Introduction	Setting	Ricci flow	Laplacian coflow	Laplacian flow	Conclusion
000	00	00	00	O	0

Geometric flows, G₂-structures and 3-Sasakian geometry

Jason D. Lotay

Oxford

18 November 2022

(Joint work with Aaron Kennon)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 Introduction
 Setting
 Ricci flow
 Laplacian coflow
 Laplacian flow
 Conclusion

 •oo
 oo
 oo
 oo
 oo
 oo
 oo

 Key example: the 7-sphere
 Vertice
 oo
 oo
 oo

Hopf fibration:
$$\mathcal{S}^3 o \mathcal{S}^7 o \mathcal{S}^4$$

- round metric $g^{ts} = g_{\mathcal{S}^3} + g_{\mathcal{S}^4}$
- "canonical variation" $g_{\kappa} = \kappa g_{\mathcal{S}^3} + g_{\mathcal{S}^4}$ for $\kappa > 0$
- g_{κ} Einstein $\Leftrightarrow g^{ts} = g_1$ or $g^{np} = g_{1/5}$

Octonions: $S^7 \subseteq \mathbb{O}$

- \leadsto cross product \times
- ~> 3-form

$$\varphi^{ts}(u, v, w) = g^{ts}(u \times v, w)$$
 G₂-structure

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Fact: φ^{ts} determines g^{ts}
- $\mathrm{d} \varphi^{ts} = \mu \ast \varphi^{ts}$ for $\mu > 0$ constant \leftrightarrow nearly parallel

• Note:
$$d * \varphi^{ts} = 0$$

Introduction	Setting	Ricci flow	Laplacian coflow	Laplacian flow	Conclusion
0●0	00	00	00	O	O
Geometric	flows				

Ricci flow

$$\frac{\partial g_t}{\partial t} = -2 \operatorname{Ric}_t$$

• Critical point: Ricci-flat Ric = 0

• Ric = λg , $\lambda > 0 \rightsquigarrow$ shrinker: critical point for rescaled flow

Laplacian flowLaplacian coflow $\frac{\partial \varphi_t}{\partial t} = \Delta_t \varphi_t$ $\frac{\partial *_t \varphi_t}{\partial t} = \Delta_t *_t \varphi_t$ $= (\mathrm{dd}_t^* + \mathrm{d}_t^* \mathrm{d}) \varphi_t$ $\frac{\partial *_t \varphi_t}{\partial t} = \Delta_t *_t \varphi_t$

• Critical point: $d\varphi = 0 = d_{\varphi}^* \varphi \rightsquigarrow$ Ricci-flat with $Hol(g) \subseteq G_2$

 Laplacian (co)flow restricted to (co)closed G₂-structure = gradient flow of Hitchin volume functional on [φ_t] ([*_tφ_t])

• $d\varphi = \mu * \varphi$, $\mu > 0 \rightsquigarrow$ expander: critical for rescaled flows

900

Introduction Setting Ricci flow Laplacian coflow Laplacian flow Conclusion

Nearly parallel G₂-structure $d\varphi = \mu * \varphi$, $\mu > 0$

- \rightsquigarrow Einstein metric Ric = λg , $\lambda > 0$
- G2-structure more information than metric
- suggests Laplacian flow/coflow finer detail than Ricci flow

 $d * \varphi = 0 \rightsquigarrow \text{Laplacian coflow} = \text{gradient flow of volume on } [*\varphi]$ • $\rightarrow \frac{\partial g_t}{\partial t} = -2 \operatorname{Ric}_t + Q_t$ where Q_t quadratic in $d\varphi$

- \rightsquigarrow metric flow = Ricci flow plus lower order terms
- nearly parallel = Laplacian coflow expander but positive Einstein = Ricci flow shrinker
- \Rightarrow lower order terms matter

Main results: compare behaviour of Ricci flow, Laplacian flow & coflow near Einstein metrics/nearly parallel G₂-structures on 3-Sasakian 7-manifolds

