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The following notes are based on a series of talks given by Jason Lotay at the KCL/UCL
geometric analysis reading seminar in March 2014. The typesetting was done by Tom Begley
(T.Begley@maths.cam.ac.uk) and Kim Moore (K.Moore@maths.cam.ac.uk). Corrections are wel-
comed by either of us.

1 Introduction

We will aim to address the following questions:

- What is Lagrangian mean curvature flow?

- Why study it?

- What do we know so far?

- What don’t we know? What are the problems hindering further progress?

- Where do we go next?

To keep things simple we are going to consider C2 = R4, since all of the problems already arise in
this relatively simple setting, so there is no point in considering anything more complicated for
the moment. We have the usual complex coordinates

z1 = x1 + iy1 z2 = x2 + iy2.

We define the 2-form

ω := dx1 ∧ dy1 + dx2 ∧ dy2 =
i

2
(dz1 ∧ dz1 + dz2 ∧ dz2).

Since the coefficients are constant, we have that ω is closed, i.e. dω = 0, and a simple calculation
verifies that

ω ∧ ω
2

= volC2 = volR4

which implies that ω is a symplectic form.
Suppose now that L ⊂ C2 is a submanifold and dimL = 2. We say L is Lagrangian if ω|L = 0.
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Example. R2 = {x1, x2} is an example of a Lagrangian submanifold. More generally

L = {(x1, x2, f1(x1, x2), f2(x1, x2))|x1, x2 ∈ R}

is Lagrangian if and only if there exists some g such that f1 = ∂1g and f2 = ∂2g, since the
condition ω|L = 0 is equivalent to ∂1f2 = ∂2f1.

On C2 we have a complex structure J defined by the relations

J
∂

∂xj
=

∂

∂yj
J
∂

∂yj
= − ∂

∂xj

A simple calculation shows that this complex structure relates ω to the standard inner product
on C4 via

ω(X, Y ) = g(JX, Y )

Indeed if

X = X1 ∂

∂x1
+X2 ∂

∂x2
+X3 ∂

∂y1
+X4 ∂

∂y2

Y = Y 1 ∂

∂x1
+ Y 2 ∂

∂x2
+ Y 3 ∂

∂y1
+ Y 4 ∂

∂y2

then

JX = X1 ∂

∂y1
+X2 ∂

∂y2
−X3 ∂

∂x1
−X4 ∂

∂x2
so

g(JX, Y ) = X1Y 3 +X2Y 4 −X3Y 1 −X4Y 2.

On the other hand

ω(X, Y ) = det

(
X1 Y 1

X3 Y 3

)
+ det

(
X2 Y 2

X4 Y 4

)
= X1Y 3 −X3Y 1 +X2Y 4 −X4Y 2,

so equality is established.

2 Minimal Surfaces

We know from minimal surfaces that the condition H = 0 (where H is mean curvature) is
equivalent to being stationary for the area functional

A(L) =

∫
L

volL. (2.1)

Minimal surfaces need not actually be area minimising, as examples like the catenoid show.
However, minimal Lagrangians turn out to be area minimising. The proof is by a calibration
argument similar to that used to show that minimal graphs are in fact area minimising. The key
point is that Ω := dz1 ∧ dz2 is preserved by SU(2) ⊂ SO(4)

SU(2) =

{(
a b

−b a

)∣∣∣∣ a, b ∈ C |a|2 + |b|2 = 1

}
.
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Identification with a subset of SO(4) comes from identifying complex numbers with 2×2 matrices

c+ id =

(
c −d
d c

)
.

Suppose then that z′ = Az with A ∈ SU(2), then

dz′1 ∧ dz′2 = a1jdzj ∧ a2kdzk
= (a11a22 − a12a21)dz1 ∧ dz2

= (aa− b(−b))dz1 ∧ dz2

= dz1 ∧ dz2.

