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ABSTRACT

The aim of this thesis is to construct Einstein metrics
and Einstein-Weyl geometries explicitly mainly via the
holomorphic geometry of twistor spaces.

In Chapter I we construct a solution to the self-dual
Einstein equations with negative cosmological constant on the
four dimensional ball. This is achieved via the Lebrun
construction by considering the space of null geodesics on
the boundary of the ball - a 3-sphere with a left invariant
conformal structure.

In Chapter II we obtain a solution to Einstein's equations
with cosmological constant by solving the differential equations
directly. The metric is seen to contain the Eguchi-Hanson
I (II) solution with anti-self-dual Weyl tensor W- and the
(Pseudo) Fubini-Study metric with self-dual Weyl tensor W+.
Our solution has Weyl tensor W+ + W-, it is a K~hler metric,
and it is of Petrov type D. We show that in some cases the
metric is complete.

Following the ideas of Hitchin on the twistorial approach
to 3-dimensional Einstein-Weyl geometry we construct in Chapter
III a series of complex surfaces containing rational curves
with self-intersection number 2. These mini twistor spaces
are obtained by taking an n-fold covering of a neighbourhood
of a (l,n)-curve in the quadric ~1 x ~1 branched along
the curve. We describe the corresponding Einstein-Weyl
geometry on the parameter space of curves.
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1.

Preface

Our constructions of Einstein metrics and Einstein-

Weyl spaces are mainly based on Penrose's twistor theory

and its generalizations by Atiyah, Hitchin, Lebrun and Ward

[4, 15, 16, 23, 24, 29]. In this approach one studies the

geometry of rational curves (;;a:JP )
1

in complex manifolds -

the twistor spaces. The differential equations, whose

solutions are generated by the holomorphic geometry, are

defined on the parameter space of the curves. A crucial

ingredient here is the theorem of Kodaira [22J on deforma-

tions of complex submanifolds. Often (part of) the

differential equations appear as integrability conditions

for holomorphic structures. The main idea is to rely on

the rigidity of the holomorphic geometry. Then, afterwards,

one can impose real structures to obtain real slices of the

differential geometry.

In chapter I we consider an example of the Lebrun

Construction [23J: Let Z be the space of unparametrized

null geodesics on a 3-dimensional complex manifold M with

complex conformal structure. Lebrun showed that Z is a

3-dimensional complex manifold (if M is geodesically

convex) • Points of M represent rational curves in Z

(with normal bundle 0(1) e 0(1)) and M is contained in

a 4-paIDameter family E of such curves. Lebrun also

proved that a unique metric g exists on E having M as

conformal infinity (the metric has a pole on M but the

restriction of the conformal structure coincides with the

given structure on M) and solving the self-dual Einstein



equations with cosmological constant A = -1:

Ric = -g, W = 0 •

Our aim was to find the Einstein solution associated to a

left invariant metric

2.

are left invariant I-forms onon the 3-sphere (the a's

SU(2) ~ s3 and the I's are constants) • The twistor

space is then the space of null geodesics for the complexi-

fication (SL(2,~) ,ds2). The geodesics for such a left

invariant metric describe the motions of a rigid body with

moments of inertia (1 1,12,1 3 ) - i.e. the geodesic flow is

determined by the Euler Equations [lJ. We have been able to

construct the Einstein metric in the symmetric top case

(II = 1 2 ) : Then (S3,ds 2) is known as the Berger sphere

[25J and is a normal reductive homogeneous Riemannian mani-

fold. Combining the classical mechanics point of view with

the homogeneous space description gives the null geodescis

in terms of physical quantities. The extra symmetry leads

to a description of Z as a line bundle over a neighbour-

hood of a plane section of the quadric surface. Such a

bundle also defines a U(l) monopole on ~3 (i.e. a

gauge potential A and a Higgs field V such that

*dV = dA) [18J. Moreover, the monopole is encoded in the

Einstein metric (in much the same way as the monopoles con-

tained in the Hawking solutions [11, 14J). This leads us

to the Einstein metric (we use the uniqueness in the Lebrun

construction) and to a more precise description of the space



The approach in Chapter II is not twistor theoretical:

In Chapter I we found a line bundle P over a neighbourhood

3.

of a plane section of the quadric ~l x mP
l

• This bundle

gave a vacuum (A = 0) solution to Einstein's Equations.

In this chapter we show - by solving the equations directly -

that it is possible to encode a A-term into this solution.

More precisely, we obtain a family of Einstein metrics

depending on two parameters (a,A). When A = 0 we have

the Eguchi-Hanson I, II metrics (The Eguchi-Hanson II metric

is obtained essentially by replacing spherical functions

with hyperbolic functions). For a = 0 we get the (Pseudo)

Fubini study metric (depends on the sign of A). This

superposition is not self-dual (and therefore not generated

by a twistor space) but the Weyl curvature is the sum

of the Weyl curvatures of the component metrics.

We show that the solution is a K~hler metric. Indeed, our

metric was obtained in [12J by solving the K~hler-Einstein

equations for the K~hler potential. We prove that it is

possible to adjust the parameter a such that the metric,

Eguchi-Hanson II plus Pseudo Fubini Study, only has

removable bolt singularities.

In chapter III we follow the ideas in [16J on the

twistor theoretical approach to the Einstein-Weyl equations

in dimension 3:

(R(ij) is the symmetrized Ricci tensor of the Weyl connection

which preserves the conformal metric g .. ). From the point
1J

of view of twistor theory we consider a complex surface with



a 3-parameter family of rational curves (with normal bundle

0(2)) - a mini twistor space. We construct a series of

such surfaces S by taking an n-fold covering of a
n

neighbourhood of a (l,n)-curve in the quadric mP l x mP
l

branched along the curve (a (l,n)-curve meets mP
l

x {O}

once and {O} x mP l n times). The associated Weyl

geometry on the parameter space of curves is described

with special emphasis on the n = 2 case.

The twistor space of null geodesics for such an

Einstein-Weyl space is an open subset of the projective

4.

tangent bundle of the mini twistor space S. The extra

structure - the contact form - which is needed to fix the

scale of the Einstein metric is induced from the canonical

l-form on T*S and it coincides with the form given by

the Lebrun construction. We know in particular that the

Einstein-Weyl spaces given by our mini twistor spaces Sn

appear as the conformal infinity of Einstein metrics with

cosmological constant A = -1. We haven't constructed

these metrics but it was because of this relation we

originally became interested in mini twistor spaces and

Einstein-Weyl geometry.

Shortly after having obtained our result in Chapter I

it was proved [27J that the Berger sphere is an Einstein-

weyl space. Had we known this result earlier it is quite

possible that our approach to the Lebrun construction for

this conformal structure would have been via the projective

tangent bundle of the mini twistor space. We can describe



the mini twistor space for the Berger sphere as (part of)

~3 modulo a ~*-action induced from a conformal Killing

vector field on m4 •

As a supplement to this preface the reader may consult

the introductions given to each chapter.

5.



6 •

Chapter I

Einstein Metrics, Spinning Top Motions and Monopoles

1. Introduction

It has been known for some time that the self-dual

Einstein equations may be solved by converting the problem

into one of holomorphic geometry using the ideas of Penrose,

Atiyah, Hitchin and Ward [24, 2, 15, 29J. This twistorial

approach has been used to obtain vacuum solutions [14, 28J

and in [23J Lebrun has demonstrated how some Riemannian 3-

manifolds are naturally the conformal infinity of Einstein

4-manifolds with cosmological constant ~l. The main

purpose of this chapter is to apply the Lebrun construction

322 2to the Berger sphere (S ,al + a 2 + ~a3).

The idea is to consider the space Z of unparametrized

null geodesics of the complexified Berger sphere

222
(SL(2,~) ,al + a2 + ~a3). By taking the null geodesics

through points of SL(2,~) we obtain a 3-parameter family of

rational curves in Z. From a theorm of Kodaira this family

of curves is seen to be contained in a 4-parameter worth of

curves. The set of such curves is the Einstein 4-manifold.

The intersection property of these curves determines the

conformal structure and the scale is fixed by a twisted

contact form given uniquely by the property that it vanishes

on the lines which correspond to points of SL(2,~). The

real structure we use to identify SU(2) inside SL(2,~) is

carried over to the twistor space and gives a real slice of

the Einstein manifold. The Einstein metric is determined



7.

(i) The conformal structure is self-dual.

(ii) The metric has a pole of 2nd order on the 3

sphere and the conformal structure there is

222
° 1 + o 2 + 1..° 3 •

(iii) The cosmological constant is -1.

(1.1)

The Berger sphere can be realized as a normal reductive

homogeneous Riemannian manifold. This allows a very elegant

discription of the geodesics [25J. From another point of

view the geodesics describe the motions of a symnletric top

where (1,1,1..) are the moments of inertia along the body

axes [lJ. By combining these two descriptions we can

specify each null geodesic in terms of physical quantities.

We now associate to each geodesic the four conserved quantities

~3 is the angular velocity about the third body axis.

are seen to be homogeneous coordinates for points on a

They

quadric in ~3. The metric on the Berger sphere has four

Killingvector fields

the right invariant vector fields corresponding to the left

invariant l-forms (°1,°2,° 3) and K4 is the left invariant

field corresponding to °3 • Now, the space Z of null

This

geodesics is 3-complex dimensional and the action by K4 on

a geodesic does not change the quantities (m'~3) •

leads us to the description of Z as a line bundle over

the quadric. Since the Lebrun construction works only for

geodesically convex manifolds we will have to restrict to a

neighbourhood in SL(2,~). The rational curves of

geodesics through points are mapped onto plane sections

of the quadric but the 3-sphere worth of curves is mapped
rT11-": _ _ .... ~_



describing Z as a line bundle trivial over plane sections

of the quadric and defined in a neighbourhood of a plane

8.

section.

fibration

Then the Berger sphere at infinity is the Hopf

representing sections of Z over a 2 sphere of plane

sections of the quadric.

We find the condition for such a line bundle to be a

twistor space and we construct a line bundle P which in

some sense contains most of the information. Now, we

bring in the monopole aspect. The quadric is the mini

twistor space of s3 (or ~3) with canonical metric and

line bundles on the quadric of the type described above

give U(I) monopoles on s3 (or ~3) [18J, i.e. a gauge

potential A and a Higgs field V such that

*dV = dA.

Furthermore, if the line bundle is a twistor space the

conformal structure is of the form

where dS 3 is the canonical metric on S3.

P gives the monopole

(V,A) = (cot X, cos 8 d¢).

The bundle

We now seek an Einstein solution with conformal structure

given as above by the monopole

(V,A) = (E + m cot X, m cos e d¢).



The solution we get satisfies the conditions in (1 1)

9.

when E = m2 = l/A - 1. Notice that there are two 3-

spheres involved: The standard 3-sphere (or JHIP = S
3

/ ±l )3

parametrizing real plane sections of the quadric and the

Berger sphere given by sections of a line bundle over a

2-sphere worth of plane sections of the quadric.

The line bundle corresponding to the Higgs field V = i

is 0(1,-1). We restrict this bundle to a neighbourhood

of a plane section.. and lift it to some power to introduce

the moment of inertia A. Then, by tensoring with the

bundle P we obtain the twistor space Z of unpara-

metrized null geodesics. Thus, we have solved the

problem the other way round: The description of Z as a

line bundle leads us to the Einstein solution which then

gives a more precise description of Z.

The Einstein metric, which we believe is a novelty,

is seen to be built up by the Taub-NUT metric and the

Eguchi-Hanson I metric and in the limit A -+ 1 we get the

hyperbolic 4-space. These aspects are also seen on the

twistor space level. This involves limiting processes

of bundles over quadrics converging towards bundles over

the cone in much the same way as discussed by Atiyah in [3 J.



10.

2. The Lebrun Construction

We shall review briefly the main ideas of the Lebrun con-

struction. Lebrun proves that for a geodescially convex com-

plex 3-manifold M with holomorphic metric the space of un-

parametrized null geodesic is a complex 3-manifold Z.

Furthermore, the geodesics which pass through a point x E M

define a rational curve F in Z with normal bunlde
x

N = 0(1) $ 0(1) where 0(1) +F
l

is the hyperplane section

o ( ... 4 1line bundle. Now, H oP l , 0 N» = a: and H (:['1,0 (N» = 0

so by a theorem of Kodaira[7, 22J it follows that the family of

curves is contained in a 4-parameter family E and since

Hl (:['1,0 (N ~ N*» = 0 all nearby curves have normal bundle

0(1) $0(1). We now have the following theorem of Hitchin

and Ward [16, 29J.

Theorem (2.1). There is a 1 - 1 correspondence between

self-dual solutions to Einstein's equations

Ric = Ag

and complex 3-manifolds Z as above with a holomorphic

section 8 E HO(Z,~l ~ K-~).

This means that 8 is a holomorphic l-form with values

in the bundle -~K where K is the canonical line bundle of

Z. The l-form defines an Einstein metric on the open set of

lines on which i*8 t- 0x where : F -r Z
x

is the inclusion.

Lebrun constructs a l-form 8 uniquely determined by the

property that i*8 = 0 when xx M. This form satisfies

8 A d8 t- 0 on E - M (8 A de is a holomorphic section of

K ~ K- l = 0 and is constant because of all the compact lines

in Z) and is therefore called a contact form. The constant

8 A d8 is the cosmological constant A of the Einstein metric.



Z is the twisto~ space of E. The conformal

11.

structure of E is obtained in the following way: If

and FeZ is the corresponding curve then, fromx, -

Kodaira's theorem, we have T E
x

o
- H oPx,O(N)). We define

the null cone in T. E
x

vanish somewhere on F x '

as the set of sections which

Since holomorphic sections of

N ~ 0(1) e 0(1) are given by a pair of linear forms the

vanishing condition is quadratic. Using the contact

form e we construct two symplectic forms E l , E 2 with

single poles on M c E •

desired metric on E - M

The product E l ~ E 2 is then the

with M as conformal inf inity.

If M is the complexification of a real analytic 3-manifold

M the real structure is carried over to give a real slice

E of E. If M is not geodesically convex we may cover

it with geodesically convex neighbourhoods and do the

construction for each region. Using the fact that E is

unique at the germ level we may patch together to obtain

M as the conformal infinity of an Einstein space E with

cosmological constant -1.

Example (2.2). Now, we shall identify the space of null

geodesics on the 3-sphere with canonical metric. We find

the contact form and show how theorem (2.1) applies in a

concrete situation.

The 3-sphere with canonical metric may be thought of

as the Lie group SU(2) with bi-invariant metric

The null geodesics for the complexification

SL(2,~) are given by

Z -+ A exp zr2



where A E SL(2,~) and

Since both trace ~ = 0

~2 = 0 for elements of

~ E N = {~ E sl(2,~) Idet ~ = O}.

and det ~ = 0 we must have

N. This gives the following

12.

description of the space Z of unparametrized null

geodesics:

Z = (S1L(2,~) x N )/

if ~l

for some

where (AI'~I) - (A2'~2)

and A2 = AI(1 + Z ~l)

and ~2

z E ~.

are proportional

Theorem (2.3). The space of unparametrized null geodesics

for SL(2,~) with bi-invariant metric is the 3-dimensional

complex projective space minus two lines.