Recall: $S^3 \to S^7 \to S^4$. 3-form φ^{ts} inducing round metric g^{ts}

• $\mathcal{S}^3 = \mathsf{SU}(2) \rightsquigarrow$ left-invariant coframe η_1, η_2, η_3

- $\omega_1, \omega_2, \omega_3$ orthogonal self-dual 2-forms on \mathcal{S}^4 with length $\sqrt{2}$
- \rightsquigarrow two 3-parameter families of 3-forms for a, b, c > 0:

$$\varphi^{\pm} = \pm a^2 b \eta_1 \wedge \eta_2 \wedge \eta_3 - a c^2 \eta_1 \wedge \omega_1 - a c^2 \eta_2 \wedge \omega_2 \mp b c^2 \eta_3 \wedge \omega_3$$

• φ^{\pm} induces $g = a^2 \eta_1^2 + a^2 \eta_2^2 + b^2 \eta_3^2 + c^2 g_{S^4}$ $\Rightarrow \varphi^+$ and φ^- isometric (and Berger metric on SU(2))

Lemma

•
$$d * \varphi^{\pm} = 0$$

• φ^{\pm} nearly parallel $\Leftrightarrow a = b = c \rightsquigarrow \varphi^{-} = c^{3}\varphi^{ts}$ or
 $a = b = \frac{1}{\sqrt{5}}c \rightsquigarrow \varphi^{+} = c^{3}\varphi^{np}$

Note: φ^{np} induces "squashed" Einstein metric g^{np} φ^{np} φ^{np} φ^{np} φ^{np}

Introduction	Setting	Ricci flow	Laplacian coflow	Laplacian flow	Conclusion
000	○●		00	O	O
3-Sasakia	n 7-mai	nifolds			

Definition

$$(X^7, g^{ts}) \; 3$$
-Sasakian $\Leftrightarrow cone \; (\mathbb{R}^+ imes X^7, g = dr^2 + r^2 g^{ts})$
hyperkähler Hol $(g) \subseteq$ Sp $(2) \; (\rightsquigarrow generalizes \; (S^7, g^{ts}))$

Fact: \exists infinitely many 3-Sasakian 7-manifolds

Example: Aloff–Wallach space $(SU(3) \times SU(2))/(U(1) \times SU(2))$

Introduction	Setting	Ricci flow	Laplacian coflow	Laplacian flow	Conclusion
000	00	●0	00	O	O
Ricci flow					

$${
m SU}(2)/\Gamma o X^7 o Z^4 \rightsquigarrow g_t = a_t^2 \eta_1^2 + a_t^2 \eta_2^2 + b_t^2 \eta_3^2 + c_t^2 g_Z$$

$$\begin{aligned} \frac{\partial g_t}{\partial t} &= -2 \operatorname{Ric}_t \\ &= -4 \left(2 - \frac{b_t^2}{a_t^2} + 2 \frac{a_t^4}{c_t^4} \right) \left(\eta_1^2 + \eta_2^2 \right) - 4 \left(\frac{b_t^4}{a_t^4} + 2 \frac{b_t^4}{c_t^4} \right) \eta_3^2 \\ &- 4 \left(6 - \frac{2a_t^2 + b_t^2}{c_t^2} \right) g_Z \end{aligned}$$
(*)

 \rightsquigarrow ansatz preserved and only critical points for rescaled flow are:

$$a_t = b_t = c_t \leftrightarrow g^{ts}$$
 and $\sqrt{5}a_t = \sqrt{5}b_t = c_t \leftrightarrow g^{np}$

Theorem

After rescaling, under Ricci flow (*)

- 3-Sasakian Einstein g^{ts} stable
- "squashed" Einstein g^{np} unstable (saddle point)

- $(A, B) = (0, 0) \leftrightarrow \text{Einstein} (Z^4, g_Z)$
- $(A,B) = (1,0) \leftrightarrow K$ ähler–Einstein on twistor space Y^6 of Z^4
- $(A, B) = (\frac{1}{2}, 0) \leftrightarrow$ nearly Kähler metric on Y^6