Moreover, J is preserved by U(2)

SU(2) =

{(
a b

−b a

)∣∣∣∣ a, b ∈ C
}
.

so it follows that Lagrangian submanifolds are preserved by U(2). Hence any Lagrangian plane
can be seen as R2 via U(2) transformations.
Suppose that L is a Lagrangian plane with orthonormal basis {e1, e2}. Use SU(2) to rotate L so
that e1 = ∂/∂x1. Then as e1 and e2 are orthogonal we have that

e2 = a1
∂

∂y1
+ a2

∂

∂x2
+ a3

∂

∂y2
.

However since 0 = ω(e1, e2) = a1 we get

e2 = cos θ
∂

∂x2
+ sin θ

∂

∂x2
,

since e2 is unit length. Since

Ω = (dx1 + idy1) ∧ (dx2 + idy2) = (dx1 ∧ dx2 − dy1 ∧ dy2) + i(dx1 ∧ dy2 + dx2 ∧ dy1),

we calculate
Ω(e1, e2) = cos θ + sin θ = eiθ.

Hence
ΩL = eiθvolL = eiθe∗1 ∧ e∗2

for any Lagrangian plane, where e∗i denotes the dual basis. This is also true for any Lagrangian
L, but with θ varying on L. We call θ the Lagrangian angle. Notice that θ is only determined
up to multiples of 2π, however we can use it to define the so called phase function eiθ : L → S1.
There is an important link between the Lagrangian angle and the mean curvature which we will
use in our study of Lagrangian mean curvature flow.

Lemma 2.1. For a Lagrangian submanifold, ~H = J∇θ.

Remark. Notice that multiples of 2π in θ are killed by ∇ so there is no ill-definition here.

3



Proof. Let p ∈ L and let {e1, e2} be an orthonormal basis for TpL. Then it follows since L
is Lagrangian that {e1, e2, Je1, Je2} is an orthonormal basis for C2. Indeed since g(Jei, ej) =
ω(ei, ej) = 0 and using the fact that e1 and e2 are orthogonal it’s easy to check everything works
out. Hence we can write

Ω = eiθ(e∗1 + iJe∗1) ∧ (e∗2 + iJe∗2)

(where by a slight abuse of notation we write Je∗i = (Jei)
∗). Now, since Ω has constant coefficients,

we know that for any X we have
∇XΩ = 0,

hence

0 = idθ(X)Ω + eiθ(∇Xe
∗
1 + i∇XJe

∗
1) ∧ (e∗2 + iJe∗2) + eiθ(e∗1 + iJe∗1) ∧ (∇Xe

∗
2 + i∇XJe

∗
2).

Since ∇Xe
∗
j + i∇XJe

∗
j must be a scalar multiple of e∗j + iJe∗j , we can rewrite the above as

0 = (idθ(X) + eiθ(∇Xe
∗
1 + i∇XJe

∗
1)((e1 − iJe1)/2) + eiθ(∇Xe

∗
2 + i∇XJe

∗
2)((e2 − iJe2)/2))Ω

since (e∗1 + iJe∗1)((e1 − iJe1)/2) = 1 we have

(∇Xe
∗
1 + i∇XJe

∗
1)((e1 − iJe1)/2) = −(e∗1 + iJe∗1)((∇Xe1 − i∇XJe1)/2).

Now, ∇X(Je1) = J∇Xe1, thus at p we have

∇Xe1 = g(∇Xe1, Je1)Je1 + g(∇Xe1, Je2)Je2,

since ∇Xe1 = 0 as ∇ej
ek = 0 at p. Thus e∗1(∇Xe1) = 0, since

e∗1(∇XJe1) = e∗1(J∇Xe1) = −g(∇Xe1, Je1).

