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Abstract

For various values of n and m we investigate homomorphisms

Out(Fn)→ Out(Fm) and Out(Fn)→ GLm(K),

i.e. the free and linear representations of Out(Fn) respectively.

By means of a series of arguments revolving around the representation

theory of finite symmetric subgroups of Out(Fn) we prove that each ho-

momorphism Out(Fn)→ GLm(K) factors through the natural map

πn : Out(Fn)→ GL(H1(Fn,Z)) ∼= GLn(Z)

whenever n = 3,m < 7 and char(K) 6∈ {2, 3}, and whenever

n > 5,m <

(
n+ 1

2

)
and

char(K) 6∈ {2, 3, . . . , n+ 1}.

We also construct a new infinite family of linear representations of Out(Fn)

(where n > 2), which do not factor through πn. When n is odd these have

the smallest dimension among all known representations of Out(Fn) with

this property.

Using the above results we establish that the image of every homomor-

phism Out(Fn)→ Out(Fm) is finite whenever n = 3 and n < m < 6, and

of cardinality at most 2 whenever n > 5 and n < m <
(
n
2

)
. We further

show that the image is finite when
(
n
2

)
6 m <

(
n+1

2

)
.

We also consider the structure of normal finite index subgroups of Out(Fn).

If N is such then we prove that if the derived subgroup of the intersection

of N with the Torelli subgroup IAn < Out(Fn) contains some term of the

lower central series of IAn then the abelianisation of N is finite.
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Chapter 1

Introduction

1.1 Aims and results

Finitely generated free and free abelian groups form two cornerstones of the theory of

infinite groups. Both classes have been studied extensively (and successfully) over the

years. One particular aspect of great interest for a group theorist is the symmetries

of such groups, i.e. the structure of their automorphism groups.

In the abelian case, the automorphisms form the groups GLn(Z) for varying n.

These groups are of fundamental importance in numerous areas of mathematics;

from the perspective of a geometric group theorist the interplay between GLn(Z)

and GLn(R) (most prominently Margulis’ superrigidity) is particularly interesting.

Automorphisms of free groups share many properties with those of free abelian

groups. A curious aspect of this is that often one can obtain a result for GLn(Z)

using the ambient Lie group, and then prove the analogous result for Aut(Fn), even

though there is no underlying Lie group in this case!

In this work we have focused on a property shared by GLn(Z) and Aut(Fn), namely

on the existence of embeddings

GLn(Z) ↪→ GLn+1(Z) and Aut(Fn) ↪→ Aut(Fn+1).

Every injection Zn ↪→ Zn+1 induces one such, and so does each inclusion Fn ↪→ Fn+1

as a free factor of Fn+1. In the case of free groups, we can also find a character-

istic subgroup Fm < Fn for some m > n, which by restriction gives an embedding

Aut(Fn) ↪→ Aut(Fm).

Every group acts on itself by conjugation, and this way maps to its own auto-

morphism group. If the group is abelian (like Zn), this action is trivial. In the case

of centre-free groups (like Fn for n > 2), this map is injective. It is also easy to

see that the image is a normal subgroup of the automorphism group; it is generally
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referred to as the group of inner automorphisms. Quotienting by the group of inner

automorphisms leaves us with the outer automorphism group. In the case of the free

groups this is denoted by Out(Fn).

One easily checks that the embeddings Aut(Fn) ↪→ Aut(Fm) described above do

not descend to embeddings Out(Fn) ↪→ Out(Fm). A natural question arises: do

such embeddings exist? Or, more generally, what can we say about homomorphisms

Out(Fn)→ Out(Fm), that is about the free representation theory of Out(Fn)? These

questions have seen some partial answers in the work of Khramtsov [16], Bogopol’skii–

Puga [5], Aramayona–Leininger–Souto [1], and Bridson–Vogtmann [8]. Our approach

is based on [8], but the much more extensive use of representation theory allows us

to obtain stronger results.

Our investigations into this problem yield three results:

Theorem 4.2.7. Suppose φ : Out(F3) → Out(F5) is a homomorphism. Then the

image of φ is finite.

Theorem 4.4.7. Let n,m ∈ N be distinct, n > 6, m <
(
n
2

)
, and let

φ : Out(Fn)→ Out(Fm)

be a homomorphism. Then the image of φ is contained in a copy of Z2, the finite

group of order two.

Theorem 4.4.9. Let n,m ∈ N be distinct, with n even and at least 6. Let

φ : Out(Fn)→ Out(Fm)

be a homomorphism. Then the image of φ is finite, provided that(
n

2

)
6 m <

(
n+ 1

2

)
.

Previously, the best known bound (for n > 8) was m 6 2n (when n is even), and

m 6 2n− 2 (when n is odd) – see [8, Theorem C].

Let us remark here that Theorem 4.4.9 suggests that there is no ‘non-abelian

analogue of taking external squares’: one can obtain an interesting map

GLn(Z)→ GL(n2)
(Z)

by taking the external square of Zn, but one cannot find an analogous map in the

case of Out(Fn) (at least for n even).
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The key ingredient in all of these theorems is the following commutative diagram

G //
� _

��

Isom(X)

��

// GL(H1(X,Z))

∼=
��

// GL(H1(X,K))

∼=
��

Out(Fn) 44
φ // Out(Fm)

πm // GLm(Z)
iKm // GLm(K)

where G < Out(Fn) is a finite subgroup, and X is a finite graph with fundamental

group Fm on which G acts.

As the above diagram indicates, our method relies heavily on the structure of

torsion subgroups of Out(Fn). This is in fact unavoidable, as none of the above

theorems stay true if we replace Out(Fn) by a torsion-free finite-index subgroup! We

discuss this issue in more detail in Chapter 4.

Note that the curved arrow at the very bottom of the diagram gives us a K-linear

representation of Out(Fn). Thus, knowing the linear representation theory of Out(Fn)

gives us obstructions to its free representations.

Linear representations of Aut(Fn) and Out(Fn) have been studied previously by

Potapchik–Rapinchuk [22] and Grunewald–Lubotzky [13]. Our considerations yield

three results:

Theorem 3.2.11. Suppose V is a K-linear representation of Out(F3) of dimension

at most 6, where the characteristic of K is not 2 or 3. Then the representation factors

through the natural projection π3 : Out(F3)→ GL3(Z).

Theorem 3.3.3. Let K be a field of characteristic equal to zero or greater than

n+1. Suppose φ : Out(Fn)→ GL(V ) is an m-dimensional K-linear representation of

Out(Fn), where n > 6 and m <
(
n+1

2

)
. Then φ factors through the natural projection

πn : Out(Fn)→ GLn(Z).

Theorem 3.3.4. Let K be a field of characteristic equal to zero or greater than

5. Suppose φ : Out(Fn) → GL(V ) is an m-dimensional K-linear representation of

Out(Fn), where n ∈ {4, 5} and m < 2n + 1. Then φ factors through the natural

projection πn : Out(Fn)→ GLn(Z).

Note that, as before, none of these theorems remain true if we allow ourselves to

replace Out(Fn) by a subgroup of finite index. For details see [13].

The immediate question that comes to mind after seeing the above is: do there

exist linear representations of Out(Fn) which do not factor through

πn : Out(Fn)→ GLn(Z) ?
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The answer turns out to be affirmative. An easy construction follows from the fact

that Out(Fn) is residually finite: take a finite quotient H of Out(Fn) in which an

element of IAn, i.e. the kernel of πn : Out(Fn) → GLn(Z), is not the identity. Then

take any representation of H.

Because of the above it is natural to restrict our attention to representations

of Out(Fn) with infinite image. The first examples of such a representations not

factoring through πn follows from the work of Bridson–Vogtmann [8]. We give a

different construction, which creates a new infinite family of such representations of

Out(Fn). When n is odd our construction gives representations of smaller dimension

than those previously known.

In Chapter 5 we investigate a different aspect of Out(Fn), namely the structure

of its finite-index subgroups. There is an interesting (and open) problem connected

with these subgroups, namely if all of them have finite abelianisations. We offer the

following partial result, where by the Torelli subgroup of Out(Fn) is the kernel of the

natural map πn : Out(Fn)→ GLn(Z).

Theorem 5.3.2. Let {Xi} be the lower central series of IAn, the Torelli subgroup of

Out(Fn), with IAn = X0. Let N E Out(Fn) be a normal subgroup of finite index. If

there exists j such that Xj 6 (N ∩X0)′ = [N ∩X0, N ∩X0], then the abelianisation

of N is finite.

1.1.1 Asymptotics

The results contained in Chapters 3 and 4 of this paper can be viewed as a a first

step in the search for three functions αK, β, γ : N → N, where αK(n) is the lowest

number such that Out(Fn) has an α(n)-dimensional K-linear representation with

infinite image which does not factor through πn : Out(Fn) → GLn(Z), β(n) is the

lowest number not equal to n such that there exists a homomorphism Out(Fn) →
Out(Fβ(n)) with infinite image (i.e. a free representation with infinite image), and γ(n)

is the lowest number not equal to n such that there exists an embedding Out(Fn) ↪→
Out(Fγ(n)) (i.e. a faithful free representation).

Our results (together with the work previously done by Bogopol’skii–Puga and

Bridson–Vogtmann) show that, asymptotically, each of these functions (at least for

suitable field K) is at least quadratic and at most exponential. The exact nature of

the functions remains, however, a deep mystery.
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1.2 Structure of the thesis

We start by introducing necessary notation in Chapter 1, Section 1.3.

Chapter 2 is devoted to stating the classical results from the representation theory

of symmetric and general linear groups that we shall need. Section 2.3 of this chapter

gives us a couple of important results about the presentation and representations of

GLn(Z2).

In Chapter 3 we start investigating linear representations of Out(Fn). First we

consider the case n = 3 (Section 3.2), then the more general case of n > 6 (Sec-

tion 3.3). Finally, we look into representations of Out(Fn) which do not factor through

πn : Out(Fn)→ GLn(Z) (Section 3.4).

Chapter 4, in which we consider free representations of Out(Fn), has a similar

structure to its predecessor: Section 4.2 deals with the case n = 3, and Sections 4.3

and 4.4 deal with the general case. In Section 4.5 we discuss the two known ways of

constructing embeddings Out(Fn) ↪→ Out(Fm) for m > n.

The final chapter, Chapter 5, contains some results on the abelianisation of finite

index subgroups of Out(Fn).

The author’s results concerning Out(F3) have appeared in [17], and the results

concerning Out(Fn) for n > 4 have appeared in [18]. All results presented are the

author’s original work unless their source (and authorship) is specified. In particular

most of Chapter 2, the first half of Section 3.4, and Section 4.5 were not proven by

the author, and are included for the sake of completeness.

1.3 Notation and conventions

Definition 1.3.1 (Graphs). We say that X is a graph if and only if it is a 1-

dimensional CW complex. The 1-cells of X will be called edges, the 0-cells will

be called vertices. The sets of vertices and edges of a graph will be denoted by V (X)

and E(X) respectively. The points of intersection of an edge with the vertex set are

referred to as endpoints of the edge.

We will equip X with the standard path metric in which the length of each edge

is 1.

Given two graphs X and Y , a function f : X → Y is a morphism of graphs if and

only if f is a continuous map sending V (X) to V (Y ), and sending each open edge in

X either to a vertex in Y or isometrically onto an open edge in Y .
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When we say that a group G acts on a graph X, we mean that it acts by graph

morphisms.

We say that a graph X is directed if and only if it comes equipped with a map

o : E(X)→ X such that o(e) is a point on the interior of e of distance 1
3

from one of

its endpoints. We also define ι, τ : E(X)→ V (X) by setting τ(e) to be the endpoint

of e closest to o(e), and ι(e) to be the endpoint of e farthest from o(e). Note that we

allow ι(e) = τ(e).

The rank of a connected graph is defined to be the size of a minimal generating

set of its fundamental group (which is a free group).

Remark 1.3.2. Let G be a group. We will adopt the following notation:

• for two elements g, h ∈ G, we define gh = h−1gh;

• for two elements g, h ∈ G, we define [g, h] = ghg−1h−1;

We will also use Zk to denote the cyclic group of order k.

Definition 1.3.3. Let us introduce the following notation for some elements of

Aut(Fn), the automorphism group of Fn, where Fn is the free group on {a1, . . . , an}:

εi :

{
ai 7→ a−1

i ,
aj 7→ aj, j 6= i

, σij :


ai 7→ aj,
aj 7→ ai,
ak 7→ ak, k 6∈ {i, j}

,

ρij :

{
ai 7→ aiaj,
ak 7→ ak, k 6= i

, λij :

{
ai 7→ ajai,
ak 7→ ak, k 6= i

.

Let us also define ∆ =
∏n

i=1 εi and

σ(n+1)i = σi(n+1) :

{
ai 7→ a−1

i ,
aj 7→ aja

−1
i , j 6= i

.

We are going to use the same symbols to denote the images of those elements

under the natural projection

pn : Aut(Fn)→ Out(Fn).

We will feel free to abuse the notation even more by using the same symbols to denote

the images under the natural map πn : Out(Fn)→ GLn(Z).

Below we give an explicit presentation of Out(Fn), the outer automorphism group

of Fn:

Theorem 1.3.4 (Gersten’s presentation [12]). Suppose n > 3. The group Out(Fn)

is generated by {ε1, ρij, λij | i, j = 1, . . . , n, i 6= j}, with relations

6



• [ρij, ρkl] = [λij, λkl] = 1 for k 6∈ {i, j}, l 6= i;

• [λij, ρkl] = 1 for k 6= j, l 6= i;

• [ρ−1
ij , ρ

−1
jk ] = [ρij, λjk] = [ρ−1

ij , ρjk]
−1 = [ρij, λ

−1
jk ]−1 = ρ−1

ik for k 6∈ {i, j};

• [λ−1
ij , λ

−1
jk ] = [λij, ρjk] = [λ−1

ij , λjk]
−1 = [λij, ρ

−1
jk ]−1 = λ−1

ik for k 6∈ {i, j};

• ρijρ−1
ji λij = λijλ

−1
ji ρij, (ρijρ

−1
ji λij)

4 = 1;

• [ε1, ρij] = [ε1, λij] = 1 for i, j 6= 1;

• ρε112 = λ−1
12 , ρ

ε1
21 = ρ−1

21 ;

• ε21 = 1;

•
∏

i 6=j ρijλ
−1
ij = 1 for each fixed j.

Note the actions of Aut(Fn) on Fn and of Out(Fn) on the conjugacy classes of Fn

are on the left.

Definition 1.3.5. Let us define some standard homomorphisms:

• pn : Aut(Fn) → Out(Fn) ∼= Aut(Fn)/Inn(Fn) is the quotient map, where

Inn(Fn) is the group of inner automorphisms of Fn;

• πn : Out(Fn) → GLn(Z) ∼= Out(Fn)/〈〈ρijλ−1
ij | i, j = 1, . . . , n, i 6= j〉〉 is the

quotient map. Its kernel will be denoted by IAn, and referred to as the Torelli

subgroup of Out(Fn). We will use IAn to denote the kernel of the composition

πn ◦ pn, and refer to it as the Torelli subgroup of Aut(Fn);

• iKn : GLn(Z)→ GLn(K) is the natural embedding induced by the unique unital

ring homomorphism Z→ K;

• we adopt the convention in = iCn ;

• det : GLn(Z) → Z2 denotes the determinant map, where Z2 is identified with

the multiplicative group {1,−1};

• we will also slightly abuse the notation and use det : Out(Fn) → Z2 to denote

the composition det ◦πn. The kernel of this homomorphism will be denoted by

SOut(Fn).

7



Figure 1.3.7: The 5-rose and 7-cage graphs

Definition 1.3.6. Let us define some finite subgroups of Out(Fn):

Sn ∼= 〈{σij | i, j = 1, . . . , n, i 6= j}〉

Sn+1
∼= 〈{σij | i, j = 1, . . . , n+ 1, i 6= j}〉

Zn2 o Sn ∼= Wn = 〈{ε1, σij | i, j = 1 . . . , n, i 6= j}〉

Z2 × Sn+1
∼= Gn = 〈{∆, σij | i, j = 1 . . . , n+ 1, i 6= j}〉.

We do not give distinctive names to the groups on the right in the first two lines;

instead, we will usually refer to them as respectively Sn < Wn and Sn+1 < Gn. More

generally, whenever we mention Sn or Sn+1 as subgroups of Out(Fn), we mean these

two groups.

Note that we abuse notation by using Sn to denote the abstract symmetric group

of degree n as well. We will denote its maximal alternating subgroup by An.

We will often talk about the natural action of Sn and An on {1, 2, . . . , n}. When

doing so in the case of Sn, we will always mean the action in which

σij(k) =


j if k = i
i if k = j
k if k 6= i, j

.

In the case of An, we will mean the restriction of the described action to An < Sn.

Observe that the subgroup Wn is the automorphism group of the n-rose, that is

the graph with one vertex and n edges, whereas the subgroup Gn is the automorphism

group of the (n + 1)-cage, that is the graph with two vertices and n+ 1 edges, such

that each edge has both vertices as its endpoints (see Figure 1.3.7). Choosing the

right isomorphism between the fundamental groups of these graphs and Fn induces

the embeddings Wn, Gn < Out(Fn).
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In the case of Out(F3), let us also define V4 and A4 to be the Klein 4-group and

the alternating group of degree 4 satisfying

V4 < A4 < S4 < G3 < Out(F3).

Note that, if i, j 6 n, we have

εiσij = λijλ
−1
ji ρij = ρijρ

−1
ji λij,

and the subgroup Sn < Out(Fn) defined above acts on the sets

{εi | i = 1 . . . , n},

{ρij | i, j = 1 . . . , n, i 6= j}, and

{λij | i, j = 1 . . . , n, i 6= j}

by permuting the indices in the natural way.

9



Chapter 2

Some classical representation
theory

In this chapter we recall some basic facts from the (classical) representation theory of

symmetric groups and general linear groups over C. Most of the results can be found

in [11].

Let us first prepare the ground by giving necessary definitions.

Definition 2.0.1 (Representations). Given a field K and a K-vector space V , a

group homomorphism φ : G → GL(V ) is called a (dimV )-dimensional K-linear

representation of G. We say that φ is reducible if and only if there exists a G-

invariant non-trivial proper subspace of V . If no such subspace exists, we say that φ

is irreducible.

A map f : U → V , where φ : G → GL(U) and ψ : G → GL(V ) are repre-

sentations, is a morphism of representations if and only if it is G-equivariant, that

is

∀g ∈ G : f ◦ φ(g) = ψ(g) ◦ f.

We say that f is an isomorphism if and only if there exists a morphism f ′ : V → U

such that ff ′ = idU and f ′f = idV .

Note that we will often refer to V as the representation. We will equally often call

V a G-module.

Let us define one important representation.

Definition 2.0.2. We say that a representation φ : G→ GL(V ) is trivial if and only

if dimV = 1 and kerφ = G.

We are now ready to state a useful lemma.

10



Lemma 2.0.3 (Schur’s Lemma). Suppose

f : U → V

is a morphism of G-representations. Suppose further that U is irreducible. Then

either f(U) is trivial or f is an isomorphism onto its image.

2.1 Linear representations of symmetric groups

Definition 2.1.1 (Partitions). Given a natural number n, we say that

µ = (µ1, µ2, . . . , µk)

is a partition of n if and only if µi ∈ N for each i,

k∑
i=1

µi = n

and µi > µi+1 > 0 for all i > 1.

For brevity we will write µαi to mean a subsequence µi, µi+1, . . . , µi+α−1 whenever

µi = µi+j for all 0 6 j 6 α− 1.

Now let us state the main result of the theory.

Theorem 2.1.2. Let n ∈ N and let K be a field with char(K) = 0 or char(K) > n.

Then the isomorphism types of irreducible K-linear representations of Sn are in a

one-to-one correspondence with partitions of n.

We shall give names to a number of particularly useful representations of Sn.

Definition 2.1.3. When V is an irreducible representation of Sn corresponding to a

partition µ, we say that

• V is the trivial representation if and only if µ = (n);

• V is the determinant representation if and only if µ = (1n);

• V is the standard representation if and only if µ = (n− 1, 1);

• V is the signed standard representation if and only if µ = (2, 1n−1).

When V is isomorphic to direct sum of the trivial and standard representation, we

say it is the permutation representation. Similarly, when it is isomorphic to a direct

sum of the determinant and signed standard representation, we say it is the signed

permutation representation.

11



We shall now give a topological way of thinking about some of the above repre-

sentations.

Example 2.1.4. Let R be the n-rose, with petals labeled by letters {a1, a2, . . . , an},
and let Sn act on R, so that the action is by orientation preserving graph morphisms,

and is natural on the indices of the labels. Then Sn acts on H1(R,K) ∼= Kn, and the

representation is isomorphic to the permutation representation.

Now let C be the n-cage, with all ribs labeled by letters {a1, a2, . . . , an}, and let

Sn act on R, so that the action is again by orientation preserving graph morphisms,

and is natural on the indices of the labels. Then Sn acts on H1(C,K) ∼= Kn−1, and

the representation is isomorphic to the standard representation.

