olo'l); C(—ivlololl); D(Olll_ilo)

Shrinking the coordinate patches ul, U2 we may assume:

._l

N

Ul U Uz

divisor

Up e Q\®; U 2,)

covers S, Dl < U.l\U.2 and D2 E-UZ\ul‘ The

Dy is then represented by (fl’fz) where



Z
4
fl. Ul—>CE. (Zl,...,Z4) Z—Tﬁ——
2 3
f2 : U2 > @ : (zl,...,z4) > C
and D, is given by (gl,gz) :
gy ¢ Ul > T (zl,...,z4) > C
2y
g, = U, > ¢ : (zl,...,z4) > -
2 3
c 1is a non-zero constant. Then P has transition function.
2
Zy
. * . e
¢12 : Ul n U2 > ¢* (zl,...,z4) A e
c(z5+z3))
2 73
"
(note, Ul nU,nD= ). Put ¢ = i)x %, say, then
¢12 = 1 on the conic z, - Az4 = 0. Furthermore, we
easily get
3¢
12 -4
(x,0) = =2A

d W

so, from (4.8) we may conclude : P 1is a twistor space.

Now, let us consider the real structure. On SL(2,T)

1 that fixes

we have the real structure T : A - (A%*)
SU(2) inside SL(2,T¢). If we apply T to a null

geodesic (3.5)

M

£f : 2 ~» ae? H(z)

it is easily seen that the real structure maps a null
geodesic with initial data (A,Ql,92,93) into a geodesic
given by (T(A),ﬁl,§2,§3). Under the projection (4.1) we

get a real structure induced on the quadric QX

T (zl,...z4) > (El,...,54) . (5.2)

28.
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Let us introduce affine coordinates representing QA as

the product JPl XZPl : On 0}\\(2l u 22) we define
.- zl+l\)z4 - zl—i\)z4 (5.3
22+1z3 zz+1z3

and on QA\(ml U m2)

-1 _ 71 4 .

The real structure (5.2) becomes

T : (g,m) ~» [:% ' :E} : (5.4)

g n

Suppose that we have a line bundle L on a neighbourhood
S of a plane section of the quadric. Assume L has
transition function w12 with respect to the patches above.
Then, since (5.4) interchanges the coordinate patches, it
induces a well defined real structure on L given by

z » +z on fibres if

vip(tlzm)) v, M) =1 . (5.5)

If ¢ is a coordinate along the fibre of 1L the induced

real structure on L can be written:

'[; : (C,n,G) > '——l"r ':“_];’ —0 - (5.6)
n

Removing the zero section from the line bundle we may try
+1

to define a real structure on L\0O given by z » = on
Z
the fibre. This is well defined if
vpp (i) = ¥y,(z,m) (5.7)

and in coordinates it is given by
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Let us introduce affine coordinates representing Qk as

the product :Pl XLPl ¢+ On OA\(Rl U 22) we define

.- zl+i\)z4 D - zl—i\)z4 (5.3)
22+1z3 zz+1z3
and on Qx\(m1 U m2) :
~ -1 zl—i\)z4 - -1 zl+i\)z4
= T =g iz i nN=—= -/
z z,-iz, n z, 1z3
The real structure (5.2) becomes
-1 - .
T : (g,n) ~» [f: ' —%} (5.4)
g n

Suppose that we have a line bundle 1L on a neighbourhood
S of a plane section of the quadric. Assume L has
transition function Vo with respect to the patches above.
Then, since (5.4) interchanges the coordinate patches, it
induces a well defined real structure on L given by

z > tz on fibres if

Yio(tlzm)) ", =1 . (5.5)

If ¢ 1is a coordinate along the fibre of I, the induced

real structure on L can be written:

T = (Crﬂ,O) -> il :—‘i’ o0 . (5.6)
n

C

Removing the zero section from the line bundle we may try

to define a real structure on L\0O given by 2z - 5% on
z
the fibre. This is well defined if
vy (tlzm)) = ;5 (z,m) (5.7)

and in coordinates it is given by



1. -3 ¥y, (z,m)
(C:H,U) - _'1-', —%1 x "i"z‘:—,_-“ .
c n 8

30.

(5.8)

Now, it is easily seen that the line bundle P has trans-

ition function

_ 1 (z-n)?
IO-1) " on

¢12(c,n)

Then, since ¢12 satisfies (5.7), we get a well defined
real structure on P\O. In the next paragraph we shall

compute the conformal structure generated by P.

(5.0)



R V.o (z,m)
(CIH,O) -+ _l’ _%r * _le_—___ .
n

z o

30.

(5.8)

Now, it is easily seen that the line bundle P has trans-

ition function

2
_ 1 (z-n)
¢12(Crﬂ) - 4(%‘1) Qn

Then, since ¢12 satisfies (5.7), we get a well defined
real structure on P\O. In the next paragraph we shall

compute the conformal structure generated by P.

(5.0)
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6. Monopoles and Line Bundles

It has been known for some time how to obtain self-dual
Yang—-Mills Fields in ZR4 from bundles over twistor space
P3 L4, 30]. We shall review here briefly how one gets
U(l) monopoles on S3 by considering line bundles over the
mini twistor space jPl XjPl [18]1 (the quadric is really the

mini twistor space of ]HP3 butwe may lift the monopole to

S3 - see also Chapter III, example (4.7)):

Elements XPQ of ©SL(2,L) determine plane sections of

P, x P, by

1 1
wP = XPQ T (6.1)
Q
1 2 .
where {(w ,w”) and (ﬂl,nz) are homogeneous coordinates
on iPl. Suppose we have a line bundle defined on some

region of ]Pl X ]Pl

plane sections. This implies that if the region is

and assume the bundle is trivial over

covered by patches Ul' U2 and ¢12 is a transition

function for the bundle, then on each plane section we have
0, = ¢12 0, (6.2)

where ¢; : U, » €, i = 1,2 are non-vanishing holomorphic
i P

functions.

Lemma: On each plane section (6.1l) we have

-1 Q _ -1 9
ol m VPch = 02 m VPQ 02
i U U H W = 0 d 1 d i
in 1 N 2 ere, PQ = E)XPQ an we ower ar ralse

indices with the symplectic form

The lemma is a trivial consequence of the fact that



32,

From the lemma it follows that on each conic IPX given

by xPQ ¢ SL(2,L) the expressions

define a holomorphic section of the hyperplane section

bundle 0(1) +LPX. Such sections are given by linear
forms. This enables us to define functions APQ(x) by
-1 0 — Q
.o VPQ o, = APQ ™ . (6.3)

Now, write

1,..2 3,..4
PQ XT+ix x“+ix

X =

3,..4 1 ..2
-x"+ix X -ix

and define a connection A and a Higgs field v on

SL(2,T) by

V(x) = Ap(x) - xFQ

(6.4)
VI PQ
Au(x)dx = APQ(X) dx .

Then, (A,V) satisfies the &* Bogomolny equations
*dVvV = dA (6.5)

on SL(2,&) where * is with respect to the standard bi-
invariant metric.
If xPQ ¢ SU(2), then (6.l1l) represents real plane

sections where the real structure is

t(z,n) = (-1/T, -1/m)

2,1
T = Ty/Tys n=uw/w .



Lemma (6.6):

Suppose the sections

33.

(01,02) are real

with respect to the real structure in (5.8) i.e.

o, 2L = 2L
Then the monopole (A,V) has values in UIll).
Proof. It is easily seen that A = —Au iff All = —A22
and A12 = A21' We have from (6.3):
“L(ew -V ) = & - A
91 &Vp191 p2°1’ T #p1t P2
and we want to prove
R,.T - A, . =ZT(h, |2 - &)
11 12 21 T 227 ¢
Thus, we need to establish the identity
5, (0) NI o, (D) = Vo ,0,(D))
2 1172 1272
— — =1 — — —

which easily follows from the reality of the section.

Our main interest
following observation:

given by a line bundle

the quadric. Then L
g and a monopole (V,A).
computation [18, 27]

g =vadass +v?t
Here dS3

the 4-parameter family

by points x in s3

(dt + B)2 .

is the standard metric on S~.

in this construction lies in the

Suppose we have a twistor space

L, trivial over plane sections of
generates both a conformal structure

It is a straightforward

to show that

(6.7)

3 We recall that

(x,7) of twistor lines is given

describing real plane sections of



Lemma (6.6): Suppose the sections (01,02) are real

with respect to the real structure in (5.8) i.e.

Then the monopole (A,V) has values in UIl).

of. It i i A = - 3 = -
Proof is easily seen that Au Au iff All A22

and A.., = A

12 We have from (6.3):

21°
ey -V ) = & - A
o1 &Vp19; p291’ T Bpyt P2
and we want to prove

Aj1C ~ BAyy = olRy)

':4 T Ryp) -

Thus, we need to establish the identity

5, (0) THEV 10,05 = V;,0,(0))
= To, (-1/D) M1/ %0, (<1/) = 95,0, (-1/D))

which easily follows from the reality of the section.
Our main interest in this construction lies in the

following observation: Suppose we have a twistor space

given by a line bundle L trivial over plane sections of
the quadric. Then L generates both a conformal structure
g and a monopole (V,A). It is a straightforward

computation [18, 27] to show that

3 1

g=vasd+v?! @ +a?. (6.7)

Here dS3 is the standard metric on S3. We recall that

the 4-parameter family (x,t) of twistor lines is given

by points X in S3 describing real plane sections of
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the quadric and by a parameter <t describing the real sections

of 1L over each conic.

Example (6.8). Let us find the monopole and conformal
structure generated by the bundle P. We write elements

of S8U(2) as

4
a = x; + ixz, b = X4 + ix4, X, eR, i=1,2,3,4, L X

From (6.1l) we obtain the real plane sections

-b+a
n = g:g%g - (6.9)

The transition function for P is

_ (z:-n)2

¢12 n

When we restrict to the lines (6.9) we get

b2 (r-a) % (z-8)?
z (a+bt) (ag-b)

12

where a, B are the roots of bgz + (a - a)g + b= 0.

The roots are

- 4 » _
azafvD - _ =1 (x Fr) (6.10)
2b X ,+ix 2
3 4
2 2 2 2 . ,
where I~ = X, +x3 + x4 We may unambiguously choose
-1
06 = ———— (X, = I)
x3+1x4 2
and B to be the other root. The plane sections (6.9)

are Riemann spheres and we may cover them with patches
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Ul' U2 where 0 ¢ Uyr ® € Uy Consider plane sections
near the point x = (0,1,0,0) in 83, say. Then it is
easily seen that we can choose Ul’ U2 such that o and
b : -a .
= are in Ul\U2 and g and - are in U2\Ul. Thus,
we may write
.. = L
12 0,
where
2 2
o (z) = B2 1LoB)
1 a+bz

is a non-vanishing holomorphic function on U4 and

Az (az-b
6, (5) = c(acz )
(g-a)
is non-vanishing and holomorphic on U2. Here, A 1is an
arbitrary constant. On P\0 we may use the real
structure (5.8) - note that the sections do not pass through
the zero section. (01,02) is a real section iff
2 1
|a]” = 2 2
b™g

Since bpf is imaginary we get a real section if

A =1 (bB)_lele. Now, from lemma (6.6) we expect to

obtain a U(l) monopole by substituting

_ ib(z-)®
B (a+br)
into (6.3). After some trivial calculations we get
A = 1 -1 o
PQ 2ir B—l -1

Fromn (6.4) we obtain



Ul’ U2 where 0 ¢ Ul’ © € Uy Consider plane sections

near the point x = (0,1,0,0) in S3, say. Then it is

easily seen that we can choose U
b : | -a .
= are in Ul\U2 and B8 and —§ are in U2\U

17 U2 such that o and

1° Thus,

we may write

ab2 (z-g) 2

01(8) = =gt

is a non-vanishing holomorphic function on U and

1

Az (az-b)

o,(g) =
2 . (C_a)z

is non-vanishing and holomorphic on Uz. Here, A 1is an

arbitrary constant. On P\0 we may use the real

structure (5.8) - note that the sections do not pass through

the zero section. (01,02) is a real section iff
IAIZ = 312 .
b™g

Since bR 1is imaginary we get a real section if

A =1 (bB)—lele. Now, from lemma (6.6) we expect to

obtain a U(l) monopole by substituting

_ ib(z-g)2
B (atbz)
into (6.3). After some trivial calculations we get
A =_l__ —l *
PQ 2ir B—l -1

From (6.4) we obtain

35.
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. L
l__

r

- x.dx,-x ,dx dx
A ax¥ = 3 3774 T4 ‘3 + .”; )
U r(r+X2) r

The 3-sphere can be parametrized in the following way

1 _ w
X~ = cos ¥
2 .
X~ = gin x cos ©
¢ (6.11)
x3 = gin X sin © cos ¢
4 . . .
x = sin x sin 0 sin ¢ |
X, 6 ¢ [0O,7]), ¢ e [-m,m] .
The canonical metric becomes
as? = ay? + sin? x (@0% + sin®6d¢?) .
In these coordinates the monopole is
(V,A) = (i cot ¥, i(cos@dd + da(d - X))). (6.12)
The induced conformal structure (6.7) is
3 2
g =cot xdsS” + tan X (dT + cos 0 dd)” . (6.13)

Now, we want to introduce coordinates that enable us to
describe the Berger sphere. In (4.4) we described the
plane sections induced by points A of SU(2). Let us

assume we have a matrix on the form

with g¥= det A < 1. Then the length R of the third

column of the matric O

a associated to A by the double

36.



