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Key example: the 7-sphere

Hopf fibration: S3 → S7 → S4

round metric g ts = gS3 + gS4

“canonical variation” gκ = κgS3 + gS4 for κ > 0

gκ Einstein ⇔ g ts = g1 or gnp = g1/5

Octonions: S7 ⊆ O

 cross product ×
 3-form

ϕts(u, v ,w) = g ts(u × v ,w) G2-structure

Fact: ϕts determines g ts

dϕts = µ ∗ ϕts for µ > 0 constant ↔ nearly parallel

Note: d ∗ ϕts = 0
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Geometric flows

Ricci flow

∂gt
∂t

= −2 Rict

Critical point: Ricci-flat Ric = 0

Ric = λg , λ > 0  shrinker: critical point for rescaled flow

Laplacian flow Laplacian coflow

∂ϕt

∂t
= ∆tϕt

∂ ∗t ϕt

∂t
= ∆t ∗t ϕt

= (dd∗t + d∗td)ϕt = dd∗t ∗t ϕt

Critical point: dϕ = 0 = d∗ϕϕ  Ricci-flat with Hol(g) ⊆ G2

Laplacian (co)flow restricted to (co)closed G2-structure =
gradient flow of Hitchin volume functional on [ϕt ] ([∗tϕt ])

dϕ = µ ∗ ϕ, µ > 0  expander: critical for rescaled flows
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Observations and main results

Nearly parallel G2-structure dϕ = µ ∗ ϕ, µ > 0

 Einstein metric Ric = λg , λ > 0

G2-structure more information than metric

suggests Laplacian flow/coflow finer detail than Ricci flow

d ∗ ϕ = 0  Laplacian coflow = gradient flow of volume on [∗ϕ]

 
∂gt
∂t

= −2 Rict +Qt where Qt quadratic in dϕ

 metric flow = Ricci flow plus lower order terms

nearly parallel = Laplacian coflow expander but
positive Einstein = Ricci flow shrinker

⇒ lower order terms matter

Main results: compare behaviour of Ricci flow, Laplacian flow &
coflow near Einstein metrics/nearly parallel G2-structures on
3-Sasakian 7-manifolds
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G2-structures on the 7-sphere

Recall: S3 → S7 → S4, 3-form ϕts inducing round metric g ts

S3 = SU(2)  left-invariant coframe η1, η2, η3

ω1, ω2, ω3 orthogonal self-dual 2-forms on S4 with length
√

2

 two 3-parameter families of 3-forms for a, b, c > 0:

ϕ± = ±a2bη1∧η2∧η3− ac2η1∧ω1− ac2η2∧ω2∓bc2η3∧ω3

ϕ± induces g = a2η2
1 + a2η2

2 + b2η2
3 + c2gS4

⇒ ϕ+ and ϕ− isometric (and Berger metric on SU(2))

Lemma

d ∗ ϕ± = 0

ϕ± nearly parallel ⇔ a = b = c  ϕ− = c3ϕts or
a = b = 1√

5
c  ϕ+ = c3ϕnp

Note: ϕnp induces “squashed” Einstein metric gnp
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3-Sasakian 7-manifolds

Definition

(X 7, g ts) 3-Sasakian ⇔ cone (R+ × X 7, g = dr2 + r2g ts)
hyperkähler Hol(g) ⊆ Sp(2)

(
 generalizes (S7, g ts)

)
Fact: ∃ infinitely many 3-Sasakian 7-manifolds

SU(2)/Γ→ X 7 → Z 4, Z ASD Einstein

a, b, c > 0  g = a2η2
1 + a2η2

2 + b2η2
3 + c2gZ induced by

ϕ± = ±a2bη1∧η2∧η3− ac2η1∧ω1− ac2η2∧ω2∓bc2η3∧ω3

a = b = c = 1  ϕ− = ϕts nearly parallel inducing g ts

√
5a =

√
5b = c = 1  ϕ+ = ϕnp nearly parallel inducing

gnp “squashed” Einstein metric , cone has Hol = Spin(7)

Example: Aloff–Wallach space
(

SU(3)× SU(2)
)
/
(

U(1)× SU(2)
)
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Ricci flow

SU(2)/Γ→ X 7 → Z 4  gt = a2
t η

2
1 + a2

t η
2
2 + b2

t η
2
3 + c2

t gZ

∂gt
∂t

= −2 Rict

= −4

(
2− b2

t

a2
t

+ 2
a4
t

c4
t

)
(η2

1 + η2
2)− 4

(
b4
t

a4
t

+ 2
b4
t

c4
t

)
η2

3

− 4

(
6− 2a2

t + b2
t

c2
t

)
gZ (*)

 ansatz preserved and only critical points for rescaled flow are:

at = bt = ct ↔ g ts and
√

5at =
√

5bt = ct ↔ gnp

Theorem

After rescaling, under Ricci flow (*)

3-Sasakian Einstein g ts stable

“squashed” Einstein gnp unstable (saddle point)
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Dynamics for Ricci flow

g = a2η2
1 + a2η2

2 + b2η2
3 + c2gZ  A =

a2

c2
and B =

b2

c2

(A,B) = (0, 0) ↔ Einstein (Z 4, gZ )

(A,B) = (1, 0) ↔ Kähler–Einstein on twistor space Y 6 of Z 4

(A,B) = ( 1
2 , 0) ↔ nearly Kähler metric on Y 6
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Laplacian coflow

∗tϕ±t = c4
t volZ ∓atbtc2

t η2 ∧ η3 ∧ ω1 ∓ atbtc
2
t η3 ∧ η1 ∧ ω2

− a2
t c

2
t η1 ∧ η2 ∧ ω3

∂ ∗t ϕt

∂t
= ∆t ∗t ϕt = dd∗t ∗t ϕt (�)

 ansatz preserved and only critical points for rescaled flow are:

ϕ−t : at = bt = ct ↔ ϕts and ϕ+
t :
√

5at =
√

5bt = ct ↔ ϕnp

Note: for ϕ−t , at = bt not preserved

Theorem

After rescaling, under Laplacian coflow (†)
nearly parallel ϕts stable and nearly parallel ϕnp stable

Moreover, any initial ϕ± flows to either ϕts or ϕnp
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Dynamics for Laplacian coflow

a, b, c > 0 functions of t  X =
a2

c2
and Y =

ab

c2

 dynamics for ϕ−t and ϕ+
t

(X ,Y ) = (0, 0) ↔ volume form volZ on Z 4

(X ,Y ) = ( 1
2 , 0) ↔ nearly Kähler structure on twistor space
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Laplacian flow

ϕ±t = ±a2
t btη1 ∧ η2 ∧ η3− atc

2
t η1 ∧ω1− atc

2
t η2 ∧ω2∓ btc

2
t η3 ∧ω3

∂ϕt

∂t
= ∆tϕt = d∗tdϕt (�)

 ansatz (including d∗tϕt = 0) preserved and same critical points

Theorem

After rescaling, under Laplacian flow (‡)
nearly parallel ϕts and ϕnp both unstable (sources)
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Conclusion

Results

3-Sasakian 7-manifold  

two 3-parameter families of coclosed G2-structures  metrics

two nearly parallel G2-structures  3-Sasakian and squashed
Einstein metrics

Ricci flow: 3-Sasakian metric stable, squashed metric unstable

Laplacian coflow: both nearly parallel G2-structures stable, all
members of family flow to them after rescaling

Laplacian flow: both nearly parallel G2-structures unstable, all
non-trivial members of family flow away

Questions

stability of nearly parallel G2-structures?

coclosed condition and Laplacian flow?

short-time and long-time existence of Laplacian coflow?
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