Definition 2.1.5 (Natural bases). We say the basis for H1(R,K) coming from the

cycles labeled

a1, a2, . . . , an

is the natural basis for the permutation module. Similarly, we say that the basis for

H1(C,K) coming from the cycles labeled

a1a
−1
n , a2a

−1
n , . . . , an−1a

−1
n

is the natural basis for the standard module.

Proposition 2.1.6 (Branching rule). Suppose we have an irreducible Sn+1-module V

corresponding to a partition µ = (µ1, µ2, . . . , µk) of n+ 1. Then, as an Sn-module, V

is isomorphic to the direct sum of all Sn representations corresponding to partitions

µ′ = (µ′1, µ
′
2, . . . , µ

′
k′) of n, such that

k∑
i=1

|µ′i − µi| = 1

with the convention that µ′j = 0 whenever j > k′.

The above proposition is extremely useful, as the following example is supposed

to exemplify.

Example 2.1.7. Suppose V is the standard representation of Sn+1, so it corresponds

to the partition (n, 1). There are two partitions of n that satisfy the above condition,

namely (n) and (n− 1, 1). Hence, as an Sn-module,

V = Vtr ⊕ Vstd,

where Vtr is isomorphic to the trivial, and Vstd to the standard Sn-module.

12



2.2 Schur functors and general linear groups

We now introduce a useful tool of representation theory.

Definition 2.2.1 (Schur functors). Let RepK
G be the category of K-linear represen-

tations of a group G, and let µ be a partition of a natural number n. Then we define

the Schur functor Sµ : RepK
G → RepK

G corresponding to µ by its action on the objects:

SµU = U⊗n ⊗Sn Vµ,

where Vµ is the irreducible Sn-module corresponding to µ, and where Sn acts on U⊗n

by permuting the factors in the natural way, and G acts on Vµ trivially and on U⊗n

diagonally.

We have seen above how we can classify all irreducible representations of symmet-

ric groups. We can do a very similar thing with general linear groups over C.

Theorem 2.2.2. Suppose U is a C-linear irreducible representation of GLn(C) for

some n. Then U is isomorphic to SµV for some partition µ (not necessarily of n),

where V = Cn is the standard GLn(C)-module, that is GLn(C) = GL(V ).

Let us list a number of useful facts about GLn(C)-modules.

Proposition 2.2.3. Suppose U = SµV is an irreducible representation of

GLn(C) = GL(V ),

with µ = (µ1, µ2, . . . , µk). Then

1. U is the trivial representation whenever µn+1 6= 0;

2. S(1n)V is the determinant representation, that is the one given by

GLn(C) det // C× = GL1(C);

3. U ∼= Sµ′V ⊗S(1n)V , where µ′ = (µ′1, µ
′
2, . . . , µ

′
k) satisfies µi+1 = µ′i for all i 6 n

(again with the convention that µi = 0 whenever i > k);

4. if U is non-trivial, its dimension is given by the formula

dimU =
∏

16i<j6n

µi − µj + i− j
i− j

.

13



2.3 Representations of GLn(Zq)

In this section we will be concerned with the groups GLn(Zq), where q is a prime

power.

Let us first mention an extremely useful theorem of Mennicke:

Theorem 2.3.1 (Mennicke [21]). The group SLn(Zq) satisfies

SLn(Zq) = SLn(Z)/〈〈ρqij | i, j = 1, i 6= j . . . , n〉〉.

Note that here we have abused the notation be using ρij to denote πn(ρij), which

is of course an elementary matrix.

Let us note an immediate corollary.

Corollary 2.3.2. The group GLn(Z2) satisfies

GLn(Z2) = Out(Fn)/〈〈εi | i = 1, . . . , n〉〉.

Proof. This follows directly from three observations, namely that GLn(Z2) = SLn(Z2),

that

ρ2
ij = (ρ

εj
ijρ
−1
ij )−1,

and that the image of εi is trivial in GLn(Z2).

We will also need a result about representations of GLn(Zp), for prime p, due to

Landazuri and Seitz:

Theorem 2.3.3 (Landazuri–Seitz [19]). Suppose we have a non-trivial, irreducible

projective representation PSLn(Zp)→ PGL(V ), where n > 3, p is prime, and V is a

vector space over a field K of characteristic other than p. Then

dimV >

{
2 if (n, p) = (3, 2)

pn−1 − 1 otherwise
.

We offer an extension of their theorem for algebraically closed fields of character-

istic 0.

Theorem 2.3.4. Let V be a non-trivial, irreducible K-linear representation of SLn(Zq),

where n > 3, q is a power of a prime p, and where K is an algebraically closed field

of characteristic 0. Then

dimV >

{
2 if (n, p) = (3, 2)

pn−1 − 1 otherwise
.
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Proof. Let φ : SLn(Zq) → GL(V ) denote our representation. Consider Z, the sub-

group of SLn(Zq) generated by diagonal matrices with all non-zero entries equal. Note

that Z is the centre of SLn(Zq). Hence V splits as an SLn(Zq)-module into intersec-

tions of eigenspaces of all elements of Z. Since V is irreducible, we conclude that

φ(Z) lies in the centre of GL(V ).

First suppose that q = p. Consider the composition

SLn(Zq)→ GL(V )→ PGL(V ).

We have just showed that Z lies in the kernel of this composition, and so our represen-

tation descends to a representation of PSLn(Zp) ∼= SLn(Zp)/Z. This new, projective

representation is still irreducible. It is also non-trivial, as otherwise V would have to

be a 1-dimensional non-trivial SLn(Zq)-representation. There are no such represen-

tations since SLn(Zq) is perfect when p = q. Now Theorem 2.3.3 yields the result.

Suppose now that q = pm, where m > 1. Let N E SLn(Zq) be the kernel of the

natural map SLn(Zq)→ SLn(Zp). As an N -module, by Maschke’s Theorem, V splits

as

V =
k⊕
i=1

Ui

where each Ui 6= {0} is a direct sum of irreducible N -modules, and irreducible sub-

modules W 6 Ui,W
′ 6 Uj are isomorphic if and only if i = j.

Observe that we get an induced action of SLn(Zq)/N ∼= SLn(Zp) on the set

{Ui, U2, . . . , Uk}. As V is an irreducible SLn(Zq)-module, the action is transitive.

Since our result holds for q = p, and since an action of a group on a finite set S

induces a representation on the vector space with basis S, we conclude that either

k = 1, or

k >

{
2 if (n, p) = (3, 2)

pn−1 − 1 otherwise
.

In the latter case, as dimUi > 1 for all i, we get dimV > k and our result follows.

Let us henceforth assume that k = 1. We have

V = U1 =
l⊕

j=1

W,

where W is an irreducible N -module.

Note that we have the alternating group An < SLn(Zq) satisfying An ∩N = {1},
and so An < SLn(Zp) in a natural way. Let σ ∈ An be an element of order

o(σ) ∈ {2, 3}.

15



Consider the group M = 〈N, σ〉 < SLn(Zq). Note that M ∼= N o Zo(σ). The module

V splits as a direct sum of M -modules. Frobenius Reciprocity (see e.g. [25, Corollary

4.1.17]) tells us that the multiplicity (let us call it m) of W (as an N -module) in each

of the irreducible M -modules is equal to the multiplicity of that M -module in the

M -module induced from the N -module W . Hence m2 is the multiplicity of W in the

M -module induced from the N -module W . But the latter is bounded above by o(σ)

and o(σ) ∈ {2, 3}, and so m = 1.

This shows in particular that W is an irreducible M -module. It also shows that

the M -module induced from W contains a submodule isomorphic to W . Since

M ∼= N o Zo(σ),

an easy calculation shows that σ acts on this copy of W as a scalar multiple of the

identity matrix, i.e. via a central matrix. Hence σ commutes with N when acting on

V . Since the above statement is true for each σ ∈ An of order 2 or 3, we conclude

that φ factors through SLn(Zq)/[N,An]. Note that we need to consider elements σ of

order 3 when we are dealing with the case n = 4.

Theorem 2.3.1 tells us that N is normally generated (as a subgroup of SLn(Zq))
by all elements of the form ρpij. Now SLn(Zq) itself is generated by all elements ρij.

Observe that

∀σ ∈ An : φ(ρ−1
αβρ

p
ijραβ) = φ(σ−1ρ−1

αβρ
p
ijραβσ) = φ(ρ−1

σ(α)σ(β)ρ
p
ijρσ(α)σ(β)).

Choose σ ∈ An such that σ(α) = i and σ(β) = j. We conclude that φ(N) lies in the

centre of φ
(
SLn(Zq)

)
. In particular, φ(N) is abelian, and hence (as K is algebraically

closed) dimW = 1, as W is an irreducible N -module. Since V is a direct sum of

N -modules isomorphic to W , the group N acts via matrices in the centre of GL(V ).

Hence N lies in the kernel of the composition

SLn(Zq)
φ // GL(V ) // PGL(V ) .

We have already shown that Z lies in this kernel, and so our representation descends

to a projective representation of PSLn(Zp). If we can show that this representation

is non-trivial, we can then apply Theorem 2.3.3 and our proof will be finished.

Suppose that this projective representation is trivial. This means that V is a

1-dimensional, non-trivial SLn(Zq)-representation. This is however impossible, since

the abelianisation of SLn(Zq) is trivial when n > 3.

In our considerations we will need to use the following elementary calculation.
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Proposition 2.3.5. Let A be the kernel of the map SL3(Z) → SL3(Z2) induced by

the surjection Z→ Z2. Let V be the standard, 3-dimensional K-linear representation

of GL3(Z). Suppose further that K is a field of characteristic 0 or at least 3. Then

W = S(3,3,1)V is irreducible as an A-module.

Proof. Note that W = S(13)V ⊗ S(2)V
∗, that is it is the tensor of the determinant

representation and the second symmetric power of the dual representation.

Let U 6 W be an irreducible A-submodule of W , and let {v1, v2, v3} be the

standard dual basis of V . Suppose v ∈ U r {0}. Then

v =
∑
i6j

µij vi ⊗ vj

for some collection of scalars µij.

We are going to abuse notation by using the symbols εi and ρij to denote the

images of respective elements under π : Out(F3) → GL3(Z). Note that εiεj ∈ A and

ρ2
ij ∈ A for each appropriate i 6= j. Now

ε1ε2(v)− v = −2µ23 v2 ⊗ v3 − 2µ13 v1 ⊗ v3

and hence

ε1ε3
(
ε1ε2(v)− v

)
− v = 4µ13 v1 ⊗ v3.

Hence, if µij 6= 0 for some i 6= j, then vi ⊗ vj ∈ U .

Furthermore

ρ2
13(v1 ⊗ v3)− v1 ⊗ v3 = −2 v1 ⊗ v1

and

ρ2
23(v1 ⊗ v3)− v1 ⊗ v3 = −2 v1 ⊗ v2,

and therefore if µij 6= 0 for some i 6= j, then U = V .

Suppose that

v =
∑
i

µii vi ⊗ vi.

Without loss of generality let us assume that µ11 6= 0. Then

ρ2
21(v)− v = −µ11

(
4 v1 ⊗ v2 − 4 v2 ⊗ v2

)
= v′ ∈ U.

We can now apply our argument to v′ and conclude that U = V .
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Chapter 3

Linear representations of Out(Fn)

In this chapter we will investigate the structure of linear representations of Out(Fn),

over a variety of fields. Our approach is based on using the linear representation

theory of the finite subgroup Wn
∼= Zn2 o Sn, and then on developing a convenient

way of dealing with the combinatorics of a linear representation of Out(Fn). Both of

these techniques will be discussed in the following section.

3.1 Representations of Wn and diagrams

Definition 3.1.1. Let V be a representation of Wn. Let N = {1, . . . , n}. Define

• for each I ⊆ N , EI = {v ∈ V | εiv = (−1)χI(i)v}, where χI is the characteristic

function of I;

• Vi =
⊕
|I|=iEI .

We will slightly abuse notation, and often omit parentheses writing E1 for E{1},

etc.

Lemma 3.1.2. Let V be a representation of Wn. Then dimVi =
(
n
i

)
dimEI , where

|I| = i.

Proof. The symmetric group Sn < Wn acts on {ε1, . . . , εn} by permuting the indices

in the natural way. Hence its action on Vi will permute subspaces EI by permuting

subsets of N of cardinality i. Thus each EI , for a fixed size of I, has the same

dimension.

Lemma 3.1.3. Let V be a K-linear representation of Out(Fn), where K is a field of

characteristic other than 2. Then, with the notation above, we have

V =
n⊕
i=0

Vi
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and for each i 6= j, J ⊆ N r {i, j} we have

ρij(EJ ⊕ EJ∪{i} ⊕ EJ∪{j} ⊕ EJ∪{i,j}) = EJ ⊕ EJ∪{i} ⊕ EJ∪{j} ⊕ EJ∪{i,j}.

An identical statement holds for λij.

Proof. The first statement follows directly from the fact that we can simultaneously

diagonalise commuting involutions εi, since we are working over a field K whose

characteristic is not 2.

For the second statement, let us note that [ρij, εk] = 1 for each k 6∈ {i, j}. Hence

for each I ⊆ N :

ρij(EI) 6
⊕

J4I⊆{i,j}

EJ ,

where A4B denotes the symmetric difference of two sets A and B. An identical

argument works for λij.

To help us visualise the combinatorics of representations of Out(Fn) we introduce

a calculus of diagrams.

Definition 3.1.4. Suppose V is a finite dimensional, K-linear representation of

Out(Fn) over any field K, and let x ∈ Out(Fn). Let us use the notation of Defi-

nition 3.1.1. We define the minimal diagram for x over V (often abbreviated to the

minimal diagram for x) to be a directed graph D with the vertex set equal to a subset

S of the power set of N = {1, 2, . . . , n}, where I ∈ S if and only if EI 6= {0}, and the

edge set given by the following rule: there is a directed edge from I to J if and only

if rJ
(
x(EI)

)
6= {0}, where rJ :

⊕
K⊆N EK → EJ is the natural projection.

We also say that a graph D′ is a diagram for x over V if and only if the minimal

diagram D for x is a subgraph of D′.

In practice, when realising these diagrams in terms of actual pictures, we are going

to align vertices corresponding to subsets of N of the same cardinality in horizontal

lines; each such line will correspond to some Vi. We are also going to represent edges

as follows: if two vertices are joined by two directed edges, we are going to draw one

edge without any arrowheads between them; we are not going to draw edges from

a vertex to itself – instead, if a vertex does not have such a loop, then all edges

emanating from it will be drawn with a tail (see the example below);

•%% •vv (( •hh
yy

becomes • •oooo // •.

To get a firmer grip on these diagrams, let us have a look at a number of facts

one can easily deduce from (not necessarily minimal) diagrams.
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Remark 3.1.5. Let D0 be a connected component of D, a diagram for x. Let v ∈⊕
I∈V (D0) EI be a vector. Then v =

∑
vI where vI ∈ EI . Let J 6∈ V (D0). Note that

there are no edges between J and V (D0), and so rJ
(
x(EI)

)
= {0} for all I ∈ V (D0).

Hence x(vI) ∈
⊕

I∈V (D0) EI and therefore

x(
⊕

I∈V (D0)

EI) =
⊕

I∈V (D0)

EI .

The following illustrates the relationship between our diagrams and matrices.

Example 3.1.6. Suppose we have a diagram for x with at least two vertices, I and

J say, such that the union of the connected components containing these two vertices

does not contain any other vertex. Fix a basis for EI and EJ . The following illustrates

the way the x action on EI ⊕ EJ (seen as a matrix) depends on the diagram:

•EI // •EJ corresponds to

(
∗ 0
∗ ∗

)
,

•EI // •EJ to

(
0 ∗
∗ ∗

)
, and

•EI // oo •EJ to

(
0 ∗
∗ 0

)
.

Example 3.1.7. Suppose we have a diagram D for x such that D has a connected

component with only two vertices, I and J say, as depicted below.

EI •
��

EJ •

Remark 3.1.5 tells us that x|EI⊕EJ is an isomorphism. Let {v1, . . . , vk} be a basis for

EI . Our diagram tells us that rI
(
x(vi)

)
= 0 for each i, and so x(vi) ∈ EJ . Since x is

an isomorphism, we immediately see that

{x(v1), . . . , x(vk)}

is a linearly independent set, and hence dimEJ > dimEI .

Example 3.1.8. Let D be a diagram for x. Note that rJ
(
xεi(v)

)
= ±rJ

(
x(v)

)
whenever v ∈ EI for some I. Therefore rJ

(
xεi(EI)

)
= {0} if and only if

rJ
(
x(EI)

)
= {0},

and so D is also a diagram for xεi .
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Now consider σ ∈ Sn. We have

rJ
(
xσ(EI)

)
= σ−1

(
rσ(J)

(
x(Eσ(I))

))
,

and so the image of D under the graph morphism induced by I→ σ(I) is a diagram

for xσ.

We will use the last example very often, for instance to relate diagrams for ρ21

with ones for ρ−1
21 = ρε121 or ρ31 = ρσ2321 .

3.2 The case of Out(F3)

First let us investigate the linear representations of Out(F3) in the lowest dimensions,

namely 1 and 2.

Proposition 3.2.1. Suppose φ : Out(F3) → G is a group homomorphism such that

its kernel contains V4. Then φ factors as

Out(F3)
φ //

det
��

G

Z2

;;wwwwwwwwww

and so is determined by the image of ε1.

Proof. Since V4 lies in the kernel, we have φ(σ14) = φ(σ23). Hence, using [ρ21, ρ31] = 1

and ε1σ14 = ρ21ρ31, we get

φ(ρ21) = φ(ρρ21ρ3121 ) = φ(ρε1σ1421 ) = φ(ρ21)φ(ε1)φ(σ14) = φ(ρ21)φ(ε1)φ(σ23) = φ(ρ−1
31 )

and thus, using [ρ21, ε3] = 1,

φ(ρ21) = φ(ρε321) = φ(ρ−1
31 )φ(ε3) = φ(λ31).

Now

φ(ρ−1
31 ) = φ([ρ−1

32 , ρ
−1
21 ]) = [φ(ρ−1

32 ), φ(λ−1
31 )] = 1.

Thus ρ31 lies in the kernel of φ. We can however conjugate ρ31 to each ρij using S3,

and so all elements ρij lie in the kernel. The result follows.

An immediate consequence of the above is the following.
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Lemma 3.2.2. Let V be a 2-dimensional K-linear representation of Out(F3), where

char(K) 6= 2. Then the representation factors as

Out(F3)
φ //

det
��

GL2(K)

Z2

88rrrrrrrrrrr

and so is determined by the image of ε1.

Proof. There are at most three irreducible K-linear representations of S4 of dimension

at most 2: the trivial representation (corresponding to partition (4)), the determinant

representation (corresponding to partition (14)), and the one given by a partition (2, 2)

(note that the latter might not be irreducible when char(K) = 3). In all three cases,

the action of V4 < S4 is trivial. This implies that we have satisfied all the requirements

of Proposition 3.2.1, and the result follows.

Now we shall establish a number of lemmata which will come to our aid in the

attempt to classify linear representations of Out(F3) of dimension at most 6.

Lemma 3.2.3. Let φ : Out(F3) → GL(V ) be a representation such that we have a

diagram for ρ21 of the form

V3 •

DD
DD

DD
DD

D

V1 •E2 •E1 •E3

where dimEi = 1 for all i. Then ρ21 has a diagram

V3 •

DD
DD

DD
DD

D

V1 •E2 // •E1 •E3
or

•

FF
FF

FF
FF

F

•E2 •E1oo •E3 .

Proof. Suppose for a contradiction that r1

(
ρ21(E2)

)
6= {0} and r2

(
ρ21(E1)

)
6= {0}.

We claim that then ρ21 has a diagram

V3 •

""E
EE

EE
EE

EE

V1 •E2 •E1 •E3 .
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Once we have proven the above claim, take x ∈ E2. Then, by our assumptions,

r1

(
ρ21(x)

)
6= 0 and so (again by assumption)

r3

(
ρ31ρ21(x)

)
6= 0.

But ρ31(x) ∈ E2 and thus ρ21ρ31(x) ∈ E2 ⊕ E1. This contradicts the relation

[ρ21, ρ31] = 1, and our proof is complete.

Now, to prove the claim, let v1 ∈ E1 r {0}. Then v3 = σ23r2

(
ρ21(v1)

)
generates

E3. Now if

r1,2,3

(
ρ21(v3)

)
= 0

then we have proven our claim. If not, let U = 〈u〉 be a subspace of V3 of dimension

1, where u = r1,2,3

(
ρ21(v3)

)
. Note that ρ21v3 ∈ u+ E3, and so

ρ−1
21 (−v3) = ε1ρ21ε1(−v3) ∈ u+ E3.

In particular, ρ−1
21 (−v3)− v′3 = u for some v′3 ∈ E3. Now

ρ21u = ρ21

(
ρ−1

21 (−v3)− v′3
)
∈ E3 ⊕ U,

and hence U ⊕ E3 is ρ21-invariant.