Rm=p =< 1. (6.14)

Thus, the special plane sections (4.4) may be described as

the 2-sphere

Yitp = 1

inside ZR3. If we introduce the coordinates (5.3) on the

qguadric QA we may write the plane sections as in (6.9)

by substituting

M 3
x = B A —
1 7 7%
(M7+R ™) } i (6.15)
uf| 2,3,4
X, = ——t i =
;, r r r
1 (M2+R2) 2 ]
Here, M2 = l/m2 = %ﬂl - A) .

Let us substitute these coordinates into the conformal
structure (6.13). Then, after a conformal resealing, we

obtain the metric (see next paragraph for more details):

g = 50@r - 2mr%0) “1ar? (0] + 0F + 02)]
4R
(6.16)
_ 1 _ 3 2 2,2 2 2
= p4[(dp mp 03) + p (ol + o5 + 03)]
where do, = €,., 0. A O, . When restricted to the sphere
i ijk 73 k
p =1 we get
_ 2 2 1 2
g9 =0 ¥ *Y93

This suggests that we might be near the right answer in the
Lebrun construction. The metric, however, does not have
p =1 as conformal infinity, and with this choice of

conformal factor it is a vacuum solution (so the conformal

37.
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class cannot contain a A-term solution too). It is in

fact the Eguchi-Hanson I solution (Chapter II).

Remark: Note, the monopole in example (6.8) descends to

Rp and it is singular in the pair of antipodal points

3
(+1,0,0,0).
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7. The Einstein Metric

In our search for the twistor space of null geodesics
for the complexified Berger sphere we were lead to the
bundle P. This bundle did not give the right answer but

we were somehow near. The bundle gave the monopole

(V,A) = (cot x, cos 6 do¢)

on S3. Now, we shall show that it is possible to find a

cosmological term solution on the form

3

g = F(x)2was® + vi@r + a)?) (7.1)

where
(V,A) = (¢ + m cot X, m cos 6 do) . (7.2)

Indeed, if the twistor space is a line bundle over the
quadric then we know that the conformal structure must be
of the form (7.1) for some monopole on S3. We have

2 3 m2 2
g = F(X) ((¢ + m cot X)dS + m— 03) (7.3)

where

as3 = dxz + sin® X(pi + pg)

p3 = dy + cos 6 d¢

and d@i = % gijk pj X Py Let us define an orthonormal
frame
%
ey = F(x) (e + m cot ) “dy
= % s i =1,2 (7.5
e, = F(x)(e + mcot x)* sin x p;, 1 =1, . .5)

®
Il

-1
3 m F(x)(e + m cot x) * P3
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The connection forms . i
ij are civen by

de.
i

and the curvature forms are

Rij = dwij + i mik A wkj .

If we write these 2-forms as

Rig 7 2, Riske S %
are

the Einstein Equations with Cosmological Constant A
(7.5)

L R ... =AMASd ..
X kikj ij
After some tedious computations these ten equations reduce

to the following three:

I.
¥ 2 F -2 -1 2 _
3 F 3 — + ¥ (2 cot x+ia sin “x(e+m cot x) T)=-2+4F°A(e+tm cot ¥x)=0
F
1I.
F ,F> _F -2 -1 2
Ft =g +F (4 cot xm sin”“x(etm cot x) T)-2+F A(e+m cot x)=0
P
III.
F_ F> _F -2 -1...2
& + — + F (2 cot x+m sin “x(e+m cot x) T)+F A(e+m cct y=0.
F ‘
If we subtract equation III from

etc.

Here F means
dx

equation II we get



d
ai(log F)

This gives

F(x) =

_ € sin y +m cos

€ COs ¥ =m sin

A

€

Substitute (7.

Hence, we can

k

cos x-m sin ¥

6) into I, II,

-3 * e .

>

41

(7.6)

I1I and we get a solution if

conclude that the metric

(e cos x-m

is a solution

costant

. 2
sin )

(e+m cot x)ds

3

+

11'12

ge+m cot x

(dp + cos ed¢)2)

(7.7)

to Einstein's equations with cosmological

(7.8)

This solution has self-dual Weyl tensor, as we would expect,

since the conformal structure is given by a monopole and

therefore by a line bundle.

If k

and ¢

the cosmological constant is negative.

are positive

It is therefore

possible that (7.7) is the metric we have been looking for

in the Lebrun construction.

indeed the case:

We shall show that this is

Make the substitution (6.11).

approach in the next paragraph we get the

x3dx

w:

where r2

(r—xz)—— r

I
x LY

—x4dx3 1

From the twistorial

idea to look for



w = cos 6 d¢ + d(¢ - x) .

If we put ¢y =1 - x + ¢, we may write (7.7) as

1 4 2 m2
g= —_k [[e + ———) r dx5 +
2 r i
(exl-mr) i=1 1
cet+——
r
We have:
4 5 2 2. 2 2
r dx, = dr” + 4r° (g, + o-);20
. 1 2 3
i=2
2.2 .
2 r-dr _
dxl = 1—r2 ’ doi = Eijk Oj A Oy -

Now, make the substitution (6.15) and let m

1-2

(dt +w)2] .

42,

(7.9)

in (6.15) and

¥ .
m in (7.9) both be the constant [ Y ) . This gives the

metcric

2 2.2 2
g = km ((M“R°+ (1+€R) <) [ 42

(e-m2R) 2 (1+m%R?) R (1+€R)

4R? (1+€R) 2 (1+m2R?) 2 2

+ (0 + 03) (7.10)
2.2 2 o2
m“ R+ (1+€R)
L R2am®r?)? 2 ek (anlR?) oo
2_2 2 3 22 2 3
m R+ (1+€R) - m“R7+ (1+€R)
m2
Remark (7.11). If we put € =0, k = T the cosmological
constant vanishes A = —3€k_l = 0 and we get the Eguchi
Hanson I metric (6.16).
82
Remark (7.12). If we put k = — and let m > 0, then
m
A= —3m2€“l - 0 and we obtain the vacuum solution
1+eR 2 . 2 2 4R 2
= R dR® + 4R(1 + €R) (ol + 62) + ‘lTe—R 03 .
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Put R = % x - w, e = —% and we realize that we have got

the Taub-NUT solution

2 _ uzﬂﬁi + 03) + 4u2 I-u 2

g = 5 —=dr” + (r = 3

The metric (7.10) can be simplified. We have

_ kdR®  |m% (m®R%+ (14¢R) 2) n®R 2
g = 2.2 2.0 - 2.2
(e-m“R) (lL+m"R7)R (1+€R) (1+m"R™) (1+4€R)
2 2_2 2
+ km Rél+g R) dy + cos 0 d¢ - —Eg%—i
(e=m“R) “ (1+€R) 1+m™R
k4m2R (1+eR) , 2 2
+ % (ol + 02) .
(e-m~R)
Let df(R) = ——EE—E drR, ¢ =19y - £(R). Then we may write
1+m™R
K m? (1+€eR) 2 2 2 2
g = 5> = dR“ + 4m“R(1 + eR)(Ol + 02)
(e=m"R) (14m“R7) R
4m2R(l+m2R2) G2 (7.13)
1+eR 3 )

This leads us to the solution in the Lebrun construction:

2
Let k = EZ’ e = m2. Also, make the substitution (6.14)

to get the connection to the special plane sections of the

quadric generated by the Berger sphere p = 1. We get
. 2 2 2 2 4
g = —i— B0 qp? 4 2 (14m?0?) (02402) + 2L O og]
(1-p7%) 1+m~p I+m~p

(7.14)



This metric is self-dual. It has a pole of order 2 on
the 3-sphere p = 1. Conformally we have on p = 1:
g = (1+ H@Mci + cg) + Og
— 2 2 2
=07 + o, + Ao3
which is the Berger sphere metric. Finally the cosmological
constant
="3% - _
A= T 12,

It follows from our discussion on uniqueness in the intro-
duction that (7.14) is the Einstein solution we have been
looking for in the Lebrun Construction. Note, the metric

is complete on the ball o < 1.

44,

Remark (7.15). We have proved (2.2) that in the bi-invariant

case A = 1 the Lebrun construction gives the hyperbolic

metric. If we let A > 1 (m~> 0) in (7.14) we get
_ 1 .2 2,2 2 2
g= —> fdp® + p (ol + o, + 03)]

(l—pz)

which indeed is the hyperbolic metric with A = =12,
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8. The Twistor Space of Unparametrized Null Geodesics

We are now going to find the twistor space of the
conformal structure (7.7) which contains the Higgs field
V =¢ + m cot ¥x. The idea is to take the tensor product of
the bundles that give the Higgs fields V = ¢ and V = m cot X.

In example (6.8) we showed that the bundle P gave a

monopole with Higgs field V = i cot ¥X. Furthermore, the
monopole (V,A) = (i,0) does not have any singularities on
3

S so one would expect that the corresponding bundle is defined
on the whole quadric. Then, since the bundle has to be
trivial on plane sections, it must be the bundle 0(1,-1).
The problem is how we make the bundles depend on a parameter.
If we restrict to a neighbourhood of a plane section we may
assume that the transition functions for P and 0(171) map
the overlap into a simply connected set away from 0 ¢ C.
Moreover, if we have a non-vanishing section (01,02) on
a plane section covered with simply connected patches Ul'UZ’
then oi(Ui) are also simply connected sets away from the
origin in (. It is therefore possible to choose a
logarithm that works for all plane sections in a neighbour-
hood of a plane section. Then we may consider powers of
our bundles.

Now, let T be O0(l,-l1l) restricted to a neighbourhood
of a plane section. The transition function for T on
the overlap defined by the coordinates (5.3) 1is n/c.
Thus, from (5.7) we get a real structure on Tir (r ¢ R)

minus the zero section, by
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S

c

l lir
+
t(g,m,o) » |=X, 2L,

n

Q|

On a real conic (6.9) the transition function for Tlr 2 P

is

ir
v :E:ré‘;___] b* (c=0) % (c-8)°
12 z (a+bi) z (a+bz) (-b+ac)
_ Abz(c—§)2 . agtrtt ™
(atbr) M| (g-a) # (G2 By T
_ -1
=0, .0,

where o, B are the roots (6.10) and

_ AbZ(C—B)z

1 (a+bc)ir+l

The section (01,02) is real with respect to the
product of the real structures on P, Tt if

i i6
A—BFG . (8.1)

Theorem (8.2). The twistor space of the conformal
structure
g = vas® + vi@ar + a)?

V=€ +mcot , A =mcos 8d4¢

is the line bundle minus the zero section:

=Y

(T Q& P)\O .

Corollary (8.3). The twistor space of unparametrized null

geodesics in a geodesically convex neighbourhood of
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o7 + o5 + Ac§ ;, A< 1

is the line bundle minus the zero section

12"
z = (ril A J g p)ro

defined on a neighbourhood of a plane section of the quadric

Q-

Proof: The real twistor lines are taken to be

_ -b+ag
n atbcg
(8.4)
2 2
s = Ab7(z-B)
i%+l
(a+bg)
The conformal structure is determined by the condition
that ﬁ = 0, & = 0 should have a common root. We have
n o Zc-b _ atbe
-4 = 0 <= = (8.5)
n E(Z_B a+b§
o _ A _ 2 28 _ .. & atbe
5= 3 + 5 <8 (i = + 1) a4br (8.6)

Lemma: Recall that B 1is a root in
2 - = _
bz + (a - a)g + b =0 .