Proof. The proportional classes of N define a conic

P ( N) which is isomorphic to a projective line lPI. This

isomorphism can be realized by associating to ~ E N the

kernel of the matrix ~ acting on 0: 2 • Thus, ~ E P ( N )

corresponds to (zl,z2) E lP1 iff

~ • [~~] ~ 0 •

Now, let (zl, ••• ,z4) be homogeneous coordinates in lP3

and consider the lines

Define

by



13.

where

[ ~~] ~ A • [~~] •

F is obviously well defined and maps Z onto

Then,

- 1 = zS1and

Z E <t and ther efor e

-1Hence, Al A2

A2 = Al(l + zS1) so F

for some

is an

isomorphism.

The geodesics passing through A are represented by

the line JPA:

Then SL(2,a) is contained in the 4-manifold GL(2,<t) of

The canonical bundle of JP 3 is

0(-4) and we get an element e of HO(Z,S1 1 ~ 0(2)) by

On a line JPA, A E GL(2,<t) we have

Thus, e vanishes on the lines JPA, A E SL(2,<t) so it

must be the unique contact form from the Lebrun construction.

The real structure T : GL(2,<t) ~ GL(2,<t) given by

A ~ (A*)-l defines SU(2) inside SL(2,<t) and induces



the fmailiar real structure T

on z.

14.

Let us now briefly show how theorem (2.1) applies to

give the Hyperbolic 4-space. A real point

in GL(2,~) corresponds to a real line FA:

<;2 = a + b s1

in F 3 where si = zi+l/zl' i = 1, 2, 3 are affine co-

ordinates on F 3. A tangent vector X E TA corresponds to

a section of the normal bundle

where

and a
as'1.

are the projection of the vector fields

onto the normal bundle of the line FA.

Wronskian

Now we have the

TIP + 0(2)
A

and the contact form

e TlP
A

+ 0(2).



(A twistor space always has canonical bundle K = 0(-4)

15.

on a line). Then assuming iAe ~ 0, we may define a

symplectic structure

Furthermore, if Kere c TZ is the bundle annihilated bye,

then, on a line for which iAe ~ 0, the composite map

Ker e -+ TZ -+ N

is an isomorphism. Also, de is a well defined twisted

2-form when restricted to Ker e. Then, let s2 be the

symplectic form on the nonnal bundle induced by de and the

isomorphism Ker e ~ N. The metric g is now given by

On a line JPA we have

so

I-det A

and we get

aa + bb

l-(aa±bb)

Furthermore, b__O_ + - 0 + __0_
']]J?A is spanned by a---

oS2 oS3 oSl
and

Ker e is spanned by

0 0 -bs _,_0_ + (1 aS 2 ) 0
e l = s2-0- +

oS3
= -

oS3sl 2 oS2

0
mod. ']]J?A .

0 0 0
e 2 = s3~ - oS2

= -(1 + b s 3) - a S3 oS3oS21



Hence, tne isomorphism F Ker e - N may be given by

16.

F(e
l)

= -b~ __d__ + (1
2 d~2

We then have

which gives

1

1- (aa+bb)

Thus, if we put a = xl + ix2, b = x 3 + ix 4, x k E~, k = 1, ... ,4,

we obtain the hyperbolic metric

4 2
L dXkk=l

defined on the ball

4
i x E JR

4 I L x~ < l}
k=l

and having the 3-sphere as conformal infinity.

Remark: From the twistorial picture we know that the metric

is regular on a collar near S3 and it is only after having

obtained the metric that we notice how it extends all the

way to the origin.



3. Geodesics on the Berger Sphere

Consider a left invariant metric on SU(2)

Here the I's are constants and the o's are left invariant

I-forms satisfying do, = E, 'kO' A Ok. The geodesics are no
1 1J J

longer the I-parameter sub-groups. There are, however,

other ways to describe the geodesics: Let A(t) be a geodesic

17.

in SU(2) and let Q(t) = A(t)-l A(t).

by

g(Q,Q) = -~ Trace M • Q.

Define M(t) e sU(2)

Then the geodesic spray is given by the equations

M(t) = [M(t),Q(t)J

A(t) = A(t)Q(t)

(3.1 )

(3.2)

The geodesics describe the motions of a free rigid body

about a fixed point. Q is the angular velocity and M

the angular momentum in body coordinates.

the moments of inertia with respect to the body axes and (3.1)

are the Euler equations.

m = AMA- l

The angular momentum in space

(3.3)

is a conserved quantity [lJ. If we use the o's to

identify su(2) with ~3 we have

(Ml,M2,M3) = (I1Ql,I2Q2,I3Q3)·

Euler's equations can be solved using elliptic functions,

but in the case of syrrunetric top I 11 = 1 2 ' we can give the

the following elegant description [25J: Let G = SU(2) x ~



18.

lRa= {[[: ita :_ita] ,Bt] I t € lR and a2
+ B2 =+

On the Lie-algebra LG we have the metric

< (X,V), (Y,W) = -~ Trace XY + VW

x, Y E su(2) and V,W E m. Define Z.=(a~,O), i=1,2,3; Z4=(0,l),
1. 1.

a; = [i 0]
o -i .

Then (Zl, •.. ,Z4) is an orthonormal basis for LG and

x = aZ 3 + SZ4 span the Lie algebra DRa of m .a Mo.r eove.r ,

DR has an orthogonal complement in LG:
a

Since the metric is AdG-invariant LM is Adm -invariant.
a a

Hence G/R is a normal reductive homogeneous space.
a

Therefore, the canonical connection and the Levi Civita

connection have the same geodesics:

t -+ ( g exp G tv') • ma

g E G, V E LM •
a

Now, consider the composite maps:

proj . (id x {O}) : SU(2) -+ G -+ G;1R
a

(3.4)

Then, since (SU (2) x {O}) n m = 1 x {O}, we obtain an
a

isomorphism SU(2) =G;1Ra. Furthermore, we get an isometry

if we give SU(2) the metric

where A = S2 ~ 1.

If we complexify to obtain



19.

where

then, a null geodesic is given by

z -+

where M = A E SL(2,a:) and

denote the conicLet

Then the space of unparametrized

(SL (2, a:) ,

2 2
zl + z2 +

Now we may use (3.4) to pull back geodesics to

222
01 + 02 + AO C ) ·

2
AZ3 = O.

null geodesics is

z = (SL(2,a:) x CA)/geodesic foliation

and the lifted null geodesics are represented by

z -+

(3.5)

where (A, S1 ) E SL (2 , a:) x C A' H(z)

Remark ( 3 • 6) . The space Z is only well defined if we

restrict to a geodesically convex neighbourhood in SL (2 ,a:) •



4. Null geodesics and line bundles on the quadric

We define a map

(4.1)

20.

by Then:

222 2
ml + m2 + m3 = -~ Trace m

= -~ Trace M2

= ~2 + ~2 + A2~2
1 2 3

= A(A - 1) ~2
3

so TI maps into the quadric

(4.2)

Furthermore, since (m'~3) are conserved quantities the map

factorises through Z. The subgroup

K = {a [z 0] I Z E (t*}= 0 z-l

gives a right action on the bundle of null directions

SL(2,(t) x CA by

-1
(A,~) -+ (Aa,a ~a) •

Moreover,

-1
• a = Aaez a Ma H(z)

so the action commutes with the geodesic flow (3.5). (This

action corresponds to the flow of the Killing vector field

K
4

- the left invariant vector field dual to °3 ) .

since we obviously have

Then,



21.

we obtain a regular map

1T Z -+ Q
>.. (4.3)

from the 3-dimensional complex manifold Z of unparametrized

geodesics to the quadric with the orbits of K
4

as the

fibre.

Let us see what happens to the curves of geodesics

through points of SL(2,~) If 0A E SO(3,~) corresponds

to A E SL(2,~) under the adjoint representation, we have

from (3.3)

Let

:~] ~ °A . ~~ ]
m

3
H2

3

T
(a,S ,y ) denote the third co lumn of 0A. Then, from

the orthogonality of 0A we get

(4.4)

Therefore, the 3-parameter family of lines corresponding

to points of SL(2,~) is mapped onto the 2-parameter family

of conics obtained by intersection of the quadric Q>.. with

the planes in (4.4) where 0.
2 + 13 2 + y2 = 1.

This leads us to try to represent Z as a line

bundle over the quadric trivial over plane sections. The

sections of Z over plane sections of the quadric give the

4-parameter space of curves in Z with the Berger sphere

represented as sections over some 2-parameter subfamily of

conics. Such a line bundle is a twistor space if the

normal bundle of the curves is 0(1) e 0(1). We shall

now describe this condition on the bundle: Consider the



following situation : L is a line bundle over a surface

22.

S trivial over a curve C c S. NC is the normal

bundle of C in S. Let cr be a section that trivializes

Lover C and let C = cr(C) c L. N- denotes the
C

normal bundle of C in L. Then, the pull back cr*N~ is

a rank two bundle over C and it is an extension

of the restriction of L to C with

extension is represented by a class in

(4.5)

N
C•

Such an

Hl(C,O(N~ ~ L)).

If we try to extend cr to the first formal neighbourhood

of the curve we meet an obstruction in Hl(C,O(NC~ L)).

To see this, we consider first the exact sequence of

sheaves

where y is the ideal sheaf of C.

can be described as follows [13J:

(4.6)

The sheaves in (4.6)

Oly = 0C' holomorphic functions on C.

2Oly = 0(1)' holamorphic functions on the first

formal neighbourhood of C

2Y Iy = O(NC)' sheaf of sections of the conormal bundle

of C in S.

Tensoring (4.6) with L gives the exact sequence

a -+ 0 (Nc ~ L) -+ a (1) (L) -+ aC (L) -+ O.

From the associated long exact sequence



-+ HO(C,O(l) (L)) -+ HO(C,O(L) i Hl(C,O(NC~ L)) -+

23.

we get the obstruction o (0) E Hl (C, 0 (N* ~ L))
C

to extend

o E HO(C,O(L)) to the first formal neighbourhood of c.

Proposition (4.7). The element in Hl(C,O(NC)) which

represents the extension (4.5) is the obstruction to

extend 0 to the first formal neighbourhood.

Proof. Note that Hl(C,O(N* ~ L)) = Hl(C,O(N*)) because

L is trivial on c.

such that:

Now let (D.). I be a cover of S
1 1E

( L) On D. we have coordinates
1

(x.,w.)
1 1

and if

then c is given by w. = O.
1

(ii) We have trivializations

lji. : D. x (t -+ LID.
111

and lji. (p, z) = zo (p ) if p ED. n c.
1 1

Then points on C have coordinates (x . , 0 , 1 ) and
1

if lji .. is the transition function on
1J

lji .. (x. ,0) = 1. Now, locally
1J 1

TL (a~ ,
a

a;)= span aw'

TC = span ( a~ (x, 0) )

TC = span ( a~ (x,O,lO)

so locally,

D. n D.,
1 J



where

-
NC = span (a~ (x,O) )

NC= span [a~ (x,O,l), a
(x,O ,1) )az

-
Lie = span trl- (x, 0) )

indicates that we have projected the vector fields

24.

into the quotient - that is, we compute modulo

Thus, the transition matrix for cr*N~

A.. : U. n U. n C ~ GL ( 2 , a: )
~J .i, J

is given by

a
ax .

A ..
~J

We get

1

A .. (x.,O)=
~J J

o

Let cr. : U. ~ a: define local extensions of
~ ~

Then to first order

cr. (x, , w.) = 1 + a. (x.) w.
a, J J ~ J J

cr. (x , , w.) = 1 + a. (x , ) w .
J J J J J J

and

o on U. n C.a,

aljl ..
1 + a.(x.) . w. = (1 + ~a~ (x.,O) Vl.)'(l+a.(x.)w.)

a J J w. J 1 J J J
J

Hence, the obstruction class

a. (x.) - a. (x . )
.i, J J.J

is equal to the extension class



al/J ..
~'\ (x.,O)

ow. J
J

and the propos.ition is proved.

25.

Remark:
aw.
-2
aw.

l.

is the transition function for N*
C

and

al/J ..
~=aw.

l.

al/J .. aw.
~-J

aw. aw.
J l.

showing that

H
l

(C, 0 (NC))•
[

al/J . . al/J .. ]
~.~
aw.' aw.

l. J
represents a class in

Now, suppose C==:lP1 is a plane section of the

quadric and S is a neighbourhood of C covered by two

Then NC ~ 0(2).

transition function for a bundle L

Let

over

be the

Assume L

to be trivial over plane sections.

(4.5) becomes

o ~ 0 ~ N ~ 0(2) ~ 0

Then the extension

where N is the normal bundle of a section of Lover

a plane section. This extension is represented by a

c las s in H1 oP l' 0 (-2)) == <1:. If we choose coordinates as

above, the elements in

i, u E <1:.

are represented by

]l = 0 corresponds to the trivial extension

o e 0(2) and ]l ~ 0 represents an extension

o ~ 0 ~ 0(1) e 0(1) ~ 0(2) ~ O.

Hence, the bundle L gives a twistor space iff

aep12 .J!..
aw (x, 0) = x' ]l ~ O. (4.8)



26.

5. The Line Bundle P

We look for twistor spaces given as line bundles over

a neighbourhood of a plane section of the quadric QA in

(4.2). The twistor space is left invariant because it

consists of geodesics for a left invariant metric. This

motivates our next step: Let TI be the projection (4.1).

Then

where m = BMB-l. Thus, we get an induced action on the

quadric Q
A

given by

(zl'·· .z4) -+ (zl' •

where

:1 zl

:2 = °A
. z2

z3 z3

and 0A E SO(3,a:) corresponds to A E SL (2,a:) . It is

easily seen that the only l-dimensional orbit is the plane

section z4 = o. Now, let S be a neighbourhood of the

plane section zl - Az4 = 0, say. Then the left invariant divisor

D Z = 04
splits into two divisors

= D S The bundle represented by the difference Dl - D2

is obviously trivial on plane sections. We call this bundle

=

P. We want to prove that P is a twistor space: On QA

we have the four lines (V
2 = A(l - A))
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5. The Line Bundle P

We look for twistor spaces given as line bundles over

a neighbourhood of a plane section of the quadric QA in

(4.2). The twistor space is left invariant because it

consists of geodesics for a left invariant metric. This

motivates our next step: Let TI be the projection (4.1).