Let us rewrite ρ21ρ31 = ρ31ρ21 as

ρ21σ23ρ21σ23 = σ23ρ21σ23ρ21

which yields [ρ21σ23ρ21, σ23] = 1. But now v1 lies in the µ-eigenspace of σ23 where

µ = ±1, and hence so does ρ21σ23ρ21(v1). Note that a diagram chase gives us the

following

r1,2,3

(
ρ21σ23ρ21(v1)

)
= r1,2,3

(
ρ21r3

(
σ23ρ21(v1)

))
= r1,2,3

(
ρ21σ23r2

(
ρ21(v1)

))
= r1,2,3

(
ρ21(v3)

)
= u.

Therefore, as V3 is S3-invariant, U lies in the µ-eigenspace of σ23.

Note that the eigenspaces of ∆ are V0⊕V2 and V1⊕V3, and on each ∆ acts as ±1.

Hence, since V0⊕V2 = {0}, we see that [φ(ρ21), φ(∆)] = 1. Therefore, since ρ∆
ij = λij,

the elements ρij and λij act identically for each i and j. This in turn implies that

[φ(ρ21), φ(ρ23)] = 1 since [ρ21, λ23] = 1. Rewriting the first relation as before we get

[φ(ρ21σ13ρ21), φ(σ13)] = 1.
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Let v2 ∈ E2 r {0}. Then 〈r1,2,3

(
ρ21σ23ρ21(v2)

)
〉 = U as before. The group S3 can

act on V1 in two ways: via the permutation or the signed permutation representation.

In each case however, if E1 is in the µ-eigenspace of σ23, then E2 is in the µ-eigenspace

of σ13. Thus σ13(v2) = µv2 and so U lies in the µ-eigenspace of σ13. Therefore it also

lies in the µ-eigenspace of σ12 = σσ1323 , just like E3. This shows that

φ(ρ12)|E3⊕V3 = φ(ρσ1221 )|E3⊕V3 = φ(ρ21)|E3⊕V3 ,

and therefore that

φ(ρ21)|E3⊕V3 = φ(ρ21ρ
−1
12 λ21)|E3⊕V3 = φ(ε2σ12)|E3⊕V3 .

But ε2σ12(E3) = E3 and so ρ21 has a diagram of the form claimed.

We shall now focus on five- and six-dimensional representations of Out(F3).

Lemma 3.2.4. Let V be a K-linear, six-dimensional representation of Out(F3), where

char(K) 6= 2. Suppose that, with notation of Definition 3.1.1,

dimV1 ⊕ V2 6 3.

Note that V1 = {0} or V2 = {0}. Then, if V2 = {0}, we have a (not necessarily

minimal) diagram for ρ21 of the form

V3 •

CC
CC

CC
CC

C •

DD
DD

DD
DD

D

V1 •E2 // •E1 •E3 or •E2 •E1

��

oo •E3 ,

V0 •

OO

•

and if V1 = {0} of the form

V3 •

��

•

V2
•E1,3

// •E2,3 •E1,2 or •E1,3 •E2,3

OO

oo •E1,2 .

V0 •

wwwwwwwwww •

wwwwwwwwww

In both cases at least one of V0 ⊕ V2 and V1 ⊕ V3 is Out(F3)-invariant.
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Proof. Lemma 3.1.2 tells us that the dimensions of V1 and V2 are divisible by 3. Hence,

by assumption, at least one of V1 and V2 is trivial. If both of them are trivial then

Lemma 3.1.3 immediately tells us that the decomposition V = V0⊕V3 is preserved by

each ρij and λij. Thus the minimal diagram for ρ21 is a subdiagram of all the above.

Suppose one of V1, V2 is non-trivial. Without loss of generality let us assume

dimV1 6= 0. Again by assumption we see that dimV1 = 3, and hence dimEi = 1 for

all i.

Our strategy here is to start with the most general possible diagram for ρ21, and

then gradually add restriction until we arrive at one of the diagrams described above.

Lemma 3.1.3 allows us to conclude that we have the following diagrams for ρ21

and ρ31 respectively:

•

DD
DD

DD
DD

D V3 •

•E2

DD
DD

DD
DD

D •E1 •E3 V1 •E2

zzzzzzzzz
•E1 •E3 .

• V0 •

yyyyyyyyy

The element ∆ lies in the centre of G3, and so in particular [∆, ε1σ14] = 1. This

implies that ε1σ14 preserves the eigenspaces of ∆, which happen to be the direct sums

of all subspaces Vi with the index i of a given parity (even for the (+1)- and odd for

the (−1)-eigenspace). Hence the following is a diagram for ε1σ14:

•

AA
AA

AA
AA

~~
~~

~~
~

• • •.

•

But, in Out(F3), we have ε1σ14 = ρ31ρ21, and Remark 3.1.5 tells us that

ρ31

(
r2

(
ρ21(V0)

))
6 E2 ⊕ V3.

We can therefore conclude that r2

(
ρ21(V0)

)
= {0}, and so that we have a diagram for

ρ21 as follows:

•

AA
AA

AA
AA

•

��@
@@

@@
@@
• •.

•
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Again, by Remark 3.1.5, ρ31|E2⊕V3 is an isomorphism. Hence there exists

v ∈ E2 ⊕ V3

such that 〈ρ31(v)〉 = E2. Since v ∈ E2 ⊕ V3 6 V1 ⊕ V3, also ε1σ14(v) ∈ V1 ⊕ V3. Now

ε1σ14(v) = ρ21ρ31(v)

and so we conclude that ρ21 has a diagram

•

AA
AA

AA
AA

• • •.

•

Note that ρ21 either has a diagram

•

@@
@@

@@
@

• •oo •,

•

or r1

(
ρ21(E2)

)
= E1, since dimE1 = 1.

If ρ21(E2) projects surjectively onto E1, applying ρ31ρ21 = ε1σ14 to E2 yields a

diagram for ρ31 of the form

•

��
��

��
��

• • •,

•

OO

and, after conjugating by σ23 (see Example 3.1.8), ρ21 has a diagram

•

AA
AA

AA
AA

• • •.

•

OO
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Requiring ρε121 = ρ−1
21 yields two possibilities for a diagram for ρ21:

•

@@
@@

@@
@

• // • •

•

OO
or

•

AA
AA

AA
AA

• • •.

•

The first diagram is as required. The second diagram gives a required diagram after

applying Lemma 3.2.3.

We still have to consider the case of a diagram

•

@@
@@

@@
@

• •oo •

•

for ρ21. Applying ε1σ14 = ρ21ρ31 to V0 yields a diagram for ρ21 of the form

•

@@
@@

@@
@ •

AA
AA

AA
AA

• • • or • •

��

oo •.

• •

The second of these diagrams is as required.

Let us now focus on the first of the above diagrams. Note that, by Example 3.1.8,

this is also a diagram for λ21, and that a diagram for ρ−1
12 is as follows:

•

AA
AA

AA
AA

•

@@
@@

@@
@ • •.

•

Let v1 be a generator of E1. Apply ε2σ12 = ρ21ρ
−1
12 λ21 to v1 and observe that

ε2σ12(v1) = v2, a generator of E2. Now let x be the E1 component of λ21(v1). Note

that ρ−1
12 λ21(v1) has a non-trivial E1 component if and only if x is not zero. But such

a non-trivial component yields a non-zero component in E1 ⊕ V0 of ρ21ρ
−1
12 λ21(v1).
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This is impossible, since ε2σ12(v1) = v2 has no such components. Thus x = 0, λ21(v1)

lies in V0, and

ρ−1
12 |U : U → E2

is an isomorphism, where U = 〈λ21(v1)〉. Hence ρ12|E2 : E2 → U is an isomorphism

as well.

We claim that ρ±1
ij |Ej , λ±1

ij |Ej : Ej → U are all isomorphisms. We have estab-

lished this for λ21 and ρ12. Conjugating by ε1 and ε2 establishes the claim also for

ρ−1
21 , ρ21, λ

−1
21 , ρ

−1
12 , λ12 and λ−1

12 . Using the fact that ε1σ14 = ρ31ρ21 preserves V1⊕V3 we

immediately conclude that the claim also holds for ρ−1
31 , and hence in particular also

for ρ13 (repeating the argument above). Now the relation ε3σ34 = ρ13ρ23 establishes

the claim for ρ23, and the claim follows.

Our calculations enable us to deduce that diagrams for ρ21 and λ23 respectively

are as follows

•

@@
@@

@@
@

• •
��

•

•

and

•

• • •.~~

}}
}}

}}
}

•

But ρ21 and λ23 commute, and this together with the fact that ρ21(E1) = U = λ−1
23 (E3)

yields a diagram for ρ21 of the form

•

• •
��

•.
``

AAAAAAA

•

In particular Example 3.1.7 implies that dimV0 6= 0.

Now let us define U2 = ρ21(E3) 6 V3. Note that dimU2 = 1. Since ρ21 commutes

with λ23, examining the respective diagrams yields λ23(U2) = E1. Now, observing

that each εi preserves each subspace of EI , we see that in fact for all i

U2 = ρ±1
2i (Ej) = λ±1

2i (Ej)

where j satisfies {i, j} = {1, 3}. We can define U1 and U3 similarly.

The relations [ρ21, ρ31] = [ρ23, ρ13] = 1, together with the structure of our dia-

grams, tell us that U2 ∩ (U1 + U3) = {0}. The relation [ρ32, ρ12] = 1 informs us that
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U1 ∩ U3 = {0} and so that dim(U1 ⊕ U2 ⊕ U3) = 3. This is a contradiction, since

V0 6= {0} and so dimV3 6 2.

We have thus shown that ρ21 has a diagram as claimed. Observe that, since the

subgroup W3 < Out(F3) preserves each Vi by construction, having a diagram for ρ21

of the form described in the statement of this lemma immediately implies that at

least one of V0 ⊕ V2 and V1 ⊕ V3 is preserved by Out(F3) = 〈W3, ρ21〉.

Lemma 3.2.5. Let V be a K-linear, six-dimensional representation of Out(F3), where

K is a field of characteristic other than 2 or 3. Suppose that dim(V1⊕ V2) = 6. Then

V splits into V = V1 ⊕ V2 as an Out(F3)-module.

Proof. If dimV1 = 6 or dimV2 = 6 then the result is trivial.

Suppose that dimV1 = dimV2 = 3 and so V = V1⊕V2 as a vector space. We know

(using Maschke’s Theorem and our assumption on char(K)) that each Vi (for i = 1, 2)

is either a sum of standard and trivial or a sum of signed standard and determinant

representations of S3; we can therefore pick vectors vi ∈ Ei, wi ∈ E{1,2,3}r{i} so that

each vi − vj and wi − wj is an eigenvector of an element of S3 r {1}.
We have a diagram for ρ21 of the form

•E2,3

SSSSSSSSSSSSSSSSSS •E1,3

GG
GG

GG
GG

G •E1,2

•E1

kkkkkkkkkkkkkkkkkk •E2

wwwwwwwww
•E3

and analogously one for ρ31 of the form

•E2,3

GG
GG

GG
GG

G •E1,3

ww
ww

ww
ww

w
•E1,2

ww
ww

ww
ww

w

•E1

wwwwwwwww
•E2 •E3 .

GGGGGGGGG

Since S4 commutes with ∆, its action has to preserve the (+1)-eigenspace of ∆ (which

is equal to V1 in our case) as well as the (−1)-eigenspace (which equals V2 in this case).

We also have [ε1,∆] = 1, and so ε1σ14 = ρ31ρ21 preserves V2. Hence, evaluating ρ31ρ21

on E1,2 (and observing that dimEI 6 1 for all I) gives us either a diagram for ρ21 of

the form

•

OOOOOOOOOOOOOO •

@@
@@

@@
@ •

•

77oooooooooooooo •

~~~~~~~
•
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or a diagram for ρ31 of the form

•

@@
@@

@@
@ •

~~
~~

~~
~

•

}}
}}

}}
}}

•
??

~~~~~~~
• •.kk

AAAAAAAA

Suppose (for a contradiction) that we are in the latter case. Evaluating ρ21ρ31 on

E1 (and observing that the diagrams for ρ31 and ρ21 are related by conjugation by

σ23) yields diagrams for ρ21 and ρ31 respectively of the form

• //

OOOOOOOOOOOOOO • ��
@@

@@
@@

@ •

• 77

ooooooooooooo •oo

~~~~~~~
• and

•

@@
@@

@@
@

++•

~~
~~

~~
~

•~~

}}
}}

}}
}

•
??

~~~~~~~
• •.kk

AAAAAAAA

Now ρ21ρ31(E1) = E3 and ρ31ρ21(E1) = E2. But ρ31 commutes with ρ21, which yields

a contradiction.

We can repeat the argument after evaluating ρ31ρ21 on E3 and conclude that we

have a diagram for ρ21 of the form

•

''PPPPPPPPPPPPPP •

AA
AA

AA
AA

•

•

77nnnnnnnnnnnnnn •

}}}}}}}}
•.

Two diagram chases, starting at E3 and E1,2, show ρ−1
21 = ρε121 requires ρ21 to have

a diagram of the form

•

''OOOOOOOOOOOOOO •

@@
@@

@@
@ •

•

77oooooooooooooo •

??~~~~~~~~ •,

•

''OOOOOOOOOOOOOO •

��@
@@

@@
@@
•

•

77oooooooooooooo •

~~~~~~~
• or

• //

''PPPPPPPPPPPPPP •

AA
AA

AA
AA

•

• //

77nnnnnnnnnnnnnn •

}}}}}}}}
•.

Suppose we are in the third case. We have diagrams for ρ21 and ρ31 respectively

• //

''OOOOOOOOOOOOOO •

@@
@@

@@
@ •

• //

77oooooooooooooo •

~~~~~~~
• and

•

��@
@@

@@
@@

++•

~~
~~

~~
~

•

}}
}}

}}
}}

•

??~~~~~~~
33• •.

AAAAAAAA

Evaluating ε1σ14 = ρ31ρ21 on E2 (and observing that ε1σ14(V2) = V2) yields a diagram