Then:



n on a plane section

2) L8 (b -B87Y) =¢ -

a+b
_ -b+ag
n at+bz *
' = -1 _ .
3) Bb - bBg = -2ir, where
2 2. 2 .2 . . 4
r = x, + X3 + Xy, a-= xl + ix,, b = x3 + 1x4, 'Z Xy = 1.
i=1
The proof of this lemma is straightforward. Now,
assume n = 0 and differentiate equation (2) in the lemma.
Then we get

-8 2irg 2irc (a+bg)

where we have used (3) above. Substituting (8.7) and (8.5)

into (8.6) gives a linear equation for . Then

ir5|2 + 22| 4 g (Bb-bb) + ab-ab -i[m E)Br
r = A b m
.. —(A 2b . A
1ra[X + —BJ+ B(ab ab) —1[l+1 ﬁ} ar

Let us substitute this expression for 7 to get

a+br _

atbrz (8.8)

(55+£E)[ir[§ %} +8D-a] + (aa+bb) (3-(1+i £)ir-gb)

ir[% + 2b}+8b a+(aa+bb)(a [1+i %)ir—Bb)

(since aa+bb = 1). Also,

. [Y . A 2b -
ag-b _ l‘r[g ’ lﬂ;b . (8.9)
ar-b Bb-a+ [14—3 ir

We have ir + fb - a = ~X), SO substituting (8.8) and (8.9)

48’.
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. . 2 .
2 - “s .
% + —%} + Bb - a)2 + l% r + xl]'(aa + bb) (8.10)

Lemma. Im(ir[% + Z%J + Bb - a) =0

1

Proof. Since A i(bB) eie we get

mir 2 -5 = L | 4rr+(a-a) (a-a) ]
A 2 — .
a-a~2ir
2 - 2 =
Also 4r” = -(a - a)” + 4bb, so
Im(ir % - a) = -Im BB—l

which easily leads to the claim.

Now, if we write A = IAlelT, then Rel(ir Z'\-) = -rdrT.

EY

+ BB) (x2 - r)Im %.

oo .

Also, Re (-a) = —dxl and Re(2ir

Ul|o .

Write b = [b[el¢ = x5 + ix,. Then Im d¢ and

x3dx4—x4dx3

> .
3

(l+tan2¢)d¢ =

X

Thus, the conformal structure (8.10) can be written

mxl 4 5 2 2
g = [e + ———} T ax® + —0 @t + w) (8.11)
r . i mx
i=1l + 1
€+r—
with
_ x3dx4—x4dx3 N dxl
w r(r+x2) r :

Compare with (7.9) and we have proved the theorem.

Remark (8.12). The proof of this theorem is an example of

the claim (6.7) that the monopole is encoded in the conformal

structure.

49,



* ° L] . 2 e e e ®
. |A 2b =2 ot =
g = (ir 3+ —E} + gb - a)” + % r + le (aa + bb) . (8.10)
. |A 2b ) =~
Lemma . Im(lr[X + —B] + Bb - a) =0 .
. . -1 ip
Proof. Since A = i(bB) “e we get

. .

4r£+(a—é)(a—§)

Im(ir A _ a) = = . .
A 2 — .
a-a-2ir
Also ar? = -(a - 5)2 + 4bb, so
Im(ir % - a) = -Im 58_1

which easily leads to the claim.

Now, if we write A = |A|e'®, then Re(ir &) = -rdr.
Also Re (—é) = -dx and Re(2ir b + BB) = (X, = r)Im b

! 1 b 2 b*

. ) i . b _
Write b = [ble™" = x; + ix,. Then Im g = d¢ and
X,dx ,-x ,dx
(l+tan2¢)d¢ = 3 42 43 .
*3

Thus, the conformal structure (8.10) can be written

mxl 4 5 n2 >
g = [e + ———} L 4dxy o+ I (dt + w) (8.11)
r . i mx
i=1 + 1
Ty
with
x3dx4-—x4dx3 .\ dxl
w r(r+x2) r -

Compare with (7.9) and we have proved the theorem.

Remark (8.12). The proof of this theorem is an example of

the claim (6.7) that the monopole is encoded in the conformal

structure.

49,
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z z
2 1 -1 -
Then, EI =5 (T - z), E% = %I (¢ 1 + ) and a plane
section
X291 + x222 + x3z3 - z4 = 0
becomes
24 -1

1 . .
= —z—(c(x2 + 1x3) - 2xl -z (x2 - 1x3)).

=

From (3.2) in[17] we see that our coordinates are related

to Hitchin's by

N

4,_1n

zq 2 T
Hence,

n)? —E%

%12 - 912 7 [Z) © (8.16)
(see also [31).
Remark (8.17). Consider a neighbourhood S of some section

n = a;z + 2bz — a
of ﬂPl. The zero section

D:n=20

meets S in two pieces D;, D, and the line bundle
M =D, - D

is trivial over sections of ﬂPl. This construction is
similar to the construction of the bundle P in paragraph 5
and using the same kind of arguments as there we get the

transition function for M:



Remark (8.13). The corollary follows from paragraph 7

putting ¢ = m" = — |

We saw in (7.12) how our Einstein metric becomes the
Taub-NUT solution in the limit m - 0. It should be
possible to realize this limiting process on the twistor
space level: The conformal structure generated by the
twistor space in (8.2) does not change if we redefine the

transition function for P to be

6. . = (c—n)2
12 2 :
-v7In

In terms of the homogeneous coordinates (5.3):

422 zi
912 = 2,022 oL 4 2 (8.14)
1 4 1
i&
The transition function for T
z,.=ivz i%
g = __.]'___.._4
12 zl+1\)z4
z
4
z 28—
~ 1 4.k z]

(1 + X (Ze Zl)) 7:f> e (8.15)
where k = E%A. Furthermore, the quadric QX converges
towards the cone

2 2 _
23 + 22 + z3 =0
and the cone minus the vertex (0,0,0,1) 1is TP Now,

1°

let us define coordinates on TPl by

50.
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2
\Plz(érn) = [2‘} .
The bundle on TPl with transition function
—e%
(z,m) -~ e
is L°° where L 4is the line bundle that generates the

u(l) monopole (V,A) = (i,0) on RS> [171.

Theorem (8.18). The line bundle minus zero section

(M & L E)\0

over a neighbourhood of a section of TP is a twistor

1

space generating the Taub-NUT solution.

Proof : On TP we have the real structure

1
_l .
t(z,n) - [_—l __.Tz].‘} .
8
g
2 =g

The transition function ¢12(c,n) = [%} e & satisfies
(5.7) . Then a section (0,,0,) of M & L % over a real
curve n = a;z + 2bz - a; a = x; + ix,, b = x; is real
if ol(—l/Z) = il/gz(c). Now,on a curve

2 —e{§~—b) -
A(g - u)Ze—e(a;+b) Ao e

¢, 5 ()
12 a2(C_B)2

= o, (D)o, ()t

where

Ul(C) _ A(g_m)ze—e(az&b)

and o, B are the roots in acz + 2bg - a =0 :

a - R-b g = - (R+b)
a



The reality condition on the section gives:

AR = (R + b)2.

Thus, the four parameters are (a = Xy + ix2, b =
Assuming n = 0 we get

o _ aa;+5

z—0o 2R °

The section of the normal bundle vanishes iff n =

c/og = 0:

Rea;z + (Reb - R% + oa)g +a =20

ar® + 2br -2 =0 .

Then,

A .
~ RK oa b(Re + 2)

é(l + Re)

X

0

53.

and

Substitute into n = 0 to obtain the conformal structure

g=-(EE-b-oaa)?+ (8% +aa) (1 +Re)Z = 0.
Now, since AA = (R + b)z, we have
A . -
Re(RX - b —-oaa) =0

and as in (8.2) we have

Im (R% - b - 0a) = -2R1dr + 2 "2

2R(R+x3)

xldx -X dxl}

Hence, the conformal structure is

2
xldxz—xzdxl}

2R(R+x3) J )

ax2 + 4r?
1

1

dt +

™M w

g = (1 + Re)2
: i

(8.19)

(8.20)
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Conformally
— 1+Re 2 2,2 2 4R 2
g R (dR™ + 4R ml +02))4-Tﬁ£—03
where do., = ¢ g. A O g 2 dR2 + 4R2(o2 + 02)
i i3k %5 k'oi2y 2y 1 27

This is the conformal structure in (7.12) so the theorem

is proved.

Remark (8.21). In [14] it is described how to obtain
vacuum solutions from twistor spaces fibered over ZPl

m™ Z-*Pl .
Let us use this approach on the twistor space M & L€,
We have a projection

m s (C’T]IO) - (C’O'OO)
where Ig is fixed. Define a form (wl,wz) by

_ dnado

Y17 7%

and similarly for w, oOn the other coordinate patch. On

a fibre F = ﬂ_l(go) we have

w —l—w
2 7 Y-
)

Hence, (Ul'UZ) trivialize A2T§ R 7*0(2) so0 K = 7*0(-4).

Here 0(n) denotes the bundle of degree n on the line

n=0, o= og e This gives a volume form on the surface F:
dV___dGAdnAczlcmdn .
o]
We can introduce complex coordinates on F = ﬂ—l(O):
-2 _-—¢cb
n =n(0) =-a, o= 0c(0) = Auze eb _a’e (AA = aza 2).
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Then
R A aa = 2R LU eRﬁ - R g + aﬁ
A n —
o
so since Re(R% -a a) = b, we can write (8.19) in K8hler
form:
g = 2R L 4 oan - R 99 2r L0 4 Fan - r 99
n o]
+ (1 + Re)2dndn ) (8.22)
The volume of (8.22) is
vol = F R*(L + Re)? av.
This defines the conformal factor 2R_l(l + Rs)_l. Then
from (8.20), we get the metric
X. dx,-x.,dx. ]2
- 2(1+€R) dg.dg + 8R ar + 1 2 2 1 .

R 1+Re 2R(R+x3)

If we put € = %ﬁ and multiply with m we obtain the

Taub-NUT metric in standard form:

g =V dx - dx + v T(d(4mt) + B)>

X,dX,=xX,dx

_ 2m _ 1772 72771
V=14 R A = 2m R(R+x3) .
Remark (8.23). Note that the line bundle M gives the

monopole on R3 with Higgs field
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9. Summary

We have shown that the motions of the symmetric top

+02+IG

2
9 2

Generate a self-dual Einstein metric with cosmological

constant =12:

2 2
g = —E— |[ERLa0? + 02(1 +m?0?) (02 + o)
(1L-p%) 1+na™p
, oot 2
2.2 3
1+m™p
|
I3

One could try to look for the Einstein metric generated by

the null geodesics of an asymmetric top

Then we do not have the Killing vector field K4 and 93
is no longer conserved, but the angular momentum m in
space is still conserved. We can therefore consider the

map

T : SL(2,L) X CI *]Pz

given by
(A,Q) -~ (ml Im2 Im3)

where  1is a point on the conic

2 2 2
Cp : I,07 + 1,05 + 1,05 =0 .

Then, the null geodesics through a point A ¢ SL(2,&) are



T I(A).. z.z. =0
i, o

where I(A) is the symmetric matrix

IIl -1 ° T
OA . 12 OA ;
I—l
0 3
OA e SO(3,L) corresponds to A. If the moments of inertia
are all different, the orbit {I(A) | A ¢ SL(2,8)} of conics
is 3-dimensional. It should be possible to model the space
of null geodesics on ZPZ using the map 7 above. If
Il = Iz, the orbit of conics is 2-dimensional and consists

of a family of conics that meet the conic

2 2 2 _
C0 : 2] t+ 2z, + z3 = 0
in two points to second order. This suggests to model the

twistor space on the quadric

which is a double covering of ZPZ branched over the conic
CO' This is, of course, exactly what we have done.

One could also try to find Einstein metrics without
reference to the Lebrun Construction: We have described
the condition (4.8) for a line bundle Z over a neighbour-
hood S of the quadric to be a twistor space. In order
to obtain an Einstein solution we need a twisted 1-form

1

-1
6 ¢ H°(Z,27 & K %) (2.1).

Lemma : Let 1m be the projection of the bundle Z + S.

Then the canonical bundle K of Z satisfies:



Proof: We have the exact sequence
0 » n*Z » TZ > w*TS -~ 0
giving

K = W*KS R n*Z-l .

Now, Kplﬂpl = 0(-2,-2) so

L
K 2% = g*%2?2 @ 7% 0(1,1).