Then

where m = BMB-l• Thus, we get an induced action on the

quadric Q
A

given by

-
(zl'·· .z4) -+- (zl' . , z3,z4)

where

:1 zl

:2 = °A
. z2

.z3 z3

and °A €
50(3,<1:) corresponds to A € 5L(2,<1:) • It is

easily seen that the only l-dimensional orbit is the plane

section z4 = o. Now, let 5 be a neighbourhood of the

plane section zl - AZ 4 == 0, say. Then the left invariant divisor

D : Z 4 = 0 splits into two divisors Dl, D
2

where

l)lU D2=D0S The bundle represented by the difference Dl - D2

is obviously trivial on plane sections. We call this bundle

P. We want to prove that P is a twistor space: On QA

we have the four lines (V 2 = A(l - A»



9,1 z2 + iZ 3 = ° /\ zl + ivz 4 = °
9,2 z2 + iZ 3 = ° /\ zl Lvz 4 = °

(5.1)

ml z2 - iZ 3 = ° /\ zl ivz
4 = °

m2
. z2 - iZ 3 = ° /\ zl Lvz 4 = °. +

We can define coordinates

i zl+A.Z 4 i Zl-A.Z 4x = ----r z2+ i z3 w =
2A.~21.. 2 z2+i Z3

on QA. \ (9, 1 u 9,2) and similarly on QA. \ (ml u m2) . Then we

have coordinates on QA. except at the points (±iv,O,O,l)

and therefore coordinates on S.

27.

= °

z -A.Z =0
1 4

A(O,l,i,O)i B(iv,O,O,l)i C(-iv,O,O,l)i D(O,l,-i,O)

Shrinking the coordinate patches li
l

, U2 we may assume:

U1 u U2 covers S, Dl .=. Ul \U2 and D2 .=. U2 \U l . The

divisor Dl is then represented by (fl,f2) where



27.

Then we

have coordinates on QA except at the points (±iv,O,O,l)

and therefore coordinates on S.

= °

A(O,l,i,O}iB(iv,O,O,l}i C(-iv,O,O,l}i D(O,l,-i,O}

Shrinking the coordinate patches Ul, U 2 we may assume:

U1 u U2 covers S, Dl .=. tIl \U 2 and D2 .=. U2 \U l• The

divisor Dl is then represented by (fl,f2) where
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f 2 : U2 -+ a: . (zl'··· ,z4) -+ c.

and D2 is given by (gl,g2)

gl Ul -+ a: (zl,···,z4) -+ c

U2 -+ a: (zl'··· ,z4)
z4

g2 -+
z2- i z3 .

c is a non-zero constant.

(note, Ul n U2 n D = </» •

Then P has transition function.

on the conic z ­
1

Furthermore, we

easily get

0</>12
(x, 0) =

o w

-41..
x

so, from (4.8) we may conclude: P is a twistor space.

Now, let us consider the real structure. On 8L(2,a:)

we have the real structure T A -+ (A*)-l that fixes

8U(2) inside 8L(2,a:).

geodesic (3.5)

- A zM H ( )I : z -+ e z

If we apply T to a null

it is easily seen that the real structure maps a null

geodesic with initial data (A'~1'~2'~3) into a geodesic

Under the projection (4.1) we

get a real structure induced on the quadric QA

(zl,···z4) -+ (zl,···,z4) (5.2)



29.

Let us introduce affine coordinates representing QA as

the product .lE\ x]Pl: On 0A\ (.Q,l U .Q,2) we define

I:; = n = (5.3)

I:; = -1
I:;

= n = -1
n =

The real structure (5.2) becomes

[-1 -1)(I:;,n) + 1:;' n • (5.4)

Suppose that we have a line bundle L on a neighbourhood

S of a plane section of the quadric. As sume L has

transition function ~12 with respect to the patches above.

Then, since (5.4) interchanges the coordinate patches, it

induces a well defined real structure on L given by

z + ±z on fibres if

(5.5)

If 0 is a coordinate along the fibre of L the induced

real structure on L can be written:

to define a real structure on L\O given by z +

[
-11:;' -nl , ±a ](I:;,n,o) + •

~12 (I:; ,t])

Removing the zero section from the line bundle we

the fibre. This is well defined if

(5.6)

may try

±l
on

z

and in coordinates it is given by

(5.7)



29.

Let us introduce affine coordinates representing QA as

the product ]Pl x]Pl: On 0A\ (.9,1 u .9,2) we define

s = n = (5.3)

and on UA\ (mr u m2)
..

-1 zl-ivz 4 -1 zl+ivz 4s = - = n = - =s z2- i z3 n z2- i Z3

The real structure (5.2) becomes

[-1 -lJ(s,n) ~ Z n (5. 4)

Suppose that we have a line bundle L on a neighbourhood

S of a plane section of the quadric. Assume L has

transition function ~12 with respect to the patches above.

Then, since (5.4) interchanges the coordinate patches, it

induces a well defined real structure on L given by

z ~ ±z on fibres if

(5.5)

If 0 is a coordinate along the fibre of L the induced

real structure on L can be written:

to define a real structure on L\O given by z ~

T : ("n,a) + [-~, -~' ~l:~"nl
Removing the zero section from the line bundle we

the fibre. This is well defined if

(5.6)

may try

±l on
z

and in coordinates it is given by

(5.7)



[

- 1 , -1 ~12(S,n)]
(s,n,a) -+ -= -=, ± _ •

s n a

Now, it is easily seen that the line bundle P

ition function

30.

(5.8)

has trans-

2(s-n)
sn

(5.0)

Then, since ¢12 satisfies (5.7), we get a well defined

real structure on P\O. In the next paragraph we shall

compute the conformal structure generated by P.



[

- 1 -1 ~12(S,n)]
(s , n ,a) -+- -:::..' -:::..' ± _ •

s n a

Now, it is easily seen that the line bundle P

ition function

30.

(5.8)

has trans-

2
(s -n)

sn (5.0)

Then, since ¢12 satisfies (5.7), we get a well defined

real structure on P\O. In the next paragraph we shall

compute the conformal structure generated by P.



6. Monopoles and Line Bundles

It has been known for some time how to obtain self-dual

Yang-Mills Fields in ]R4 from bundles over twistor space

lP 3
[4, 30J. We shall review here briefly how one gets

U (1) monopoles on 8 3 by considering line bundles over the

mini twistor space JP l
x JP

l
[18J (the quadric is really the

mini twistor space of JRlP 3
but we may lift the monopole to

8 3 - see also Chapter III, example (4.7)):

Elements xPQ of 8L(2,~) determine plane sections of

31.

(6.1)

where 1 2
(to ,w ) and are homogeneous coordinates

Suppose we have a line bundle defined on some

region of JP
l

x JP l and assume the bundle is trivial over

plane sections. This implies that if the region is

covered by patches Ul , U2 and ~12 is a transition

function for the bundle, then on each plane section we have

° =1
(6.2)

where 0i

functions.

u. ~~, i = 1,2 are non-vanishing holomorphic
1

Lemma: On each plane section (6.1) we have

ind ic es with

-1 Q -1 Q
01 TI VpQO l = 02 TI VpQ 02

a
Her~, VpQ = axPQ

the symplectic form

s =sAB = [0 IJ)
AB -1 °

and we lower and raise

The lemma is a trivial consequence of the fact that
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From the lemma it follows that on each conic ~ given
x

by x
PQ

E SL(2,~) the expressions

-1 Q
(Ji 1T 'V PQ (Ji

define a holomorphic section of the hyperplane section

bundle 0 (1) -+ ~ •x Such sections are given by linear

forms. This enables us to define functions ApQ(X) by

-1 Q
(Ji 1T 'V PQ (Ji =

Now, write

(6.3)

1 . 2 3 . 4
PQ X +lX X +lX

X =
3 . 4 1 -ix2

-x +lX X

and define a connection A and a Higgs field V on

SL(2,~) by

(6.4)

Then, (A,V) satisfies the ~* Bogomolny equations

*dV = dA (6. 5)

on SL(2,~) where * is with respect to the standard bi-

invariant metric.

If xPQ
E SU(2), then (6.1) represents real plane

sections where the real structure is

= (-l/~, -lin)

n = w2/wl



Lema (6.6): Suppose the sections (01'02) are real

33.

with respect to the real structure in (5.8) i.e.

Then the monopole (A,V) has values in U~l).

Proof. It is easily seen that A~ = -A~ iff All = -A22

and A1 2 = A21. We have from (6.3):

and we want to prove

AnI; - A1 2 ~ 1;(1)<21 [-~] - 1><22) •

Thus, we need to establish the identity

which easily follows from the reality of the section.

OUr main interest in this construction lies in the

following observation: Suppose we have a twistor space

given by a line bundle L trivial over plane sections of

the quadric. Then L generates both a conformal structure

g and a monopole (V,A). It is a straightforward

computation [18, 27J to show that

(6. 7)

Here dS 3 is the standard metric on s3. We recall that

the 4-parameter family (X,T) of twistor lines is given

by points x in s3 describing real plane sections of



Lema (6.6): Suppose the sections (° 1,°2 ) are real

33.

with respect to the real structure in (5.8) i.e.

±l
Oz(l;)

Then the monopole (A,V) has values in U~l).

Proof. It is easily seen that A~ = -A~ iff All = -A22

and A1 2 = A21. We have from (6.3):

and we want to prove

All' - A1 2 = (;(A21[-~J - A2 2) •

Thus, we need to establish the identity

which easily follows from the reality of the section.

OUr main interest in this construction lies in the

following observation: Suppose we have a twistor space

given by a line bundle L trivial over plane sections of

the quadric. Then L generates both a conformal structure

g and a monopole (V,A). It is a straightforward

computation [18, 27J to show that

(6.7)

Here dS 3 is the standard metric on s3. We recall that

the 4-parameter family (X,T) of twistor lines is given

by points x in s3 describing real plane sections of
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the quadric and by a parameter L describing the real sections

of L over each conic.

Example (6.8). Let us find the monopole and conformal

structure generated by the bundle P.

of SU(2) as

xPQ= {a b}
-5 a

We write elements

x. E JR.,
1

i = 1,2,3,4,
4 2
L; x. = 1.

i=l 1

From (6.1) we obtain the real plane sections

The transition function for P is

When we restrict to the lines (6.9) we get

= b 2(s-a)2(s-S)2

s (a+b z) (as-b)

(6.9)

where a, S are the roots of b s
2 + (a - a)s + b = O.

The roots are

a-at/D -i (x2 +r) (6.10)=2b x 3+ix 4

where r 2 2 + 2 + 2 We may unambiguously choose= X2 x3 x4·

a = -i
-x-

3""'-+"7"ix-4
(x 2 - r)

and S to be the other root. The plane sections (6.9)

are Riemann spheres and we may cover them with patches



Ul, U2 where 0 E Ul, 00 E U2• Consider plane sections

near the point x = (0,1,0,0) in s3, say. Then it is

35.

easily seen that we can choose

b
a are in and S and

Ul, U2 such that

-a-s are in U2\U l ·

ex and

Thus,

we may write

where

is a non-vanishing holomorphic function on U l and

( ) _ Ar; (ar;-E)
°2 r; - 2

(r;-ex)

is non-vanishing and holomorphic on U2• Here, A is an

arbitrary constant. On P\O we may use the real

structure (5.8) - note that the sections do not pass through

the zero section.

±l=
b

2S2

Since bS is imaginary we get a real section if

A = i (bS)-le i 8• Now, from lemma (6.6) we expect to

obtain a U(l) monopole by substituting

° =
ib(r;-s)2
13 (a+br;)

into (6.3). After some trivial calculations we get

Ap Q = 2~r [=~ ex]
13 -1

Fran {6.4) we obtain



Ul, U2 where ° E Ul, 00 E U2. Consider plane sections

near the point x = (0,1,0,0) in s3, say. Then it is

35.

easily seen that we can choose

b
a are in and S and

Ul, U2 such that

-a-s are in U2\Ul·

CI. and

Thus,

we may write

where

is a non-vanishing holomorphic function on U l and

is non-vanishing and holomorphic on U 2• Here, A is an

arbitrary constant. On P\O we may use the real

structure (5.8) - note that the sections do not pass through

the zero section.

IAI 2
= ±l

b
2S2

Since bS is imaginary we get a real section if

A = i (bS)-le i e• Now, from lemma (6.6) we expect to

obtain a U(l) monopole by substituting

a = ib(Z;;-S)2
S(a+bz;;)

into (6.3). After some trivial calculations we get

Fran '6.4) we obtain



The 3-sphere can be parametrized in the following way

1
x = cos X

2
x = sin X cos 8

(6.11)
3x = sin X sin 8 cos ¢

4
x = sin X sin 8 sin ¢

X, 8 E [O,nJ, ¢ E [-n,nJ

The canonical metric becomes

In these coordinates the monopole is

36.

(V,A) = (i cot X, i(cos8d¢ + d(¢ - X))).

The induced conformal structure (6.7) is

g = cot XdS 3 + tan X (d r + cos 8 d¢)2

(6.12)

(6.13)

Now, we want to introduce coordinates that enable us to

describe the Berger sphere. In (4.4) we described the

plane sections induced by points A of SU(2).

assume we have a matrix on the form

Let us

Then the length R of the third

column of the matric 0A' associated to A by the double
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(6.14)

2
Yi+l = 1

Thus, the special plane sections (4.4) may be described as

the 2-sphere

3
L:

i=l

inside ~3. If we introduce the coordinates (5.3) on the

quadric QA we may write the plane sections as in (6.9)

by substituting

M

x. =
1

i = 2,3,4

(6.15)

Let us substitute these coordinates into the conformal

structure (6.13). Then, after a conformal resealing, we

obtain the metric (see next paragraph for more details):

1 2 222 2
+ 0~)Jg = -,[(dR - 2mR o 3 ) +4R (0 1 + °2

4R3
(6.16)

1 3 2 2 2 2 2= 4[(dp mp 03) + p (°1 + 02 + 03) ]
p

where do. = E: i j k o. /\ ok· When restricted to the sphere
1 J

p = 1 we get

2
+

2 + 1 2
g = °1 °2 °3A

This suggests that we might be near the right answer in the

Lebrun construction. The metric, however, does not have

p = 1 as conformal infinity, and with this choice of

conformal factor it is a vacuum solution (so the conformal



class cannot contain a A-term solution too). It is in

fact the Eguchi-Hanson I solution (Chapter II).