for ρ21 of the form

• //

''OOOOOOOOOOOOOO •

@@
@@

@@
@ •

• // //77

77ooooooooooooo •

~~~~~~~
• or

• //

''PPPPPPPPPPPPPP •

AA
AA

AA
AA

•

• // •

}}}}}}}}
•.
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The first case is impossible, since we would have

E1 = 1(E1) = ε1ρ21ε1ρ21(E1) 6 E2 ⊕ E1,2.

After repeating the argument for E2,3 we conclude that we have diagrams for ρ21 and

ρ31 respectively as follows

• // • •

~~
~~

~~
~

• // • •

@@@@@@@
and

• ++•

AA
AA

AA
AA

•

• 33•

}}}}}}}}
•.

Note that the above diagrams show that σ14 = ε1ρ31ρ21 preserves both E2 and E3,

since S4 preserves V1 and V2.

Suppose that σ14 preserves each Ei. Then so does σ24 = σσ1214 . But σ24 = σσ1412 , and

σ12(E1) = E2. This is a contradiction. We can apply an analogous argument to the

σ14-action on the subspaces Ei,j. Now we easily deduce from ε1σ14 = ρ31ρ21 that

ρ21(E1) 66 E1 and ρ21(E2,3) 66 E2,3.

We can now evaluate ε1σ14 = ρ31ρ21 and ρ−1
21 = ρε121 on E1 and E2,3 and conclude

that we have a diagram for ρ21 of the form

• // • •

• // • •

which shows that both V1 and V2 are Out(Fn)-invariant.

Suppose now that we are in one of the first two cases, namely that there is a

diagram for ρ21 of the form

•

''OOOOOOOOOOOOOO •

@@
@@

@@
@ •

•

77oooooooooooooo •

??~~~~~~~
• or

•

''PPPPPPPPPPPPPP •

  A
AA

AA
AA

A •

•

77nnnnnnnnnnnnnn •

}}}}}}}}
•.

Verifying that ρ31ρ21 keeps V1 and V2 invariant immediately tells us that in fact we

have a diagram for ρ21 of the form

•E2,3

))SSSSSSSSSSSSSSSSS •E1,3

##G
GG

GG
GG

GG
•E1,2

•E1

55kkkkkkkkkkkkkkkkkk •E2

;;wwwwwwwww
•E3 .
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The element ρ31 keeps E2 and E1,3 invariant, and so, observing that ε1σ14 = ρ21ρ31

preserves V1 ⊕ V3, we actually have diagrams for ρ21 and ρ31 respectively

•

''OOOOOOOOOOOOOO • •

•

77oooooooooooooo • • and

•

��@
@@

@@
@@
• •

•

??~~~~~~~
• •.

But, in order for ρ21ρ31 to keep V1 and V2 invariant, we need to have

• • •

• • •

as a diagram for ρ21. This finishes the proof.

Now let us investigate 5-dimensional representations of Out(F3) – we hope to be

able to say more in this case!

Proposition 3.2.6. Let V be a 5-dimensional, K-linear representation of Out(F3),

where K is a field of characteristic other than 2 or 3. Suppose that, with the notation

of Definition 3.1.1, V 6= V0 ⊕ V3. Then V = V0 ⊕ V1 ⊕ V2 ⊕ V3 is a decomposition

of Out(F3)-modules, and, as S4-modules, V0 is a sum of trivial, V1 of standard, V2 of

signed standard, and V3 of determinant representations.

Proof. Since dimV = 5, we have V1 = {0} or V2 = {0}. Let us suppose that we have

the latter, the other case being entirely similar.

Step 0: We first claim that V0 is a sum of trivial S4-modules.

Lemma 3.2.4 gives us two possibilities for a diagram for ρ21, namely

•

EEEEEEEE •

FF
FF

FF
FF

F

•E2 // •E1 •E3 or •E2 •E1

��

oo •E3 .

•

OO

•

The same lemma also tells us that V/(V1 ⊕ V3) is a representation of Out(F3). Its

dimension is at most 2 and therefore Lemma 3.2.1 tells us that it is a direct sum of

two trivial representations of Out(F3) (since we know how ε1 acts), and so the same

statement holds for V/(V1⊕V3) as an S4-module. Hence it also holds for V0, since V0

is an S4-module isomorphic to V/(V1 ⊕ V3).
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Note that an identical argument shows that V3 is a sum of determinant S4-modules

in the case when V1 = {0}.

Step 1: We now claim that V0⊕V1 is Out(F3)-invariant. Suppose for a contradiction

that it is not the case.

Let U be the projection of ρ21(E3) onto V3. Note that dimU = 1 since we have

assumed V0 ⊕ V1 not to be Out(F3)-invariant. Our aim now is to show that U is

Out(F3)-invariant.

If V3 is Out(F3)-invariant, then it is an Out(F3)-module of dimension at most two,

and hence we can use Lemma 3.2.2 to conclude that it is in fact a sum of determinant

representations. Hence, in particular, U is Out(F3)-invariant.

Now suppose that V3 is not Out(F3)-invariant.

A diagram chase shows that

ρ21ρ31(E3) 6 U ⊕ E1 ⊕ E3.

But ρ21 and ρ31 commute, and so ρ31

(
r1,2,3(ρ21E3)

)
6 U , that is ρ31(U) 6 U . Observe

that ε1|U is an isomorphism, and hence ρ−1
31 = ρε131 also preserves U . Therefore ρ31|U

is an isomorphism.

We can repeat the argument above for λ23, since this element commutes with ρ21

and

ρ21λ23(E3) 6 U ⊕ E2 ⊕ E3 ⊕ V0.

We conclude that λ23|U is an isomorphism, and hence so is ρ23 = λ∆
23, as ∆|U is an

isomorphism as well. The equation ρ−1
21 = [ρ−1

23 , ρ
−1
31 ] yields that ρ21|U is an isomor-

phism.

Note that U is the unique non-trivial invariant subspace of V3 for each ρ21, ρ31 and

ρ23, as otherwise V3 would be invariant under the action of

〈S3, ρ21〉 = 〈S3, ρ31〉 = 〈S3, ρ23〉 = Out(F3).

Hence U is σ23- and σ13-invariant, and therefore S3 preserves U . From this we conclude

that Out(F3) preserves U .

Lemma 3.2.2 informs us that U is a determinant representation of Out(F3). Since

ρ−1
21 = ρε121, we must have

∀v ∈ E3 : ρ21(v) ∈ v + U.

Using similar relations we establish that, when restricted to E3 ⊕ U , λ21 acts as ρ21,

and ρ12 acts as ρ±1
21 . Hence, taking v ∈ E3,

v + (2∓ 1)u = ρ2∓1
21 (v) = ρ21ρ

−1
12 λ21(v) = ε1σ12(v) ∈ E3
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where u = ρ21(v) − v ∈ U . This shows that u = 0, and hence V0 ⊕ V1 is Out(F3)-

invariant, which is the desired contradiction.

We have thus shown that there is a diagram for ρ21 of the form

•

""E
EEEEEEE •

##F
FF

FF
FF

FF

•E2 // •E1 •E3 or •E2 •E1

��

oo •E3 .

•

OO

•

Step 2: We claim that V1 is a standard S4-module.

As an S3-module, both V1 and V2 are sums of one standard with either one trivial

or one determinant representation. The branching rule tells us therefore that, as

S4-modules, each of the subspaces can be either a standard or a signed standard

representation, or the one corresponding to partition (2, 2). The last case is ruled out

by Lemma 3.2.1, since (V0 ⊕ V1)/V0 is clearly not a sum of trivial and determinant

Out(F3)-modules.

Focusing only on V1, we have a diagram for ρ21 of the form

• // • • or • •oo •.

Note that in both cases these are the minimal diagrams for ρ21 when restricted to V1,

since otherwise σ12 could not permute E1 and E2.

Let us pick vectors vi ∈ Ei in such a way that each vi − vj is an eigenvector of

σij. Let us also set v = v1 + v2 + v3. The way in which S4 acts on V1 in our case is

determined by one parameter; we can calculate it by finding µ ∈ C such that v1 + µv

is an eigenvector of σ14. The eigenvalue of this eigenvector will also determine the way

in which S4 acts. Let us note that we can also find this parameter µ by computing

σ14(v2 − v1) = µv + v2.

In the case of the first diagram for ρ21, we immediately see that

σ14(v2 − v1) = ε1ρ21ρ31(v2 − v1) ∈ E1 ⊕ E2,

and hence µ = 0. Now both ρ23 and ρ31 preserve E1, and so observing that

ρ−1
21 = [ρ−1

23 , ρ
−1
31 ]

yields that ρ21 acts trivially on E1. By an analogous argument so does ρ31. Hence

σ14(v1) = ε1(v1). In our case this shows that we are dealing with a standard repre-

sentation; if however V1 is trivial, ε1 acts as plus one on the appropriate vector, and

wee see that V2 is a signed standard S4-module.
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In the case of the second diagram we immediately see two eigenspaces of σ14,

namely E2 and E3. These spaces are interchanged by the action of σ23 which com-

mutes with σ14, and hence must have the same eigenvalue. In a standard or a signed

standard representation of S4 each σij has always exactly two repeated eigenval-

ues, and it is this eigenvalue that determines the representation. It is enough for

us then to find a third eigenvector of σ14 and compute its eigenvalue. The vector

must have a non-trivial E1-component, and our diagram tells us that it is enough to

check how σ14 acts on E1. By an argument similar to the one above we show that

ε1σ14(v1) ∈ v1 + E2 ⊕ E3, and the claim follows.

Step 3: We now claim that V3 is a sum of determinant S4-representations.

As an S3-module, V1 is a sum of one standard, and one trivial representation. Since

V0⊕V1 is Out(F3)-invariant, we can consider V/(V0⊕V1) as a Out(F3)-representation.

Lemma 3.2.2 tells us that it is a sum of determinant modules. Hence V3 is a sum of

determinant S3-modules, since V3
∼= V/(V0 ⊕ V1) as an S3-module.

We have already found one standard representation of S4, and the branching rule

tells us that there can only be determinant representations of S4 left. If at least one

of them does not lie entirely in V3, then it would appear in (V1 ⊕ V3)/V3 by Schur’s

Lemma. This is not possible, since (V1 ⊕ V3)/V3 is a standard representation of S4.

Hence all the other irreducible S4-modules lie within V3.

Step 4: Our last claim is that each Vi is Out(F3)-invariant.

We have already shown this for V1⊕V0. We have just shown that V3 is S4 invariant,

and so, ρ21ρ31 = ε1σ14 keeping V3 invariant yields a diagram for ρ21 of the form

• •

•E2 // •E1 •E3 or •E2 •E1

��

oo •E3 .

•

OO

•

We have already shown in step 2 that in both cases ρ21(v) ∈ v + E2 ⊕ V0 for each

v ∈ E1. Also, (V0⊕V1)/V1 is an Out(F3)-module of dimension at most 2, and hence is

described by Lemma 3.2.2. In particular ρ12(w) = w + E1 for all w ∈ V0. Analogous

statements hold for ρ31 and so observing that σ23 acts as ±1 on E1 ⊕ V0 and that

ρ21 = ρσ2331 yields that ε1σ12 = ρ31ρ21(V0) has a non-trivial V1-component if and only
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if ρ21(V0) does, and similarly that ε1σ12 = ρ31ρ21(V1) has a non-trivial V0-component

if and only if ρ21(V0) does. Hence we have a diagram

• •

•E2 // •E1 •E3 or •E2 •E1oo •E3 .

• •

for ρ21, which was what we claimed.

Lemma 3.2.7. Suppose V is a K-linear representation of Out(F3), such that V0⊕V2

and V1⊕V3 are Out(F3)-invariant. Then the representation factors through the natural

projection

π3 : Out(F3)→ GL3(Z).

Proof. Note that φ(∆) lies in the product

Z(GL(V0 ⊕ V2))× Z(GL(V1 ⊕ V3))

of the centres of the general linear groups of the components V0 ⊕ V2 and V1 ⊕ V3.

Therefore we have φ(ρij) = φ(ρij)
φ(∆) = φ(λij) for each i 6= j, and so φ factors as

Out(F3)
φ //

��

GL(V )

Out(F3)/〈〈{ρijλ−1
ij | i 6= j}〉〉

∼= // GL3(Z).

OO

This finishes the proof.

Observe an immediate consequence of the above.

Lemma 3.2.8. Suppose V is a K-linear representation of Out(F3) of dimension at

most 5, where the characteristic of K is not 2 or 3. Then the representation factors

through the natural projection π3 : Out(F3)→ GL3(Z).

Proof. We have V = V0 ⊕ V1 ⊕ V2 ⊕ V3 as a vector space. Suppose first that V1 ⊕ V2

is trivial. Then Lemma 3.1.3 tells us that V = V0 ⊕ V3 as an Out(F3)-module.

Supposing that V1⊕V2 6= {0} allows us to use Proposition 3.2.6, and conclude that

each Vi is Out(F3)-invariant. We can now use Lemma 3.2.7 and finish the proof.

To conclude this section we will need the following result, proven independently

by Cohen–Pakianathan, Farb, and Kawazumi.
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Theorem 3.2.9. Let n > 3 and let V ∼= Zn denote the standard GLn(Z)-module.

Then the abelianisation of the Torelli subgroup IAn < Aut(Fn) decomposes into

V ⊕ S(3,3,2n−3,1)(V )

as an Aut(Fn)/IAn = GLn(Z)-module, where the action is induced by the left conju-

gation action of Aut(Fn) on IAn.

Proof. We offer a sketch of the proof of Kawazumi.

First consider the function 〈·, ·〉 : Aut(Fn)× Fn → Fn given by

〈φ, x〉 = x−1φ(x).

Note that if we restrict our function to IAn, we obtain (with a slight abuse of notation)

〈·, ·〉 : IAn × Fn → F ′n = [Fn, Fn].

Now consider following the map 〈·, ·〉 with the quotient map F ′n → Γ = F ′n/[F
′
n, Fn].

We obtain

〈·, ·〉′ : IAn × Fn → Γ.

If we fix φ ∈ IAn, it is easy to verify that the map

〈φ, ·〉′ : Fn → Γ

is a homomorphism. We have thus obtained a function

τ ′ : IAn → Hom(Fn,Γ)

defined by τ ′(φ) = 〈φ, ·〉′. As Γ is abelian, and the group of homomorphisms between

two abelian groups is also abelian, this descends to

τ : IAab
n → Hom(V,Γ),

where V is the abelianisation of Fn, and IAab
n is the abelianisation of IAn.

Observe that 〈φ, x〉′ = 〈φ, ψ(x)〉′ whenever φ, ψ ∈ IAn, since τ ′(φ)(x) only depends

on [x], the image of x in V , and this is the same as [ψ(x)]. An easy calculation now

shows that τ is in fact a homomorphism. Note that this is one of the Johnson

homomorphisms.

Note that IAab
n has a structure of an Aut(Fn)-module, where the action is the left

conjugation (i.e. an element ψ acts via conjugation by ψ−1). Consider φ ∈ IAn and

ψ ∈ Aut(Fn). Then

τ([ψφψ−1])([x]) = [x−1ψφψ−1(x)]Γ = [ψ
(
ψ−1(x−1)φ

(
ψ−1(x)

))
] = [ψ

(
〈φ, ψ−1(x)〉

)
]Γ
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where [.] and [.]Γ denote images in the obvious quotients. This calculation shows that

the Johnson homomorphism τ is Aut(Fn)-equivariant, where Hom(V,Γ) is given the

natural Aut(Fn)-module structure.

The Magnus embedding gives us the second homomorphism we shall require,

namely an Aut(Fn)-equivariant homomorphism

θ : Γ→ V ⊗ V.

For an introduction to the Magnus embedding, see [20].

We combine τ and θ to obtain an Aut(Fn)-equivariant homomorphism

η : IAab
n → Hom(V, V ⊗ V ) ∼= V ∗ ⊗ V ⊗ V

where V ∗ denotes the dual of V (as an GLn(Z) = Aut(Fn)/IAn-module).

The construction of θ is completely explicit, and allows us to compute the image

under η of a finite set of generators of IAn. We discover that the image of η is

isomorphic to V ∗ ⊗ S(1,1)(V ) ∼= V ⊕ S(3,3,2n−3,1)(V ).

Remark 3.2.10. Note that we can also consider the abelianisation of IAn, the Torelli

subgroup of Out(Fn), as an GLn(Z) = Out(Fn)/IAn-module. We immediately con-

clude from the above that it is isomorphic to S(3,3,2n−3,1)(V ), since we know that the

inner automorphisms do not become trivial in the abelianisation of IAn.

We are now ready for the main result of this section.

Theorem 3.2.11. Suppose V is a K-linear representation of Out(F3) of dimension

at most 6, where the characteristic of K is not 2 or 3. Then the representation factors

through the natural projection π3 : Out(F3)→ GL3(Z).

Proof. Let φ : Out(F3) → GL(V ) be our representation. Using the notation of

Definition 3.1.1, we have V = V0 ⊕ V1 ⊕ V2 ⊕ V3 as a vector space. We need to

consider a number of cases.

Suppose first that V1 ⊕ V2 is trivial. Then Lemma 3.1.3 tells us that V = V0 ⊕ V3

as an Out(F3)-module. Suppose now that V0⊕V3 is trivial. Lemma 3.2.5 tells us that

V = V1 ⊕ V2 as an Out(F3)-module. In both situations we can apply Lemma 3.2.7.

We are left with the most general case: suppose that dimV1 ⊕ V2 = 3. We are

going to assume that in fact V2 = {0}, the other case being analogous. Applying

Lemma 3.2.4 gives us two Out(F3)-representations r : Out(F3) → V/(V1 ⊕ V3) and

s : Out(F3)→ V/V0, where at least one of them occurs as a submodule of V . Also, r

and s factor through π3 by Lemma 3.2.7. If any of these representations has dimension
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0, then we are done. In what follows we shall suppose that the dimension of both r

and s is non-zero, and thus that V is reducible as an Out(F3)-module. We can choose

a basis for V so that the matrices in φ(Out(F3)) are all in a block-upper-triangular

form, with diagonal blocks corresponding to the representations r and s.

Let IA3 = kerπ3 be the Torelli subgroup. Our aim is to show that IA3 lies in the

kernel of φ.

Elements in IA3 map to matrices with identities on the diagonal, and all non-zero

off-diagonal entries located in the block in the top-right corner. Hence IA3 maps to

an abelian group isomorphic to Km, where m ∈ {5, 8, 9} depends on the dimension

of r.

Note that all products εiεj lie in the kernel of r, and hence so do all elements

ρ2
kj = (ρ

εiεj
kj ρ

−1
kj )−1,

where we took k 6= i. Theorem 2.3.1 now shows that in fact r factors through a finite

group: when restricted to SOut(F3) = π−1
3 (SL3(Z)), it factors through

SOut(F3)→ SL3(Z)→ SL2(Z2).

Let A denote the kernel of this map. Note that IA3 < A.

We have shown above that r|A is trivial, and so A maps to the identity matrix

in the block corresponding to r. Note that φ(A) acts by conjugation on the abelian

group of matrices with identity blocks on the diagonal, and a trivial block in the

bottom-left corner. As remarked above, this group is isomorphic to Km. Each row or

column (depending on which diagonal block corresponds to r) in the top-right corner

corresponds to an A-submodule, and so the group Km splits as an A-module into

K5, 2.K4, 3.K3, 4.K2 or 5.K,

depending on the dimension of r, where the multiplicative notation indicates the

number of direct summands.

Let T = IA3/[IA3, IA3] denote the abelianisation of the Torelli group seen as an

Out(F3)/IA3 = GL3(Z)-module, where the action is the one induced by the conjuga-

tion action Out(F3) y IA3. The structure of this module is known (see Theorem 3.2.9

and the remark afterwards) – it is the second symmetric power of the dual of the stan-

dard GL3(Z)-module, tensored with the determinant representation. After tensoring

T with K, we can apply Proposition 2.3.5, and conclude that T ⊗ZK is an irreducible

A-module of dimension 6. By Schur’s Lemma, if we have an A-equivariant quotient

of T , it is either isomorphic to T or equal to {0}.
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Now consider the action of φ(A) on φ(IA3)⊗ZK by conjugation. It is at the same

time an equivariant quotient of an irreducible 6-dimensional module and a submodule

of

K5, 2.K4, 3.K3, 4.K2 or 5.K.

This implies that the image of IA3 under φ is trivial. This finishes the proof.

3.3 The general case

In what follows, let us fix a field K of characteristic either 0 or greater than n+ 1.

Proposition 3.3.1. Suppose V is an m-dimensional K-linear representation

Out(Fn)→ GL(V ),

where m < n(n− 2), such that, with the notation of Definition 3.1.1, Vi = {0} for all

i 6∈ {0, 1, n−1, n}. Suppose also that n > 6 or that n > 4 and dimV1 +dimVn−1 = n.

Then V decomposes as an Out(Fn)-module as

V = V0 ⊕ V1 ⊕ Vn−1 ⊕ Vn,

where the action of Out(Fn) on V0 is trivial, and on Vn is via the determinant map.

Moreover, as modules of Sn+1 < Out(Fn), V1 is a sum of standard, and Vn−1 of signed

standard representations.

Proof. We are going to proceed in a number of steps.

Step 0: Let us first prove that V = V0⊕V1⊕Vn−1⊕Vn as a module of Gn and Wn.

When n > 5, Lemma 3.1.3 tells us that

ρij(V0 ⊕ V1) 6 V0 ⊕ V1 ⊕ V2 ⊕ V3 = V0 ⊕ V1

since V2 = V3 = {0} by assumption.

When n = 4 then either V0 = {0} or V2 = {0}. In either case

ρij(V0 ⊕ V1) 6 V0 ⊕ V1

since V2 = {0}.
Also, each εi keeps V0 ⊕ V1 invariant, and therefore so does the entire group

Out(Fn). Similarly Out(Fn) keeps Vn−1 ⊕ Vn invariant.
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The group Gn commutes with ∆, and thus preserves its eigenspaces. These are,

depending on the parity of n, V0 ⊕ Vn−1 and V1 ⊕ Vn or V0 ⊕ Vn and V1 ⊕ Vn−1. In

any case we conclude that Gn preserves each Vi. Clearly so does Wn.

Step 1: We claim that as Sn+1-modules, V1 is a sum of standard representations,

and Vn−1 is a sum of signed standard representations.

Let us look more closely at the way Sn−1 acts on E1 and ENr{1}, where Sn−1

is the stabiliser of 1 when Sn acts on the indices of {ε1, . . . , εn}. Note that E1 and

ENr{1} are Sn−1-invariant, since Sn−1 commutes with ε1. The dimension of each of

these representations is less than n− 2 (by Lemma 3.1.2 and our assumption on m).

If n > 6 then these have to be sums of trivial and determinant representations (see

e.g. [23]). If n ∈ {4, 5} then

dimE1 ∈ {0, 1} and dimENr{1} ∈ {0, 1}

by assumption on dimensions of V1 and Vn−1. Hence, as Sn−1-representations, E1 and

En−1 are sums of trivial and determinant representations.

Fix a basis {b1, . . . , bk} of E1, so that each 〈bi〉 is Sn−1-invariant. We see that for

each i, 〈σ(bi) | σ ∈ Sn〉 is an n-dimensional representation of Sn, which has to be

either the permutation or the signed permutation representation (since we know how

Sn acts on the spaces E1, . . . , En). We immediately conclude, using the branching

rule (Proposition 2.1.6), that the representation of Sn+1 on each V1 and Vn−1 is a sum

of standard and signed standard representations.

Again we will focus on the subspaces E1 and ENr{1}. We shall only discuss the

E1 case, since the other case is analogous. Note that Lemma 3.1.3 gives us

ρijEI 6
⊕

I4J⊆{i,j}

EJ .

Hence in particular

ρijE1 6 E1

for all i, j 6= 1, since E1,i = E1,j = E1,i,j = {0}, as V2 = V3 = {0}. But each ρij is

an isomorphism, hence it has to be an isomorphism on E1. Now the actions of ρ23

and ρ34 on E1 are conjugate by the action of σ24σ34, which is trivial on E1. Hence