Suppose ¢2 is the transition function for 2

let us represent 6 Dby the two forms:

fld; + gldn + h.do

'—l
.

1

-1 -1 o

6, = £, =% + g d = + hyd 3=

4 27 92

Then (61,62) is a l-form with values in K

6, = ¢tnb,

g if

on the overlap. This gives the conditions:

2h.zno )
£o=D0 o - 22 3¢
1 C 2 02 T
2h.zno
1 n 2 $2 an
= &n
hl 9 h2 J

Example (9,2). Let 2 = 0(2,-2).

we put hl =0 = h2, g, = A= J,

satisfies (9.1). We have

8 = odg + Adn

Then ¢2 =n2/C2.

and

(9.1)

If

and fl =0, (61,92)

(9.3)

58.



59.

and
A d8 = Adg A dn A do

sO (0(272),6) gives an Einstein metric with cosmological
constant A.

We will briefly compare (9.2) with example (2.2) and
the mini-twistor considerations in [16] and in Chapter III:
The quadric Pl XjPl is the mini-twistor space of SL(2,T)
(or PSL(2,&)). Null geodesics in SL(2,I) are given by

the "punctured" projective tangent bundle of P. x PP

1 1

PA(TCIPI x P))

in the following way: Take a point x and a direction

Vo in ]Pl X ]Pl. The plane sections of IPl XIPl passing
through x in the direction Vi define a null geodesic in
SL(2,T). The directions at x along the two complex lines
of the ruling of .Pl ijl are obtained from the intersection
with the tangent plane at x. This explains the

"puncturing". Now, we also have
P(T(@®,; xP;)) = P(0(2) & 0(2)) = P(0(2,-2) & 1)

which should be compared with (9.2). In (2.2) we described
the twistor space of null geodesics for SL(2,E) with

canonical metric as
]P3\(Ll U L2) .

Projecting onto Ly x L, we get a fibration where the
fibre over (A,B) is the line passing through A, B
except the points A and B. If (01,02) are coordinates

along the line described in relation to (¢ ,n) and
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(1/z, 1/n) on L, X Ly, then

Furthermore, the standard twisted l-form

z.dz, - z.,dz., + A(z.dz, - z4dz3)

1772 2771 3774
gives (9.3). Hence the twistor space and the form 6 in
(9.2) define the standard Einstein metrics on JR4, S4 or
4

H if A =0,1 or -1.

Finally, from another point of view: The dilations in
RA may be complexified to give a C* action on the twistor
space P,\(L; v L,) of r:\ {0}, The orbits of this action

are the fibres of the projection onto Ll X L2. Of course,

2R4\{0} modulo dilations is the 3 sphere (or ZEP3).
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Eguchi-Hanson Metrics with Cosmological Constant

1. Introduction.

Using twistor theoretical methods we obtained
in Chapter I a vacuum solution of the form

d52 = —l§ [ (dR - 2mR

4R

2 2

2 2, 2
03) + 4R (61 +02

+ og)]

where (01,02,03) is a basis of left invariant l-forms

on SU(2) satisfying dOi = gijkOj A Oy- Making the

substitution R = r—2, m

-a we get

2 1

ds“ = (dr - ar © 2

2, 2 2 2
+ r (0l + 02 + 03) (1.1)

3)
In this chapter we look for Einstein solutions of the

form

2 _ _ 2 2, 2 2 2
ds” = (dr go3) + r wl + 05 +o3) (1.2)

where g is a function depending only on r. We obtain a

solution, iff

- 5
g(r) = (a2r 2 + b2r4) . (1.3)

The work of Belinskii et al. [6] is used to show that
the metric (l.1) - corresponding to b = 0 - is the Eguchi-

Hanson I solution. When a = O:

2 _ _ 2 2 2, 2 2 2
ds® = (dr br oy + r “H.+ 02-+03). (1.4)

This is seen to be the Pseudo Fubini Study metric with
cosmological constant A = -6b2. We show the solution is a
Kihler metric. After a change of coordinates we realise that
the solution naturally contains the four metrics: Eguchi-Hanson

I, (II) clus (Pseudo) Fubini Study. By adjusting the

parameters appropriately the superposition Eguchi-Hanson II
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2. The Einstein solution

The metric (l.2) is diagonalized by the frame

0]
I

dr - goq
. (2.1)

The connection forms are determined by the equations

dei + w; Aeld =0

wio= —d
3 i
We get
wg = -r"1 1. r—zge W
0 _ -1 2 -2 1
wy = -r “e + r “ge
0 _ _~1dg 0 _ _~-13
w3 = r 3 © r e
: (2.2)
w; = r_zge + L3
wz = r_zge + r_1 1
3
1 _ -2 -1 2
w3 = r “ge r J
The curvature forms
R% = dw% + wi A wk
] J k 3
become
- 3
Rg =r 4g(g - r %%)[eo rel - e? a e
Rg = r-4g(g -r %%)[eo A e2 + el A e3]
0 4, 2 a2 2 dqg, 2 (2-3)
=y (= e g ag dg, 0 3
R3 r (-r“g " r (dr) + rg dr)e A e




- - A

R1 = —4r 4g2e1 A e2 + 2r 4g(g—r gﬂ)eo A e3
2 dr

R2 = r_4g(g-r §9:)[ez A e3 - e0 A elj r (2.3)
3 dr
1 _ -4 _. 49 0 2 1 3

Ry =r glg-r dr)[e Ae” + e AeT] )

If we put

i1 .4 k 2
T2 Rjgp & N e

s}
|

we may write the Einstein equations with cosmological

constant A as

k

2 2
rlg 49 + rz(%%) + rg %% - 2g% = -r'a
dr (2.4)
rg %% + g2 = -+ rn
Make the substitution f = g2:
2 &’ af 4
I:r —5 tr ar - 4f = -2 A r
dr
af _ 4
IT : 2y I + 4f = -2 Ar” .
Subtract equation II from equation I:
2 a’¢ df
r———ﬁ-ra—f-—B.f=0.
dr
Substitute r = e°:
a’s daf
5~ 2 Is 8f = 0 (2.5)
ds S

The solution of (2.5) is
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£ = a2e™?% 4 p245 2 22072 4 p2t
. L 2 -2  .2.4%
Finally, substituting g(r) = (a“r + b"r’) into
(2.4) gives a solution if A = —6b2 . Hence,
2 2 -2 243 2 5 5 o 9
ds® = (dr - (a“r + b°r?) o,) + r°(ocT + o, + 03)
3 1 2 3
(2.6)

is a solution to Einsteins equations with cosmological
constant —6b2.
In order to find the Weyl tensor we proceed as

follows: Define a basis of (anti) self-dual 2-forms

Ai = e0 A e1 + e2 A e3 }

12 _ 0 2 - 1 3

i_e ANe 4+ e A e r (2.7)
Af = eo A e3 * el A e2 J

Now, consider the Riemann curvature tensor as a

symmetric linear map (4, 26]
R: 12012 > 12012
R - + -
by
i Jy = 1 Ri] k L
R(e™ A e’) = 5 R K& A e

where Az denotes the (anti) self-dual two forms.

Then in the bases (2.7),.
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and the Weyl tensor W = W' + W is given by

wht=n - % Trace A, W = C - % Trace C .
We get:
2b2
wt = 2b2
L - 4p?
r 3
4a2
r® )
W o= 4a
= :37
-8a2
6
L r j

Note, the curvature is of Petrov type D. Also, there will
be a singularity at r = 0 in the metric (if this is in the

allowed coordinate range).
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0: The Eguchi-Hanson I metric

We shall prove that in the limit b = 0 we get the

Eguchi-Hanson I metric: In [6] Belinskii et al look

for vacuum solutions of the form

ds?

2 2 2 2 2 2 2

2
(ABC) “dn” + A P} + Bp; + C P53 (3.1)

with A,B,C functions of n and pi = 201. Let

A2 =

WoW3

w

1
and cyclically for B and C. Then the connection
1-forms of (3.1) in the basis (aABCAn,Ap,:Bp,,Cp3) are

self dual (and thereby (3.1) a vacuum solution [10])if
—(ﬂ = W2W3 (3-2)

and cyclically.(3.2) are the Euler equations for an

asymmetrical top, and the general solution is

)
A2 =Cy v cnu-*dnu/snu
2 _
B™ = c, cnu/snu dnu ¢ (3.3)
2 _
c” = cy - dnu/snu cnu
where u =

functions with modulus k.
Now, if b = 0 we have the vacuum solution (1.1).

Using Euler angles we may write

2@1 cosyYdf + sinysin6d¢

20

5 -sinyd® + cosysinéd¢

20, dy + cosodd

Cy, = €M and sn,cn,dn are the Jacobian elliptic
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Then (l1.1) can be written

2 -1 2
as? = r2(r2 + 27) dr2 + %T(dez + sin26d¢2)
r
r2 a2 a r2 a2 -1 2
+ (5 + =) (Y + cosbdd - zo(7 + —3) dr) . (3.4)
4r 4r
Define a function H(r) by
4 2, "1
dH(r) = 2ar(r + a“) dr
and put
v =y - H(r) , p3=dj + coseds .
Then (3.4) becomes
2 4, 4 271 2 2 o 2 1,4 2, 2
ds® = r (r + a“) dr® + jr(pl + p2)+ ——i(r + a )p3 (3.5)

4r

For (3.5) to be on the form (3.1) we must have

2 _ 2 _ r2
A = B = vy
2
cz = -lf (r4 + a’)
4r
r4(r4 + a2)_1dr2 = (ABC)de

giving

J_4_8:_r_d_'r_2=coin
r + a

where c. is a constant of integration. Thus, we get

0
A2=B2=%- COt(CZ_EaT-]—)
2 _a 1 .
© 71 cos{(c, - jL)sin(c - ji)
2 4n 2 4n
This coincides with (3.3) when k = 0 and c, = %. Finally,

when the modulus k is zero the solution of Belinskii et al.

d~ +lhAn Tlmanml 2 v . -
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4, a = 0: The Pseudo Fubini-Study Metric

When a = 0 our solution becomes the Pseudo Fubini

Study Metric
2 2 2

2 dR+RO3 R(Ol+02)
ds“ = 53 t 2 (4.1)
(1+ER) 1+'6—R
A < 0. To see this we write (1.4) as follows:
2 2.2.-1..2 . r? .2 2. .2
ds® = (1 + b“r®) “dr® + jr(de + sin®6d¢”)
2 2 2 2 -1
r b 4 b .2, r b 4 2
+ (7T +r ) (dY + cosedd 5 T (TT + - F ) dr)
(4.2)
Let us define a function K(r) by
2 2. 71
dK(r) = 2b(1 + b"r”) dr
and put
¥ =y - K(x) , 205 = dy + cosbd¢ .
Then (4.2) takes the form
2 2 2,71 5 2. 2 2 2 2 2. 2
ds” = (1 + b°r°) dr® + r (01 + 02)+ r°(l + b°r )03
(4.3)

Making the substitution
2 =ra+2rYH , 1=-ep’

turns (4.3) into (4.1). The Pseudo Fubini Study metric

is defined on the open unit ball in m2 and it is (up to
holomorphic isometry) the only simply connected complete
Kahler manifold of constant negative holomorphic sectional

curvature. It can be represented as the Hermitian symmetric
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5. The Kéhler Structure

We define an almost complex structure by demanding
that

3 2 L1

0 w2 = e - ie

w, = + ie
1 e i

are (1,0) forms. Here (eo,...,e3) is the frame (2.1).