Remark: Note, the monopole in example (6.8) descends to

~3 and it is singular in the pair of antipodal points

(±l,O,O,O) •

38.
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7. The Einstein Metric

In our search for the twistor space of null geodesics

for the complexified Berger sphere we were lead to the

bundle P. This bundle did not give the right answer but

we were somehow near. The bundle gave the monopole

on

(V,A) = (cot X, cos e d¢)

Now, we shall show that it is possible to find a

cosmological term solution on the form

where

(V,A) = (E + m cot X, m cos e d¢)

Indeed, if the twistor space is a line bundle over the

(7 .1)

(7 .2)

quadric then we know that the conformal structure must be

of the form (7.1) for some monopole on 8 3. We have

where

(7.3)

dX 2 . 2 (2 2)+ Sln X PI + P2

P3 = d~ + cos e d¢

and dfP·1
,

= ~ $"k PJ. x Pk·1)
Let us define an orthonormal

frame

k
eO = F(X)(E + m cot X) 2dx

k
e. = F (X) (E + m cot X) 2 sin X Pi' i = 1,2

1

-k
e 3 = m F(x) (E + m cot X) 2 P3

(7 • 5)
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The connection forms w,. are aiven bv
J.J ., ...

W', = -w,.
J.J J J.

and the curvature forms are

R, ,
J.J

= dco . + L: w. k 1\ w
k J

'
J.J k J.

If we write these 2-forms as

R .. = L: R" k n e
k

1\ en
J. J k< R,. J. J N N

the Einstein Equations with Cosmological Constant A are

L: Rk, k' = A 0.. •
k J. J J.)

(7.5)

After some tedious computations these ten equations reduce

to the following tlrree:

I.

E'
·2

F
3 3

F +-
F

2F ~'

-2 -1 2(2 cot x+m sin X (£+1.1 cot X) ) -2+F i\. (c-em cot X) =0

II.

·2
F F F -2 -1 2+ -- + (4 cot x-m sin X(£+m cot X) )-2+F A(£+m cot X)=O
F F2 F

III.

·2
F F F -2 -1 2+ -- + (2 cot X+m sin X(c-sm cot X) ) +F A(£+m cot x> =0.
F F2 F

Here F means

equation II we

dF
dX

get

etc. If we subtract equation III from



41

d F) E: sin X +m cos XdX(log = E: cos X -m sin X

This gives

F (X) A
(7.6)= E: cos X-m sin X

Substitute (7.6) into I, II, III and we get a solution if

2A • A = -3 • E: .

Hence, we can conclude that the metric

g = ____k . [ 3 m2
. ) 2 (E: +m co t X) d S + E: +m cot X (d1jJ +

(E: cos X-m s a,n X
cos 8dep) 2)

(7.7)

is a solution to Einstein's equations with cosmological

costant

-3E:
A = l< (7 .8)

This solution has self-dual Weyl tensor, as we would expect,

since the conformal structure is given by a monopole and

therefore by a line bundle. If k and E: are positive

the cosmological constant is negative. It is therefore

possible that (7.7) is the metric we have been looking for

in the Lebrun construction.

indeed the case:

We shall show that this is

Make the substitution (6.11). From the twistorial

approach in the next paragraph we get the idea to look for

w =

where Then:
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w = cos e d~ + d(~ - X) •

If we put ~ = T - X +~, we may write (7.7) as

(7.9)
2

m
IDX l

E:+--r

2dx. + --­a,
k

2
(E:xl-mr )

g=

We have:

Now, make the substitution (6.15) and let m in (6.15) and

m in (7.9) both be the constant (l~A)~. This gives the

metric

+ 4R2(1+E:R)2(1+m2R2)

m2R2+(1+E:R) 2
(7.10)

Remark (7.11). If we put E: = 0,

constant vanishes A = -3E:k-l = 0

m2
k = 4- the cosmological

and we get the Eguchi

Hanson I metric (6.16).

Remark (7. 1 2) •

11. = _3m2E:-l -+ 0

E: 2
If we put k = - and let m -+ 0,

m2

and we obtain the vacuum solution

then

l+E:R 2 2 2 4R 02
g = R dR + 4R(1 + E:R) (°1 + °2) + l+E:R 3



Put R = ~ (r - u l ;

the Taub-NUT solution

43.

1€ = ~ and we realize that we have got
u

1 r+].l d 2 (2 2 2 2) 4].l2 r-ll 2
g = 4" r-].l r + r -].l)(o1 + o 2 + r+].l °3

The metric (7.10) can be simplified. We have

g =

~
mdR J2d~ + cos e d¢ - 2 2

l+m R

k4m2R(1+€R) 2 2+ 2 2 (°1 + °2) .
(e -m R)

m "'-

Let df(R) = dR, ~ = ~ - f (R) .
1+m2R2 Then we may write

g =

(7.13)

This leads us to the solution in the Lebrun construction:

Let k = m
2

€ = m2• Also, make the substitution (6.14)4'

to get the connection to the special plane sections of the

quadric generated by the Berger sphere P = 1. He get

1 ' [1+ 2 2 2 2 2 2 2 2 p2 (1+m
2

p4) 2Jg = ---::-" m p d o + P (l+m p ) (01+02) + o
(1_ p2)2 1+m2 p4 £+m2p2 3

(7.14)



This metric is self-dual. It has a pole of order 2 on

44.

the 3-sphere p = 1. Conformally we have on p = 1:

= of + o~ + AO~

which is the Berger sphere metric.

constant

A =-3£ = -12.
k

Finally the cosmological

It follows from our discussion on uniqueness in the intro-

duction that (7.14) is the Einstein solution we have been

looking for in the Lebrun Construction.

is complete on the ball p < 1.

Note, the metric

Remark (7.15). We have proved (2.2) that in the bi-invariant

case A = 1 the Lebrun construction gives the hyperbolic

metric.

g =

If we let A + 1 (m + 0) in (7.14) we get

which indeed is the hyperbolic metric with A = -12.
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8. The Twistor Space of Dnparametrized Null Geodesics

We are now going to find the twistor space of the

conformal structure (7.7) which contains the Higgs field

v = E + m cot x. The idea is to take the tensor product of

the bundles that give the Higgs fields V = E and V = m cot x.
In example (6.8) we showed that the bundle P gave a

monopole with Higgs field V = i cot x. Furthermore, the

monopole (V,A) = (i,O) does not have any singularities on

S3 so one would expect that the corresponding bundle is defined

on the whole quadric. Then, since the bundle has to be

trivial on plane sections, it must be the bundle 0(1,-1).

The problem is how we make the bundles depend on a parameter.

If we restrict to a neighbourhood of a plane section we may

assume that the transition functions for P and 0(1-1) map,
the overlap into a simply connected set away from 0 E ~.

Moreover, if we have a non-vanishing section (°1,°2 ) on

a plane section covered with simply connected patches Dl,D2,

then 0. (D.) are also simply connected sets away from the
1 1

origin in ~. It is therefore possible to choose a

logarithm that works for all plane sections in a neighbour-

hood of a plane section.

our bundles.

Then we may consider powers of

Now, let T be 0(1,-1) restricted to a neighbourhood

of a plane section. The transition function for T on

the overlap defined by the coordinates (5.3) is n/s.

Thus, from (5.7) we get a real structure on Ti r (r E a)

minus the zero section, by



T(1;;,n,O') -+
-1

1;;

-1

n 4t]
46.

On a real conic (6.9) the transition function for Ti r ~ P

is

l)J12

Ab2(1;;-S) 2
=

(a+b1;;)ir+l

b 2 (1;; -a) 2 (1;; -13 ) 2

1;; (a+b1;; )( -b+a1;;)

[

A1;;ir+l ]-1

• (1;; -a) 2 ~a1;; -E) ir-l

where a, 13 are the roots (6.10) and

Ab2 (1;; -13) 2=
(a+bL;)ir+l

The section (0'1,0'2) is real with respect to the

product of the real structures on P, Ti r if

(8.1)

Theorem (8. 2) •

structure

The twistor space of the conformal

v = E: + m cot , A = m cos 8d<j>

is the line bundle minus the zero section:

i E
m

(T- ~ P) \ 0 •

Corollary (8.3). The twistor space of unparametrized null

geodesics in a geodesically convex neighbourhood of



(
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2 2 2
A < 1°1 + °2 + A03

is the line bundle !\linus the zero section

.[l-A)~
Z = (T~ A ~ P)\O

defined on a neighbourhood of a plane section of the quadric

Proof: The real twistor lines are taken to be

= -b+ar;
II a+br;

(8.'4)

° =
Ab 2(r;-13)2

i£+l
(a+br;) m

The conformal structure is determined by the condition

that n = 0, 0 = 0 should have a common root. We have

. .
.!l = 0 <==;> ar; -b =
n ar;-b

a+br;
a+br;

(8.5)

° = A + 2b _ 213 _ (i E + 1) a+br;
° A b r;-13 m a+br;

Lenuna: Recall that 13 is a root in

br;2 + (a - a) r; + b = 0 .

Then:

- -1
bl3

-1) bl3 + = a - a .

(8.6)
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3)

~ (bl',; - bB-l) = I',; - n on a plane sectiona+bl',;

n = -b+al',;
a+bl',;

Bb - -1 -2ir, where- bB =

4 2
z xi = 1­

i=l

The proof of this lemma is straightforward. Now,

assume n = 0 and differentiate equation (2) in the lemma.

Then we get

. .
= b-bBI',; +

Qirl',;
(bBI',;-b) (a+bl',;)
2irl',; (a+bl',;) (8.7)

where we have used (3) above. Substituting (8.7) and (8.5)

into (8.6) gives a linear equation for 1',;. Then

I',; =

.
+ B(b"b-bb) + ab-ab -i
.

2b) - • ~ [ mf-)·]b + B(ab-ab) -i l+i a r

Let us substitute this expression for I',; to get

a+bl',;
a+bl',; = (8.8)

(aa+bb)[ir
.

(
A

ir A +

(since aa+bb = 1).

.. ... .
+Bb-aJ + (aa+bb) (a-(l+i £)ir-Bb)

m

~)ir-Bb)

Also,

e . • ir
a;-i? =
al',;-b ir

(8.9)

We have ir + Bb - a = so substituting (8.8) and (8.9)



= (. [A.!. 2b] + 13bg ~r A ' b s: 2 [£ )2 ..a) + m r + xl "(aa + bb) • (8010)

49.

· .
Irn (ir (~ 2~)

.
Lemma. + + 13b - a) = 0 .

Proof. Since A = i(b13)-le i 6 we get

. .
A · i 4rr+ (a-a) :(a-a)lm(ir - a) = 2" .A

a-a-2ir

Also 4r 2
-(a - 2

4bb,= - a) + so

A · .:.. -1
lm(ir - a) = -lm b13A

which easily leads to the claim.

Now, if we write A = IAle
i T, then Re(ir A) = -rdT.

F~

.
b + bAlso, Re (-a) = -dx and Re(2ir 13b) = (x 2 - r)lm

b O1 b

Then b
lm b = d<t> and

Thus, the conformal structure (8.10) can be written

with

g = [£ + mxl ) i dX~ +
r . 1 ~

~=

2m
ffiX l£+-­r u

(dT + w)2 (8.11)

w =

Compare with (7.9) and we have proved the theorem.

Remark (8.12). The proof of this theorem is an example of

the claim (6.?} that the monopole is encoded in the conformal

structure.



g = (. [A -'- 2b] + Qb
1r A 'b I-'

~ 2 (E )2 .~a) + mr + xl "(aa + bE") • (8.10)

49.

· .
Im(ir(~ 2~J

.
Lemma. + + (3b - :3) = 0 .

Proof. Since A = i(b(3)-le i 8 we get

. .
A · i 4rr+ (a-a) '(a-a)Im(ir - a) = "2 .A

a-a-2ir

Also 4r 2
-(a - 2

4bb,= - a) + so

A · ~ -1
Im(ir - a) = -1m b(3A

which easily leads to the claim.

Now, if we write A = IAI e
i T, then Re(ir ?=) = -rdT.

j'J;,.

.
!? + bAlso, Re (-a) = -dx and Re(2ir (3b) = (x 2 - r)Im b'1 b

Then b
1m b = d¢ and

Thus, the conformal structure (8.10) can be written

with

g = (E + mx l ) i dX~ +
r . 1 11=

2
m
mX lE+-­r

(dT + (j)2 (8.11)

(j) =

Compare with (7.9) and we have proved the theorem.

Remark (8. 1 2) . The proof of this theorem is an example of

the claim (6.7} that the monopole is encoded in the conformal

structure.
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and a plane

becomes

From (3.2) in[17] we see that our coordinates are related

to Hitchin's by

Hence,

-+- -
1 n
2~

(see also [3 H .

n-E:-
e l;; (8.16)

Remark (8.17). Consider a neighbourhood S of some section

of 'DP
I

. The zero section

D: n = 0

meets S in two pieces Dl, D2 and the line bundle

is trivial over sections of 'DP I • This construction is

similar to the construction of the bundle P in paragraph 5

and using the same kind of arguments as there we get the

transition function for M:



Remark (8.13).

2
putting E = m

The corollary follows from paragraph 7

1-1..= -1..-

50.

We saw in (7.12) how our Einstein metric becomes the

Taub-NUT solution in the limit m + O. It should be

possible to realize this limiting process on the twistor

space level: The conformal structure generated by the

twistor space in (8.2) does not change if we redefine the

transition function for P to be

<P 12 = (l;-1l) 2

2
-v l;1l

In terms of the homogeneous coordinates (5.3):

2 2

<P 1 2

4z 4
4

z4
= 222 A+{ 2

zl+v z4 zl
.E
~-

The transition function for T.· m

(8.14)

(8.15)

where k = iEA.
v

Furthermore, the quadric converges

towards the cone

and the cone minus the vertex (0,0,0,1) is TIP l.

let us define coordinates on TP l by

Now,

1l =
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The bundle on TPl with transition function

-s !.L
(I;;,n) -+ e I;;

is L-s where L is the line bundle that generates the

U(l) monopole (V,A) = (i,O) on ~3 [17J.

Theorem (8.18). The line bundle minus zero section

(M ~ L-s)\O

over a neighbourhood of a section of ~l is a twistor

space generating the Taub-NUT solution.

Proof On ~l we have the real structure

l?) 2
-s!l

¢12(I;;,n) = e I;; satisfies

(°1,°2) of M ~
-s a realL over

a - x + ix 2, b = x 3 is real- 1

Nowlon a curve

(
- 1 -~-+ , 2 •I;; ­I;;

Then a section

n = al;;2 + 2bl;; - a;

¢12(1;;)

(5.7).

if ° 1 (-l/Z) = ±1/02(1;;)·

A( _ )2 -s(al;;+b)[ AI;; 2 e-S'(~-b)]-l
= ~ a e 2 2

a (1;;-6)

-1
= ° 1(1;;)° 2(1;;)

curve

The transition function

where

() A( ) 2 -s(al;;+b)
° 1 I;; = I;;-a e

and a, 6 are the roots in 2
a I;; + 2bl;; - a = °

R-b Q = -(R+b)
ex. = -a' IJ a
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The reality condition on the section gives:

AA = (R + b)2.

Thus, the four parameters are (a = xl + ix2, b = x
3

' T = Arg A).