ρ24 = [ρ−1
34 , ρ

−1
23 ] acts trivially on E1. The same is true for λ24 and λ42, and hence

σ24ε4 = λ24λ
−1
42 ρ24 acts trivially on E1. Therefore the representation of Sn+1 on V1 is

a sum of standard representations, whereas the representation on Vn−1 is a sum of

signed standard representations, which proves the claim.
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Note that we have also shown that ρij acts as identity on Ek and ENr{k} for each

k 6∈ {i, j}. This fact will turn out to be very useful in the remaining part of the proof.

Step 2: We now claim that V1 and Vn−1 are Out(Fn)-invariant.

In fact, we will only prove this claim for V1, the Vn−1 case being analogous. We

shall comment on any differences of note.

Note that the action of An on V1 gives isomorphisms ιij : Ei ∼= Ej for each i, j.

Let us consider W 6 V1, an irreducible representation of Sn+1. We have shown that

W is a standard representation of Sn+1. Our aim now is to find a natural basis for

W .

Let a ∈ W ∩ L be a non-zero vector, where L is the (−1)-eigenspace of σ1(n+1).

Note that 〈a〉 = W ∩ L. Let us remark here that if we were considering Vn−1, then

W would have been a signed standard representation, and we would have taken L to

be the (+1)-eigenspace of σ1(n+1) to the same effect.

We write a =
∑n

i=1 ai, where ai ∈ Ei for each i. Now [σ1(n+1), σ] = 1 for each

σ ∈ An such that σ fixes 1 in the natural action An y {1, 2, . . . , n}. Therefore, for

each such σ, σ(a) ∈ W ∩ L = 〈a〉. But W is a standard representation of An+1,

and hence σ(a) = a. So aj = ι2j(a2) for each j > 2. If a1 = ι21(a2), then in fact

〈a〉 6 V1 is An+1-invariant, which is a contradiction, since V1 is a sum of standard

representations of An+1. Hence a1 6= ι21(a2)

Let u = ι21(a2) +
∑n

i=2 ai ∈ V1 and set v1 = a − u and vj = ι1j(a1) − aj for each

j > 1. Note that vi ∈ Ei for each i. Note also that 〈u〉 is preserved by Sn, and hence

An fixes u. Now

{v1 + u, v2 + u, . . . , vn + u}

is a basis for W ; it is in fact the natural basis for the standard representation (see

Definition 2.1.5). We can conclude that in particular σ1(n+1)(vi+u) = vi−v1 for each

i > 1.

We claim that in fact u = 0. Let us suppose that u 6= 0. The strategy now is to

find a trivial representation of Sn+1 in V1, which will be a contradiction.

We have, for i > 1,

σ1(n+1)(u) = σ1(n+1)(u+ vi − vi)

= σ1(n+1)(u+ vi)− σ1(n+1)(vi)

= vi − v1 − σ1(n+1)(vi).

But

σ1(n+1)(vi) = ε1ρi1
∏
j 6=i

ρj1(vi) = ε1ρi1(vi) ∈ V0 ⊕ E1 ⊕ Ei
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by Lemma 3.1.3. So

σ1(n+1)(u) = vi − v1 − σ1(n+1)(vi) ∈ V0 ⊕ E1 ⊕ Ei

for each i 6= 1. Hence σ1(n+1)(u) ∈ V0 ⊕ E1. But also V1 is Sn+1-invariant, and

therefore σ1(n+1)(u) = x1 ∈ E1. Note that u 6= 0 and so x1 6= 0.

Define xi = ι1i(x1) ∈ Ei and note that, since An acts trivially on u, xi = σi(n+1)(u).

Now, for i 6= 1,

σ1(n+1)(xi) = σ1(n+1)σi(n+1)(u)

= σ1(n+1)σi(n+1)σ1i(u)

= σ1(n+1)σ1iσ1(n+1)(u)

= σi(n+1)(u)

= xi.

Note that this calculation is slightly different in the case of Vn−1 due to extra signs

occurring, but the conclusion stays the same.

We have shown that {u, x1, x2, . . . , xn} forms a basis of a permutation represen-

tation of Sn+1 within V1. In particular this implies that 〈u +
∑n

i=1 xi〉 is a one-

dimensional representation of Sn+1 within V1, which is a contradiction. We conclude

that u = 0.

We have thus shown that a natural basis for W is given by {v1, v2, . . . , vn}, and

therefore

v2 + v1 = ε1σ1(n+1)(v2)

=
n∏
i=2

ρi1(v2)

= ρ21(v2).

Also, as [ε1σ1(n+1), ρ21] = 1,

v3 + v1 = ε1σ1(n+1)(v3)

= ε1σ1(n+1)ρ21(v3)

= ρ21ε1σ1(n+1)(v3)

= ρ21(v3 + v1)

= v3 + ρ21(v1).
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So, combining these two computations with Lemma 3.1.3 shows that ρ21(W ) 6 V1.

The same argument works for any ρij and any standard representation W 6 V1

of Sn+1, and these representations sum up to V1, so we conclude that ρij keeps

V1 invariant for each i 6= j. The same is clearly true for each εi, and therefore

Out(Fn)(V1) = V1. Analogously Out(Fn)(Vn−1) = Vn−1.

Now we can quotient these two spaces out and obtain a representation of Out(Fn)

on the direct sum of Ṽ0 = (V0 ⊕ V1)/V1 and Ṽn = (Vn−1 ⊕ Vn)/Vn−1.

Step 3: We claim further that Ṽ0 ⊕ Ṽn is a sum of Out(Fn)-modules, and the action

of Out(Fn) on Ṽ0 is trivial, and on Ṽn is a sum of determinant representations.

We have shown that V0⊕V1 and Vn−1⊕Vn are Out(Fn)-invariant, and hence both

Ṽ0 and Ṽn are representations of Out(Fn). This way we get two maps of the form

φ : Out(Fn)→ GLν(K), with ν 6 m, each of which sends all elements εi to either the

identity or the minus identity matrix.

Consider the following commutative diagram

Out(Fn)

&&NNNNNNNNNN

φ // GLν(K)

s

��
PGLν(K),

where s is the natural projection. All elements εi are in the kernel of the diagonal

map, and hence, using Corollary 2.3.2, we get another commutative diagram

Out(Fn) //

�� &&NNNNNNNNNNN
GLν(K)

s

��
GLn(Z2) // PGLν(K).

Now we can use Theorem 2.3.3: if n > 5 then the inequality

ν 6 m < n(n− 2) 6 2n−1 − 1

allows us to conclude that the bottom map is trivial. If n = 4 then we need to

additionally use the assumption that dimV1 + dimVn−1 > 4. This tells us that

ν 6 m− 4 < n(n− 2)− 4 6 2n−1 − 1

and hence we can apply the theorem.

In either case, the image of Out(Fn) in GLν(K) lies in the kernel of s, which is

isomorphic to K∗. So φ is in fact a sum of identical one-dimensional representations
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of Out(Fn), and therefore we see that φ is either a sum of trivial or the determinant

representations. But we know the image of ε1 under φ (depending on whether we are

looking at Ṽ0 or Ṽn), which finishes the proof of this step.

Step 4: It remains to show that in fact both V0 and Vn are Out(Fn)-invariant.

Let v ∈ V0. We know that ε1σ1(n+1)(v) ∈ V0, and therefore in particular its

projection onto each of Ei is zero. Now, by Lemma 3.1.3, for j > 1, the Ej-component

of

ε1σ1(n+1)(v) =
n∏
i=2

ρi1(v)

is non-zero if and only if ρj1(v) 6= 0. Therefore ρj1(v) ∈ V0 ⊕ E1 for all j > 1.

Using the fact that ρ21 acts as identity on V0, which we proved in Step 3, let

ρ21(v) = v + v′,

where v′ ∈ E1. Hence

ρ−1
21 (v) = ε1ρ21ε1(v) = v − v′,

and so, to ensure that ρ21ρ
−1
21 = 1, we need ρ21(v′) = v′. Now

ε1σ1(n+1)(v) =
( n∏
i=3

σi2ρ21σi2
)
ρ21(v) = v + (n− 1)v′,

which belongs to V0 only if v′ = 0. This shows that ρ21(v) = v ∈ V0.

The argument works in an identical manner for all ρij, and for Vn. We have

therefore finished the proof of this step, and consequently of the proposition.

Lemma 3.3.2. Suppose φ : Out(Fn) → GL(V ) is an m-dimensional K-linear repre-

sentation of Out(Fn), where n > 4 and m <
(
n+1

2

)
, such that, with the notation of

Definition 3.1.1, at least one of V2, Vn−2 has non-zero dimension. Then φ(∆) lies in

the centre of φ(Out(Fn)).

Proof. Without loss of generality let us assume that V2 6= {0}. Lemma 3.1.2 informs

us that

m− dimV2 <

(
n+ 1

2

)
−
(
n

2

)
= n,

and hence Vi = 0 if i is not equal to 0, 2 or n.

Now, if n > 5, Lemma 3.1.3 shows that each ρij preserves V0⊕V2 and Vn. Clearly,

this is also true for each εi, and hence V0 ⊕ V2 and Vn are subrepresentations of
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Out(Fn). This immediately implies that φ(∆) lies in the centre of φ(Out(Fn)), since

it lies in the centre of

GL(V0 ⊕ V2)×GL(Vn).

If n = 4 then V = V0 ⊕ V2 ⊕ V4, which is precisely the (+1)-eigenspace of ∆.

Hence, as above, φ(∆) lies in the centre of φ(Out(Fn)).

Combining the two results above yields

Theorem 3.3.3. Let K be a field of characteristic equal to zero or greater than

n+1. Suppose φ : Out(Fn)→ GL(V ) is an m-dimensional K-linear representation of

Out(Fn), where n > 6 and m <
(
n+1

2

)
. Then φ factors through the natural projection

πn : Out(Fn)→ GLn(Z).

Proof. Firstly, Lemma 3.1.2 shows that

∀i 6∈ {1, 2, 3, n− 2, n− 1, n} : dimVi = 0.

We claim that φ(∆) lies in the centre of φ(Out(Fn)). We shall consider two cases.

Suppose at least one of V2, Vn−2 has non-zero dimension. Then we are in the case

of Lemma 3.3.2, which asserts the claim.

Suppose now that V2 = Vn−2 = {0}. Let us note that, since n > 6,

m <

(
n+ 1

2

)
< n(n− 2).

We can therefore apply Proposition 3.3.1 to V and conclude that, as an Out(Fn)-

module, V = V0 ⊕ V1 ⊕ Vn−1 ⊕ Vn. Now ∆ acts as an element of the centre of each

GL(Vi), and hence φ(∆) commutes with φ(x) for all x ∈ Out(Fn). The claim is thus

proven.

The relation φ([∆, x]) = 1 for all x ∈ Out(Fn) in particular holds for x = ρij,

and shows that φ(ρij) = φ(ρ∆
ij) = φ(λij). Hence we have the following commutative

diagram

Out(Fn)

πn
��

φ // GL(V )

Out(Fn)/〈〈{ρijλ−1
ij | i 6= j}〉〉

55kkkkkkkkkkkkkkkk ∼= // GLn(Z)

OO

which finishes the proof.

In a similar vein we obtain
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Theorem 3.3.4. Let K be a field of characteristic equal to zero or greater than

5. Suppose φ : Out(Fn) → GL(V ) is an m-dimensional K-linear representation of

Out(Fn), where n ∈ {4, 5} and m < 2n + 1. Then φ factors through the natural

projection πn : Out(Fn)→ GLn(Z).

Proof. First let us suppose that dimV2 + dimVn−2 > 0. Then we apply Lemma 3.3.2,

which asserts our claim.

If V2 = Vn−2 = {0} then either we satisfy the hypothesis of Proposition 3.3.1, in

which case we proceed just as in the proof above, or we have dimV1 + dimVn−1 = 2n.

In the latter case, if n = 4, then V = V1⊕V3 and so φ(∆) commutes with φ(Out(Fn)).

If n = 5, then V = V1 ⊕ V4. Lemma 3.1.3 tells us that both V1 and V4 are Out(Fn)-

invariant, and hence in particular φ(∆) lies in the centre of φ(Out(Fn)).

To put our theorems in context, let us mention the work of Potapchik and Rap-

inchuk [22]. They study complex linear representations of Aut(Fn) in dimension at

most 2n− 2. By using the fact that every representation of Out(Fn) is also a repre-

sentation of Aut(Fn) via the natural projection Aut(Fn) → Out(Fn), we obtain the

following corollary of one of their theorems.

Theorem 3.3.5 (Potapchik, Rapinchuk [22, Theorem 3.1]). Let φ : Out(Fn) →
GLm(C) be a representation, where n > 3 and m 6 2n − 2. Then φ factors through

the natural projection πn : Out(Fn)→ GLn(Z).

Theorem 3.3.3 is a strengthening of the above for large n. In the spirit of the work

of Potapchik and Rapinchuk we can rephrase it in the following manner.

Corollary 3.3.6. Let φ : Aut(Fn)→ GLm(K) be a representation over a field K with

characteristic either equal to zero or greater than n+ 1, where n > 6 and m <
(
n+1

2

)
.

Then either φ factors through the natural projection Aut(Fn) → GLn(Z), or it does

not vanish on the inner automorphisms of Fn.

Proof. Suppose that φ does vanish on the inner automorphisms of Fn. Then it factors

as

Aut(Fn)

��

φ // GLm(K)

Out(Fn)

88qqqqqqqqqq

and the result follows by an application of Theorem 3.3.3.
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3.4 Representations not factoring through πn

In this section we look at the two known ways of obtaining linear representations

Out(Fn)→ GL(V ) with infinite image which do not factor through

πn : Out(Fn)→ GLn(Z).

3.4.1 Bridson–Vogtmann construction

The first known example follows from the construction of Bridson–Vogtmann [8],

which we will look more closely at in Chapter 4, Section 4.5. They give an embedding

φ : Out(Fn) ↪→ Out(Fm), where m = kn(n−1)+1, for all natural numbers k coprime

to n− 1. In particular, when n is odd, we get

m > 3n(n− 1) + 1.

We can compose φ with πm and then iKm to get a K-linear representation

Out(Fn)→ GLm(K).

We easily see that, given any field K, the element [ρ12, ρ13] ∈ IAn acts non-trivially on

H1(Fm,K), and hence our representation cannot factor through πn, as ker πn = IAn.

3.4.2 A new construction

Consider S, the set of all epimorphisms Fn → Z2, with Fn = 〈a1, a2, . . . , an〉. Note

that |S| = 2n − 1, and that Aut(Fn) acts transitively on S. Let G < Aut(Fn) be the

stabiliser of f : Fn → Z2, where

f(ai) =

{
1 if i = n
0 if i 6= n

.

Note that G is of index 2n − 1 in Aut(Fn).

Let Rn be the n-rose with a fixed isomorphism π1(Rn) = Fn, such that the ith

petal bi corresponds to the letter ai. Observe that G contains exactly those based

homotopy equivalences of Rn which lift to based homotopy equivalences of a based

2-sheeted covering X → Rn, where X has two vertices joined by lifts of bn, and all

the other edges are loops – see Figure 3.4.1.

This way we get a map G → Aut(F2n−1). We can compose it with the natural

maps

Aut(F2n−1)
p2n−1 // Out(F2n−1)

π2n−1 // GL2n−1(Z)
ι2n−1 // GL2n−1(C)
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Figure 3.4.1: The 2-sheeted covering X → R5

to obtain

ψ : G→ GL2n−1(C).

Since the covering X → Rn is regular, the action of G on H1(X,C) commutes with

the action of τ , the non-trivial deck transformation of X. Let V denote the (−1)-ei-

genspace of τ , generated by {α1, α2, . . . , αn−1}, where each αi can be represented by

the difference of the two loops in X which project to bi. We now have

ψ′ : G→ GL(V ) ∼= GLn−1(C).

The group Inn(Fn) of inner automorphisms of Fn is generated by elements

cai : w → a−1
i wai,

where w ∈ Fn. We immediately see that Inn(Fn) < G and that

ψ′(cai) =

{
I if i 6= n
−I if i = n

.

We can project GL(V )→ GL(V )/〈−I〉 to obtain

φ : G/Inn(Fn)→ GL(V )/〈−I〉 ∼= GLn−1(C)/〈−I〉.

Note that |Out(Fn) : G/Inn(Fn)| = 2n − 1.

Let IAn be the kernel of πn : Out(Fn) → GL(H1(Fn,Z)). It is well known that

IAn is generated by partial conjugations ρijλ
−1
ij and commutators [ρij, ρik]. We have

ψ′(ρijλ
−1
ij )(αl) =

{
αl if j 6= n or l 6= i
−αi if j = n and l = i

,
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and

ψ′([ρij, ρik])(αl) =


αl if n 6∈ {j, k} or l 6= i

αi − 2αk if j = n and l = i
αi + 2αj if k = n and l = i

.

In particular ψ′(IAn) is infinite.

Consider µ, a partition of an even number, and let Sµ be the associated Schur’s

functor. Then U = SµV is a representation of GLn−1(C) factoring through

GLn−1(C)→ GL(V )/〈−I〉.

Thus U is a representation of G/Inn(Fn), and we can induce it to a representation

θ : Out(Fn) → GLm(C) of dimension m = (2n − 1) dimU . Note that if U is not

1-dimensional, then IAn 66 ker θ, and hence θ does not factor through

Out(Fn)→ GLn(Z).

When n > 4, the smallest m for which U is non-trivial is obtained when

µ = (1, 1).

Then U is the second exterior power of V , its dimension is
(
n−1

2

)
, and so

m = (2n − 1)

(
n− 1

2

)
.

When n is odd this is smaller then the dimension of the smallest Bridson–Vogtmann

representation, and hence the smallest known.

When n = 3, we need to take µ = (2), since the second exterior power of U is

isomorphic to the determinant representation in this case. We get

m = (2n − 1)

(
n

2

)
= 21,

which is again smaller that the dimension of the smallest Bridson–Vogtmann repre-

sentation, which is 55 for n = 3.
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Chapter 4

Free representations of Out(Fn)

In this chapter we will investigate the free representation theory of Out(Fn), that is

the structure of homomorphisms

Out(Fn)→ Out(Fm)

for a range of values n and m.

Our strategy here will be based on the approach devised by Bridson–Vogtmann

in [8]: we will realise the image of the finite group Gn in Out(Fm) as a subgroup

of an automorphism group of a finite admissible graph X of rank m. We will then

apply our results on the low-dimensional representations of Out(Fn) to the action on

H1(X,C), and use this new knowledge to analyse the structure of X. The extensive

use of linear representations allows us to explore a greater range of ranks of X than

was previously possible.

We would like to mention a result of Bridson–Vogtmann [8] here, which stands in

a stark contrast with our results.

Theorem 4.0.1 (Bridson–Vogtmann [8]). For all positive integers n and d, there

exists a subgroup of finite index G < Out(Fn) and a monomorphism G ↪→ Out(Fm),

where m = d(n− 1) + 1.

The above statement shows that in order to obtain results like Theorem 4.4.7,

we cannot merely use the methods of coarse geometry. Hence the dependence of

our proofs on the structure of torsion subgroups of Out(Fn) is, at the very least,

justifiable.
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4.1 Graphs realising finite subgroups of Out(Fn)

Definition 4.1.1 (Admissible graphs). Let X be a connected graph with no vertices

of valence 2, and suppose we have a group G acting on it. We say that X is G-ad-

missible if and only if there is no G-invariant non-trivial (i.e. with at least one edge)

forest in X. We also say that X is admissible if and only if it is Aut(X)-admissible.

Lemma 4.1.2. Let X be a graph with no separating edges. Suppose e is an edge of

X with an endpoint x such that

∀f ∈ E(X) : e ∩ f = {x} ⇒ m(f) 6= m(e),

where m(f) is the length of a shortest simple loop containing an edge f . Then X is

not admissible.

Proof. Let G = Aut(X). Suppose that X is admissible. Then in particular G.e is

not a forest. Let l be a simple loop in this orbit. There exists g ∈ G such that

e ∈ g.l. Hence g.l has to contain an edge f of X intersecting e at x. But this

implies that there exists h ∈ G such that h.e = f . This is a contradiction, since then

m(e) = m(h.e) = m(f).

Since we will be dealing with homology of finite graphs quite frequently in this

section, let us observe the following.

Lemma 4.1.3. Let X be a finite, oriented graph. Recall that Definition 1.3.1 gives

us two maps ι, τ : E(X)→ V (X). We have the following identification

H1(X,C) ∼=
{
f : E(X)→ C | ∀v ∈ V (X) :

∑
ι(e)=v

f(e) =
∑
τ(e)=v

f(e)
}
.

We will often refer to each such function f as a choice of weights of edges in X.

Before proceeding any further, we need to introduce the concept of collapsing

maps of graphs.

Definition 4.1.4. Let q : X → X ′ be a surjective morphism of graphs X and X ′.

We say that q is a collapsing map if and only if for any point p ∈ X ′ the preimage

q−1(p) is connected.

Note that this is a slight generalisation of the idea of ‘collapsing forests’, which is

present in literature.

Remark 4.1.5. Let us observe two facts:
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1. For a graph X, giving a subset of E(X) which will be collapsed specifies a

collapsing map π (up to isomorphism);

2. Any collapsing map π : X → X ′ induces a surjective map on homology.

The following theorem is due to Marc Culler [9], Dmitri Khramtsov [15] and Bruno

Zimmermann [26] (each independently).

Theorem 4.1.6 (Culler [9]; Khramtsov [15]; Zimmermann [26]). Suppose

G ↪→ Out(Fm)

is a monomorphism, where G is a finite group. Then there exists a finite G-admissible

graph X of rank m (with a fixed isomorphism π1X ∼= Fm), so that the composition

G→ Aut(X)→ Out(Fn)

is the given embedding.

Proof. Let pm : Aut(Fm)→ Out(Fm) be the natural projection. Note that

ker pm = Inn(Fm) ∼= Fm.

Let H = p−1
m (G). Then ker pm 6 H is a subgroup of finite index, since G is finite.

Now a result of Karras–Pietrowski–Solitar [14] states that every finitely generated

virtually free group H (i.e. a group with a subgroup of finite index isomorphic to

a free group) is the fundamental group of a finite connected graph of finite groups

G. Bass–Serre Theory tells us that we can unfold the underlying graph of G to get

a tree T with an action T x H, such that G is the quotient graph of groups T//H.

Therefore in particular the stabilisers of edges and vertices are finite, and hence the

intersection of these stabilisers with Fm ∼= ker pm E H is trivial. This implies that

the action of Fm is free. Let X ′ be the quotient of T by the action of Fm. Note

that X ′ is a connected graph with the fundamental group isomorphic to Fm, where

the isomorphism π1(X ′) ∼= Fm is induced by the action T x Fm. Now the action

of H on T induces an action of G ∼= Fm\H on X ′, which in turn induces an action

of G on the conjugacy classes of Fm. Note that this is the same action as the one

given by G < Out(Fm), and hence in particular it is faithful. Therefore we get

G→ Isom(X ′)→ Out(Fm).

Now we replace X ′ by its core X (the minimal connected subgraph with the same

fundamental group), and further alter X by collapsing a maximal G-invariant forest.

This way we obtain a G-admissible graph X as required.
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We can now use the machinery of this section to give a proof (which the author

has learned from Martin Bridson) of the following result.

Proposition 4.1.7 (Baumslag–Taylor [3]). Let IAn < Out(Fn) denote the Torelli

subgroup, that is the kernel of πn : Out(Fn) → GLn(Z), where n > 2. Then IAn is

torsion free.