Then, the metric (1.2) takes the hermitian form

and we see easily that df = 0. Thus, we have an almost
Kahler metric. We want to prove that the complex
structure is involutive: The ideal generated by Wq W,

has to be closed under exterior differentiation [4,311],

that is, we need l-forms «,B,Y,8 such that

dw

1 o A w1 + B A w2

. (5.1)

dw2 Y AWy + 8 A W,

It is easily seen that

dr 3
B = 26, + 2r_1 o]
2 9%
-1 .
§ = r “dr + 2103
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6. Singularities

We have seen that the Einstein—Kéhler metric

2 2

L
- 2 2
ds® = (dr - (a‘r 2 + b r4) 03)2 + rz(ai + 02 2)

2 T 93
is a "nonlinear superposition" of the Eguchi-Hanson I
and the Pseudo Fubini-Study metrics with Weyl curvature
the "linear superposition" of the components. If we
proceed as in paragraphs 3 and 4; that is, defining a

function G(r) by

2 2 4% 2 2 4 2 -1
a2 + b‘: ) a2 + b‘: + E_) dr
4r 4r

daG(r) = (

and putting $ = ¢y - G(x), 203 = d@ + cos6d¢, then our

solution becomes

2 -1

ds = A 2 2

dr2 + rz(ci + 0%) + r A03
2 , (6.1)

a 2
A=1+ -7 + r where A > 0,
r

ol =

Obviously, the metric has the four Killing vector fields
(Kl,...,K4) where Ki are the right invariant vector
fields corresponding to Oi’ i=1,2,3, and K4 is the
left invariant vector field dual to o,. Also, it becomes

3
clear that we get Einstein-Kahler metrics if we change

the signs:

2
A=1t251

* r4

r? , A>0 . (6.2)

o=

Indeed, using different methods these solutions were found

[12] to be the unique spherically symmetric Einstein-Kahler

metrics with A term. A =1 - % r2 gives the Fubini-Study
2
metric and A = 1 - EE corresponds to the Eguchi-Hanson II

r
solution (compare section 3: The change of sign turns the

spherical functions into the hyperbolic functions corresponding
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The metrics have apparant singularities where A = 0,
but we shall see that in some cases the parameter a2 can
be adjusted to obtain removable singularities. Let us
first review briefly the notion of bolts and nuts [111] :
Consider a Riemannian 4-manifold M with a Xilling vector
field K. Let Ft : M> M be the flow of K. The flow

has a fixed point where K = 0. At a fixed point p we

have an isometry F¥* : T M ~> TpM. The Lie algebra of

t p
0(4) consists of antisymmetric 4 x 4 matrices. Such
matrices can have rank 0,2 or 4. In the case where FE

is generated by a matrix of rank 2 it has the canonical form

1 0 0 o )
0 1 0 0
F* =
t 0 0 cos kt  sin kt
\0 0 -sin kt cos kt)

(the matrix in the Lie algebra generating F% has the

canonical form

(0 0 0 0)
0 0 0 0

0 0 0 k

where k 1is the non-zero skew eigenvalue).

The flow commutes with the exponential map

= *
F_ o exp X exp(Ft(X)) ¥ X € TpM.

Thus, the flow is periodic with period 2 k_l and the

image under the exponential map of the 2-dimensional subspace
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of TpM which is left unchanged by Fg is a 2-dimensional
totally geodesic submanifold of fixed points. Such a
2-manifold of fixed points is called a bolt. In the case
where FE is generated by a matrix of rank 4 the fixed

point is isolated and is called a nut.

Now, let us examine a metric of the form

2 2

ds” = dx~ + If(x)o2

1

2
3.

+ I%(x)c% + Ig(x)a
This metric has an SU(2) isometry group acting transitively
on 3-surfaces (it is a Bianchi type IX metric). The mani-
fold described by this metric is regular provided the functions
Ij are finite and non-singular at finite proper distance Xx.
However, the manifold can be regular even in the presence of

apparent singularities. Consider singularities occurring

at x = 0. Assume that near X = 0 we have

2 _ .2 L
I1 = 12 and finite
Ig = n2x2, n an integer,

Thus, I3 vanishes and therefore the corresponding Killing

vector will have zero length at x = 0. Since Ii = Ig
we have the canonical 82 metric %(de2 + sin2 3] d¢2) for
the (Iioi + Igog) part of the metric, while at constant

2

(6,6), the (dx° + Igog) part looks like

ax% + nxay? .

If the range of ¢ is adjusted so that 0 < E% < 271, the

apparent singularity of x = 0 1is just a coordinate
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singularity of the polar coordinate system in ]R2 at the
origin. The singularity can be removed by using Cartesian

coordinates. The topology is locally ]R2 X 82 and the

ZR2 shrinks to a point on 82 as X - 0. This 82 is
the fixed surface - the bolt - of the Killing vector

field. We therefore say that the metric has a removable

bolt singularity at x = 0.

Example. The Eguchi-Hanson II metric

2y-1 2
ds2 = [1 - 2—] dr2 + r2(oi + 03) + rz[l —-E—]Og

r4 r4
. . 4 2
has an apparent singularity when ¥ = a”, Put
2
E'—‘rz[l‘%] .
r

Then with fixed 6 and ¢ and near rd - a2 the metric

behaves as

as? » y(ac? + £2ap?) .
Thus, r4 = a2 is a removable bolt singularity iff
L
0 <y < 2m. This makes the surfaces of constant r > a*

into ]RP3 = SB/Zﬁ. The Killing vector field %a has a

%

bolt on the 2-sphere r = a with period> AR

We shall now return to the apparent singularities of

our Eguchi-Hanson metrics with cosmological constant:
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I. Eguchi Hanson II + Pseudo Fubini Study,

If

2
_ 4(n—2)2(n+1) r_4 + % r2 , A >0, n2>3,
3A

then the metric is complete and defined on:

roel

(6,9) € [0,m] x [0,2m]

4
w € [OI ?r] -

The metric has a removeable bolt singularity at

1

_ 2

r = (2(?\2)) .
3

S /Zn.’ whereIEn is the cyclic group of order n.

The surfaces r = constant are topologically

II. Eguchi Hanson II + Fubini Study

If

A=1——8—r_4—£—r2, A> 0,

302

then the metric is defined on

(-

: 3 3%
re (3, &2y

(er¢) € [0,m] x [0,2m]

4T
v e o, 1 .

[N

()

=0

The metric has a removable bolt singularity at r
1

1 2
2 2

surfaces r = constant are topologically S3.

but a conical singularity at r = (



ITII. Eguchi-Hanson I + Fubini Study

If

4(n+2)2 4 A2

A =1+ > (n-Mr ~ -
3A

then the metric is defined on

r e 10, (2212,
(8,0) € [0,7] x [0,27]

4
LPE[O'-—I’-I—].

The metric has a removeable bolt singularity at

2(n+2))%
A

S3/Zn . The solution is singular at r

r = (

0.

IV. Eguchi-Hanson I + Pseudo Fubini Study
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. The surfaces r = constant are topologically

This is the metric (6.1) which is singular at

r = 0.

Let us give some details in case I:

The metric

2 2 =1

2 r”) dr2 + r2(o

dS=(1—iLT+
r

2
1

o=

A > 0, has apparent singularities when

2

a A2 _
‘I———Z+€r—0

r

Put
2
2 2 a A2

£ = r" (1 F+6r)l

and assume r = o is a solution of (6.3)

+ 0§)+ r

and

2

2
a A2, 2
W-T2%%~ Vo3

(6.3)
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4
o

A2
+'€0L-1’1€Z.

Then near r = o at constant (8,¢)

1 ,2.,2
ngw ’

giving a bolt if 0 < ny < 4m.

get

2 _ 2(n-2)
o A

2
2 _ 4(n-2) (n+1)
3A

j\1]
1

14

so we must have n 2 3. Put

(6.4)

(6.5)

Then from (6.3) and (6.5) we have the cubic equation:

A
s (R

2(n-2) 2 2 (n+1)
2n2)) (g% + S5

The discriminant of the gquadratic factor is

D = 12(n+1) (3-n) .

AZ

This leads to a complete metric when

_ 3
r > (ZL%TEL) . n>3
A
n=3
-4
N
2 -
i
-16

the metric looks like

From (6.3) and (6.4) we

76.

- 4(n—2)§n+1)) =0 (6.6)
A
! 3 n>3
2(n-2)
A

—4(n-2) 2 (n+1)

3A

2



2

2a 2

o

Then near r = o at constant (6,¢) the metric looks like

1 .2, 2
ngw ’

giving a bolt if 0 < ny < 47. From (6.3) and (6.4) we

get
2 _ 2(n-2)
S
2
a2 = %—_ (n+1) ’
3A

so we must have n =2 3. Put

Then from (6.3) and (6.5) we have the cubic equation:

A
7] + g% =n € Z . (6.4)

(6.5)

76.

A (R - 2(n—2))(R2 , 2(n+1) R + 4(n—2)(n+1)) 0 (6.6)
6 A A A2
The discriminant of the quadratic factor is
D = 12(n+1£(3—n)
A
This leads to a complete metric when
%
r > (Zi%ggl) ;i n =3 .
4 n=3 n>3
ok}
A
—>
2 2 (n-2)
A A
-16
2 2
3A -4 (n-2) “(n+1)
3A




Remarks (6.7)

1) Let M be a complex manifold with Hermitian structure

g. In local coordinates (Zv) we have

= U Y
g =1z guv dz" & dz

and the K&8hler form
_ i u )
w =3 Zguvdz A dz’ .

M is a K&hler manifold iff dw = 0. This is equivalent
to the existence locally of a real valued c®-function K

- the K&hler potential - such that

w = i35K.

ILet F be the curvature on a Kihler manifold. Then the

Ricci form of the Hermitian metric is the (1,1) form Ric

given by

Ric = i Trace F.

The metric is a K&8hler-Einstein metric iff the Ricci form

is a multiple of the K8hler form. Locally the curvature

is given by
F = 5(g tag).

Thus, a K8hler-Einstein metric can be obtained by solving

the following equation for the K&hler potential

2
st {_a._ff__} _ I 6.8)

aziazj

where A 1is the cosmological constant (see [9] for a treat-

ment of these formulas). Equation (6.8) was solved in [12]
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(when dimcM = 2) under the assumption that K was
spherically symmetrical, i.e. K was assumed to be a

2

function solely of R” = lzl|2 + |22]2. This leads to

our Eguchi-Hanson metrics with cosmological constant.

2) In [8] Einstein-K8hler metrics are also obtained in
terms of the Kdhler potential. Here, the manifold is
given as the total space of a line bundle L over a
Kdhler manifold X. L is equipped with a Hermitian

metric and the Kdhler potential is given by
—~ 112
K(z,%) = 2(z) + U o a(z,z)|g]

where & is the K&hler potential on X (z a coordinate
on X), a(z,'Z)|C|2 is the Hermitian norm (Z is a fibre
coordinate) and U is a function U(x) of a non-negative
variable. U has to satisfy certain conditions to ensure
that the metric is positively definite and complete. In
this way Calabi obtains the Egquchi-Hanson metric on T*ﬂPl =
the total space of the bundle 0(-2) *ﬁPl. It is not
difficult to see that the topology of the Eguchi-Hanson

metric is that of 0(%2)

..

The bundles 0(fn) are classi-
fied topologically by the Sl—bundles over Sz, i.e. by the

lens spaces

1 2

0 > S —>S3/ZZn—>S - 0.
Here, Z% acts on S < C by

e 22); k=0’l'aoc,n-l.

We introduce the Euler angles on S



79.

exp (%— (y + ¢))

@

Zl = COSs
= gin ) ex (i (v = ¢))

Z9 ) P {35 1 ¢

(equ) € [Orﬂ] X [012'”], KD € [0141T] .

Then ¢ 1is a coordinate along the fibre of the Hopf
fibration. If we identify ¢ modulo Z% we oObtain
coordinates on the lense space S3/z$. This also shows
that the supposition Eguchi-Hanson II + Pseudo Fubini
Study is topologically 0(fn); n 2= 3. It is tempting to
conjecture that the complex manifold is equal to O0(-n) -
the approach by Calabi might give this.

Now, let us give a geometrical explanation as to why
we must have n =2 3 : Let C be the zero section of 0(-n)
and let K be the canonical bundle of the total space 0(-n).

From the adjunction formula we get

K'C=—c2—2=n_20
Moreover,
cl(K) = —cl(O(—n)) = =i Trace F = =-Ric

and since the metric is Einstein-Kdhler with negative cos-

mological constant we have
Ric = Aw, A < O.

Also, the K8hler form evaluated on the zero section C =ZP1

is positive

J w > 0,

IPl
Thus
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Hence, n = 3.