Assuming n = 0 we get

a = aa?;;+a
?;;-C/. 2?;;R

The section of the normal bundle vanishes iff n = 0 and

a/a = 0:

. • 2 A •
REa?;; + (REb - R- + aa)?;; + a = 0

A

Then g

• 2
a?;; + 2b?;;

- b (RE + 2)

.
- a = o .

a(l + RE)

Substitute into n = 0 to obtain the conformal structure

A . 2 ·2·~ 2
g = -(RA - b - aa) + (b + aa) (1 + RE) = o.

Now, since AA = (R + b)2, we have

Re(R~ - b - aa) = 0

and as in (8.2) we have

Hence, the conformal structure is

(8.19)

2 3 2 2 [g = (1 + RE) L dx. + 4R dT
. 1 ~
~=

(8.20)
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Conformally

where do. = E: .. k O • /\ ok'
1 1J J

This is the conformal structure in (7.12) so the theorem

is proved.

Remark (8.21). In [14 ] it is described how to obtain

vacuum solutions from twistor spaces fibered over ~l

Let us use this approach on the twistor space M 0 L-E:.

We have a projection

where is fixed. Define a form by

and similarly for w2 on the other coordinate patch. On

-1
a fibre F = n (sO) we have

1
w2 = 2 wl ·

So

Hence, (Ul'U2) trivialize A
2Tp 0 n*0(2) so K ~ n*0(-4).

Here O(n) denotes the bundle of degree n on the line

n = 0, ° = °0 • This gives a volume form on the surface F:

dV = d OJ\ d n/\ do/\ dn

101 2

We can introduce complex coordinates on
-1

F=n (0):

n = n(O) = -a, ° =
2 -E:b

0(0) = Aa e
-2 -E:b

= a e (M =
A '

-2 -2a a ).
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Then

. .-
-=-A n 0R - aa = 2R - sRb - R + anA n -

0

since A a) b, (8.19) K~hlerso Re(RA -a = we can write in

form:

g = (2R dn + adn - R do) (2R dn + adn - R do)
- n 0

n 0

(1 2 -
(8.22)+ + Rs) dndn

The volume of (8.22) is

This defines the conformal factor

from (8.20), we get the metric

2(1+sR) - - 8R [
g = R dx·dx + l+Rs dT

2R- l(1 + RS)-l.

XldX2-X2dXl]2+ .
2R (R+X3)

Then

If we put 1
s = 2m and multiply with m we obtain the

Taub-NUT metric in standard form:

g = V
- -1 2di . dx + V (d(4mT) + A)

Remark (8.23). Note that the line bundle M gives the

monopole on R3 with Higgs field

1
V =

R



9. Summary

We have shown that the motions of the symmetric top

Generate a self-dual Einstein metric with cosmological

constant -12:

56.

1
g =

224 I+ p (1 +m p ) 023
1+m2 p2

2
m =

One could try to look for the Einstein metric generated by

the null geodesics of an asymmetric top

Then we do not have the Killing vector field K4 and n3

is no longer conserved, but the angular momentum m in

space is still conserved.

map

given by

We can therefore consider the

where n is a point on the conic

Then, the null geodesics through a point A E SL(2,~) are



L: I (A) .. z.z. = 0
1,j 1J 1 J

where I (A) is the syrrunetric matrix

-1
0I l -1 OT0 . I 2A -1 A

0 I 3

57.

0A E SO(3,~) corresponds to A. If the moments of inertia

are all different, the orbit {I(A) I A E SL(2,~)} of conics

is 3-dimensional. It should be possible to model the space

of null geodesics on F 2 using the map TI above. If

I l = I 2, the orbit of conics is 2-dimensional and consists

of a family of conics that meet the conic

in two points to second order.

twistor space on the quadric

This suggests to model the

which is a double covering of F 2 branched over the conic

CO. This is, of course, exactly what we have done.

One could also try to find Einstein metrics without

reference to the Lebrun Construction: We have described

the condition (4.8) for a line bundle z over a neighbour-

hood S of the quadric to be a twistor space. In order

to obtain an Einstein solution we need a twisted l-form

e E HO (Z, Ql ~ K-~) (2.1).

Lemma: Let TI be the projection of the bundle z + S.

Then the canonical bundle K of Z satisfies:



Proof: We have the exact sequence

o + n*Z + TZ + n*TS + 0

giving

-1K - n*K S ~ n*Z .

Now, ~ xW = 0(-2,-2) so
1 1

-~ kK - n*Z2 ~ n* 0(1,1).

Suppose ~2 is the transition function for Z and

let us represent 8 by the two forms:

58.

Then (8
1,8 2)

is a l-form with values in K-~ if

on the overlap. This gives the conditions:

(9.1)

Example (9.,2). Let Z = 0 (2, -2) • Then
222

~ = n /r; • If

we put h 1 = 0 = h 2, g 1 = A = g 2 and f 1 =0,

satisfies (9.1). We have

8 = ode, + Adn (9.3)



59.

and

e /\ de = 1\.dr; /\ dn r; do

so (0(2,2) ,e) gives an Einstein metric with cosmological

constant 1\..

We will briefly compare (9.2) with example (2.2) and

the mini-twistor considerations in [16J and in Chapter III:

The quadric ]Pl x ]?l is the mini-twistor space of SL(2,~)

(or PSL (2 ,~)). Null geodesics in SL(2,~) are given by

the J'punctured" projective tangent bundle of ]?l x ]?l

in the following way: Take a point x and a direction

The plane sections of ]?l X]?l passing

through x in the direction define a null geodesic in

SL (2 I ~) • The directions at x along the two complex lines

of the ruling of ]?l x]?l are obtained from the intersection

with the tangent plane at x. This explains the

"puncturing". Now, we also have

P(ToP l X]?l)) == P(0(2) ED 0(2)) == P(0(2,-2) ED 1)

which should be compared with (9.2). In (2.2) we described

the twistor space of null geodesics for SL(2,~) with

canonical metric as

Projectlllg onto Ll x L2 we get a fibration where the

fibre over (A,B) is the line passing through A, B

except the points A and B. If (°1,°2 ) are coordinates

along the line described in relation to (r; ,n) and
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(lis, lin) on Ll x L2, then

2

°2 = ~2 °1 .

Furthermore, the standard twisted I-form

(9.2) define the standard Einstein metrics on ~4,

H4 if A = 0,1 or -1.

gives (9.3). Hence the twistor space and the form in

or

Finally, from another point of view: The dilations in

R 4 may be complexified to give a

space lP3\(Ll u L2) of R 4\{0}.

~* action on the twistor

The orbits of this action

are the fibres of the projection onto Ll x L2• Of course,

~4\{ O} modulo dilations is the 3 sphere (or lHIP 3).



Chapter II

Eguchi-Hanson Metrics with Cosrnolosical Constant

1. Introduction.

Using twistor theoretical methods we obtained

in Chapter I a vacuma solution of the form

where (01'02'03) is a basis of left invariant I-forms

on SU(2) satisfying dOi = SijkOj h ok' Making the

substitution R = r-2, m = -a we get

61.

2 -1 2 2 2 2 2
ds = (dr - ar o 3) + r (0 1 + o 2 + o 3) (1. 1)

In this chapter we look for Einstein solutions of the

form

(d )2 2( 2 2 + 0 2)
r - go 3 + r o 1 + °2 3 (1. 2)

where g is a function depending only on r. We obtain a

solution, iff

2 -2 2 4 ~
g(r) = (a r + b r) . (1. 3)

The work of Belinskii et ale [6J is used to show that

the metric (1.1) - corresponding to b = 0 - is the Eguchi-

Hanson I solution. When a = 0:

(1. 4)

This is seen to be the Pseudo Fubini Study metric with

cosmological constant A = _6b 2• We show the solution is a

Kahler metric. After a change of coordinates we realise that

the solution naturally contains the four metrics: Eguchi-Hanson

I, (II) plus (Pseudo) Fubini Study. By adjusting the

parameters a2propriately the superposition Eguchi-Hanson II
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2. The Einstein solution

The metric (1.2) is diagonalized by the frame

o
e = dr - g03

(2.1)

ro.
1.

i = 1,2,3

The connection forms are determined by the equations

dei
+ w~ II e j = 0

J

w~ = -w~
J 1.

We get

0 -1 1 -2 2
wI = -r e - r ge

0 -1 2
+

-2 1
w2 = -r e r ge

0 -1 ~ eO -1 3w3 = r - r edr

wI -2 0
+

-1 3= r ge r e2

2 -2 2
+

-1 1w
3 = r ge r e

1 -2 1 -1 2w
3 = r ge - r e

The curvature forms

R~ i i k= dw. + w
k

II w.
J J J

become

RO -4g(g ~)[eO 1 2 e 3 J= r - r II e - e II1

R
O -4g(g ~) [ 0 2 1 3= r - r dr e II e + e II e J2

(2.2)

() 4 2 d 2gR = r - (-r g
3 dr2

2
r 2 (ddar) da) 0 3.=..2. + rg ~ e II e

(2.3)
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R
1 -4 2 1 2 -4 ~ 0 3= -4r g e 1\ e + 2r g(g-r dr)e 1\ e2

R
2 -4g(g-r ~) [ 2 3 0 1= r 1\ e - e 1\ e ]
3 dr e

R1 -4 ~ 0 2 1 3= r g(g-r dr)[e 1\ e + e 1\ e ]
3

If we put

(2.3)

we may write the Einstein equations with cosmological

constant l\. as

k
Ri k j = l\. 0.. •

J.J

These ten equations reduce to the following two

2 2
r2(~)

2
~ 2 4r g £...:l. + + rg - 2g = -r l\.

dr2 dr dr

~+ g2 1 4rg = -'2 r l\.dr

(2.4)

Make the substitution f 2= g

I
2 d 2f

+ r
df 4f -2 l\. 4r -2 dr - = r

dr

II 2r df + 4f -2 l\. 4
dr = r

Subtract equation II from equation I:

2 d 2f df 8.f 0r -2 - r dr - = .
dr

Substitute sr = e

d 2f df
- 2 - 8f = 0

ds2 ds

The solution of (2.5) is

(2.5)



2 -2 2 4 ~
Finally, substituting g(r) = (a r + b r) into

(2.4) gives a solution if n = -6b2 • Hence,

2 2 -2 2 4 ~ 2 2 2 2 2
ds = (dr - (a r + b r ) 03) + r (01 + 02 + 03)

(2.6)

is a solution to Einsteins equations with cosmological

constant -6b2•

In order to find the Weyl tensor we proceed as

follows: Define a basis of (anti) self-dual 2-forms

Al 0 1 ± 2
A

3= e A e e e±

A
2 0 2 1 e 3 (2.7)= e A e + e A
±

A3 0 3 ± 1
A

2= e A e e e±

Now, consider the Riemann curvature tensor as a

symmetric linear map [4, 26J

R :

by

1 Ri j k A e~= 2" kR,e

where n; denotes the (anti) self-dual two forms.

Then in the bases (2.7),.
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and the Weyl tensor W = w+ + W is given by

w+ 1 - 1 Trace C= A - "3 Trace A, W = C - "3 .

We get:

2b2

, w+ = 2b 2

-4b2

4a2

~
4a2

W = -6
r 2-8a

-6
r

Note, the curvature is of Petrov type D. Also, there will

be a singularity at r = 0 in the metric (if this is in the

allowed coordinate range).
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3. b = 0: The Eguchi-Hanson I metric

We shall prove that in the limit b = 0 we get the

Eguchi-Hanson I metric: In [6J Belinskii et al look

for vacuum solutions of the form

(3.1)

with A, B,C functions of 11 and Pi = 20 ..
1.

Let

(3.2)

and cyclically for Band C. Then the connection

I-forms of (3.1) in the basis (ABCdll,AP1,BP2,CP3) are

self dual (and thereby (3.1) a vacuum solution [10J)if

dW
1

dll = w2w3

and cyclically. (3.2) are the Euler equations for an

asymmetrical top, and the general solution is

A2 = c 1 · cnu·dnu/ s nu

B2 = c 1 · cnu/sn u dnu (3.3)

c2 = c 1 · dnuj/ sriu cnu

where u = c 2 - C 111 and sn,cn,dn are the Jacobian elliptic

functions with modulus k.

Now, if b = 0 we have the vacuum solution (1.1).

Using Euler angles we may write

201 = cos~d8 + sin~sined¢

202 = -sin~de + cos~sined¢

20~ = d~ + cosed¢
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Then (1.1) can be written

2
+ ~ (de 2 + sin28d¢2)

2 2 -1 2
+ cos8d¢ - 2~(~ + :r2) dr) .

Define a function H(r) by

4 2-1
dH(r) = 2ar(r + a) dr

and put

A A

tjJ = tjJ - H(r) , P3 = dtjJ + cos.sde •

Then (3.4) becomes

(3.4)

4 4 2 -1 2 r 2 2 2 1 4 2 2
ds2 = r (r + a) dr + If(P I + P2 ) + ---2(r + a )P3 (3.5)

4r

For (3.5) to be on the form (3.1) we must have

2 2 r 2
A = B = 4

giving

f
8rdr = Co ± n

r 4 + a 2

where Co is a constant of integration. Thus, we get

a a"4 . cot(c2 - 4n)

This coincides with (3.3) when k = 0 and c i
a= 4· Finally,

when the modulus k is zero the solution of Belinskii et al .

..; _ .... 1-.. _ "1::"1_•• _,- .! "'1' - -- - - --



68.

4. a = 0: The Pseudo Fubini-Study Metric

When a = 0 our solution becomes the Pseudo Fubini

Study Metric

A < O.

R2
(0

2 + 0
2 )

+ 1 2
1 + !l R2

6

To see this we write (1.4) as follows:

( 4. 1)

(4.2)

Let us define a function K(r) by

-1
dK(r) = 2b(1 + b 2r2) dr

and put

~ = 1jJ - K (r) , 20 3 = d~ + cos Ode •

Then (4.2) takes the form

(4.3)

Making the substitution

2A = -6b

turns (4.3) into (4.1). The pseudo Fubini Study metric

2
is defined on the open unit ball in ~ and it is (up to

holomorphic isometry) the only simply connected complete

Kahler manifold of constant negative holomorphic sectional

curvature. It can be represented as the Hermitian symmetric
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5. The Kahler Structure

We define an almost complex structure by demanding

that

o 3
w = e + ie1

are (1,0) forms.

2 . 1
w = e - le2

o 3Here (e , .•. ,e ) is the frame (2.1) .