Proof. Let t ∈ IAn be a torsion element. Let T = 〈t〉 < Out(Fn). We use Theo-

rem 4.1.6 to construct a T -admissible graph X with π1(X) = Fn on which T acts in

such a way that the action T y H1(X,Z) is trivial. After tensoring with C we can

assume that T y H1(X,C) is trivial.

Let e be any edge of X, on which T acts non-trivially. Let l be a simple loop

containing e. Our identification of elements in H1(X,C) with choices of weights on

edges of X immediately tells us that T has to preserve l setwise, since otherwise it

would not be acting trivially on H1(X,C). Hence the orbit T.e is a subset of l. But

X is T -admissible, and so T.e = l. Since T acts trivially on homology of X, but

non-trivially on e, it has to act on l by a non-trivial rotation.

Choose a path p connecting two vertices on l such that p intersects l only at these

two vertices. Such a p exists since the rank of X is at least 2. Now concatenate p

with a simple path p′ in l joining the two endpoints of p. If the endpoints coincide

we choose p′ to be one of them. The concatenation pp′ is a loop, and hence T acts

trivially on it. Hence T acts trivially on p′, a proper subset of l. But this implies that

T acts trivially on l, which is a contradiction.

4.2 The case of Out(F3)

First let us define the following.

Definition 4.2.1. Let G be a group acting on a graph X, and let e be an edge of X.

We define Xe to be the graph obtained from X by collapsing all edges not contained

in the G-orbit of e.

Note that the action of G on such an Xe is edge-transitive.

Lemma 4.2.2. Suppose X is a G-admissible graph of rank at most 5, where G is a

group. Let e be any edge of X. Then Xe has no vertices of valence 1 or greater than

10 and satisfies

8 > 2v2 + v3 + 2v4 + 3v5 + 4v6 + 5v7 + 6v8 + 7v9 + 8v10, (∗)

where vi is the number of vertices of valence i in Xe.
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Proof. First note that there are no vertices of valence 1 in Xe, since they could only

occur if there were separating edges in X. But X is admissible, and so there are no

such edges.

A simple Euler characteristic count yields

2(rank(Xe)− 1) >
∞∑
i=3

(i− 2)vi,

and hence in particular vi = 0 for all i > 10, as Xe has rank at most 5.

Since X is admissible, each vertex of Xe of valence two comes from collapsing a

subgraph of X which is not a tree, hence

rank(Xe) 6 5− v2

and the result follows.

We will now consider graphs satisfying (∗) with a transitive action of W3
∼= G3

yielding particular representations on the C-homology of the graph.

Proposition 4.2.3. Let X be a graph of rank 5 on which G ∈ {W3, G3} acts so

that the representation of G on V = H1(X,C) induced by the action decomposes as

V = V0 ⊕ V1 ⊕ V2 ⊕ V3, where dimV1 ⊕ V2 > 0, and where

• if G = W3 then the decomposition is the one described in Definition 3.1.1, and,

as S3-modules, V1 is a sum of permutation, V2 a sum of signed permutation, V0

a sum of trivial and V3 a sum of determinant representations;

• if G = G3 then ∆ acts as identity on V0⊕V2 and as minus the identity on V1⊕V3,

and as S4-modules, V1 is a sum of standard, V2 a sum of signed standard, V0 a

sum of trivial and V3 a sum of determinant representations.

Then, there is a subgraph Y 6 X isomorphic to a 3-rose, on which G acts in such

a way that, as an S3-module (where S3 < W3 ∩ G3), H1(Y,C) contains the standard

representation.

Proof. Let v ∈ V be a vector belonging to a standard representation of S3 < G. It is

represented by a choice of weights on edges of X. Let e be an edge with a non-zero

weight. Then the image of v in H1(Xe,C) is non-trivial, and hence Schur’s Lemma

informs us that H1(Xe,C) contains a standard S3-module.

Let Z = Xe. Lemma 4.2.2 tells us that Z satisfies (∗). Also, since G acts

transitively on edges of Z, there are at most two vertex-orbits of this action, and
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Figure 4.2.4: Case table
Case number v2 v3 v4 v5 v6 v7 v8 v9 v10 edges rank

(1) 4 4 1
(2) 3 2 6 2
(3) 3 3 1
(4) 2 1 4 2
(5) 2 2 1
(6) 1 1 1
(7) 8 12 5
(8) 6 9 4
(9) 4 6 3
(10) 2 1 6 4
(11) 2 3 2
(12) 4 8 5
(13) 3 6 4
(14) 2 4 3
(15) 1 2 2
(16) 2 5 4
(17) 2 6 5
(18) 1 3 3
(19) 1 4 4
(20) 1 5 5

hence in particular at most two values vi can be non-zero. Let us list all possible

values of vi, noting that ivi = jvj if there are vertices of valence i and j in Z, and

that vi must be even if i is odd and there are only vertices of valence i in Z. All

possible cases are summarised in Figure 4.2.4.

Now, in order to have a standard representation of S3, we need at least 3 edges

in Z, and the rank of Z has to be at least 2. We can therefore immediately rule

out cases (1), (3), (5), (6) and (15). Also, since the action of G on the edges of Z is

transitive, their number has to divide |G| = 48. Hence we can additionally rule out

cases (8), (16) and (20). We are left with the cases listed in Figure 4.2.5.

We will need to deal with these cases one by one:

Case (2): Here we have three vertices of valence two, on which S3 has to act tran-

sitively. Each of these comes from collapsing a graph of non-zero rank in X, hence

the sum of homologies of these graphs contains another standard representation of

S3. This contradicts our assumptions.

Case (4): Here Z is a subdivided 2-rose, so we cannot get a standard representation

of S3 on the homology of this graph.

Case (7): There are four graphs with an edge-transitive group action with at most 8
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Figure 4.2.5: Reduced case table
Case number v2 v3 v4 v5 v6 v7 v8 v9 v10 edges rank

(2) 3 2 6 2
(4) 2 1 4 2
(7) 8 12 5
(9) 4 6 3
(10) 2 1 6 4
(11) 2 3 2
(12) 4 8 5
(13) 3 6 4
(14) 2 4 3
(17) 2 6 5
(18) 1 3 3
(19) 1 4 4

vertices each of valence 3, namely a 3-cage, the 1-skeleton of a tetrahedron, the com-

plete bipartite graph K(3, 3), and the 1-skeleton of a cube. Clearly, only the last one

has the required number of vertices. An S3-action yielding a standard representation

has to be the one given by fixing two vertices and permuting 3 edges incident at one of

them in a natural way. This however yields two copies of the standard representation

when acting on homology, which contradicts our assumptions.

Case (9): In this case we are dealing with an edge-transitive G-action on the 1-

skeleton of a tetrahedron. Such an action has to also be vertex-transitive, and there-

fore each vertex comes from collapsing an isomorphic subgraph. Therefore the rank

of X is either 3 (the rank of Z) or at least 7. None of these cases is possible.

Case (10): In this case Z is obtained by taking a wedge of two 3-cage graphs, C1

and C2, say. Since the action of G is edge-transitive, for any edge e in Z we have

|StabG(e)| = 8

and hence each 3-cycle acts freely. Since a 3-cycle cannot swap C1 and C2, it must

act in the natural way on edges of both. Hence there have to be two copies of the

standard representation of S3 in H1(Z,C), which is not the case.

Case (11): In this case Z is a 3-cage. If G = G3, then S4 < G3 cannot act on Z

yielding the desired standard or signed standard representation. Suppose now that

G = W3. If ε1 preserves exactly one edge, then so do ε2 and ε3; these edges are

distinct, as otherwise we would have some εi and εj acting in the same way where

i 6= j, and so H1(Z,C) 6 V0 ⊕ V3, where S3 cannot have a standard representation.

57



Since the edges are distinct, ε1 and ε2 cannot commute. This shows that each εi

preserves all edges of Z, and hence H1(Z,C) 6 V0 ⊕ V3, which is a contradiction.

Case (12): The graph Z is a bipartite graph with 4 vertices and exactly zero or

two edges connecting each pair of vertices. Hence Z admits a G-equivariant quotient

map to a square (i.e. a single cycle made of 4 edges) which is a 2-to-1 map on edges.

Each 3-cycle acts trivially on the square; moreover it cannot act non-trivially on the

preimages of edges of the square. We conclude that each 3-cycle acts trivially, which

is a contradiction.

Case (13): We easily check that the graph Z consists of three vertices, each of which

has exactly two edges connecting it to each of the other two. Since the 3-cycle in S3

acts non-trivially, it has to act transitively on vertices, and so either each vertex in Z

comes from collapsing a subgraph which was not a tree in X, or none of them does.

Neither of these two cases is possible, since the rank of X is 5.

Case (14): In this case Z is a 4-cage. Each edge in Z has a corresponding edge in

X, and the fact that X is G-admissible implies that these edges do not form a forest.

Hence they can form either a single simple loop, a pair of simple loops, or a 4-cage in

X. The first two cases are impossible, since they would yield a trivial action of the

3-cycle of S3 on Z. Hence X contains Z as a subgraph.

Our assumption on the representations of G tells us that either ∆ or each trans-

position in S3 has to flip Z, and so X is a 4-cage with a loop of length one attached to

each vertex. Let a and b be two vectors in H1(X,C), each given by putting a weight

1 on exactly one of the loops.

If ∆ flips the graph, then a+ b and a− b span two one-dimensional eigenspaces of

∆, one with eigenvalue +1, and one with eigenvalue −1. Hence transpositions in S3

have to map one of these vectors to itself, and the other to minus itself; this is only

possible if they flip the graph, which contradicts our assumptions.

A similar argument works if the transpositions in S3 flip X.

Case (17): In this case Z = X is a 6-cage. As before we have

|StabG(e)| = 8

for any edge e in Z. Hence each 3-cycle in S3 acts freely and so we have two copies

of the standard S3-representation, which is a contradiction.

Case (18): In this case Z is a 3-rose. If Z is actually a subgraph of X, then we are

done. Suppose it is not.

As Z only has one vertex, there is a connected subgraph X ′ of X that we collapsed

when constructing Z. Since X ′ is of rank 2, after erasing vertices of valence 2 (in
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X ′), we are left with two cases: a 2-rose or a 3-cage. Since Z is not a subgraph of X,

and the preimages of edges of Z in X cannot form a forest, they either form a simple

loop (of length three), or a disjoint union of three loops (each of length one). In any

event, we have three vertices on which the 3-cycle in S3 acts transitively. Hence X ′

has to be a 3-cage, with the three vertices lying on the three edges of the cage. But

then we get two standard representations of S3 inside the homology of X, which is a

contradiction.

Case (19): In this case Z is a 4-rose. The 3-cycle in S3 acts by permuting three

petals, and fixing one; let us call this fixed edge f . We easily check that f is preserved

setwise by S3, and hence also by ∆, since ∆ commutes with S3.

If G = W3 then the one-dimensional subspace in H1(Z,C) spanned by a vector

corresponding to f is contained either in V0 or in V3, and hence f has to be preserved

by all elements in G. This contradicts transitivity of the action of G on Z.

Suppose G = G3. Note that there is only one way (up to isomorphism) in which S4

can act on a set of four elements transitively. Therefore, as ∆ commutes with S4, ∆

acts as plus or minus the identity on H1(Z,C). Now H1(Z,C) as an S4-representation

is a sum of standard and trivial or signed standard and determinant representations.

In particular, our hypothesis tells us that ∆ cannot act as either plus or minus the

identity. This is a contradiction.

Lemma 4.2.6. Suppose φ : Out(F3) → Out(F5) is a homomorphisms. Note that

ψ = ιC5 ◦ π5 ◦ φ gives a representation of Out(F3) on V = H1(F5,C). If, as a Wn-mo-

dule, V splits as V0 ⊕ V3 (with the notation of Definition 3.1.1) then the image of φ

is finite.

Proof. The fact that V = V0⊕V3 as a Wn-module implies that ψ(εi∆) = 1 for each i.

Now Proposition 4.1.7 tells us that the kernel of π5 is torsion-free, and so φ(εi∆) = 1.

But this means that we have the following commutative diagram:

Out(F3)

��

φ // Out(F5)

Out(F3)/〈〈{ρij = λij : i 6= j}〉〉

44jjjjjjjjjjjjjjjjj ∼= // GL3(Z)

φ′

OO

This allows us to use a result of Bridson and Farb [6], who have shown that such a

φ′ necessarily has finite image. Therefore the image of φ is finite.

Theorem 4.2.7. Suppose φ : Out(F3) → Out(F5) is a homomorphism. Then the

image of φ is finite.
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Proof. As above, the composition η = ιC5 ◦ π5 ◦ φ gives us a 5-dimensional complex

linear representation η : Out(F3)→ GL5(C).

Suppose first that, with the notation of Definition 3.1.1, V satisfies

V = V0 ⊕ V3.

Then Lemma 4.2.6 yields the result.

Now suppose that V = V0 ⊕ V1 ⊕ V2 ⊕ V3 where V1 ⊕ V2 6= {0}. We apply

Proposition 3.2.6 to η.

We will now apply Theorem 4.1.6 to two finite subgroups of Out(F5), namely

φ(G3) and φ(W3), to obtain two graphs X and Y respectively, on which the groups

G3 and W3 act. Note that H1(X,C) ∼= H1(Y,C) ∼= V , and the representations

of G3 and W3 induced by the actions of the groups on homology of the respective

graphs are isomorphic to the ones given by restricting η. Hence the conclusions of

Proposition 3.2.6 apply to these representations, and so we can apply Proposition 4.2.3

to the actions G3 y X and W3 y Y .

We conclude that both X and Y have a subgraph, preserved by the action of the

respective group, isomorphic to a 3-rose. We also know that we can label the petals

as e1, e2, e3, so that S3 acts on this rose by permuting petals in the natural way, with

the transpositions potentially also flipping all petals.

Knowing that V1 ⊕ V2 6= {0} implies that in the W3 case, either each εi flips ei

and leaves the other petals fixed, or each εi fixes ei and flips the other petals. In the

G3 case, we see that there is only one way in which S4 can act on the 3-rose inducing

a standard or a signed standard representation. Each σi4 has to interchange the two

petals with labels different than ei and preserve the third one; additionally, it either

flips ei and keeps some orientation of the other two fixed, or it flips the other two and

fixes ei. These two cases depend on the action of σij for i, j 6 3.

In any case, we have

φ(σ14) = φ(σ23ε2ε3)

and so

φ(λ21) = φ(λσ14ε121 ) = φ(λ21)φ(∆σ23) = φ(ρ31).

Therefore

1 = φ([ρ−1
23 , λ

−1
21 ]) = φ([ρ−1

23 , ρ
−1
31 ]) = φ(ρ21)−1.

It follows that all Nielsen moves (which generate an index 2 subgroup of Out(F3)) lie

in the kernel of φ, and so the image of φ is of size at most 2, generated by φ(ε1).
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4.3 Alternating groups and graphs

Definition 4.3.1. For convenience let us set the following notation for some elements

of Out(Fn):

ξ =

{
∆ if n is even

∆σ12 if n is odd

and Bn = 〈An+1, ξ〉 6 Gn. We also set A to be either An−1, the pointwise stabiliser of

{1, 2} when An+1 acts on {1, 2, . . . , n + 1} in the natural way (in the case n is odd),

or An+1 (in the case n is even).

Lemma 4.3.2. Let X be a connected, oriented, non-trivial graph. Let n > 6. Suppose

that Bn acts on X and the action satisfies the following:

(i) Bn acts transitively on the set of (unoriented) edges of X;

(ii) if A acts non-trivially on an edge e, then ξ flips each edge in A.e (i.e. it maps

the edge to itself, but reverses the orientation);

(iii) A acts non-trivially on X.

Then X is either a rose or a cage.

Proof. Let e be an edge of X such that A.e 6= e as sets (if there was no such e, then A

would act trivially, since it is perfect). Suppose e is a loop (i.e. is homeomorphic to a

circle). Then X is a rose, since it is connected and Bn acts on its edges transitively.

Suppose e is not a loop. Suppose further that there exists an edge f which has

only one endpoint in common with e. Then f cannot be flipped by ξ, and in turn

must be fixed by A, by (ii). This implies that in particular its endpoints are fixed

by A, and hence also one of the endpoints of e is. Therefore all edges in A.e share a

vertex, and, since they all are flipped by ξ, they form a cage C. Let σ ∈ An+1 be an

element taking e to f . Then σ takes C to a different cage (containing f), which is

pointwise fixed by A, again by (ii). So, Aσ has to fix C pointwise.

We claim that A∩Aσ 6= {1}, and thus the action Ay C has a non-trivial kernel.

The group A is simple and hence the action is then forced to be trivial, which gives

us a contradiction. If n is even then A = An+1 = Aσ. If n is odd, then it satisfies

n > 7, and so A ∩ Aσ contains at least one 3-cycle.

We conclude, using the connectedness of X, that every edge in X has both end-

points incident with e, and therefore X is a cage.

In our considerations the following result will be most helpful.
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Theorem 4.3.3 ([10, Theorem 5.2A]). Suppose n > 7, and let T < An be a subgroup

of index smaller than
(
n+1

2

)
. Then T is perfect.

We are now able to prove the Rose Lemma.

Proposition 4.3.4 (Rose Lemma). Suppose An+1 acts on a rose X of rank less than(
n+1

2

)
, where n > 6. Then there exists an An+1-invariant choice of orientation of

edges of X. Moreover, for any field K, the multiplicity of the trivial representation of

An+1 in V = H1(X,K) is equal to the number of An+1-orbits of unoriented edges of

X.

Proof. Let e be an edge in X, and let T be its setwise stabiliser. Then, by the Orbit-

Stabiliser Theorem, |An+1 : T | <
(
n+1

2

)
. Apply Theorem 4.3.3 to T and conclude that

it is perfect.

Now, the action of T on e as an oriented edge yields a homomorphism

T → Z2.

Since T is perfect, this homomorphism has to be trivial, and therefore T preserves

some (and hence any) orientation of e. We can extend this orientation An+1-equivari-

antly to the orbit of e. We can also put weight 1 on each oriented edge in the orbit,

and put weight zero on all other edges of X. This way we obtain a non-zero vector

ve ∈ H1(X,K), which is An+1-invariant.

We can repeat the above procedure for each edge in X, and conclude the existence

of an An+1-invariant orientation on the edges of X.

It is clear that 〈vf〉 is a trivial representation of An+1 for each edge f ∈ E(X).

Suppose v ∈ H1(X,K) is a vector spanning a trivial representation of An+1. Let

e1, e2, . . . ek be a collection of representatives of the edge-orbits of the action of An+1

on X. Since v is invariant, it has equal weights on edges in the same orbit. Hence

v =
k∑
i=1

v(ei)ve1 ,

where v(ei) is the weight of v on ei (with respect to the fixed orientation). Hence

v ∈ 〈ve1 , ve2 , . . . , vek〉, and this establishes the equality between number of edge-orbits

of An+1 and the multiplicity of the trivial representation in H1(X,K).

Let us use similar ideas to prove the following.
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Lemma 4.3.5. Suppose that An acts on a non-trivial cage X, where n > 5. Then

the multiplicity of the trivial representation of An in H1(X,C) = V is equal to the

number of orbits of edges of the cage minus one.

Moreover, if there are at least two edge-orbits, for each edge e ∈ E(X) we can find

an An-invariant vector v to which e contributes (i.e. the weight of v on e is non-zero).

Proof. First let us note that An has to act on the vertex set of X, which gives us a

homomorphism An → Z2. But An is perfect, and hence this map has to be trivial. So

An fixes both vertices of X, and therefore preserves the orientation given by choosing

one of the vertices to be the image under τ of all edges.

Suppose that An acts transitively on the edges of X, and let v be a vector spanning

a one-dimensional module in homology. This module has to be a trivial representation

of An, and so An fixes v. Therefore v is represented by giving the same weight to each

edge. But the sum of weights of outgoing edges has to equal that of ingoing edges at

each vertex; in this case it forces the weights to be zero, and therefore v = 0. This

proves our claim in the case when An acts transitively on edges of X.

Suppose there are at least two orbits of edges in An y X. Let us label the orbits

as C0, C1, . . . , Ck. Let us now define vectors vi ∈ H1(X,C) for i = 1, . . . , k by saying

that vi is represented by giving each edge in Ci weight |C0|, each edge in C0 weight

−|Ci|, and each edge in Cj weight 0 for j 6= 0, i. Note that each vi spans a trivial

An-module, and that the vectors vi are linearly independent. Now let v be a vector in

H1(X,C) fixed by An. It necessarily has equal weights on edges in the same orbit; let

λi be the weight of edges in Ci. Then we easily verify (using the condition on sums

of outgoing and ingoing weights at vertices) that

|C0|v =
k∑
i=1

λivi.

Note that for each edge e ∈ E(X) there exists an i such that e ∈ Ci and hence e