Remark: The argument above only involves the fact that the

zero section is a complex submanifold.
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Chapter III

Einstein-Weyl Spaces and (1,n)-€urves in the Quadric Surface

1. Introduction

In this chapter we study a relation
between 3-dimensional differential geometry and complex
surfaces containing rational curves (with self-intersection
number 2). Since this is analogous to the twistor corres-
pondence in dimension 4 the complex surface is often referred

to as a mini twistor space. The geometry of the rational

curves solves the Einstein-Weyl equations in dimension 3:

Ry = 945 ¢

The twistor theoretical.approach to 3-dimensional
Einstein-Weyl spaces was initiated by Hitchin in [161].
In [18] Jones studies mini twistors by taking twistor spaces
modulo vector fields induced by conformal Killing vector
fields on self-dual space times. Hitchin gave two examples
of mini twistor spaces: The singular cone and the non-singular
quadric in ¢P3. The associated Einstein-Weyl spaces are
the flat complexified Euclidean structure on ¢3 and a
Riemannian 3-space of constant curvature. Later [19] Jones
and Tod found other examples of Einstein-Weyl geometries.
However, their results were not obtained via the mini
twistor space. Also, Tod proved [27] - by solving the
equations directly - that the Berger sphere is an Einstein-

Weyl space.
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In Section 2 we recall the approach by Hitchin and
describe a result (which explains why it is a bit difficult
to obtain new examples of mini twistor spaces) showing that
the only examples where the mini-twistor spaces are open
sets in a compact surface are the two examples given by
Hitchin. Following the ideas in [16] we construct in
Section 3 a series of new mini twistor spaces by taking the
n-fold covering of a neighbourhood of a (1,n)=-curve in a
quadric surface and branched along the curve. In Section 4
we compute the Einstein-Weyl geometry with special emphasis
on the n = 2 case. Finally, in Section 5, we discuss how
these Einstein-Weyl spaces appear as the conformal infinity
of an Einstein solution with cosmological constant =1 and
we give hints as to how one could find the mini twistor space

of the Berger sphere.
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2, Hitchin's Mini Twistors and the Einstein~Weyl Equations.

We shall give a brief summary of the work of Hitchin
[16] on the holomorphic approach to the Einstein-Weyl

equations. Consider a mini twistor space: A complex surface

S containing a rational curve with normal bundle N = 0(2).
As in §2 Chapter I we use Kodaira's theorem: Since

0@ ,om) =¢’, w'e@,,0mM) =0 and H'@ 0N @ N¥) = 0
we have a complete family of rational curves with normal
bundle 0(2) parametrized by a complex 3-manifold W.

Furthermore, there is a natural isomorphism
W =80 @, ,0(N))
X x'! *

We obtain a conformal structure on W by defining the null

cone in wa as the set of sections which vanish at some

point to second order. A section of 0(2) has the form

azg + bzoz1 + czi with (zo,zl) homogeneous coordinates on
Pl. Thus, the vanishing condition b2 -4ac = 0 is

quadratic.

We also get a projective structure: A direction at a

point X ¢ W corresponds to a l-dimensional space of sections
of 0(2) which all vanish at two points z,z'. There is a
l-dimensional family of projective lines passing through

z,2'. This gives a curve in W through x in the given
direction. In this way we obtain distinguished curves in

W which are the geodesics of a projective connection. If

z = z2' we consider the family of lines which meet IPX
tangentially. The corresponding geodesic in W starts

off in a null direction and clearly remains null. Since W
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is 3-dimensional this enables Hitchin to show that a unique
affine connection V exists within the projective equiva-
lence class compatible with the conformal structure (in the
sense that Vg = w 8 g for some 1l-form w where g is any
representative metric in the conformal class - i.e. the
conformal structure is preserved by V). A space with such
a geometry (conformal structure and compatible affine

connection) is called a Weyl space.

We have more structure on a Weyl space obtained from

a mini twistor space: Fix a point =z eIPx c S. All the

0
lines passing through 2z give rise to a 2-surface T, in

W. A direction tangent to ™, at X0 corresponds to a

pair of points (z',z) in :PX . The geodesic in W
0
parametrizes the lines in S passing through z and z'.

Then it is obvious that this geodesic is contained in L

Therefore T, is totally geodesic in W. Moreover, when
z and z' coincide, we obtain a null direction tangent to
T, and a null geodesic in T through x. Hitchin shows

that this family of totally geodesic null surfaces are
preserved by the connection V (the connection could
possibly have torsion, so a priori the surfaces being
totally geodesic only ensures the vanishing of the symmetric
part of the second fundamental form). Finally, Hitchin
identifies the integrability conditions for the distribution

defined by these totally geodesic null surfaces:

i) V has vanishing torsion.
ii) The pair (V, conformal structure) satisfies the

Einstein Weyl equations:
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Rii4) = 95 (2.1)

(the trace-free symmetric part of the Ricci tensor of the
connection vanishes). Here gij is any metric in the
conformal class.

There are two main examples of this mini twistor corres-

pondence: Firstly, let the complex surface be ﬂPl, the
tangent space of the Riemann sphere. The lines are the
sections of TPl. The parameter space is ¢3: (21,22,23) € ¢3

gives a section
"= %(z, + iz )Cz + z,0 - %5(z, - iz,)
n 2 1 2 3 2 l 2

where n 1is a fibre cooridnate and ¢ an affine coordinate
on jPl. The geodesics in ¢3 are straight lines and the
conformal structure is represented by the complexified

Euclidean metric on ¢3:

2 2
dz1 + d22 + dz3 .

The unique Weyl connection mentioned above is obviously the
Levi Civita connection of this Euclidean metric. TPl is

isomorphic to the cone

{(20,21,22,23) eZP3|zg + zf + zg = 0}

minus the vertex (0,0,0,1).

Secondly, there is the quadric IPl X.Pl with its
plane sections. We met this example in Chapter I and we
will discuss it again later. These mini twistor spaces
have been studied extensively from different points of view
in [£3, 17, 18]. It is not easy to obtain more examples

as the following proposition shows.
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Proposition (2.2). A compact surface which contains a

mini twistor space as an open set is either the cone or the

quadric.
Proof. The proof of the proposition is in three parts:
First, it is shown that S is algebraic. Secondly, we

obtain a vanishing result from the fact that we know that
S 1is a K8hler surface. Finally, this wvanishing result
implies that the curves in S belong to a linear system
and we obtain an injective map of degree 2 into ZP3:
According to a theorem of Kodaira [5, 21] a compact
surface S8 1is algebraic iff there exists a line bundle L
on S with cl(L)2 > 0. Now, S contains a curve JPO
with self-intersection number 2. We let L = EPO], the
line bundle given by the divisor ZPO. The main idea in
Kodaira's theorem is to prove that L™ has sufficiently

many sections to give an imbedding in projective space.

This follows from the Riemann-Roch formula:
y(L7) = {ch (L") .ta(Ts) }{s}

expressing the Euler charactersitic X(Ln) of the holo-

morphic line bundle L™ in terms of the Chern character
ch(Ln) of L™ and the Todd class td(TS) of TS. We
have

x (@™ =n%s,0@?) - nls,0@™) + n?(s,0@™),
where
hi(s,0@)) = aim 85 (s5,0(L™))

and
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2
c_ (LM
ch(Ln) =1 + cl(Ln) + —ii———

2
c. (8) c, (S) “+c, (8)
1+ L + 1 2 +

td (TS) 5 W

Furthermore by Serre duality
r®(s,0w™) = ns,00™ 2 x)) ,

where K 1is the canonical bundle. On the lines P < S

we have by the adjunction formula:

R - P, = Ky -IPX—]Pi=—2—2=—4,

X
so the bundle (L™" @ K).IPX has no holomorphic sections.
Then since the surface S contains a mini twistor space

as an open set we have

n

(s, o™ eK)) =0 .

Then the Riemann Roch formula gives

e, wh? e (s).e @) e (5)%4e, (s))

+ +

hO(S,O(Ln)) 5 > 13 }[s1+ hl(S,O(Ln))

Now, S is algebraic and therefore a K&hler manifold.

This gives
dim #2971 (s) = aim u''%(g),

but there is no holomorphic l1-forms on S : Again it is

enough to consider restrictions to the lines ZPX : We have

0 > N* » T*S|P_ » TP _ + 0,
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1]

but N* = 0(=-2) TKPX SO T*SLPX has no sections.

1t

Hence, HY(s,0) = u%1(s) = o.

Then, let us consider the short exact sequence
0~0-»>0(L) ~» (L) - 0.
OJP0

From the vanishing result above we get

0o ~a ~u(s,o@) » a3~ o
since @ (L) = 0(2). Therefore, dim 1% (s,0(1) = 4,
0
and the curves belong to a linear system. Take a basis
(po,...,p3) in HO(S,O(L)) and define a map
F : S +ZP3

X - (po(x),...,p3(X)) .

Then F 1is well defined because not all sections vanish at
a point in S - we know, in fact, that there is only a 2-
parameter family L passing through each point z ¢ § (by
blowing up S at 2z we obtain curves with normal bundle

0(l) and we know, from Kodaira's theorem, that the complete

family of such curves is 2-dimensional). Similar arguments
show that F 1is injective. Finally,
deg F(S) = the self-intersection number of P

0

so F(S) 1is contained in either the quadric or the singular
éone.

In the next section, however, we shall show that it is
possible to construct new mini twistor spaces modelled on the

guadric and a curve of bidegree (1,n).
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3. Mini Twistor Spaces and (1,n)-curves

In [16] Hitchin describes a way to obtain a mini twistor
space from a surface S containing a rational curve C with
normal bundle 0(2n) : We construct the n-fold covering g
of a neighbourhood of C and branched along C. The branch
locus E is just a copy of C but the normal bundle of E
is 0(2). Then the pair (g, E) is a mini twistor space.

Consider now the quadric IPl xiPl. The line bundles

on the quadric are given by the group HlGPl XZPI,O*). We

have the exact cohomology sequence

>l @, xP,,0) > ® xP,,0%) > E @, xP, ,2) > H @, xP,,0)
1 1’ 1 1’ 1 1’ 1 1’

arising from the exact sequence of sheaves

eXEZﬂi

0>z >0 0* - 0.

By the KuUnneth formula we get

2
Hl(lPl xP ,0) =0 =H(@®, xXP,0

H @, xP,Z) =% 0 & .
Therefore Hl(]Pl X]Pl,O*) = 7%Z @& %, so, since ]Pl xIPl
is algebraic, divisors modulo linear equivalence are given
uniquely by a pair of integers - the bidegree. In fact,
if we put

A= {0} xP, and B =P, X {0}

then we can represent the divisors on the form

D=pA +gB; (pP,Q) ¢ Z x Z.
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Proposition (3.1). Let C be a non-singular curve in

Pl XZPl of bidegree (1,n). Then C 1is rational and

has self-intersection number C2 = 2n.

Proof: We may write
C=A+nB.,
Then,

C = (A + nB)2

since A2 = (0 = B2 and A « B =B +« A =1.

We can compute the genus from the adjunction formula

2

2g - 2 %PIGPI . C +C

(=2A - 2B) « (A + nB) + 2n

= -2 .

Thus, g =0 so C ;ZP1.
Now, it is clear how we obtain the mini twistor spaces:
We take a curve in 1P1 XZPl of bidgree (l1,n); n =2 1. Then
the mini twistor space is an n-fold covering Sn of some
neighbourhood of the curve branched along the curve. The
branch locus :PO is a rational curve in Sn with self-
intersection number 2, so from Kodaira's theorem we know
that a 3-parameter family of such curves exists near IPO.
Since the homology class of a (1l,n)-curve is not divisible

by n we can't extend this local construction along the curve

work globally on the quadric [2].

to
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We are going to describe the Weyl geometry arising

from these mini twistor spaces so we will need a more

explicit treatment of the holomorphic curves: Let (z,n)

be affine coordinates on ZPl XiPl.

a rational function of degree n:

- P(C)
I
_ n n-1
P(z) = apt” +a ;6 + .a.
_ n n-1
Q(z) =b g™ + b T+ L.,

This is a curve of bidegree (1,n)

functions is parametrized by P

Consider the graph of

+ a, ! (3.2)

and the family of such

on+l° The curve is non-

singular iff the polynomials P and Q have no common

factor, i.e. iff the resultant R

of P and @Q does not

vanish, The resultant is the polynomial of degree 2n

given by

R = det { I RN ¢ (3.3)
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There are n rows of a's and n rows of Db's in the

matrix and the rows are filled out with zeros. Hence the space
of non-singular (1,n)-curves is parametrized by :P2n+l
minus the hypersurface R = 0. Now, we fix a (1,n) curve

Py :n=2¢g (3.4)

and consider the n-fold cover Sn branched along IPO:

EHXE)

A curve in Sn intersecting jPO transversely is projected onto
a curve that meets :PO to the n'th order. Therefore we may
work on the quadric and we shall describe the 3-parameter

family of curves in Sn by their projections in :Pl KPl:

Since the curves in Sn have self-intersection number 2, we

consider those curves of the form in (3.2) that meet the curve

in (3.4) in two points to the n'th order. We have
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o
—
i
~—

and we want to write

2
£?Q(z) = P(5) = (c,t” + c T + e . (3.5)
Thus
cn(bn;n + ...t bO) - ancn = ... T A,
=35 ( 3 c(k,0)zT
i 2k+g=i

where c(k,) = [n } n-k-=2 4

k
ki 2 ¢ c2

n , .
e ] ; [k;zJ is the multi-

nomial coeffient

n!
k1g! (n-k=-2)! °

Hence
) )
an_i=— Z C(k’/Q/); l=l,...,n
2k+4=n-i
bn"i = Z C(k,ﬂ); i = 0,-..,1’1-1 d (3.6)
2k+2=2n-1i
b, =a_+ L c(k,)
0 ™ 2kig=n )

If follows that this 3-dimensional space Wn of special
(1,n)~curves is contained in a "weighted" projective space

P(3,n): ¢4 - 0 modulo the Q*-action:

(an’CO’cl'CZ) -> (Anan,kco,Acl,Acz). (3.7)

The resultant R has homogeniety 2n2 and Wn is the

complement in P (3,n) of the hypersurface R = 0.



