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Motivation

Conifolds

Known examples of G2 conifolds

Moduli space of compact G2 manifolds

New examples/local uniqueness of holonomy G2 metrics

Relevance to M-Theory
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Outline

Definitions and examples

Deformation theory results

Applications

Sketch proof and key ideas

Open problems
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G2 conifolds

Cone C 7 = R+ × Σ6, gC = dr 2 + r 2gΣ

Hol(gC ) ⊆ G2 ⇔ Σ nearly Kähler

SU(3) structure (g , J, ω,Ω) nearly Kähler if

dω = 3 Re Ω and d Im Ω = −2ω ∧ ω

Examples of Σ: S6, CP3, SU(3)/T 2, S3 × S3

Definition

M asymptotically conical (AC) if ∃ cone C , compact K , R > 0,

diffeomorphism Ψ : (R,∞)×Σ→ M \K and rate ν < 0 such that

|∇j
C (Ψ∗gM − gC )| = O(rν−j) for all j ∈ N as r →∞

M AC rate ν0 < 0  M AC any rate ν ∈ [ν0, 0)
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G2 conifolds

Definition

M conically singular (CS) at z ∈ M if M = M \ {z} smooth and

∃ cone C , compact K , ε > 0, diffeomorphism

Ψ : (0, ε)× Σ→ M \ K and rate ν > 0 such that

|∇j
C (Ψ∗gM − gC )| = O(rν−j) for all j ∈ N as r → 0

M CS rate ν0 > 0  M CS any rate ν ∈ (0, ν0]

Examples

(Bryant–Salamon 1989) AC holonomy G2 manifolds

Λ2
−(S4) and Λ2

−(CP2) have rate −4, Σ = CP3 and SU(3)/T 2

S(S3) has rate −3, Σ = S3 × S3

(Joyce–Karigiannis) Potential method for constructing CS

holonomy G2 manifolds, Σ = CP3
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AC deformations

Theorem (Joyce 1996)

M7 compact G2 manifold ⇒ moduli space of torsion-free G2

structures is locally a smooth manifold of dimension b3(M)

(Nordström 2009) Asymptotically cylindrical case

Theorem (Karigiannis–L 2012)

M AC G2 manifold with generic rate ν ∈ (−4,−5/2) ⇒ moduli

space of torsion-free G2 structures is locally a smooth manifold of

dimension

b3
cs(M) if ν ∈ (−4,−3)

b3
cs(M) + dim Im

(
H3(M)→ H3(Σ)

)
+
∑

λ∈(−3,ν) mΣ(λ) if

ν ∈ (−3,−5/2)
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CS deformations

Theorem (Karigiannis–L 2012)

M CS G2 manifold with rate ν near 0 ⇒
∃ finite-dimensional vector spaces of forms I and O
∃ open neighbourhood U of 0 in I and smooth map

π : U → O with π(0) = 0

such that the moduli space of torsion-free G2 structures is locally

homeomorphic to Ker π and has expected dimension at least

b3(M)− dim Im
(
H3(M)→ H3(Σ)

)
−
∑

λ∈(−3,0] mΣ(λ)

I is the infinitesimal deformation space

O is the obstruction space

O = {0}  smooth moduli space
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Applications

1. M = Λ2
−(S4) or Λ2

−(CP2), AC with rate −4

b3
cs(M) = b4(M) = 1, b3(Σ) = 0

(Moroianu–Semmelmann 2010) mΣ(λ) = 0 for λ ∈ (−3, 0)

dimMν = b3
cs(M) = 1 for ν ∈ (−4, 0)  local uniqueness

2. M = S(S3), AC with rate −3

b3
cs(M) = 0, b3(M) = 1, b3(Σ) = 2

0→ H3(M)→ H3(Σ)→ H4
cs(M)→ 0 exact  

dim Im
(
H3(M)→ H3(Σ)

)
= 1

mΣ(λ) = 0 for λ ∈ (−3, 0)

dimMν = 1 for ν ∈ (−3, 0)  local uniqueness
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Applications

3. M CS with Σ = CP3 or S3 × S3

mΣ(0) = 0  O = {0}
Mν smooth, dimMν = b3(M) or b3

cs(M)

4. M CS with Σ = SU(3)/T 2

mΣ(0) = 8  dimO ≤ 8

Smoothness for Mν ↔ deformations of SU(3)/T 2

5. M CS with cone C and N AC with rate ν ≤ −3 to C

(Karigiannis 2009) Can desingularize M via gluing with N if

topological condition and gauge-fixing condition satisfied

Slice theorem ⇒ gauge-fixing always holds
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Strategy

(M7, ϕ) G2 conifold rate ν

Tν = {τ ∈ C∞(Λ3
+) with rate ν : dτ = d∗ττ = 0}

Dν = {diffeomorphisms with rate ν isotopic to id}
Mν = Tν/Dν

(a) Gauge  slice Sν 3 ϕ, Sν →Mν homeomorphism

(b) τ closed, Hodge theory  ∃ ! co-exact β, harmonic γ such

that τ − ϕ = dβ + γ

(c) τ ∈ Sν ⇔ ∆ϕβ = d∗ϕF (dβ + γ)

(d) Implicit Function Theorem, elliptic regularity  Mν locally

parametrised by harmonic 3-forms rate ν
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Gauge-fixing

(a) Tϕ(ϕDν) = {Lvϕ}  seek τ transverse to all Lvϕ = d(vyϕ)

Λ2 = Λ2
7 ⊕ Λ2

14 with Λ2
7 = {vyϕ}

〈τ,d(vyϕ)〉ϕ = 〈d∗ϕτ, vyϕ〉ϕ
 π7(d∗ϕτ) = 0  slice

Analytic framework: weighted Sobolev space L2
k,ν

ξ ∈ L2
0,ν ⇔ r−ν−

7
2 ξ ∈ L2

AC ν > −7
2 ⇒ not in L2

Λ3 = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27 with Λ3

1 = {f ϕ} and Λ3
7 = {vy ∗ϕ ϕ}

Dirac operator /D acting on Λ3
1 ⊕ Λ3

7 by

f ϕ+ vy ∗ϕ ϕ 7→ π1+7d(vyϕ) + ∗ϕd(f ϕ)

Surjectivity of /D for AC  slice
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Key points

(b) Hodge theory not valid in general on L2
k,ν

AC: decomposition works by choice of rates

CS: τ − ϕ = dβ + γ + η

(c) Gauge-fixing  ∆ϕβ = d∗ϕF (τ − ϕ)

(d) Maybe Im d∗ϕ * Im ∆ϕ  obstructions to applying IFT

AC: no obstruction

CS: obstructions ↔ O

Dimension Kν = {γ ∈ L2
k,ν(Λ3) : dγ = d∗ϕγ = 0}

dimK−7/2 equals b3
cs(M) if M is AC and b3(M) if M is CS

index of d + d∗ϕ on L2
k,ν “jumps” as ν crosses critical values

jumps determined by spectrum of elliptic operator on Σ
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Open problems

New examples of nearly Kähler 6-manifolds

Deformations of nearly Kähler 6-manifolds

Examples of CS holonomy G2 manifolds

Stability for holonomy G2 cones

Ricci-flat deformations of G2 conifolds
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