FOR ASCENDING HNN EXTENSIONS OF FREE GROUPS

DAWID KIELAK, BIELEFELD UNIVERSITY dkielak@math.uni-bielefeld.de

DEFINITION OF

UNIVERSAL

TORSION

Assumptions

Let G be a group such that:

- (A1) G admits a finite K(G,1)called X (with universal cover X);
- (A2) G is L^2 -acyclic, i.e. its L^2 homology vanishes;
- (A3) G satisfies the Atiyah conjecture;
- (A4) the Whitehead group of G is trivial.

L^2 -homology

The (reduced) L^2 -homology of G is computed by taking the homology of the chain complex

$$L^{2}(G)^{d_{n}} \to L^{2}(G)^{d_{n-1}} \to \cdots \to L^{2}(G)^{d_{0}}$$

obtained from $C_*(\widetilde{X})$ by tensoring it with $L^2(G)$. (When taking the homology, we divide the kernel by the closure of the image of the boundary.) The L^2 homology of G does not depend on the choice of X.

Cellular homology

The cellular \mathbb{Z} -homology of X is computed by taking the homology of the cellular chain complex

$$C_n(\widetilde{X}) \to C_{n-1}(\widetilde{X}) \to \cdots \to C_0(\widetilde{X})$$

Observing that the boundary maps are G-equivariant, and that each $C_k(X)$ is a finitely generated free G-module, we can reinterpret the chain complex as a complex of free $\mathbb{Z}G$ -modules:

$$(\mathbb{Z}G)^{d_n} \to (\mathbb{Z}G)^{d_{n-1}} \to \cdots \to (\mathbb{Z}G)^{d_0}$$

The ring $\mathcal{D}(G)$

 $\mathbb{Z}G$ embeds in the von Neumann algebra of G. The von Neumann algebra in turn embeds in its algebra of affiliated operators. The ring $\mathcal{D}(G)$ is the rational closure of $\mathbb{Z}G$ in this algebra of affiliated operators.

Definition/Theorem

The group G satisfies the Atiyahconjecture if and only if $\mathcal{D}(G)$ is a skew-field.

Key properties of $\mathcal{D}(G)$

When G satisfies the Atiyah conjecture, then G is L^2 -acyclic if and only if $C_*(G) \otimes_{\mathbb{Z}G} \mathcal{D}(G)$ has trivial homology. We do not have to mention $L^2(G)$ at all!

Let G^{fab} denote the free part of the abelianisation of G, and let K = $\ker(G \to G^{\mathrm{fab}})$. Then $\mathcal{D}(G)$ is the skew-field of fractions (Ore localisation) of $\mathcal{D}(K)G^{\mathrm{fab}}$. In practice, this means that every element in $\mathcal{D}(G)$ can be written as a fraction of elements in $\mathcal{D}(K)G^{\mathrm{fab}}$.

Universal L^2 -torsion

Write $C_k(\widetilde{X}) = V_k \oplus W_k$ as Gmodules, so that the k^{th} boundary map is trivial on V_k and induces an isomorphism

$$\iota_k \colon W_k \otimes \mathcal{D}(G) \to V_{k-1} \otimes \mathcal{D}(G)$$

We define the universal L^2 -torsion of G to be

$$\rho_u^{(2)}(G) = \prod_{k=1}^n \det(\iota_k)^{(-1)^{k+1}}$$

Thurston norm

M is a closed 3-manifold. By Poincaré duality, every $\phi \in H^1(M; \mathbb{Z})$ is dual to a class in $H_1(M;\mathbb{Z})$ represented by a surface Σ in M.

 $\|\phi\|_T = \min\{\chi_-(\Sigma) \mid \Sigma \text{ is dual to } \phi\}$

with $\chi_{-}(\Sigma) = \sum \max\{-\chi(\Sigma_0), 0\}$ $\Sigma_0 \in \pi_0(\Sigma)$

Let $G = \pi_1(M)$ be hyperbolic. Then

 $\| \cdot \|_T = \mathfrak{N}(P(x)) - \mathfrak{N}(P(y))$

defines the Thurston norm $\|.\|_T$.

Theorem [Friedl–Lück]

L^2 -torsion norm

To the universal L^2 -torsion

$$\rho_u^{(2)}(G) = xy^{-1}$$

with $x, y \in \mathcal{D}(K)G^{\text{fab}}$, we associate the function

 $\mathfrak{N}(P(x)) - \mathfrak{N}(P(y)) \colon H^1(G; \mathbb{R}) \to \mathbb{R}$

From group rings to polytopes

Take $z \in RG^{\text{fab}}$ where R is a ring. The support of z is a finite subset of G^{fab} , which in turn is a subset of the \mathbb{R} -vector space $H_1(G;\mathbb{R})$. Taking the convex hull of supp z in $H_1(G;\mathbb{R})$ gives us a polytope P(z).

From polytopes to norms

Let P be a polytope in $H_1(G;\mathbb{R})$. We define $\mathfrak{N}(P)$ to be a semi-norm $H^1(G;\mathbb{R}) \to [0,\infty)$ given by

 $\mathfrak{N}(P)(\phi) = \max\{\phi(a) - \phi(b) \mid a, b \in P\}$

Ascending HNN extension

$$F_n *_f = \langle F_n, t \mid t^{-1}xt = f(x), x \in F_n \rangle$$

is an ascending HNN extension of F_n provided that f is injective. The group $F_n *_f$ satisfies (A1)-(A4) by the works of Linnell, Lück, and Waldhausen.

Theorem [Funke-K.]

The *Thurston norm* defined by $\|\phi\|_T = \mathfrak{N}(P(x)) - \mathfrak{N}(P(y))$

is a semi-norm.

Theorem [McMullen]

Let M be a closed 3-manifold with the first Betti number at least 2. Then

 $\|\cdot\|_T \geqslant \|\cdot\|_A$

Theorem [Funke–K.]

Let $G = F_n *_f$ with the first Betti number at least 2. Then

 $\|\cdot\|_T \geqslant \|\cdot\|_A$

Alexander polynomial

The map $C_2(\widetilde{X}) \to C_1(\widetilde{X})$ is a $d_1 \times d_2$ matrix over $\mathbb{Z}G$. Applying the map induced by $G \to G^{\text{fab}}$ gives us a $d_1 \times d_2$ matrix over $\mathbb{Z}G^{\mathrm{fab}}$, and the Alexander polynomial $\Delta_G \in$ $\mathbb{Z}G^{\mathrm{fab}}$ is the greatest common divisor of the (d_1-1) -minors of this matrix.

Alexander norm

The Alexander norm is defined by

$$\|.\|_A = \mathfrak{N}(P(\Delta_G))$$