Examples:
1) Let n=1,
and the space PGL(2,T)

of plane sections.
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Then we are just considering the quadric

From (3.6)

we get the following parametrization of the curves:

a8 T =%
by = ¢,

Thus the curves are given by

- 2157%
02§+a1+Cl
2) For n = 2 we get

al = - 2coc1

-2
29 0
b1 = 2clc2

_ 2
by, =¢
b, = a, + 2c,.c, + c2

0 2 02 1

so we obtain the curves

2 _ 2
azc -ZCoclc Cp

" c ;2+Zc c,C+a,+2c.C +c2
2 15206781 eCpCr T

Remark (3.10). Since Sn is a

with branch locus P

Z

on S
n n

The Weyl space W_ of curves in

with fixed point set ZPO.

(3.8)

. (3.9).

n - 1 branched covering

0 ve have an action of the cyclic group

Correspondingly:

S has an action of
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which fixes the point 0 ¢ Wn corresponding to P Thus

0.
we have Wn/ZZn = Wn and locally near 0 «¢ W, we have a

guotient singularity (¢3 modulo a cyclic group of order

n) - we see this happening in (3.7) when Cy =€ =Cy = 0.

Indeed, the ambiguity in (3.5), arising from the fact that
(CO' Cpr c2) and (KCO,KCl,Kcz), A e Z ., gives the same

(1,n) curve on the gquadric, is a reflection of the covering
Wn -+ Wn'

Next we shall describe the geometry induced on a "real

slice" of W by the lines in Sn
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4, The Einstein-Weyl Spaces

We shall now compute the conformal structure and
describe the geodesics on a real slice of the Weyl space.
We will mainly treat the case n = 2 but first we show how
to obtain the complex conformal structure for any n: We

know from (3.5) that the curves

_ P(z)
nle) = 5%

satisfy the equation

2 n
(czc +cl§+c

Q(2)

P(r) _ 2 _ o)

Q(z)

. (4.1)

The tangent (an,co,cl,cz) to a deformation gives a section
of the normal bundle of a curve - and therefore a tangent to

the Weyl space - by means of the equation

Q(Z)P(2)=0(2)P(z)

n(g) =
0(0)?

The conformal structure is defined by the condition that
PQ - QP = 0 (4.2)

should have a "generic" double root: The polynomial in

(4.2) is of degree 2n. The possible roots of higher

order include the points of contact on the branch curve

n = g given by the roots of czgz + clc + Cqy = 0. Ve seek
however, the condition for the curves to meet to second

order away from the branch curve. From (4.1) we get
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n-1,°

PQ - QP —{nQ(cz,C2 t ¢ T+ cO) (CZC + élC + éo)

2

- é(czc + oo L+ co)n}

2 ] n-1,° 2
h§c+ﬁc+c& m“bc'*%€+cw

_ .‘ 2 L ] [ ]
nQ(czc + oo L+ co)} .

Thus, the complex conformal structure is given by the con-

dition that the quadratic polynomial
F_(2) = 0Dyt + o + op) = n0(S) (cyc? + &0 46y)  (4.3)
should have a double root, i.e. by

D =0 (4.4)

where D, is the discriminant of Fn.
All our discussion above on mini twistor theory has

been over the complex numbers. Before we begin to consider

some examples in more details, we will impose a real structure

on the geometry: Thus, we look for an antiholomorphic

involution Ty of the mini twistor space. We want T

n

to define us a 3-parameter family of real curves in Wn -

a real slice of Wn' Furthermore, Th should be fix point
free so that there are no null vectors tangent to the real
slice; this will ensure that the conformal structure on

the real slice in Riemannian. We continue to work on the

quadric and we define for each n the involutions

n
T, ¢+ (&, n)-+[:% ' (=1) ] . (4.5)

n —
o n
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There are other possible choices but the real structure
in (4.5) ensures that the branch curve n = t™ is real.
((4.5) is also a natural generalization of the real
structure on jPl X.Pl - corresponding to n = 1 - we have
been working with in Chapter I). Hence, a (1,n)-curve

is real iff

_ _y 0
n -—}—- =—(._.!'..)_._ (4.6).
& n(<2)

Example (4.7). Let n = 1, The lines are given by (3.8)

and they are real iff

S = %X T ix,
cl = —Zix4
" (4.7)
c2 = X; - ix2
al = X3 + ix4; xi eZRJ
The resultant (discriminant) (3.3) becomes
R = al(a1 + cl) + S5c, (4.8)
and on the real slice we have
2 2 2 2
R = x| + X, +x3 +xj . (4.9)

As mentioned earlier the plane sections of the quadric are
parametrized by PGL(2,L) where the determinant of a matrix
representing a plane section is given by the resultant (4.8).
The group SL(2,L) corresponds to R =1 and is a double

covering
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0 ~ {#£1} » SL(2,T) » PGL(2,C) - O. (4.10)

On the real slice (4.10) is just the covering of ZEP3 by

3

sT. Hence, our Weyl geometry is defined on XRP, - but

3
if we wish, we may lift the conformal structure and the

connection to the 3-sphere
+ x; =R =1 . (4.11)

Now, the quadric polynomial (4.3) becomes

_ _ . ) 2 - - [ ] L] _ *
Fl(C) = (02al alcz)c + (clal a,c; * cgey czco)c

+ coa1 - alc0 + cocy ~ clc0

and the conformal structure is therefore given by the

discriminant
. [ 3 L] . 2 [ ] L ] L ] [ ] [ ] [ ]
(€ja; = a;¢) + )¢y = C,y¢p) " - 4(Cya;-a,Cy) (Cpa;-a;¢6,+¢, ¢ =¢ cp) .

On the real slice we get the conformal structure

(4.12)

S

HH

where the o's are the left invariant l1-forms on SU(2)

il

(or S0(3) EP3) given by

Q
Il

—xzdx1 + xldx2 - x3dx4 + x4dx3

Q
il

2 xldx3 - x3dxl + x2dx4 - x4dx2

xldx4 - x2dx3 - x4dxl + x3dx2.

(4.12) is the standard conformal structure on SB.

Next, the real geodesics are obtained as follows:
We fix a point (Z,n) on the quadric and consider all the

real geodesics passing through (g,n):
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(x,+ix, ) - (x,+ix,)
3tixy
N = Tx -ix )C—(xl-ixz) (4.13)
1 2 3 4

(since the curves are real they will also pass through "the
complex conjugate point" Tl(;,n)). The real and the
imaginary part of (4.13) define two hyperplanes in ZR4.

They intersect in a 2-plane which intersect the 3-gphere in

a great circle - the geodesics of the canonical metric on

SB. Hence, the unique Weyl connection is the Levi Civita
connection of the canonical metric on S3.
Example (4.14). We consider now the case n = 2, The lines

are given by (3.9) and the resultant (3.3) takes the form
R = A2
(4.15)

2 2
A (a, + CoCyp + cl)(aZ + COCZ) + cpe,Cy

(notice that the resultant associated to a rational function
of degree 2

azg + a1g+a0
+ bl(;+b0

is a quartic polynomial in the coefficients (ai’bi)'
However, in the family (3.9) of special (1,2)-curves the
coefficients have homogeneity 2 - because the coordinates
(az,co,cl,cz) have weight (2,1,1,1) - so that the associ-
ated resultant (4.15) gets homogeneity 8. Thus, it is
maybe not surprising that we can write R = A2, where A
has homogeneity 4 and it is possible that for a general n
n

we can write R = A"; R has homogeneity 2n2 and A has

homogeneity 2n).
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Let us consider the complex 3-manifold

X" : A=1. (4.16)

Then X° "corresponds to SL(2,T)" in example (4.7) and

we have the covering of the gpace W2 of special (1,2)-curves:

C
0>z, >X +W2+O (4.17)

LT
ixsk
where Z54 = {e 2 lk = 0,1,2,3} acts on x© by

LT T LT
, i=k i=k i=k
. k 2 2 2
(az,co,cl,cz) - (elTr a,re Core Cyr€ cz) (4.18)
i%k
(so A(e ¢ (azlcolcllcz)) = A((azlcolcllcz))) .

The curves in (3.9) are real iff

2 _ =2 )
o €2
CyCy = CyCy \ (4.19)

- -2 - —
a2 = az+ =N + 2c0c2

7

This gives two real slices on X

N\

1) c, = iEZ
c, = -ic, . (4.20)
2i Ima = &% - 2ic.c
2 1 272 °

Call this slice X.

2) -ic

Q
o
il

2i Ima,= <t o+ 2iCZE2 .
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Call this slice Y. X and Y intersect in two points

(O a, = 1, 5 c, =c, = 0

Il

P:a=-l, ¢ =¢c =c, =0,

When we consider the action of 7 we get: +1 acts on

4
X and Y but +i maps X to Y and O to P. If

we put

1 2
c, = (1 - i)z " (4.21)
Rea2=x3; xie]R, Z ¢ R

then X 1is given by

X : x2 + z4 + 222(xf + x2

2) =1, (4.22)

Remark (4.23). In (3.10)we explained the identity

~

Wz/m2 = W3 and how this covering is related to the

ambiguity in the choice of coordinates: (cg,cyscy)i  (-cg-gr-cy).

Thus we have the situation:

W,
¥ 2Z2 . (4.23)
x© ;z W,
4

Now, let U be an open neighbourhood of O in the real
slice X such that P £ U. Then from the considerations
above we have the action of 25 on U - while i maps

points away from U. The action of -1 is
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(Xl Ilezlx3) - ("Xll_xz 12 1X3)

(in complex coordinates this is given by

(azlcolcllcz) d (azp‘col-cl,—cz)). The pOint Qo -

representing the branch curve n = 52 - 1is a fixed point.

Near O in the quotient U/Z% o We have the singularity
ZR3/Z32. Hence, U 1is the real Weyl space representing

real curves in 82 near the branch curve n = cz. Since

the whole construction is local we don't quite know how

big U can be. For instance if we extend to all of X
then both P and O represent the branch curve and should
therefore be identified. However, having done these
remarks, we shall work on X in the following - this is
similar to example (4.7): The Weyl space is ZEP3 but we
may choose to describe the geometry on S3.