contributes to vi.

Lemma 4.3.6 (Cage Lemma). Suppose An+1 (with n > 4) acts on an m-cage X, so

that the action on V = H1(X,C) is a sum of standard representations. Assume also

that An+1 acts transitively on the edges of X. Then in fact m = n+ 1.

Proof. Let us fix a standard copy of An in An+1, i.e. the stabiliser of an element when

An+1 acts in a natural way on a set of size n + 1. We know from the branching rule

(Proposition 2.1.6) and our assumption about the representation of An+1, that the
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multiplicity of the trivial representation of An when acting on V is equal to that of

the standard representation.

Suppose that An does not fix any edge. Then each orbit gives rise to at least one

standard representation of An. But then, by Lemma 4.3.5, we have more standard

representations than trivial representations of An, which is a contradiction.

Suppose An fixes more than one edge. Let e and e′ be such edges. Let σ ∈ An+1

be an element sending e to e′. Then in particular σ 6∈ An and Aσn has to fix e. Hence

An+1 = 〈An, Aσn〉 fixes e, which is a contradiction.

Let e be the unique edge fixed by An, and let f be any other edge of X. There

exists σ′ ∈ An+1 taking f to e. So f is the unique fixed edge of Aσ
′
n , which is a

conjugate of An. We have therefore shown that there is a bijection between edges

of X and subgroups in the conjugacy class of An. There are exactly n + 1 distinct

subgroups of An+1 in the conjugacy class of An, and hence m = n+ 1.

4.4 The general case

In this section we combine the representation theory approach with the graph-theoretic

lemmata to prove the main theorem.

Definition 4.4.1. Let B = An×Z2 for some n > 5, and let ξ ∈ B denote the element

generating the centre of B. We say that a representation V of B admits a convenient

split for B if and only if there exists a decomposition V = U ⊕W of B-modules, such

that, as an An-module, U is a sum of trivial representations, and such that ξ acts on

W as minus the identity (the actions of ξ on U and of An on W are not prescribed).

Lemma 4.4.2. Let B = An × Z2 for some n > 5, and let ξ be the generator of the

centre of B. Suppose that B acts on a graph X so that An < B acts non-trivially on

each edge of X, and such that the action of B on homology admits a convenient split

as H1(X,C) = V = U ⊕W . Then in fact ξ flips each simple loop in X.

Proof. If X does not contain any simple loops then the result is vacuously true.

Suppose there exists a simple loop l in X, and let v be the corresponding vector

in homology. We claim that ξ(v) = −v, or equivalently that ξ flips l.

Suppose for a contradiction that this is not the case. Then v + ξ(v) 6= 0, and, as

the vector is ξ-invariant, it lies in U , where An acts trivially. So v+ξ(v) is B-invariant.

Thus, if l = ξ.l as sets, then l has to be An invariant. But An cannot act non-

trivially on a loop, and hence it fixes each edge. This contradicts our assumption.
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Suppose now that we have an edge f ⊆ l r ξ.l. In this case we can observe that

An.f ⊆ l ∪ ξ.l, since v + ξ(v) is An-invariant. Note that An.f ⊆ l ∪ ξ.l r (l ∩ ξ.l).
Define a collapsing map q : X → Xf by collapsing all edges not contained in the

B-orbit of f . Note that B acts on Xf and q is B-equivariant. This allows us to use

Schur’s Lemma (Lemma 2.0.3) to conclude that H1(Xf ,C) admits a convenient split.

We declare the images in Xf of edges of l to be white and images of edges of ξ.l

to be black; the action of ξ on Xf will pair up exactly one white edge with exactly

one black edge. We claim that Xf has the structure of a daisy-chain graph, where

the white edges form a single simple loop, and so do the black edges; see Figure 4.4.3,

where the grey lines represent white edges.

Let l′ be a shortest loop in Xf containing only white edges; we can obtain such

a loop since there will be one in the image of l. Let v′ be the vector corresponding

to l′ in H1(Xf ,C). The vector v′ + ξv′ is B-invariant as before. Moreover, it is not

zero, as v′ has non-zero weights only on white edges, and ξ(v′) has non-zero weights

only on black edges. We conclude that l′ contains all white edges (since B acts

transitively on edges of Xf , and ξ.l contains only black edges). We also see that any

choice of orientation of l′ (i.e. a choice of orientation of its edges such that putting

equal weights on each gives a vector in homology) is B-invariant; let us fix one such

orientation. We can extend it using the action of ξ to a B-invariant orientation on

the entire graph.

The graph Xf is connected, so there is a vertex of l′ from which at least one black

edge emanates. But all black edges form a simple loop ξ.l′ (since white edges form

a simple loop l′), and hence in fact we have exactly two black edges emanating from

the vertex. The action of B acts transitively on the vertex set of Xf (since it acts

transitively on the edge set and preserves the orientation fixed above), so each vertex

of l has two white and two black edges emanating from itself. But there are only as

many black edges as white, and hence there is a black edge b connecting some two

vertices of l′. Let l′′ be a loop formed by b and a shortest subpath of l′ connecting the

endpoints of b; let v′′ be the corresponding vector in homology. The vector v′′ + ξv′′

is again B-invariant.

Suppose v′′ 6= −ξv′′. Then, on one hand, l′′∪ξ.l′′ contains at most half of all white

edges plus one, however on the other hand, being B-invariant, it has to contain all

white edges. This shows that we have at most two white edges in l′, and so at most

four edges in Xf . But then we would have a non-trivial action of An, with n > 5, on

a set of size 4. This is impossible.
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Figure 4.4.3: A daisy-chain graph

We have shown that v′′ = −ξv′′, and so in particular l′′ has length two and contains

exactly one white and one black edge. Therefore each black edge in Xf shares both

endpoints with a unique white edge. This proves that Xf is a daisy-chain graph as

claimed.

Identifying each pair of edges sharing both endpoints gives us an An-action on a

simple loop. Such an action must be trivial, and hence An acts on Xf by permuting

white and black edges within each pair. This gives us a homomorphism An → Zk2 for

some k. But An is perfect, and so each such map must be trivial. Therefore An acts

trivially on Xf . This is a contradiction.

We have therefore shown that ξ sends each simple loop l in X to itself with the

opposite orientation. Note that C-linear combinations of simple loops of X span V ,

and so ξ has to act as minus identity on V .

Lemma 4.4.4. Let X be a connected non-trivial graph, on which Z2 = 〈ξ〉 acts in

such a way that it flips each simple loop. Then X = D ∪ D′ as a topological space,

where D has the structure of a tree, D′ = ξ.D, and D ∩D′ = Fix(ξ).

Proof. Let F = Fix(ξ) be the fixed point set of ξ in X (where we treat X as a

topological space). Let X ′ = X r F .

Firstly, we claim that components of X ′ are simply connected. Suppose there is

a simple loop l in one of the components of X ′. Since X ′ ⊆ X, l is a simple loop in

X. As ξ flips all such loops, it flips l, and therefore there are two ξ-fixed points in l.

So l ∩ F 6= ∅. This is a contradiction, and therefore each component of X ′ is simply

connected.
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We now note that the action of ξ pairs up components of X ′, and so we can write

X ′ =
⊔k
i=1(Ti t T ′i ) for some k, where each Ti is a connected component of X ′, and

ξ(Ti) = T ′i . Let D =
⊔
Ti t F . Note that D has a structure of a graph: its vertices

are vertices of X contained in D together with all points in F which are midpoints

of edges in X; the edge set is induced by E(X) in an obvious manner.

We now claim that D is in fact a tree. To prove this we will use the following fact:

let p : I → X be a path from x to y, where x, y ∈ D. We define a path p′ : I → D as

follows

p′(t) =

{
p(t) if p(t) ∈ D
ξ.p(t) if p(t) 6∈ D .

Note that p′ is a path in D connecting x to y. Hence the connectedness of D follows

directly from the connectedness of X.

Suppose we have a simple loop l in D. Then, since ξ.l = l as sets, l ∩ Ti = ∅ for

each i, and therefore l ⊆ F . But then ξ fixes l, which contradicts our assumption on

ξ flipping all simple loops. So D is a tree.

Define D′ =
⊔
T ′i t F = ξD, and note that F = D ∩D′ as required.

Lemma 4.4.5. Let X be a connected non-trivial graph, on which B = An × Z2 acts

(with n > 5) in such a way, that there are no An-fixed edges in X. Suppose that ξ,

the generator of the centre of B, flips each simple loop in X. Suppose also that all

vertices which are not fixed by An have valence at least 3. Then in fact all vertices

have valence at least 3, and An fixes at most two vertices.

Proof. Firstly let us apply Lemma 4.4.4 to X, and conclude that (using notation of

the lemma) X = D∪D′. Since An commutes with ξ, An acts on X/ξ ∼= D. We know

that D is a finite tree, and therefore An has to fix d, its centre (this is a standard

fact, see e.g. [24]). Now let d′ be the centre of D′. Note that it is possible that d and

d′ are the same point. Our group An acts on {d, d′}, and since it is perfect, it has to

fix d and d′.

Suppose that An fixes another point, x say. Without loss of generality assume

that x ∈ D, and take p to be the unique simple path in D from x to d. Now the

action of An on p can potentially send each subpath of p connecting two points in

F = D ∩D′ to a subpath lying in D′ connecting the same points. Hence the action

of An on the orbit of p gives a homomorphism An → Zk2 for some k ∈ N. But An is

perfect, and therefore such a map must be trivial. This implies that An fixes p, and

as x 6= d, it has to fix at least one edge. This contradicts our assumption.

We have therefore shown that there are at most two fixed points of An, namely d

and d′. Now, if any of these points were of valence less than 3, then, again as An is
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perfect, each of the edges emanating from it would have to be fixed by An. This is

however impossible, and the proof is finished.

We are now ready to prove

Proposition 4.4.6. Let n,m ∈ N be distinct, n > 6, m <
(
n+1

2

)
, and let

φ : Out(Fn)→ Out(Fm)

be a homomorphism. Suppose that the representation

Out(Fn)→ GL(H1(Fm,C)) = GL(V )

induced by φ satisfies

V = V0 ⊕ V1 ⊕ Vn−1 ⊕ Vn,

with the notation of Definition 3.1.1. Then the image of φ is contained in a copy of

Z2, the finite group of order two.

Proof. Before proceeding with the proof, let us recall Definition 4.3.1: if n is even,

A = An+1 and ξ = ∆; if n is odd, A = An−1 and ξ = ∆σ12; we also set

Bn = 〈An+1, ξ〉 < Gn,

and B = 〈A, ξ〉 6 Bn.

First let us use Theorem 4.1.6 for φ(Bn) to obtain a finite Bn-admissible graph

X, with an identification π(X) ∼= Fm, such that the action on the conjugacy classes

of Fm induced by the action of Bn on X agrees with that given by φ.

The general strategy of this proof will be to first use the results about representa-

tion theory of Out(Fn) to produce obstructions on the way Bn can act on X. Then

we will apply the results of this section (dealing with convenient splits), and finally

those of Section 4.3, to conclude that A < Bn has to act trivially on X, and hence

on the conjugacy classes of elements of its fundamental group. First let us suppose

that this last statement is true, and let us deduce the result from there.

Step 0: Suppose that A < Bn acts trivially on X. We claim that in this case φ

factors through Z2.

Since A acts trivially on X, it acts trivially on the fundamental group of X,

and hence it lies in the kernel of φ. But A 6 An+1, which is simple, and therefore

An+1 lies in the kernel of φ. Hence, as An acts transitively on the set {ρij | i 6= j},
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φ(ρij) = φ(ρjk), and using [ρ−1
ij , ρ

−1
jk ] = ρ−1

ik we see that each ρij (and similarly λij)

lies in the kernel of φ. This implies that φ factors through Z2
∼= 〈ε1〉.

In what follows let us suppose, for a contradiction, that A does not act trivially

on X.

Step 1: We claim that V admits a convenient split for B = 〈A, ξ〉.

We know that Out(Fn) acts via φ on H1(Fm,C) = V . Note that also

V ∼= H1(X,C) ∼= Cm.

Since n > 6, we have the inequality

m <

(
n+ 1

2

)
6 n(n− 2),

and so we can apply Proposition 3.3.1 to V . If n is even, the An+1-modules V0⊕Vn and

V1 ⊕ Vn−1 satisfy the definition. If n is odd, the sum of all standard representations

of A = An−1 is a subspace of V1⊕ Vn−1. Since we chose An−1 to be the stabiliser of 1

and 2 when An+1 acts on {1, 2, . . . , n+ 1}, this subspace intersects

E1 ⊕ E2 ⊕ ENr{1} ⊕ ENr{2}

trivially. This guarantees that ξ (which equals ∆σ12 in this case) acts on this subspace

as minus the identity. This proves the claim.

Let us firstly investigate some of the structure of X. We construct a graph Y

by collapsing all edges in X which are fixed by A pointwise. Note that, by our

assumption, Y is non-trivial (i.e. has at least one edge), and is connected. Since A

commutes with ξ, we get a B-action on Y ; note that the collapsing map X → Y

is B-equivariant. By Schur’s Lemma (Lemma 2.0.3), the C-homology of Y admits a

convenient split for B. Hence we apply Lemma 4.4.2, and conclude that ξ flips all

simple loops in Y .

Note that if we take a vertex x in Y which is not fixed by A, then we know that

this vertex does not come from collapsing a subgraph of X, since we only collapse

subgraphs which are A-fixed. Therefore such an x comes from a vertex in X, and so

its valence is at least 3. This shows that the graph Y (together with the action of B

on it) satisfies all conditions of Lemmata 4.4.4 and 4.4.5.

Using the notation of the former lemma, we have Y = D ∪D′ and

F = D ∩D′ = Fix(ξ).
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Let y be a point in ∂D, i.e. an endpoint of a leaf of D. Since its valence (as a vertex

of the graph D∪D′) is 2, we see that y is not a vertex of Y ; it is therefore a midpoint

of an edge of Y .

Also, the maximal subgraph of Y not containing the A-fixed points (d and d′) is

actually a subgraph of X, since any edge collapsed by the map X → Y yields an

A-fixed point in Y .

Step 2: We claim that D is the union of its leaves.

Suppose (for a contradiction) that this is not the case. Let z be a farthest (with

respect to the graph metric on D) vertex of D from d, which is not in ∂D. We have

just assumed that such a vertex is not d. Note that z is a vertex of Y and that it

cannot be fixed by A, as it is neither d nor d′. Let e be an edge of Y emanating from

z, such that its midpoint does not belong to ∂D.

Suppose z 6∈ F . Then all edges in Y emanating from z, except for e, contain as

midpoints points in ∂D. There are at least two such edges (since the valence of z is

at least 3), and therefore each such edge belongs to a loop of length 2. Also, neither

of these edges forms a loop, since z 6∈ F , so the shortest loop through any of them

is of length 2. This however cannot be true for e, since it would require both its

endpoints to be in F , which is not the case. All of this holds in X as well as Y , and

we can therefore apply Lemma 4.1.2 to X and arrive at a contradiction, since we have

assumed that X was B-admissible, and hence in particular admissible.

We have thus shown that z ∈ F . But then there exists an edge f in Y emanating

from z, which is in fact a loop. Note that f is also a loop in X. Now consider Xf , a

graph obtained from X by collapsing all edges but those in Bn.f . Note that Bn acts

on Xf , and the collapsing map X → Xf is Bn-equivariant.

Since f is a loop, Xf is a rose. Also, its rank is at most m <
(
n+1

2

)
. We can

therefore apply Proposition 4.3.4 (the Rose Lemma), and obtain an An+1-invariant

orientation of edges in Xf . By putting equal weight 1 on each edge we obtain an

An+1-invariant vector v ∈ H1(Xf ,C).

Schur’s Lemma (Lemma 2.0.3) tells us that the image of V0 ⊕ Vn in H1(Xf ,C) is

the sum of all trivial representations of An+1 in Hi(Xf ,C), and also that the entire

group Bn acts trivially on this subspace. Hence v must lie in the image of V0 ⊕ Vn,

and so ξ ∈ Bn has to act trivially on it. But ξ flips f , which contributes to this

vector. This is the required contradiction.

Step 3: We claim that X is in fact an (n+ 1)-cage.
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We have shown that all edges in D are leaves, and hence are flipped by ξ. Hence,

in X, all edges which are not fixed by A are flipped by ξ. Let f be an edge of X which

is not collapsed by the map X → Y , and let Xf be the graph obtained from X by

collapsing all edges not contained in Bn.f , as before. Note that A acts non-trivially

on f , since it only fixes one point in D. We can now apply Lemma 4.3.2 to Xf , which

shows that Xf is either a rose or a cage.

The graph Xf cannot be a rose, since if it were, we could construct an An+1-in-

variant vector v ∈ H1(Xf ,C) as in the previous step, on which ξ acts trivially, but to

which f (which is flipped by ξ) contributes.

So Xf is a cage. Since ξ flips f , it has to permute the two vertices of Xf . Also, as

An+1 is perfect, it has to fix each of these two vertices. These vertices have potentially

come from non-trivial subgraphs of X. Suppose there exists a simple loop in one of

these subgraphs, l say. Let v be a corresponding vector in homology.

Let us assume first that n is odd. We have shown that ξ permutes the vertices of

Xf – in fact this is true for all ∆σij, since these elements are related by conjugating

by elements of An+1. So each ∆σij maps l to a loop disjoint from it. So v + ∆σij(v)

has to be fixed by Aσ, where σ ∈ An+1 is an element such that Aσ commutes with

∆σij. But each Aσ is a simple alternating group, and such groups cannot act on

disjoint unions of two circles non-trivially. Hence all Aσ fix l pointwise, and therefore

so does An+1.

When n is even, An+1 acts trivially on v + ξ(v), and so on a disjoint union of two

simple loops l∪ ξ.l as above. So An+1 fixes l pointwise, just as in the odd case. Then,

in both cases, v ∈ V0 ⊕ Vn and hence the action of ξ on v has to be trivial. This is

however not the case.

Hence the only subgraphs of X we collapsed when constructing Xf were trees.

We have however taken X to be Bn-admissible, and therefore these trees have to be

trivial, i.e. consist of one vertex each.

So X is in fact a cage. Suppose that the action of An+1 on the edge set of X is

not transitive. Then, by Lemma 4.3.5, there is an An+1-invariant vector w to which

f contributes. As w is An+1-invariant, it lies in the image of V0 ⊕ Vn, and hence is

Bn-invariant. But ξ flips f , which is a contradiction. We have thus shown that the

action of An+1 on E(X) is transitive. We can apply the Cage Lemma (Lemma 4.3.6)

and conclude that X is an (n + 1)-cage. But this means that m + 1 = n + 1, which

is a contradiction, since we have assumed that n and m are distinct.

The proposition immediately leads to
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Theorem 4.4.7. Let n,m ∈ N be distinct, n > 6, m <
(
n
2

)
, and let

φ : Out(Fn)→ Out(Fm)

be a homomorphism. Then the image of φ is contained in a copy of Z2, the finite

group of order two.

Proof. As above, let V = H1(Fm,C) be a representation of Out(Fn) induced by φ.

Since m <
(
n
2

)
, application of Lemma 3.1.2 yields

V = V0 ⊕ V1 ⊕ Vn−1 ⊕ Vn,

with the notation of Definition 3.1.1 as usual. Hence we can apply Proposition 4.4.6,

which proves the claim.

We can utilise our main tool, Proposition 4.4.6, together with a special case of a

result of Bridson and Farb [6] to obtain a result reaching a little further. First let us

state the required theorem.

Theorem 4.4.8 (Bridson, Farb [6]). Suppose φ : PGLn(Z) → Out(Fm) is a homo-

morphism, where n,m > 2. Then the image of φ is finite.

Now we can prove

Theorem 4.4.9. Let n,m ∈ N be distinct, with n even and at least 6. Let

φ : Out(Fn)→ Out(Fm)

be a homomorphism. Then the image of φ is finite, provided that(
n

2

)
6 m <

(
n+ 1

2

)
.

Proof. Let V = H1(Fm,C) be a representation of Out(Fn) induced by φ as before.

Lemma 3.1.2 shows that either

V = V0 ⊕ V1 ⊕ Vn−1 ⊕ Vn

or

V = V0 ⊕ V2 ⊕ Vn−2 ⊕ Vn.

We will proceed by investigating the two cases.

If V = V0 ⊕ V1 ⊕ Vn−1 ⊕ Vn, then we can apply Proposition 4.4.6, which asserts

the claim.

72



If V = V0⊕V2⊕Vn−2⊕Vn, then, as n is even, ∆ acts as identity. This means that

φ(∆) ∈ IAm. But Proposition 4.1.7 tells us that IAm is torsion free, and so φ(∆) = 1.