Moreover Je∗1(∇Xe1) = g(∇Xe1, Je1). This all together implies

(∇Xe
∗
1 + i∇XJe

∗
1)((e1 − iJe1)/2) = −ig(∇Xe1, Je1)

thus

dθ(X) = g(∇Xe1, Je1) + g(∇xe2, Je2)

= g(∇e1
X, Je2) + g(∇e2

X, Je2)

= −g(X,∇e1
(Je1) +∇e2

(Je2)) = −g(X, J ~H)

From the above lemma we see that a Lagrangian L is minimal if and only if θ is constant.
Suppose now that θ = 0, then ΩL = volL which implies ReΩL = volL and ImΩL = 0. Now more
generally

ReΩ = dx1 ∧ dx2 − dy1 ∧ dy2.

This has constant coefficients and so is closed, and ReΩ(e1, e2) ≤ 1 with equality if and only if
ReΩ = volL. Suppose that L′ ∈ [L] is homologous to L, then by Stokes’ theorem

A(L′) =

∫
L′

volL′ ≥
∫
L′

ReΩ =

∫
L

ReΩ =

∫
L

volL = A(L).
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Question: Given a homology class [L], does there exists a special (that is, minimal) Lagrangian
representative?
Answer: We have no idea, but the hope is that Lagrangian mean curvature flow should help us
answer this.

3 Minimization Problem

Schoen-Wolfson found L2 ⊂ M4 a Calabi-Yau manifold such that a minimiser for area among
Lagrangians in [L] exists, is smooth except for finitely many points, but it need not be minimal.
Wolfson found L = S2 ⊂ M4 = K3 with [L] 6= 0 such that the Lagrangian minimising area
amongst Lagrangians in [L] exists and is not minimal, and the surface minimising area in [L]
exists and is not Lagrangian.
Neves showed that given L2 embedded Lagrangian in M4 Calabi-Yau, then there exists a La-
grangian L′ Hamiltonian isotopic to L such that hte Lagrangian mean curvature flow starting at
L′ has a finite time singularity.

4 Examples

1. As we saw before the submanifold defined by

L = {(x1, f1(x1, x2), x2, f2(x1, x2))|(x1, x2) ∈ R}

is Lagrangian precisely when ∂1f2 = ∂2f1. In particular if there is some function g such that
f1 = ∂1g and f2 = ∂2g then L is Lagrangian. If we take g(x1, x2) = log(x21 + x22)/2 on R2 \ {0}.
Then L is given by {(

x1,
x1

x21 + x22
, x2,

x2
x21 + x22

)∣∣∣∣x1, x2 6= 0

}
.

This is known as the Lagrangian catenoid. We know that mean curvature is given by ~H = J∇θ,
how do we calculate this? A basis for the tangent space of L is given by

e1 =

(
1,

x22 − x21
(x21 + x22)

2
, 0,

−2x1x2
(x21 + x22)

2

)
e2 =

(
0,
−2x1x2

(x21 + x22)
2
, 1,

x21 − x22
(x21 + x22)

2

)
.

Recalling that the holomorphic volume form is given by

Ω = dz1 ∧ dz2 = dx1 ∧ dx2 − dy1 ∧ dy2 + i(dx1 ∧ dy2 + dy1 ∧ dx2)

we can see that

ImΩ(e1, e2) =
x21 − x22

(x21 + x22)
2

+
x22 − x21

(x21 + x22)
2

= 0, (4.1)

hence, since we already know Ω|L = eiθvol|L, it follows that Ω|L = ±vol|L, choosing the orientation
appropriately we can ensure Ω|L = vol|L. This means θ ≡ 0 (up to multiples of 2π and so ∇θ = 0
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and so ~H = 0.
2. Consider the submanifold of C2 given by

L = {(eiθ1 , eiθ2)|θ1, θ2 ∈ R}

This is Lagrangian. Considering the tangent vectors e1 = (ieiθ1 , 0) and e2 = (0, ieiθ2) (which form
a basis for the tangent space of L we get

Ω(e1, e2) = −ei(θ1+θ2)

which implies that the Lagrangian angle is given by θ = θ1 + θ2 +π. This in particular shows that
the Maslov class of dθ is non-zero. Since minimal Lagrangians have zero Maslov class, and the
Maslov class doesn’t change under Lagrangian mean curvature flow, if we hope to get convergence
to a special Lagrangian by flowing a Lagrangian manifold, it stands to reason that we should
restrict our attention to those with zero Maslov class. In the above example one can compute
that ~H = −~F⊥, so this is a self-shrinking solution.
3. Define

L :=

{
(u1, u1u3, u2, u2u3)

1 + u23

∣∣∣∣u21 + u22 + u23 = 1

}
.