Then, the metric (1.2) takes the hermitian form

The associated fundamental form is

n = .!(w
2 1

and we see easily that dn = O. Thus, we have an almost

Kahler metric. We want to prove that the complex

structure is involutive: The ideal generated by w1,w2

has to be closed under extermr differentiation [4,31J,

that is, we need I-forms a,S,y,o such that

It is easily seen that

a. = (g - ir)-1 ~ . dr - Lo 3dr

S 20 2 + 2r-1
qo 1=

0 -1
2io 3= r dr +

y = 0

(5.1)
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6. Singularities

"
We have seen that the Einstein-Kahler metric

2 2 -2 2 4 ~ 2 2 2 2 2
ds = (dr - (a r + b r ) 03) + r (01 + 02 + 03)

is a "nonlinear superposition" of the Eguchi-Hanson I

and the Pseudo Fubini-Study metrics with Weyl curvature

the "linear superposition" of the components. If we

proceed as in paragraphs 3 and 4; that is, defining a

function G(r) by

a 2 b2 4 ~ 2 b 2r4 r2-1
dG () ( _r_) (~+ +) d

r = 4r2 + 4 4r 2 -4- 4"" r

and putting ~ = ~ - G(r), 203 = d~ + cos8d¢, then our

solution becomes

ds2 = fl-1d r2 + r 2(02 2 2 2
1 + °2 ) + r fl0 3

2 (6.1)a
+ .f}. 2fl = 1 + 4' r where A > O.

r 6

Obviously, the metric has the four Killing vector fields

(K
1

, ... ,K 4) where Ki are the right invariant vector

fields corresponding to ai' i = 1,2,3, and K4 is the

left invariant vector field dual to a 3. Also, it becomes

clear that we get Einstein-Kahler metrics if we change

the signs:

(6.2)a
2

A r2
fl=1±4'±'6 ' A>O.

r

Indeed, using different methods these solutions were found

spherically symmetric Einstein-Kahler

b. = 1 - ~ r
2

gives the FUbini-Study

[12] to be the unique

metrics with A term.

a 2
metric and b. = 1 - r 4 corresponds to the Eguchi-Hanson II

solution (compare section 3: The change of sign turns the

spherical functions into the hyperbolic functions corresponding



71.

The metrics have apparant singularities where 6 = 0,

but we shall see that in some cases the parameter a 2 can

be adjusted to obtain removable singularities. Let us

first review briefly the notion of bolts and nuts [llJ :

Consider a Riemannian 4-manifold M with a Killing vector

field K. Let Ft: M + M be the flow of K. The flow

has a fixed point where K = O. At a fixed point p we

have an isometry F* : T M + T M.
t P P

The Lie algebra of

0(4) consists of antisymmetric 4 x 4 matrices. Such

matrices can have rank 0,2 or 4. In the case where F*
t

is generated by a matrix of rank 2 it has the canonical form

F* =t

1

o

o

o

o

1

o

o

o

o

cos kt

-sin kt

o

o

sin kt

cos kt

(the matrix in the Lie algebra generating F* has thet

canonical form

0 0 0 0

0 0 0 0

0 0 0 k

0 0 -k 0

where k is the non-zero skew eigenvalue).

The flow commutes with the exponential map

Ft 0 exp X = exp(Ft(X)) v X E T M.
P

Thus, the flow is periodic with period 2 k- l and the

image under the exponential map of the 2-dimensional subspace
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of TpM which is left unchanged by Ft is a 2-dimensional

totally geodesic submanifold of fixed points. Such a

2-manifold of fixed points is called a bolt. In the case

where F* is generated by a matrix of rank 4 the fixedt

point is isolated and is called a nut.

Now, let us examine a metric of the form

ds 2 dx2 2 2 2 2 2 2= + II(X)OI + I 2(X)02 + I 3(X)03·

This metric has an SU(2) isometry group acting transitively

on 3-surfaces (it is a Bianchi type IX metric) • The mani-

fold described by this metric is regular provided the functions

I. are finite and non-singular at finite proper distance x.
J

However, the manifold can be regular even in the presence of

apparent singularities. Consider singularities occurring

at x = o. Assume that near x = 0 we have

I 2 = I 2 and finiteI 2

I 2 2 2 integer.= n x , n an3

Thus, I 3 vanishes and therefore the corresponding Killing

vector will have zero length at x = o. Since I 2 = I 2
I 2

we have the canonical S2 metric ~ (de 2 + sin2 e d¢ 2) for

2 2
the (IIO I +

(e ,¢), the

part of the metric, while at constant

2 2+ I 303) part looks like

222dx + nx dt/J •

If the range of t/J is adjusted so that 0 ~ ~ ~ 2~, the

apparent singularity of x = 0 is just a coordinate



73.

singularity of the polar coordinate system in m2 at the

origin. The singularity can be removed by using Cartesian

coordinates. The topology is locally m2 x 8 2 and the

m2 shrinks to a point on 8 2 as x + O. This 8 2 is

the fixed surface - the bolt - of the Killing vector

field. We therefore say that the metric has a removable

bolt singularity at x = O.

Example. The Eguchi-Hanson II metric

ds 2 ( a
2)

-1 2 2 2 2 2 [ 2) 2= 1 - r 4 dr + r (01 + 02) + r 1 - ;4 03

has an apparent singularity when 2a • Put

f; ~ r
2[1- ::]

Then with fixed 8 and ~ and near r 4 = a 2 the metric

behaves as

Thus, 4 2 is a removable bolt singularity iffr = a

0 ~ ljJ ~ 2TI. This makes the surfaces of constant r > ~a

into mP 3 8
3
/~. The Killing vector field d has= aijj a

bolt on the 2-sphere ~ with period 2TI.r = a

We shall now return to the apparent singularities of

our Eguchi-Hanson metrics with cosmological constant:
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I. Eguchi Hanson II + Pseudo Fubini Study.

If

A > 0, n ;;::: 3 ,

then the metric is complete and defined on:

1

r E [( 2 (i- 2) ) 2: , 00 [

(8,¢) E [O,n] x [0,2n]

1jJ E [0, ±2!.] •
n

The metric has a removeable bolt singularity at
.!

r = (2(i- 2))
2 The surfaces r = constant are topologically

s3/~ , where~ is the cyclic group of order n.
n n

II. Eguchi Hanson II + Fubini Study

If

t:, = 1 _ 8

311.
2

-4
r

A 2
- "6 r A > 0 ,

then the metric is defined on

r E

(8,¢) E [O,n] x [0,2n]

1jJ E [0, 4n] •
n

The metric has a removable bolt singularity at
1 .!

2 + (12) 2: 2
but a conical singularity at r = ( A ).

surfaces r = constant are topologically s3.

r =

The
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III. Eguchi-Hanson I + Fubini Study

If

4(n+2)2 -4 A 2
6 = 1 + (n-1)r - 6 r

3A 2

then the metric is defined on

(8,¢) E [O,n] x [0,2n]

"l/! E [0, 4n]
n

A > 0, n ~ 2 ,

The metric has a removeable bolt singularity at
.!

r -_ (2 (~+2) ) 2 • Th fl' 111l e sur aces r = constant are topo oglca y

S3/~ . The solution is singular at r = O.
n

IV. Eguchi-Hanson I + Pseudo Fubini Study

This is the metric (6.1) which is singular at

r = O.

Let us give some details in case I:

The metric

2 2 A r 2) -1 2 2 2 2 r 2(1 a 2 A 2 2
ds (1 a dr= - 4 + - + r (° 1

+ °2)+ --+- r ) 036 4 6
r r

A > 0, has apparent singularities when

Put

A 2
+ - r

6
= 0 . (6 .3)

2 2 a 2 A 2
~ = r (1 - 4 + 6 r )

r

and assume r = a is a solution of (6.3) and
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(6.4)

Then near r = a at constant (8,¢) the metric looks like

giving a bolt if 0 ~ n~ ~ 4TI. From (6.3) and (6.4) we

get

2 2(n-2)
a = 1\

2
2

4(n-2) (n+ 1 )a =
31\2

so we must have n ~ 3. Put

(6.5)

2
R = r

Then from (6.3) and (6.5) we have the cubic equation:

The discriminant of the quadratic factor is

D = 1 2 (n+ 1) (3 -n)

1\2

This leads to a complete metric when

(6.6)

r ~

!
(2 (n-2»

1\

-16
31\2

n ~ 3 •

n=3
n>3

2
-4 (n-2) (n+1)

31\2
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--4- + 6 a = n E ~

a
(6 .4)
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Then near r = a at constant (8,¢) the metric looks like

~ d~2 + t ~2d~2 ,
n

giving a bolt if 0 ~ n~ ~ 4n. From (6.3) and (6.4) we

get

2 2(n-2)
a =

11.

2 24(n-2) (n+ 1 )a =
311.

2

so we must have n ~ 3. Put

2
R = r

(6.5)

Then from (6.3) and (6.5) we have the cubic equation:

The discriminant of the quadratic factor is

(6.6)

D =
12(n+1) (3-n)

11.
2

This leads to a complete metric when

r ~

].

(2(n-2»2 i
11.

n ~ 3 .

n=3

-16

311.
2

n>3

2-4 (n-2) (n+1)

311. 2



Remarks (6.7)

1) Let M be a complex manifold with Hermitian structure

77.

g. In local coordinates (z) we have
\)

and the Kahler form

w

M is a Kahler manifold iff dw = O. This is equivalent

to the existence locally of a real valued COO-function K

- the Kahler potential - such that

Let F be the curvature on a Kahler manifold. Then the

Ricci form of the Hermitian metric is the (1,1) form Ric

given by

Ric = i Trace F.

The metric is a Kahler-Einstein metric iff the Ricci form

is a multiple of the Kahler form.

is given by

Locally the curvature

Thus, a Kahler-Einstein metric can be obtained by solving

the following equation for the Kahler potential

(6.8)

where A is the cosmological constant (see [9J for a treat-

ment of these formulas). Equation (6.8) was solved in [12J
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(when dim~M = 2) under the assumption that K was

spherically symmetrical, i.e. K was assumed to be a

This leads to

our Eguchi-Hanson metrics with cosmological constant.

2) In [8J Einstein-K~hler metrics are also obtained in

terms of the K~hler potential. Here, the manifold is

given as the total space of a line bundle L over a

K~hler manifold X. L is equipped with a Hermitian

metric and the K~hler potential is given by

K(z ,(; ) = ¢ ( z ) + U 0 a (z ,z) lc I2

where ¢ is the Kahler potential on X (z a coordinate

on X), a(z,z) Isl 2 is the Hermitian norm (s is a fibre

coordinate) and U is a function U(x) of a non-negative

variable. U has to satisfy certain conditions to ensure

that the metric is positively definite and complete. In

this way Calabi obtains the Eguchi-Hanson metric on T'RJP l =

the total space of the bundle 0(-2) +~l. It is not

difficult to see that the topology of the Eguchi-Hanson

metric is that of 0(±2): The bundles O(±n) are classi­

fied topologically by the 81-bundles over 82, i.e. by the

lens spaces

0 + 8 1 + 8
3 / ?l + 8 2 + O.n

Here, ~ acts on 8 3
c ~2 by

.27T k .27Tk1- 1-

(ZI'Z2) (e n n
Z2) ;-7 ZI' e

We introduce the Euler angles on 8 3
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8 (~ (tjJ + </»)z1 = cos 2" exp 2

sin 8 (~ (tjJ - </»)z2 = "2 exp 2

(8,</» E: [O,TI] x [O,2TI], tjJ E: [O,4TI] .

Then tjJ is a coordinate along the fibre of the Hopf

fibration. If we identify tjJ modulo Zb we obtain

coordinates on the lense space s3/Zh • This also shows

that the supposition Eguchi-Hanson II + Pseudo Fubini

Study is topologically 0 (±n); n ;::: 3. It is tempting to

conjecture thatthe complex manifold is equal to O(-n) -

the approach by Calabi might give this.

Now, let us give a geometrical explanation as to why

we must have n;::: 3 : Let C be the zero section of O(-n)

and let K be the canonical bundle of the total space O(-n).

From the adjunction formula we get

K • C = - c2 - 2 = n - 2.

Moreover,

C1(K) = -c1 (O(-n)) = -i Trace F = -Ric

and since the metric is Einstein-K~hlerwith negative cos-

mological constant we have

Ric = Aw, A < O.

Also, the K~hler form evaluated on the zero section C ~ F 1

is positive

f w > O.

F 1
Thus
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n - 2 = K . S = f c1 (K) = -Af w > 0 .
C ]PI

Hence, n ~ 3.

Remark: The argument above only involves the fact that the

zero section is a complex submanifold.
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Chapter III

Einstein-Weyl Spaces and (l,n)-eurves in the Quadric Surface

1. Introduction

In this chapter we study a relation

between 3-dimensional differential geometry and complex

surfaces containing rational curves (with self-intersection

number 2). Since this is analogous to the twistor corres-

pondence in dimension 4 the complex surface is often referred

to as a mini twistor space. The geometry of the rational

curves solves the Einstein-Weyl equations in dimension 3:

The twistor theoretical approach to 3-dimensional

Einstein-Weyl spaces was initiated by Hitchin in [16J.

In [18J Jones studies mini twistors by taking twistor spaces

modulo vector fields induced by conformal Killing vector

fields on self-dual space times. Hitchin gave two examples

of mini twistor spaces: The singular cone and the non-singular

quadr ic in a:JP 3 • The associated Einstein-Weyl spaces are

the flat complexified Euclidean structure on ~3 and a

Riemannian 3-space of constant curvature. Later [19J Jones

and Tod found other examples of Einstein-Weyl geometries.

However, their results were not obtained via the mini

twistor space. Also, Tod proved [27J - by solving the

equations directly - that the Berger sphere is an Einstein-

Weyl space.



82.

In Section 2 we recall the approach by Hitchin and

describe a result (which explains why it is a bit difficult

to obtain new examples of mini twistor spaces) showing that

the only examples where the mini-twistor spaces are open

sets in a compact surface are the two examples given by

Hitchin. Following the ideas in [16J we construct in

Section 3 a series of new mini twistor spaces by taking the

n-fold covering of a neighbourhood of a (l,n)-curve in a

quadric surface and branched along the curve. In Section 4

we compute the Einstein-Weyl geometry with special emphasis

on the n = 2 case. Finally, in Section 5, we discuss how

these Einstein-Weyl spaces appear as the conformal infinity

of an Einstein solution with cosmological constant -1 and

we give hints as to how one could find the mini twistor space

of the Berger sphere.
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2. Hitchin's Mini Twistors and the Einstein-Weyl Equations.

We shall give a brief summary of the work of Hitchin

[16J on the holomorphic approach to the Einstein-Weyl

equations. Consider a mini twistor space: A complex surface

S containing a rational curve with normal bundle N = 0(2).

theorem: SinceAs in §2 Chapter I we use Kodaira's

031HoP
1

, 0 (N)) = e-', HoPI' 0 (N)) = 0 and 1HoP
1

, 0 (N ~ N*)) = 0

we have a complete family of rational curves with normal

bundle 0(2) parametrized by a complex 3-manifold W.

Furthermore, there is a natural isomorphism

T W
x

o= HoP, 0 (N) ) •
x

We obtain a conformal structure on W by defining the null

cone in TWas the set of sections which vanish at some
x

point to second order. A section of 0(2) has the form

Thus, the vanishing condition

quadratic.