This yields the following commutative diagram:

Out(Fn)
φ //

��

Out(Fm)

Out(Fn)/〈〈∆〉〉

66nnnnnnnnnnnn ∼= // PGLn(Z)

OO

and now an application of Theorem 4.4.8 finishes the proof.

4.5 Positive results

In this section we will explore some positive results on embeddings of outer automor-

phism groups of finitely generated free groups. Firstly let us mention the result of

Khramtsov [15]: he has shown that there exists an embedding Out(F2) ↪→ Out(Fm)

for all m > 4. This case however is extremely special, as Out(F2) ∼= GL2(Z) is

virtually free.

Now we shall look at two other results in more detail. The first one is due to

Aramayona–Leininger–Souto [1], the second due to Bogopol’skii–Puga [5]. We will

however discuss the proof due to Bridson–Vogtmann [8] of the latter.

Both proofs start with an observation that Out(Fn) can be identified with the

group of free homotopy equivalences of a given graph Y with fundamental group Fn,

where we identify free homotopy equivalences g and g′ if and only if there exists a free

homotopy h : g ∼ g′ such that x 7→ h(x, t) is a free homotopy equivalence for all t. We

will denote this group by HE(Y ) and note that the isomorphism HE(Y ) ∼= Out(Fn)

is induced by π1(Y ) ∼= Fn.

Suppose we are given a covering map κ : X → Rn, where Rn is the n–rose. We

construct a short exact sequence

1→ D → HE∗κ(X)→ HEκ(Rn)→ 1, (∗)

where the notation is as follows: HEκ(Rn) is the group of all free homotopy equiv-

alences g : Rn → Rn, such that there exists g′ : X → X with κ ◦ g′ = g (i.e. such

that g has a lift), up to homotopy (where the homotopy for any fixed time t gives us

a free homotopy equivalence Rn → Rn which lifts); and HE∗κ(X) is the group of lifts

of HEκ(Rn) up to homotopy (where the homotopy for any fixed time t gives us a lift

of a free homotopy equivalence Rn → Rn); D is the group of deck transformations of

κ : X → Rn.
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The fact that this sequence is exact, as well as the facts that HEκ(Rn) 6 HE(Rn),

follows from elementary homotopy theory. We also have

HE∗κ(X) 6 HE(X)

provided that the centraliser of π1(X) in π1(Rn) ∼= Fn is trivial (which amounts to

requiring that π1(X) is not trivial or cyclic). For details see [8, Appendix].

In both papers the authors pick coverings in a way which guarantees that

HEκ(Rn) = HE(Rn).

Then Aramayona, Leininger and Souto pick a covering with a trivial deck transfor-

mation group D, and hence obtain

Out(Fn) ∼= HE(Rn) = HEκ(Rn) ∼= HE∗κ(X) 6 HE(X) ∼= Out(Fm)

for some m > n. Bridson and Vogtmann pick a covering for which the short exact

sequence (∗) splits, and obtain the desired injection this way.

Let us now focus on the details of the first result.

Theorem 4.5.1 (Aramayona–Leininger–Souto [1]). Let n > 2 be fixed. Then there

exists m > n and a monomorphism Out(Fn) ↪→ Out(Fm).

Proof. We sketch the proof from [1].

We will start by procuring a finite group G with two special properties. Consider

a surjective homomorphism φ1 : Fn → S3. Note that Aut(Fn) acts on the set of all

such homomorphisms, and hence we can consider {φ1, . . . , φk}, the orbit of φ1 under

this action. Let S = (S3)k, the kth direct power of S3. Define G = imφ, where

φ = φ1 × . . .× φk : Fn → S. Note that G projects surjectively onto each factor of S.

Now define H < G to be a Sylow 2-subgroup of G (which is a subgroup of a Sylow

subgroup of S, which is in turn isomorphic to Zk2). The fact that G projects onto

each factor of S implies in particular that G contains elements of order divisible by

3, and therefore H is a proper subgroup. The fact that H is a subgroup of a group

isomorphic to Zk2, generated by a single transposition in each factor, implies that

NG(H) = H,

where NG(H) is the normaliser of H in G.

Sylow’s theorem tells us that

Aut(G).H = Inn(G).H,
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where Inn(G) denotes the inner automorphisms of G. The construction also implies

that kerφ is a characteristic subgroup of Fn.

Let κ : X → Rn be the covering associated to φ−1(H) < Fn. Note that this is a

finite-degree non-trivial covering.

The free-homotopy lifting property tells us that a homotopy equivalence

g : Rn → Rn

lifts to g′ : X → X if and only if it satisfies g∗κ∗(π1X) 6 κ∗(π1X), where g∗, κ∗ are

the induced maps on the conjugacy classes of elements in π1X (the set of which is

denoted by π1X). This statement will be true for all g provided we can show that

Aut(Fn).φ−1(H) = Inn(Fn).φ−1(H),

since g∗κ∗(π1X) = g.π1X < Fn, where we use the fact that g ∈ HE(Rn) ∼= Out(Fn).

Suppose h ∈ Aut(Fn). We get a commutative diagram

Fn

φ

��

h // Fn

φ

��
G // G

since the existence of the dotted automorphism is ensured by the fact that φ is

surjective and kerφ is characteristic. Hence we can use Aut(G).H = Inn(G).H to

conclude that

Aut(Fn).φ−1(H) = Inn(Fn).φ−1(H).

Therefore HEκ(Rn) = HE(Rn).

It is a well known fact that the group of deck transformations satisfies

D ∼= NFn

(
φ−1(H)

)
/φ−1(H).

But we know that NG(H) = H and hence D is trivial. This in turn implies that the

short exact sequence (∗) becomes HEκ(Rn) ∼= HE∗κ(X). The result follows.

The question of the exact cardinality of m remains unanswered – the authors of

the above paper state that their best result in this area is a doubly exponential upper

bound.

Let us now look at the result of Bridson and Vogtmann.

Theorem 4.5.2 (Bogopol’skii–Puga [5]; Bridson–Vogtmann [8]). Let n > 1. Then

for each natural number k coprime to n−1 we get an embedding Out(Fn) ↪→ Out(Fm),

where m = 1 + (n− 1)kn.
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Proof. We sketch the proof from [8].

Let us first choose the covering space κ : X → Rn to be the covering corresponding

to L = [Fn, Fn]F
(k)
n < Fn, where F

(k)
n is the subgroup generated by the kth powers of

the elements of Fn. Note that L is a characteristic subgroup of Fn and therefore the

free-homotopy lifting property immediately implies that HEκ(Rn) = HE(Rn). Also,

since characteristic subgroups are normal, we get Fn/L ∼= Znk . Note that, after fixing

a basepoint, X is the standard Cayley graph for Znk .

Our aim now is to construct a splitting of the short exact sequence

1→ D → HE∗κ(X)→ HE(Rn)→ 1.

Note that there is a standard lift of any element g ∈ Aut(Fn) to a homotopy equiv-

alence of X; we define such a lift g′ firstly by its action on the vertices of X. Since

X is the Cayley graph of Znk , each vertex v corresponds to an element xv ∈ Znk .

We define g′(v) to be the vertex corresponding to g.xv, where we use the action

Aut(Fn) y Fn/L ∼= Znk . Secondly, each edge e, emanating from some vertex v, is sent

to the (unique) lift of g.κ(e) starting at g′(v).

Note that this lift does not descend to a lift of Out(Fn), since the lift of
∏

i 6=j ρijλ
−1
ij

for any fixed j is not homotopy equivalent to the trivial map. It is in fact sending

every generator ei of Znk (i 6= j) to a t-shaped path starting at the origin, and spelling

out the word e−1
j eiej. However, we can remedy this by using a different action on the

vertices of X.

Let us define a map η : Aut(Fn) → GLn+1(Z). Since k and (n− 1) are coprime,

we can find a natural number s satisfying s(n− 1) ≡ 1 (mod k). Define η by

η(ρij) =

(
πnpn(ρij)

1

)
,

η(λij) =

(
πnpn(λij) −svj

1

)
,

η(εi) =

(
ei svi

1

)
,

where {v1, . . . , vn} is a basis for Zn, and where the blank spaces indicate zero vec-

tors. One can check (using Gersten’s presentation) that this map is in fact a ho-

momorphism. Note that the way η is set up, its image is actually contained in

Zn o GLn(Z). We can therefore define an affine action of Aut(Fn) (via η) on Zn: if

η(g) = (v,M) ∈ ZnoGLn(Z) then uη(g) = Mu+ v for all u ∈ Zn. By postcomposing

with the natural projection Zn → Znk we get an action on vertices of X.
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Now we are ready to define the splitting φ : Out(Fn) → HE∗κ(X). Each element

g ∈ Out(Fn) will send an edge e emanating from a vertex v to a path spelling the

appropriate word in the generators of Znk (given by the standard lift of Aut(Fn)

described above), and emanating from η(g).v. This gives

η(
∏
i 6=j

ρijλ
−1
ij ) =

(
I s(n− 1)vj

1

)
'
(

I vj
1

)
,

where the congruence is mod k. Therefore, φ(
∏

i 6=j ρijλ
−1
ij ) is homotopy equivalent to

the trivial map.
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Chapter 5

Finite index subgroups of Out(Fn)

In this chapter we investigate some aspects of the structure of finite index subgroups

in Out(Fn). In particular we are interested in the open problem of deciding whether

Out(Fn) (for n > 4) possesses a finite index subgroup with infinite abelianisation.

5.1 Rank of abelianisations of finite index normal

subgroups

Definition 5.1.1. Given a finitely generated abelian group G we define the rank of

G to be the rank of its maximal free abelian subgroup.

Let us consider the following.

Proposition 5.1.2. Let N E Out(Fn) be a normal subgroup of finite index, where

n > 6. Suppose that Nab, the abelianisation of N , is infinite. Then

rank (Nab) >

(
n+ 1

2

)
.

Proof. Since N is a normal subgroup, we have a homomorphism Out(Fn)→ Aut(N)

induced by the conjugation action of Out(Fn) on N . Since the commutator subgroup

[N,N ] is characteristic (it is a verbal subgroup), we also have

Out(Fn)→ Aut(N)→ Aut(Nab).

The abelian group Nab is finitely generated (since N is), and so it is of the form

Nab ∼= Zr × T , where r = rank (Nab) and T is a torsion group. The group T is again

characteristic, and so we obtain

Out(Fn)→ Aut(Nab)→ GLr(Z).
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An embedding Z ↪→ C induces φ : Out(Fn) → GLr(C) = GL(V ), an r-dimensional

C-linear representation of Out(Fn).

Suppose we have 0 < rank (Nab) <
(
n+1

2

)
. Then, by Theorem 3.3.3, the represen-

tation φ has to factor as shown below.

Out(Fn)

πn
��

φ // GLr(C)

Out(F ab
n )

∼= // GLn(Z)

OO

Note that N 6 kerφ, and so φ factors through a finite group Out(Fn)/N .

After restricting to SOut(Fn) we get the following commutative diagram.

SOut(Fn)

πn|SOut(Fn)

��

φ|SOut(Fn) // SLr(C)

SLn(Z)
φ′

66llllllllllllll

The congruence subgroup property tells us that each representation of SLn(Z)

with finite image factors through some SLn(Zk).
So φ′ factors through some SLn(Zk). The Chinese remainder theorem tells us that

SLn(Zk) ∼=
∏β

i=1 SLn(Zpαii ) where k =
∏β

i=1 p
αi
i is a prime decomposition of k.

Consider V as a representation of SLn(Zpαi1 ). Theorem 2.3.4 tells us that SLn(Zpαii )

has only one irreducible C-linear representation in dimension r < 2n−1 − 1, namely

the trivial one. Hence, noting that

r <

(
n+ 1

2

)
< 2n−1 − 1,

we conclude that φ′ is a sum of trivial representations. Hence

SOut(Fn) 6 kerφ.

Now let us consider the homomorphism

η : SOut(Fn)→ Zr o F =
⊕
f∈F

Zr o F

where

ζ : SOut(Fn)/
(
N ∩ SOut(Fn)

)
= F

induced by the composition θ : N ∩ SOut(Fn) ↪→ N → Zr as follows. Let

{f1, f2, . . . , f|F |}
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be a set of right coset representatives of N ∩ SOut(Fn) in SOut(Fn). Then we define

η(x) =
(
z1, z2, . . . , z|F |, ζ(x)

)
with

zi = θ(ni)

where ni ∈ N ∩ SOut(Fn) satisfies

fix = nifji .

Since Zr is abelian, we can construct a homomorphism ψ : Zr oF → Zr by declaring

ψ
(
(z1, . . . , z|F |, f)

)
= z1 + . . . + z|F |. Composing η and ψ yields a homomorphism

SOut(Fn)→ Zr. But SOut(Fn)ab = 1, and so the composition ψ ◦ η is trivial, and so

in particular it vanishes on N ∩ SOut(Fn). But, since φ|SOut(Fn) is trivial,

η(n) =
(
a(n), . . . , a(n), 1

)
for each n ∈ N ∩SOut(Fn), where a : N → Nab is the natural projection. This yields

ψ ◦ η(n) = |F |a(n) = 0, and so a is the trivial map. This is a contradiction which

finishes the proof.

The following (unpublished) result is due to Martin Bridson.

Proposition 5.1.3 (Bridson). Let NEOut(Fn) be a normal subgroup of finite index,

where n > 4. Suppose that Nab, the abelianisation of N , is infinite. Then

rank (Nab) > n.

Proof. Suppose for a contradiction that rank (Nab) = r < n.

Consider the representation φ : Out(Fn)→ GLr(C) as before. The group Out(Fn)

contains a subgroup An+1 abstractly isomorphic to the alternating group of degree

n + 1. Since n > 4, An+1 is simple. However, An+1 does not have non-trivial rep-

resentations in dimensions smaller than n, and so, since r < n, An+1 6 kerφ. In

this case the image of φ is of order at most two (see [7] by Bridson–Vogtmann), in

particular we have SOut(Fn) 6 kerφ. Now we can use the last paragraph of the proof

above.

Bridson’s original proof of Proposition 5.1.3 involved the Serre spectral sequence.

The above proof uses only elementary representation theory of alternating groups.

80



5.2 Minimal quotients of Out(Fn)

In this section we use the results of Chapter 4 to improve known lower bounds on the

cardinality of finite quotients of Out(Fn) which do not factor through

πn : Out(Fn)→ GLn(Z).

The best known lower bound is 2n n! = |Wn|, and comes from the following ob-

servation of Bridson and Vogtmann [7].

Proposition 5.2.1. Let φ : Out(Fn)→ G be a homomorphism. Then either φ factors

through πn : Out(Fn)→ GLn(Z) or φ maps Wn < Out(Fn) injectively.

Proof. Note that the result is trivial when n = 2, since Out(F2) = GL2(Z).

Let K = ker φ∩Wn. Suppose K contains an element (ε, σ) ∈ Zn2 oSn = Wn with

σ 6= 1. We claim that in this case φ factors through

det ◦πn : Out(Fn)→ GLn(Z)→ Z2.

If n = 3 or n > 5 then the projection of K onto Sn < Wn has to contain An, and so

in particular all 3-cycles. Moreover, since 3-cycles are of order 3 and Zn2 is a 2-group,

K itself contains all 3-cycles. In particular σ12σ13 ∈ K and so ρ23 = ρσ12σ1312 ∈ ρK12.

Therefore

φ(ρ−1
13 ) = φ([ρ−1

12 , ρ
−1
23 ]) = [φ(ρ−1

12 ), φ(ρ−1
12 )] = 1.

If n = 4 then the projection of K onto S4 < W4 contains V4. Arguing like in

Proposition 3.2.1, and possibly conjugating by ε3, we find

φ(ρ21) = φ(λ31)−1

and conclude that φ(ρ−1
31 ) ∈ ker φ. This proves the claim.

Suppose now that {1} < K 6 Zn2 < Wn. Note that

∀x ∈ Zn2 : x =
n∏
i=1

ε
αi(x)
i

where αi(x) ∈ {0, 1} for all i. Let x ∈ Zn2 be an element such that α(x) =
∑n

i=1 αi(x)

is maximal. If α(x) = 1 then there exists σ ∈ Sn such that x 6= xσ ∈ K (as K is

normal in Wn) and so α(xσx) = 2, which is a contradiction. Hence α(x) > 2. Now

there exists σ ∈ Sn such that α1(xσ) = α2(xσ) = 1 and so

ρ
(xσ)
12 = λ12.

Hence φ factors through πn. The only case left is when K = {1}, and then φ|Wn is

injective.
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We can now prove the following.

Proposition 5.2.2. Let n > 6. Suppose φ : Out(Fn)→ F is an epimorphism with a

finite image which does not factor through πn. Then

|F | > 2n n!

(
n

2

)
.

Proof. The previous result tells us that we have Wn 6 F . Let [F : Wn] = k, and let

d : Wn → Z2 be the determinant map.

Firstly note that if k = 1, then F = Wn and so in particular φ(∆) lies in the

centre of imφ. This implies that φ factors through

Out(Fn)/〈〈{[x,∆] | x ∈ Out(Fn)}〉〉 = GLn(Z).

This contradicts our assumptions, and so k > 1.

We will let F act on a 2k-rose X with oriented edges {ei,j | (i, j) ∈ Zk × Z2}. We

choose a set {f0, . . . , fk−1} of left coset representatives of Wn in F , with f0 = 1. An

element fiw ∈ F (where w ∈ Wn) will act in the following way:

flw.ei,j = ei+l,j+d(f−1
i wfi)

.

Note that this is the action of F on a 2k-rose induced from the edge-transitive action

of Wn on a 2-rose via d.

This action gives us a homomorphism

ψ : F → Out(π1(X)) = Out(F2k)

with image of cardinality higher than 2 Precomposing ψ with φ, and applying Theo-

rem 4.4.7, tells us that in particular k 6= n.

Now we will construct an action of F on a k-rose: take the action on the 2k-rose

X, and consider the quotient k-rose Y obtained from X by identifying each edge ej,0

with the edge ej,1 running in the opposite direction. Note that this is, similarly to the

above, the action of F induced from the non-trivial action ofWn on a single petal via d.

Again as above, we get a homomorphism ψ : F → Out(Fk) with image of cardinality

higher than 2. After precomposing ψ with φ an application of Theorem 4.4.7 yields

that k <
(
n
2

)
(since we have shown that k 6= n), and the result follows.

Note that there do exist smaller finite quotients of Out(Fn), for example PGLn(Z2).

They all however need to factor through πn : Out(Fn)→ GLn(Z).
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5.3 Lower central series of the Torelli subgroup

In this section we give a condition preventing finite index subgroups of Out(Fn) from

having infinite abelianisations.

We first need the following standard result on nilpotent groups.

Lemma 5.3.1. Let G be a finitely generated nilpotent group, and let H 6 G be a

subgroup of finite index. Then the index |G′ : H ′| is finite, where H ′ and G′ are the

derived subgroups of H and G respectively.

Proof. Let N = G/H ′. Then N is a finitely generated, virtually abelian, nilpotent

group. Every finitely generated nilpotent group has a torsion free quotient with a

finite kernel (due to a theorem of Hirsch, see e.g [2, Theorem 2.1]). Let M be such a

quotient of N . We claim that M is in fact abelian.

Our assumptions give us a short exact sequence

A //M
p // F ,

where A is torsion free abelian and F is finite. Let us take F to be minimal with

respect to cardinality.

We are going to proceed by induction on m, the nilpotency class of M . If m = 1

the result is trivial. Suppose m = 2. Then M ′ is normal, torsion free and abelian.

Hence so is 〈A,M ′〉. Minimality of |F | tells us that in fact M ′ 6 A. This implies

that F is abelian.

Now let x ∈ M r A. Then there exists an exponent α such that xα ∈ A. Let

a ∈ A. Then

[x, a] ∈M ′

and so in particular xax−1 = ab, where b ∈ M ′. But M ′ lies in the centre of M , and

so

a = xαax−α = abα.

As M is torsion free, b = 0. Hence x commutes with all elements in A. Now 〈x,A〉
is an abelian, torsion free subgroup of M . It is also normal, since F is abelian. This

contradicts maximality of F . Hence no such x exists, that is A = M . The group M

is abelian.

To prove the inductive step, we quotient M by the last non-trivial term in its

lower central series, use the inductive hypothesis to show that in fact the nilpotency

class m satisfies m = 2. This proves our claim.

83



Since M is abelian, we have N ′ 6 ker(N → M). But this kernel is finite, and so

N ′ is finite. But

|G′ : H ′| = |N ′| <∞.

The following extends a result of Bogopolski and Vikentiev [4, Theorem 4.1].

Theorem 5.3.2. Let {Xi} be the lower central series of IAn, the Torelli subgroup of

Out(Fn), with IAn = X0. Let N E Out(Fn) be a normal subgroup of finite index. If

there exists j such that Xj 6 (N ∩X0)′ = [N ∩X0, N ∩X0], then the abelianisation

of N is finite.

Proof. Let G = N ∩X0, which is a finite-index subgroup of X0. Let q : X0 → X0/Xi

be the quotient map, where i = max{1, j}. We are going to use the (standard)

notation of writing H ′ to denote the commutator subgroup [H,H] 6 H.

Note that q(X0) is a nilpotent group, and hence q(G)′ is a finite index subgroup

of q(X0)′ = q(X1) by Lemma 5.3.1. Therefore

〈G′, Xi〉 6 X1

is a subgroup of finite index. But Xi 6 G′ by assumption, and hence G′ 6 X1 is of

finite index.

Now, by Theorem 3.2.9 (and the remark afterwards), X0/X1 as an Out(Fn)-

module does not contain a submodule on which Out(Fn) acts with a kernel of finite

index. Therefore (by Schur’s Lemma) the same is true in any Out(Fn)-equivariant

quotient of any Out(Fn)-invariant subgroup of X0/X1. One such is

G/〈〈N ′ ∩X0, N ∩X1〉〉.

But this group is also a quotient of a subgroup of N/N ′, on which Out(Fn) acts via

Out(Fn)/N , which is finite. Hence

G/〈〈N ′ ∩X0, N ∩X1〉〉 = {1}.

Since all subgroups involved are normal, we have G = (N ′ ∩X0) · (N ∩X1). We have

shown above that G′ = N ′ ∩X1 is a finite index subgroup of X1, and so

(N ′ ∩X0) · (N ∩N ′ ∩X1) = N ′ ∩X0

is a finite index subgroup of G.
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Consider the following commutative diagram, where rows and columns are exact.

X0 ∩N ′

��

// N ′ //

��

A

��
G = X0 ∩N //

��

N

��

// B

��
C // N/N ′ // D

Note that B is a finite-index subgroup of GLn(Z) = Out(Fn)/X0, and hence its

abelianisation is finite (this is a classical fact, and follows easily from the observation

that [πn(ρ−pij ), πn(ρ−pjk )] = πn(ρ−p
2

ik ) and Theorem 2.3.1). But D is a quotient of N/N ′,

which is abelian, and so it has to be finite. Also, we have just shown that C is finite.

These two facts imply that N/N ′ is finite.
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