Introduction	Setting	Ricci flow	Laplacian coflow	Laplacian flow	Conclusion
000	00		●0	O	0
Lanlaciar	n coflow				

$$*_t \varphi_t^{\pm} = c_t^4 \operatorname{vol}_Z \mp a_t b_t c_t^2 \eta_2 \wedge \eta_3 \wedge \omega_1 \mp a_t b_t c_t^2 \eta_3 \wedge \eta_1 \wedge \omega_2$$
$$- a_t^2 c_t^2 \eta_1 \wedge \eta_2 \wedge \omega_3$$
$$\frac{\partial *_t \varphi_t}{\partial t} = \Delta_t *_t \varphi_t = \operatorname{dd}_t^* *_t \varphi_t \qquad (\dagger)$$

 \rightsquigarrow ansatz preserved and only critical points for rescaled flow are:

$$\varphi_t^-: a_t = b_t = c_t \leftrightarrow \varphi^{ts}$$
 and $\varphi_t^+: \sqrt{5}a_t = \sqrt{5}b_t = c_t \leftrightarrow \varphi^{np}$

Note: for φ_t^- , $a_t = b_t$ not preserved

Theorem

After rescaling, under Laplacian coflow (†)

• nearly parallel φ^{ts} stable and nearly parallel φ^{np} stable Moreover, any initial φ^{\pm} flows to either φ^{ts} or φ^{np} Introduction Setting Ricci flow columnation of the Laplacian coflow columnation of the Laplacian flow of the Conclusion of the Laplacian flow of the Lapla

Dynamics for Laplacian coflow

$$a,b,c>0$$
 functions of $t\rightsquigarrow X=rac{a^2}{c^2}$ and $Y=rac{ab}{c^2}$

 \rightsquigarrow dynamics for φ_t^- and φ_t^+

• $(X, Y) = (0, 0) \leftrightarrow$ volume form vol_Z on Z^4 • $(X, Y) = (\frac{1}{2}, 0) \leftrightarrow$ nearly Kähler structure on twistor space

Introduction	Setting	Ricci flow	Laplacian coflow	Laplacian flow	Conclusion
000	00	00	00	•	O
Lanlacia	n flow				

$$\varphi_t^{\pm} = \pm a_t^2 b_t \eta_1 \wedge \eta_2 \wedge \eta_3 - a_t c_t^2 \eta_1 \wedge \omega_1 - a_t c_t^2 \eta_2 \wedge \omega_2 \mp b_t c_t^2 \eta_3 \wedge \omega_3$$
$$\frac{\partial \varphi_t}{\partial t} = \Delta_t \varphi_t = \mathrm{d}_t^* \mathrm{d}\varphi_t \tag{\ddagger}$$

 \rightsquigarrow ansatz (including $\mathrm{d}_t^*\varphi_t=0)$ preserved and same critical points

Theorem

After rescaling, under Laplacian flow (\ddagger)

• nearly parallel φ^{ts} and φ^{np} both unstable (sources)

Introduction	Setting	Ricci flow	Laplacian coflow	Laplacian flow	Conclusion
000	00		00	O	•
Conclusio	n				

Results

- 3-Sasakian 7-manifold \rightsquigarrow
 - two 3-parameter families of coclosed G2-structures \rightsquigarrow metrics
 - two nearly parallel G2-structures \rightsquigarrow 3-Sasakian and squashed Einstein metrics
 - Ricci flow: 3-Sasakian metric stable, squashed metric unstable
 - Laplacian coflow: both nearly parallel G₂-structures stable, all members of family flow to them after rescaling
 - Laplacian flow: both nearly parallel G₂-structures unstable, all non-trivial members of family flow away

Questions

- stability of nearly parallel G2-structures?
- coclosed condition and Laplacian flow?
- short-time and long-time existence of Laplacian coflow?