2b -4ac = 0 is

We also get a projective structure: A direction at a

point x E W corresponds to a I-dimensional space of sections

of 0(2) which all vanish at two points z,z'. There is a

I-dimensional family of projective lines passing through

z, z ' • This gives a curve in W through x in the given

direction. In this way we obtain distinguished curves in

W which are the geodesics of a projective connection. If

z = z' we consider the family of lines which meet F x

tangentially. The corresponding geodesic in W starts

off in a null direction and clearly remains null. Since W
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is 3-dimensional this enables Hitchin to show that a unique

affine connection V exists within the projective equiva-

lence class compatible with the conformal structure (in the

sense that Vg = w ~ g for some I-form w where g is any

representative metric in the conformal class - i.e. the

conformal structure is preserved by V). A space with such

a geometry (conformal structure and compatibLe affine

connection) is called a Weyl space.

We have more structure on a Weyl space obtained from

a mini twistor space:

lines passing through

Fix a point Z E: lP c s.x o
Z give rise to a 2-surface

All the

'IT in
Z

W. A direction tangent to 'IT z at Xo corresponds to a

pair of points (z',z) in lPx• The geodesic in W
o

parametrizes the lines in S passing through z and z'.

Then it is obvious that this geodesic is contained in 'IT •z

Therefore 'IT z is totally geodesic in W. Moreover, when

z and z' coincide, we obtain a null direction tangent to

and a null geodesic in 'IT
Z

through x. Hitchin shows

that this family of totally geodesic null surfaces are

preserved by the connection V (the connection could

possibly have torsion, so a priori the surfaces being

totally geodesic only ensures the vanishing of the symmetric

part of the second fundamental form). Finally, Hitchin

identifies the integrability conditions for the distribution

defined by these totally geodesic null surfaces:

i) V has vanishing torsion.

ii) The pair (V, conformal structure) satisfies the

Einstein Weyl equations:
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1J
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(2. 1 )

(the trace-free symmetric part of the Ricci tensor of the

connection vanishes) •

conformal class.

Here g.. is any metric in the
1J

There are two main examples of this mini twistor corres-

pondence: Firstly, let the complex surface be ~1' the

tangent space of the Riemann sphere. The lines are the

sections of TIP 1•
gives a section

The parameter space is ~3:

where n is a fibre cooridnate and s an affine coordinate

The geodesics in ~3 are straight lines and the

conformal structure is represented by the complexified

Euclidean metric on ~3:

The unique Weyl connection mentioned above is obviously the

Levi Civita connection of this Euclidean metric.

isomorphic to the cone

minus the vertex (0,0,0,1).

~1 is

Secondly, there is the quadric ]PI x]Pl with its

plane sections. We met this example in Chapter I and we

will discuss it again later. These mini twistor spaces

have been studied extensively from different points of view

in [3, 17, 18 ] • It is not easy to obtain more examples

as the following proposition shows.
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A compact surface which contains a

mini twistor space as an open set is either the cone or the

quadric.

Proof. The proof of the proposition is in three parts:

First, it is shown that S is algebraic. Secondly, we

obtain a vanishing result from the fact that we know that

S is a K~hler surface. Finally, this vanishing result

implies that the curves in S belong to a linear system

and we obtain an inj ective map of degree 2 into JP3 :

According to a theorem of Kodaira [5, 21J a compact

surface S is algebraic iff there exists a line bundle L

with self-intersection number 2.

on S with 2
C 1 (L) > O. Now, S contains a curve JPo

We 1et L = [JP0]' the

line bundle given by the divisor JPO• The main idea in

Kodaira's theorem is to prove that Ln has sufficiently

many sections to give an imbedding in projective space.

This follows from the Riemann-Roch formula:

expressing the Euler charactersitic X(Ln) of the holo­

morphic line bundle Ln in terms of the Chern character

ch(Ln) of Ln and the Todd class td(TS) of TS. We

have

where

and
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ch(Ln)
c (Ln)2

= 1 + c 1 (Ln) + 1 +
2

c 1 (S)
2

td(TS) = 1 + +
c 1 (S) +c 2 (S)

+2 12 ... .
Furthermore by Serre duality

where K is the canonical bundle.

we have by the adjunction formula:

On the lines lPxeS

2• lP - JP = -2 -2 == -4,x x

h 1 (L- n n K) l.IP
x

so t e bund e ~ has no holomorphic sections.

Then since the surface S contains a mini twistor space

as an open set we have

Then the Riemann Roch formula gives

+ •••

Now, S is algebraic and therefore a K~hler manifold.

This gives

but there is no holomorphic I-forms on S: Again it is

enough to consider restrictions to the lines lPx

O + N* + T*S ~x + T~x + 0,

We have
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but N* ~ 0(-2) - T~ so T*SI~ has no sections.x x
Hence, HI(S,O) - HO,I(S) = 0.

Then, let us consider the short exact sequence

° + ° + O(L) + ~ (L) + 0.

°
From the vanishing result above we get

since ~ (L) = 0(2). Therefore, dim HO(S,O(L» = 4,

°and the curves belong to a linear system. Take a basis

(PO, ••• ,P3) in HO(S,O(L)) and define a map

x. + ( Po ( x) , ••• , P3 ( x)) •

Then F is well defined because not all sections vanish at

a point in S - we know, in fact, that there is only a 2-

parameter family TI passing through each point Z E S (by
Z

blowing up S at z we obtain curves with normal bundle

0(1) and we know, from Kodaira's theorem, that the complete

family of such curves is 2-dimensional). Similar arguments

show that F is injective. Finally,

deg F(S) = the self-intersection number of F O

= 2

so F(S) is contained in either the quadric or the singular

cone.

In the next section, however, we shall show that it is

possible to construct new mini twistor spaces modelled on the

quadric and a curve of bideqree (l,n).
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3. Mini Twistor Spaces and (l,n)-curves

In [16J Hitchin describes a way to obtain a mini twistor

space from a surface S containing a rational curve C with

normal bundle {) (2 n) We construct the n-fold covering S

of a neighbourhood of C and branched along C. The branch

locus C is just a copy of C but the normal bundle of C

is 0(2). Then the pair (8, C) is a mini twistor space.

Consider now the quadric lP 1 x lP 1 • The line bundles

on the quadric are given by the group HI (PI x lP 1' 0*) • We

have the exact cohomology sequence

arising from the exact sequence of sheaves

o + ~ + a exg2TIi 0* + O.

By the Kfinneth formula we get

Therefore H1
0l? 1 x JPl,O*) ~ 2Z $ za , so, since JP 1 x JP 1

is algebraic, divisors modulo linear equivalence are given

uniquely by a pair of integers - the bidegree.

if we put

A = {O} x JP 1 and B = JP 1 x { 0 }

then we can represent the divisors on the form

In fact,

D = pA + qB; (p,c,) E 2Z x 2Z •
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Proposition (3.1). Let C be a non-singular curve in

JE\ x JP1 of bidegree (1 ,n) •

has self-intersection number

Proof: We may write

C = A + n B •

Then,

C
2 = (A + nB)2

= 2n

Then C is rational and

2C = 2n.

since A
2 = 0 = B2 and A· B = B • A = 1.

We can compute the genus from the adjunction formula

2g - 2 = K- • C + C2
-JP

1
>9P

1

= (-2A - 2B) • (A + nB) + 2n

= -2 •

Thus, g = 0 so C';; JP 1 •

Now, it is clear how we obtain the mini twistor spaces:

We take a curve in JP 1 x JP 1 of bidgree (1 ,n); n ~ 1. Then

the mini twistor space is an n-fold covering Sn of some

neighbourhood of the curve branched along the curve. The

branch locus JP 0 is a rational curve in S with self­
n

intersection number 2, so from Kodaira's theorem we know

that a 3-parameter family of such curves exists near JP O•

Since the homology class of a (l,n)-curve is not divisible

by n we can't extend this local construction along the curve to

work globally on the quadric [2J.
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We are going to describe the Weyl geometry arising

from these mini twistor spaces so we will need a more

explicit treatment of the holomorphic curves: Let (s,n)

be affine coordinates on JP I x JP I •

a rational function of degree n:

Consider the graph of

p (s) a sn + n-l (3. 2)= an_Is + ...

: :: J

n

Q(s) = b sn + b sn-l + ...n n-l

This is a curve of bidegree (l,n) and the family of such

functions is parametrized by JP 2n+l • The curve is non-

singular iff the polynomials P and Q have no common

factor, i.e. iff the resultant R of P and Q does not

vanish.

given by

The resultant is the polynomial of degree 2n

a •
n

R = det

. . . . . . .

(3.3)
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There are n rows of a's and n rows of b's in the

matrix and the rows are filled out with zeros. Hence the space

of non-singular {l,n)-curves is parametrized by F
2n+l

minus the hypersurface R = a. Now, we fix a (l,n) curve

(3.4)

and consider the n-fold cover Sn branched along Fa:

S
n

A curve in Sn intersecting Fa transversely is projected onto

a curve that meets Fa to the n'th order. Therefore we may

work on the quadric and we shall describe the 3-parameter

family of curves in Sn by their projections in F I xF I :

Since the curves in Sn have self-intersection number 2, we

consider those curves of the form in (3.2) that meet the curve

in (3.4) in two points to the nlth order. We have
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and we want to write

(3.5)

Thus

i= 1: (1: c (k, 0 ) l;
i 2k+£=i

where c(k,£) = [~;£)c~-k-£ ci C~i (~i£) is the multi-

nomial coeffient

n!
k!£! (n-k-£)! •

Hence

a = 1: C(k,£)i i = I, ••• , nn-i 2k+£=n-i

b = 1: C(k,£)i i = O, .•• ,n-ln-i 2k+£=2n-i
(3.6)

b = a +o n
1: c(k,£)

2k+£=n

If follows that this 3-dimensional space W
n

of special

(l,n)-curves is contained in a "weighted" projective space

F(3,n): ~4 - 0 modulo the ~*-action:

n
(an ' cO'c 1 ' c 2 ) -+ (A an' A.c 0 ' A.c 1 ' AC 2) • (3.7)

The resultant R has homogeniety 2n2 and Wn is the

complement in F(3,n) of the hypersurface R = O.
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Examples:

1 ) Let n == 1. Then we are just considering the quadric

and the space PGL(2,~) of plane sections. From (3.6)

we get the following parametrization of the curves:

Thus the curves are given by

n == (3.8)

2) For n == 2 we get

a l == - 2cOc
1

a O == -c?-
O

b 1 == 2c1c2

b 2 == c 2
2

b O == a 2 + 2c
O

C2 + c 2
1

so we obtain the curves

n == (3.9).

Remark (3.10) • Since S is a n - 1 branched coveringn

with branch locus JPo we have an action of the cyclic group

?In on S with fixed point set JPO. Correspondingly:n

The Weyl space W_ of curves in S has an action of ?'.Z
--



which fixes the point 0 E Wn corresponding to F
O•

95.

Thus

we have Wn/~n = Wn and locally near o E W we have a
n

quotient singularity (~3 modulo a cyclic group of order

n) - we see this happening in (3.7) when Co = c
i

= c 2 = O.

Indeed, the ambiguity in (3.5), arising from the fact that

and A E ~ , gives the samen

(l,n) curve on the quadric, is a reflection of the covering

Wn -+ Wn •

Next we shall describe the geometry induced on a IIreal

slice ll of Wn by the lines in S
n
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4. The Einstein-Weyl Spaces

We shall now compute the conformal structure and

describe the geodesics on a real slice of the Weyl space.

We will mainly treat the case n = 2 but first we show how

to obtain the complex conformal structure for any n: We

know from (3.5) that the curves

n ( r;) = p(r;)
Q (r; )

satisfy the equation

!Jll
Q (r; )

(4. 1)

The tangent (an,cO,c~,c2) to a deformation gives a section

of the normal bundle of a curve - and therefore a tangent to

the Weyl space - by means of the equation

= Q(r;)p(i;)-Q(r;)p(r;)

Q(r;)2

The conformal structure is defined by the condition that

PQ - QP = 0 (4.2)

should have a "generic" double root: The polynomial in

(4.2) is of degree 2n. The possible roots of higher

order include the points of contact on the branch curve

~Je seek

however, the condition for the curves to meet to second

order away from the branch curve. From (4.1) we get
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PO - QP

Thus, the complex conformal structure is given by the con-

dition that the quadratic polynomial

(4.3)

should have a double root, i.e. by

(4.4)

where Dn is the discriminant of Fn•

All our discussion above on mini twistor theory has

been over the complex numbers. Before we begin to consider

some examples in more details,we will impose a real structure

on the geometry: Thus, we look for an antiholomorphic

involution of the mini twistor space. We want Tn

to define us a 3-parameter family of real curves in Wn

a real slice of Wn• Furthermore, Tn should be fix point

free so that there are no null vectors tangent to the real

slice; this will ensure that the conformal structure on

the real slice in Riemannian. We continue to work on the

quadric and we define for each n the LnvoLut.Lons

[

- 1 (-1) n]
Tn: (s', n ) -+ t ' n (4 • 5)
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There are other possible choices but the real structure

in (4.5) ensures that the branch curve n= sn is real.

((4.5) is also a natural generalization of the real

structure on ]?1 X]?1 - corresponding to n = 1 - we have

been working with in Chapter I).

is real iff

[-1]_(_l)n
I] --

~ nnT

Hence, a (l,n)-curve

(4.6) •

Example (4.7). Let n = 1. The lines are given by (3.8)

and they are real iff

Co = xl + iX2

c1 = -2ix4

c2 = xl - iX2

a 1 = x3 + ix4; x. EJR
1

(4.7)

The resultant (discriminant) (3.3) becomes

and on the real slice we have

(4. 9)

As mentioned earlier the plane sections of the quadric are

parametrized by PGL(2,~) where the determinant of a matrix

representing a plane section is given by the resultant (4.8).

The group SL(2,~) corresponds to R = 1 and is a double

covering



o + {±1} + SL(2,~) + PGL(2,~) + O.
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(4.10)

On the real slice (4.10) is just the covering of ~3 by

s3. Hence, our Weyl geometry is defined on ~3 - but

if we wish, we may lift the conformal structure and the

connection to the 3-sphere

Now, the quadric polynomial (4.3) becomes

(4.11)

and the conformal structure is therefore given by the

discriminant

On the real slice we get the conformal structure

(4.12)

where the a's are the left invariant I-forms on SU(2) ~ S3

(or SO(3) - ~3) given by

(4.12) is the standard conformal structure on S3.