Now, on X we have th Sl—action

x, + ix, > et . (x, + ix,) . (4.24)

The orbit space M 1is given by (see the illustration (4.34))

M : xg + 24 4 222r2 =1, r=0 (4.25)

and we have a component of fixed points
+z =1. (4.26)
Topologically we have

F s
(4.27)
X =8 xR

At each point (x3,z) e F = Sl sits a copy of ]R2

with polar coordinates (r,0) and cartesian coordinates
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(xl,xz). In order to obtain the conformal structure we
first find the quadratic polynomial (4.3)

oL 2
FZ(C) = (c2a2 2a2c2)C

+ (cla2—2a2cl—2clc2c0—2coczcl+4coclcz)C (4.28)
+ c é =-2a é +2c,cC é +2c2; -2c2; —-2C.C é
0“2 2°0 0°1"1 0-2 1°0 “-0-270 °
The discriminant
(c é -2a é -2¢c.c é -2c,C é +4c,c é )2
172 271 120 0-2-1 0~1~-2
_ .— L ] .— L ] L ] 2.—2. (4.29)
4(c2a2 2a2c2)(c0a2 2a200+20001cl+2c0c2 2Clc0
- ZCOczco)
induces the conformal structure on X:
2
g = (zdx3—2x3dz—6z(xldxz-xzdxl))
+ 2(2(x.X.=%x.)dx.+2 (22-x2)dx+x. dx.-2x.zdz) 2 (4.30)
172 73 1 1 2 71773 2 *

+ 2(2(xlx2+x3)dx2+2(zz—xg)dxl—xzdx3-2xlzdz)2,

Next, in order to find the real geodesics we proceed
as in example (4.7): If we fix a point (g,n) on a line

PX, X ¢ X, and consider all the real lines

L2 . . .
o - (x3+1(z —x%—xg))g2—2(l+1)z(xl—1x2)c+(xl—1x2)2
(xl+ix2)2;2+2(l—i)z(xl+ix2)C+x3—i(22—xi—x§)

(4.31)

passing through (gz,n), we get a geodesic in X passing
through x. Again, the real and the imaginary part of
(4.31) define two hyper-surfaces. They intersect in a

2-surface which intersect X in the geodesic. However, we
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don't get such a nice geometrical description of the
geodesics as in example (4.7) where we were able to obtain
the Weyl connection from the knowledge about the geodesics.
In order to get at least some information on the geodesics,
consider the following special situation: Take 0 ¢ X

representing the branch curve P n = Cz. Let

0}
Z = (CO,Eg) be a point on :PO corresponding to a direction
V ¢ S(TX X) = Sz. A real curve passing through A will
also pass through A = [E&, :%] . Furthermore, we know

c C

0 0

that all the real curves meet the branch curve in exactly
two points to second order - so these two points must be

A,A. Thus, in the parametrization (3.5)

2 _ 2 2
Q¢” - P = (c2§ + ¢,z + co)

we must have

1 1 o _ o
s "% TS T = . (4.32)
2 o 2 CO
Put CO = Reiw. Then on the real slice (4.32) becomes
(1-i)z _ 1-R%> iy X1 7ix%) 54y
¥ix., R °© 7 X, +ix =-° .
X1TH%3 1772
If we write X, + ix2 = rele then we get: The geodesic
passing through O ¢ X in the direction Relw € 82 is
given by
Z = €X: €=}_:_R_?- 1
! R
(4.33)
4 2
Xg + Ef =1 ; b2 = 2 \
b e +2
6 is constant (given by ) .
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There are some degenerate cases:

1) R=0 (g = %), Then the geodesic curve is equal to
the fixed point set: xg + z4 =1,

2) R=1 (g = 0). The geodesic is given by: z = 0,
Xy = 1 (or =-1), © constant and r arbitrary. These
geodesics "go off to infinity". They can be described as

the lines through the origin in the ]R2 sitting at the

point (x3,z) = (1,0) (X = SlXZRZ).
We have drawn a few more examples on the orbit manifold

(6 is constant):

M :

(4.34)

Fig: M: x

9yt A geodesic passing through O and "going off
to infinity" (Case 2 above)

99r9;1° geodesics through O.
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There are some degenerate cases:

1) R =0 (€ =), Then the geodesic curve is equal to
the fixed point set: xg + z4 = 1,

2) R=1 (e =20). The geodesic is given by: 2z = 0,
Xy =1 (or =-1), © constant and r arbitrary. These
geodesics "go off to infinity". They can be described as

the lines through the origin in the R2

sitting at the
point (x3,z) = (1,0) (X = Slx:Rz).
We have drawn a few more examples on the orbit manifold

(9 is constant):

M :

4

(4.34)
r

0 z

0 F X4

Fig: M: xg + z4 + 222r2 =1
F: xg + z4 = 1

gyt A geodesic passing through O and "going off
to infinity" (Case 2 above)

9gr9q: geodesics through 0.
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Remark (4.35). In our coordinates the circles on the

orbit manifold

Si : x§ + z4 + 222r2 =1, r = const
shrink as r » o, It would be desirable

of metrical description of these "circles

We only have a conformal structure but we

to have some kind
at infinity".

can measure the

relative length of the circles Si and the circles from

L

Sl action: Put

X='—7, VJ=

3 KZ% , T = -20.
Y

Then we may write the conformal structure

following way:

(4.35)

(4.30) in the

\
g = (dt + w)2 + d52
’ |
+ -
© (Z 4;dx %xwdw (4.36)
W +5w +4x"+4
2 witaw +4x2 2 2 2,2 .2
ds” = ) > 5 5 (Wo+4)dx"+4 (1+x"4w") dw - dxwdxdw)
(W +5w™+4x"+4)
Thus, we have fixed the length of the circles in the
Sl—action (- this way of representing the conformal metric

clearly shows the Sl—symmetry).

We have x - 0 and w - 0 when «r
compute d52 to second order in XxX,w:
as? = y(x%+u?) (1-2 (P+3w?)) ((wP+a) ax

+ 4(l+x2+w2)dw2-4xwdxdw)

2

(22 + w?) (dx% + dw?) .

i

2

> o, Let us
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Also, z - 0 when r -» e, Then, as 1 » «:
1 = x2 + 24 + 222r2 = x2 + y2
3 3
2 2 2 .
where vy~ = 2z7r". Let Xy = cosd, y = sin ¢. Then

for r = constant (and big), we have:

2
2 dx 2
+ Lo | — - A
r r r r

;%j(r4cosz¢sin2¢+r2(cos4¢+sin4@+cos2¢sin2¢)d¢2.

il

»
o

ds

iR

Hence, the circles Si do indeed shrink as r > « .,

Remark (4.37). The Sl—symmetry in the case n = 2 above

is induced from a (¢* action on the quadric and we therefore
expect to have the same symmetry on the geometries corres-

ponding to n > 2: The (&*-action on JPl XjPl is given by

(z,m) > Ag,A™n); A e €%, (,n) <P, xP, .

For n = 2 we have the curves (3.8) and we get

2.2 2
Y A e L
s 22,2 2 +a,+ 2+2 )
czx o+ clczxc a, c1 CpCo

The induced action on v, is therefore:
(@nsCasC.sCq) - (a,,\c X_l )
2707712 2:450rC1rt €2
which gives the Sl—action

10 . (x, + ix

X 1 2)

1 + 1x2 > e

on X,
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5. Remarks on the Connection to the Lebrun Construction

We shall make the following two remarks:

i) We explain how Einstein-Weyl spaces appear as the conformal

infinity of an Einstein metric with cosmological constant =~1.

ii) We show that the mini twistor space associated to the
Berger sphere can be described as part of mP3 modulo a

C*-action induced from a conformal Killing vector field on ZR4.

Recall first the discussion from Chapter I of the Lebrun
Construction: Let W be a complex conformal 3-manifold and
let Z be the associated twistor space of unparametrized
null geodesics in W. Points in W represent rational
curves in Z with normal bundle 0(1) & 0(1) and W is
contained in a complex 4-manifold E parametrizing the
complete family of such curves. On Z we have the contact

form 6 given uniquely by the property that it vanishes when

restricted to lines corresponding to points in W. The pair
(2,0) gives a metric g on E satisfying Einstein's
equations with cosmological constant -1.

Now, suppose W 1is an Einstein-Weyl space with mini
twistor space S. A point x ¢ W and a null direction v
at x correspond to a line _Px in S and a point s(v)
on ZPX. The null geodesic in W passing through x in

direction Vv 1s obtained by taking all the curves in S

meeting ZPX tangentially at s(v). Thus, the space of null

geodesics Z in W is contained in the projective tangent
bundle P(TS) of S. The rational curves in S have

normal bundle 0(2). By taking the directions along the
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curve we may lift these curves to Z and Hitchin shows that
the lifted curves have normal bundle O0(1) & 0(1) (this
resembles the construction in Section 4 of Chapter I of
twistor spaces as line bundles on the quadric). Therefore

W 1is contained in a complex 4-manifold E of "twistor lines"
in Z. Since S is 2-dimensional we have P(TS) = P(T*S)

so we get a contact form 6 on 2 induced from the canonical
l1-form on T*S. Furthermore, 6 vanishes on the lifted
curves so it must be the uniquely determined 1-form in the
Lebrun construction. Hence, the Einstein space (E,q)
corresponding to the pair (Z,0) has the Einstein-Weyl space

W as conformal infinity!

Example (5.1) (Compare with Section 9 in Chapter I). Consider

the quadric S =ZP1 XjPl with its plane sections

ar+b
cr+d (5.2)

where {ig}e SL(2,T). Let o0 be a coordinate along the fibre
of P(TS8) ~» S. The 4-parameter space of lines in P(TS) are

given by (5.2) together with

c= —= _ . tec (5.3)

(cz+d) 2
where t = 1 corresponds to the lifted curves. The contact

form is
8 = gdry - dn .

The associated Einstein space has a real slice which is Jjust

the hyperbolic 4~space.
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Now, we have obtained a series of Einstein-Weyl spaces
Wn with mini twistor space Sn‘ Then it is natural to
consider the problem - which we haven't solved - of constructing
the Einstein solutions (En,gn) having Wn as conformal
infinity. To find the 4-parameter family E of curves
in the twistor space Zn' however, might be quite difficult
(Kodaira's theorem only gives us the existence of these curves.
If, for instance, we introduce a parameter t 1in a way similar
to (5.3) then we don't get curves with the right normal bundle
(if n = 2)). The reason why this problem was so easily
solved in example (5.1) arises from the fact that the quadric
is obtained as ZP3 minus two lines modulo a m*—action
induced by dilations on ZR4 (compare again with Section 9 in
Chapter I). We have no reason to believe that the twistor
spaces Zn will have any such E*—action.

The next remark we should like to make is even more
related to the work in Chapter I on the Lebrun Construction:
It has been proved recently [27] that the Berger sphere is an
Einstein-Weyl space WA' Thus, if Sx is the associated
mini twistor space, then the space ZA of null geodesics in

is an open subset of P (TS

W This gives a dififerent

A A)'
approach to the problem we solved in Chapter I. However,
the result in [27] was not obtained via mini twistor theory.
Instead the Einstein-Weyl equations were solved directly.
Therefore we need to find the mini twistor space SA first.
We shall briefly outline an idea how this could be done:

The idea arose from the mini twistor approach by Jones and

Tod [18, 19]. Here, Einstein-Weyl spaces are constructed by
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taking quotients of space times with conformal Killing vector

fields. If the space time is self-dual with associated
twistor space 272 then the mini twistor space is obtained as
Z modulo the induced vector field. Inspired by this we
consider the following situation: We can write the flat

metric on :R4 in the following way

g = dr? + 3r2(d6% +5in26dé2 + (d¥ + cosbdd)?). (5.4)
Take the vector field
K = pror + 93¢, u = constant (5.5)

where rdr generates dilations and 9Jdy generates rotations.,

Then, the quotient metric

2
_ _ 9(K,-)
h=9-FE®R "

satisfies
EKh = 2uh

so h represents a well defined conformal structure. More-

over, conformally we have

2

h = ar? + 1202(ap + cos8as)? + (12r2 + %r?) (a6 + sin0d¢?)

- 2urdr(dy + cosbdd).

uzrz(dw + cosbd¢ - ﬁ% dr)2

2.2 2 2

+ (u°r® + %r”) (d6™ + sin26d¢2) .

We make a change of coordinates (similar to the changes in

Chapter II section 3, 4 and 6):

A
Let ¢ =y - F(r); dF(r) = %% . Then
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h = oi + 0% + Ao
where the ¢g's are the usual left invariant l-forms on
SU(2) (Section 3 Chapter II) and
A:...‘ﬁ_
l+4112

Hence the conformal structure on the quotient is equal to
the conformal structure on the Berger sphere with moment
of inertia equal to A,

Now, since K 1is a conformal Killing vector field it

induces a vector field on the twistor space of ]R4. It is,

therefore, clear how we could find the mini twistor space Sy ¢

The twistor space of ]R4 is contained in @@P We

3
complexify the flow of K and consider the induced

*
C -action on EPB:

€ -€ -1
(21,22,23,24) -+ (wzl,w Zy1W ZgeW z4) (5.6)
Here € = 1 corresponds to dilations and € = -1 corres-
ponds to rotations. The mini twistor space S, is obtained

by taking the twistor space of ZR4 modulo the E*—action
(5.6) with € related to A.

It might be difficult to describe P(TSK) and to find
the 4-parameter family of curves so we might prefer the
approach in Chapter I. However, suppose it could be proved
- by solving the equations directly as in [27]1 - that the
asymmetrical top metric on S3 is an Einstein-Weyl space.
Then, again, the space of null geodesics could be obtained
via mini twistor theory and this would provide a method to
do the Lebrun construction for the general left invariant

metric on S3.
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