Next, the real geodesics are obtained as follows:

We fix a point (s,n) on the quadric and consider all the

real geodesics passing through (s,n):
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(4.13)

{since the curves are real they will also pass through "the

complex conjugate point" T 1 (s,n)). The real and the

imaginary part of (4.13) define two hyperplanes in m4 •

They intersect in a 2-plane which intersect the 3-sphere in

a great circle - the geodesics of the canonical metric on

8 3• Hence, the unique Weyl connection is the Levi Civita

connection of the canonical metric on 8 3 •

Example (4.14). We consider now the case n = 2. The lines

are given by (3.9) and the resultant (3.3) takes the form

R = 1::,.2

} (4.15)

{notice that the resultant associated to a rational function

of degree 2

a 1: 2 + a 1s+aO2
n =

b 2 + b 1 s+bO2 s

is a quartic polynomial in the coefficients (a.,b.).
1 1

However, in the family (3.9) of special (1,2)-curves the

coefficients have homogeneity 2 - because the coordinates

ated resultant (4.15) gets homogeneity 8. Thus, it is

maybe not surprising that we can write where

has homogeneity 4 and it is possible that for a general n

we can write R = I::,.n; R has homogeneity 2n 2 and I::,. has

homogeneity 2n).
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Let us consider the complex 3-manifold

(4.16)

Then XC "corresponds to SL(2,(t)" in example (4.7) and

we have the covering of the space W2 of special (1,2)-curves:

o -+ 2Z 4 -+ XC -+ W2 -+ 0

·'ITk).-

where 2Z 4 = {e 2 Ik = 0,1,2,3} acts on XC by

(4.17)

(4.18)

i1!.k
(so ~(e 2 • (a2,cO'c1,c2)) = ~((a2,cO,cl,c2)))

The curves in (3.9) are real iff

This gives two real slices on XC

(4.19)

1)

(4.20)

Call this slice X.

2)
,-

Co = -).C
2

c 1 = iC1

2i Im~=
-2 + 2ic2C2c 1
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X and Y intersect in two points

o ~ = 1, Co = c 1 = c 2 = 0

When we consider the action of ~ 4 we get: ±1 acts on

X and Y but ±i maps X to Y and 0 to P. If

we put

c 2 = xl + iX2

c 1 = (1 - i)z

Re~= x 3 i x. E JR., z ElR
1

then X is given by

X
2 4 2 2 2x 3 + z + 2z (xl + x 2) = 1 .

(4.21)

(4.22)

Remark (4.23). In (3.10)we explained the identity

W2/~ 2 = W3 and how this covering is related to the

ambiguity in the choice of coordinates:

Thus we have the situation:

W2

+ ~2 (4.23)

XC -+ W2
~4

Now, let U be an open neighbourhood of 0 in the real

slice X such that P' U. Then fro'm the considerations

above we have the action of ~ on U - while ±i maps

points away from U. The action of -1 is



103.

(in complex coordinates this is given by

The point 0-(a2,cO'c l , C 2) -7 (a2,-cO'-c l,-c2)).

representing the branch curve n = ~2 is a fixed point.

Near 0 in the quotient U/~ 2 we have the singularity

3
JR /~ 2. Hence, U is the real Weyl space representing

real curves in S2 near the branch curve n = ~2. Since

the whole construction is local we don't quite know how

big U can be. For instance if we extend to all of X

then both P and 0 represent the branch curve and should

therefore be identified. However, having done these

remarks, we shall work on X in the following - this is

similar to example (4.7): The Weyl space is ~3 but we

may choose to describe the geometry on S3.

Now, on X we have th SI-action

(4.24)

The orbit space M is given by (see the illustration (4.34))

M
2 4 2 2x 3 + z + 2z r = 1, r ~ 0 (4.25)

and we have a component of fixed points

F x; + z4 = 1 • (4.26)

Topologically we have

(4.27)

At each point (x3,z) E F ~ SI sits a copy of JR2

with polar coordinates (r,8) and cartesian coordinates
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In order to obtain the conformal structure we

first find the quadratic polynomial (4.3)

. . . .
+ (c 1a 2-2 a 2c 1-2c l c 2c 0-2c Oc2c1+4cOc1 c 2) l;; (4.28)

The discriminant

induces the conformal structure on X:

(4.30)

Next, in order to find the real geodesics we proceed

as in example (4.7): If we fix a point (l;;,n) on a line

F x ' x E X, and consider all the real lines

n =
(X3+i(Z2_X~-X~))~2_2(I+i)Z(Xl-iX2) l;;+(x 1-ix2)

2

(Xl+iX2)2l;;2+2(I-i)Z(xl+iX2),+x3-i(z2-x~-x~)
(4.31)

passing through (l;;,n), we get a geodesic in X passing

through x. Again, the real and the imaginary part of

(4.31) define two hyper-surfaces. They intersect in a

2-surface which intersect X in the geodesic. However, we
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don't get such a nice geometrical description of the

geodesics as in example (4.7) where we were able to obtain

the Weyl connection from the knowledge about the geodesics.

In order to get at least some information on the geodesics,

consider the following special situation: Take 0 E X

representing the branch curve ~o: n = s2. Let

that all the real

also pass through Furthermore, we know

corresponding to a direction

A real curve passing through A will

A = [;> ~~] .
curves meet the branch curve in exactly

be a point on ~O

~ 82•

2
(sO'sO)

8 (T
x

X)

z =

V E

two points to second order - so these two points must be

A,A. Thus, in the parametrization (3.5)

we must have

c Co ~O1 1
sO; (4.32)= - = -

c 2 So (:2
So

Put So = Reil)J • Then on the real slice (4.32) becomes

i (x1-ix2)
x 1+ix2

If we write xl + iX2 = rei 8 then we get: The geodesic

passing through 0 E X in the direction Re i ljJ
E 8

2
is

given by

1-R2
z = Er; E = R

2 4
b

2 E2z 1x 3
+

b 2 = =
E2+2

(4.33)

8 is constant (given by ljJ)
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There are some degenerate cases:

The geodesic is given by: z = 0,

Then the geodesic curve is equal to

2 z4x 3 + = 1.

1) R = 0 (e: = 00) •

the fixed point set:

2) R = 1 ( e: = 0) •

x 3 = 1 (or -1) , 8 constant and r arbitrary. These

geodesics "go off to infinity" • They can be described as

the lines through the origin in the ]R2 sitting at the

point (x3,z) = (1,0) (X ;; 81 x ]R2) •

We have drawn a few more examples on the orbit manifold

(8 is constant) :

M

(4.34)

z

Fig: M: x~ + z4 + 2z2r2 = 1

F: x; + z4 = 1

A geodesic passing through 0 and "going off
to infinity" (Case 2 above)

geodesics through O.
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There are some degenerate cases:

1) R = 0 (E: = 00). Then the geodesic curve is equal to

2 z4the fixed point set: x 3 + = 1.

2) R=1 (E:=O). The geodesic is given by: z = 0,

x 3 = 1 (or -1), 8 constant and r arbitrary. These

geodesics "go off to infinity" • They can be described as

the lines through the origin in the JR2 sitting at the

point (x3,z) = (l ,0) (X ,;;; 51 x JR2) •

We have drawn a few more examples on the orbit manifold

(8 is constant) :

M

(4.34)

z

Fig: M: x~ + z4 + 2z2r2 = 1

F: x~ + z4 = 1

A geodesic passing through 0 and "going off
to infinity" (Case 2 above)

geodesics through O.
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orbit manifold
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In our coordinates the circles on the

shrink as r + 00. It would be desirable to have some kind

of metrical description of these "circles at infinity".

We only have a conformal structure but we can measure the

relative length of the circles

51 action: Put

51 and the circles from
r

x
3

x = 2 '
r

I2zvJ = --2 '
r

T = -28. (4.35)

Then we may write the conformal structure (4.30) in the

following way:

w = (w2+4)dx-2xwdw

422w +5~:1 +4x +4

2 2 222«w +4 )dx +4 (l+x +w )dw -4xwdxdw)

(4.36)

Thus, we have fixed the length of the circles in the

5 1 - a c t i on (- this way of representing the conformal metric

1clearly shows the 5 -symmetry).

We have x + 0 and w + 0 when r + 00

compute ds 2 to second order in x,w:

222+ 4(1+x +w )dw -4xwdxdw)

Let us



Also, z + 0 when r + ~. Then, as r + 00:
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where 222
Y = 2z r • Let x 3 = cos¢, y = sin ¢. Then

for r = constant (and big), we have:

[ x ~ 2] [dX~ d2]- _+L __ +~
4 6 4 6r r r r

_ 1 (4 2 . 2 2( 4 . 4 2. 2) 2= -r2 r cos ¢sln ¢+r cos ¢+sln ~+Cos ¢sln ¢ d¢ •
r

Hence, the circles S1 do indeed shrink as r + 00 •
r

Remark (4.37). The 1S -symmetry in the case n = 2 above

is induced from a ~* action on the quadric and we therefore

expect to have the same symmetry on the geometries corres-

ponding to n > 2: The ~*-action on JI\ x JI\ is given by

For n = 2 we have the curves (3.8) and we get

The induced action on w2 is therefore:

which gives the S1-action

on x.
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5. Remarks on the Connection to the Lebrun Construction

We shall make the following two remarks:

i) We explain how Einstein-Weyl spaces appear as the conformal

infinity of an Einstein metric with cosmological constant -1.

ii) We show that the mini twistor space associated to the

Berger sphere can be described as part of mP 3 modulo a

~*-action induced from a conformal Killing vector field on ~4.

Recall first the discussion from Chapter I of the Lebrun

Construction: Let W be a complex conformal 3-manifold and

let Z be the associated twistor space of unparametrized

null geodesics in W. Points in W represent rational

curves in Z with normal bundle 0(1) Ell 0(1) and W is

contained in a complex 4-manifold E parametrizing the

complete family of such curves. On Z we have the contact

form e given uniquely by the property that it vanishes when

restricted to lines corresponding to points in W. The pair

(z,e) gives a metric g on E satisfying Einstein's

equations with cosmological constant -1.

Now, suppose W is an Einstein-Weyl space with mini

twistor space S. A point x E \1 and a null direction v

at x correspond to a line JPx in S and a point s(v)

on JP. The null geodesic in W passing through x inx

direction v is obtained by taking all the curves in S

meeting JPx tangentially at s(v). Thus, the space of null

geodesics Z in W is contained in the projective tangent

bundle P(TS) of S.

normal bundle 0(2).

The rational curves in Shave

By taking the directions along the
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curve we may lift these curves to Z and Hitchin shows that

the lifted curves have normal bundle 0(1) ~ 0(1) (this

resembles the construction in Section 4 of Chapter I of

twistor spaces as line bundles on the quadric). Therefore

W is contained in a complex 4-manifold E of "twistor lines"

in Z. Since S is 2-dimensional we have P(TS) ~ P(T*S)

so we get a contact form e on Z induced from the canonical

I-form on T*S. Furthermore, e vanishes on the lifted

curves so it must be the uniquely determined I-form in the

Lebrun construction. Hence, the Einstein space (E,g)

corresponding to the pair (z,e) has the Einstein-Weyl space

W as conformal infinity!

Example (5.1) (Compare with Section 9 in Chapter I). Consider

the quadric S =]Pl x F 1 with its plane sections

_ ae;;+b
I] - ce;;+d (5.2)

where {~~} E SL (2 ,a:) • Let a be a coordinate along the fibre

of P(TS) + S. The 4-parameter space of lines in P(TS) are

given by (5.2) together with

a = t

(ce;;+d)2 '
tEa: (5.3)

where t = 1 corresponds to the lifted curves.

form is

e = ade;; - d n •

The contact

The associated Einstein space has a real slice which is just

the hyperbolic 4-space.
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Now, we have obtained a series of Einstein-Weyl spaces

W with mini twistor space S.
n n Then it is natural to

consider the problem - which we haven't solved - of constructing

the Einstein solutions having W
n

as conformal

infinity. To find the 4-parameter family En of curves

in the twistor space Zn' however, might be quite difficult

(Kodaira's theorem only gives us the existence of these curves.

If, for instance, we introduce a parameter t in a way similar

to (5.3) then we don't get curves with the right normal bundle

(if n;::: 2)). The reason why this problem was so easily

solved in example (5.1) arises from the fact that the quadric

*is obtained as F 3 minus two lines modulo a ~ -action

induced by dilations on ~4 (compare again with Section 9 in

Chapter I). We have no reason to believe that the twistor

spaces *Z will have any such ~ -action.
n

The next remark we should like to make is even more

related to the work in Chapter I on the Lebrun Construction:

It has been proved recently [27J that the Berger sphere is an

Einstein-Weyl space W\. Thus, if S\ is the associated

mini twistor space, then the space Z\ of null geodesics in

W\ is an open subset of P (TS\) • 'i'h i.s gives a different

approach to the problem we solved in Chapter I. However,

the result in [27J was not obtained via mini twistor theory.

Instead the Einstein-Weyl equations were solved directly.

Therefore we need to find the mini twistor space S\ first.

We shall briefly outline an idea how this could be done:

The idea arose from the mini twistor approach by Jones and

Tod [18, 19J. Here, Einstein-Weyl spaces are constructed by
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taking quotients of space times with conformal Killing vector

fields. If the space time is self-dual with associated

twistor space Z then the mini twistor space is obtained as

Z modulo the induced vector field. Inspired by this we

consider the following situation: We can write the flat

metric on m4 in the following way

2+ (dW + cos8d¢) ). (5.4)

Take the vector field

K = ~rdr + dW, ~ = constant (5.5)

where rdr generates dilations and dW generates rotations.

Then, the quotient metric

g (K, • ) 2
h = g - g (K, K)

satisfies

so h represents a well defined conformal structure.

over, conformally we have

More-

- 2~rdr(dw + cos8d¢).

We make a change of coordinates (similar to the changes in

Chapter II section 3, 4 and 6):

It
Let W= W- F(r);

drdF(r) =
~r

Then



where the a's are
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the usual left invariant I-forms on

SU(2) (Section 3 Chapter II) and

A =

Hence the conformal structure on the quotient is equal to

the conformal structure on the Berger sphere with moment

of inertia equal to A.

Now, since K is a conformal Killing vector field it

induces a vector field on the twistor space of ~4. It is,

therefore, clear how we could find the mini twistor space SA:

The twistor space of ~4 is contained in mP
3

• We

complexify the flow of K and consider the induced

*~ -action on mP3 :

(5.6)

Here E = 1 corresponds to dilations and E = -1 corres-

ponds to rotations. The mini twistor space SA is obtained

by taking the twistor space of ~4

(5.6) with E related to A.

*modulo the ~ -action

It might be difficult to describe P(TS A) and to find

the 4-parameter family of curves so we might prefer the

approach in Chapter I. However, suppose it could be proved

- by solving the equations directly as in [27J - that the

asymmetrical top metric on S3 is an Einstein-Weyl space.

Then, again, the space of null geodesics could be obtained

via mini twistor theory and this would provide a method to

do the Lebrun construction for the general left invariant

metric on s3.
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