This is known as the Whitney sphere and is an immersed S2. It can be seen as a compactification
of the Lagrangian catenoid. It is a Willmore surface and minimises the Willmore functional in its
homotopy class. It is the only genus zero Lagrangian Willmore surface. There are no embedded
Lagrangian S2 in C2.
Let λ = x1dy1 + x2dy2 − y1dx1 − y2dx2, then one can check that dλ = 2ω. We say a Lagrangian
L is exact if λ is exact, i.e. if λ|L = dβ.

Claim: There are no non-trivial, smooth, zero Maslov class self-shrinkers.

Lemma 4.1. A Lagrangian self-shrinker/expander L is zero Maslov class if and only if it is exact.

Proof. Suppose that ~H = κ~F⊥ where κ 6= 0 and suppose that L has zero Maslov class. Then

J∇θ = κ~F⊥ ⇐⇒ ∇θ = −κJ ~F⊥ = −κ(J ~F )⊥

since for a Lagrangian ω|L = 0, so ω(X, Y ) = g(JX, Y ). So J(TpL) = (TpL)⊥. Hence

−κ(J ~F )T = −κ(−y1, x1,−y2, x2)T

so
dθ = −κλ|L

which implies L is exact if it has zero Maslov class.

Theorem 4.2 (Gromov). There are no compact embedded exact Lagrangians in C2.

Corollary 4.3. There are no compact embedded zero Maslov class self-shrinkers.

Theorem 4.4 (Smoczyk). For compact L, Lagrangian mean curvature flow exists in Calabi-Yau
manifolds (Ricci-flat and Kähler). Can even relax this to Kähler-Einstein.
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The following is not a proof. Using Cartan’s formula we find

∂ω

∂t
= L ~Hω = d( ~Hyω) = d(dθ) = 0

since if ~H = J∇θ then ω( ~H, ·) = g(J ~H, ·) = −dθ(·). However for this we are using the fact that
L stays Lagrangian under the flow, which is precisely what we are trying to establish! We need
to find a different approach.

Proof. For a compact submanifold one can run a fixed point argument to get short time existence
of flow by mean curvature by writing everything as a normal graph over the initial condition (very
roughly speaking anyway). What we are really interested in showing is that the submanifolds
stay Lagrangian under the flow. This is done using the maximum principle. Define the function
f := |ωt|2 (to keep notation simple we adopt the convention that whenever a subscript t appears
we are considering the restriction to Lt). We want to show that f satisfies a differential inequality
of the form

∂f

∂t
≤ −∇∗∇f +Bf

so that we may apply the maximum principle. The trick is to first show that a small pertubation
of a Lagrangian is ‘totally real’, that is to say J(TpL) ∩ TpL = {0}. Hence flowing for a short
time the submanifolds may not remain Lagrangian, but we can assume this property. We now
compute, using normal coordinates at a point and considering a tangential vector field X

ω( ~H,X) = ω(∇ei
ei, X)

= ∇ei
(ω(ei, X))− ω(ei,∇ei

X)

= ∇ei
(ω(ei, X))− ω(ei, A(ei, X))

= −d∗ω(X)−ω(ei, A(ei, X))︸ ︷︷ ︸
=:ξ

.

We notice that the right hand side is tensorial, so our choice of coordinates was no restriction.
We want to compute d(ω( ~H, ·))(X, Y ). Applying d to each of the terms in the right hand side
above in turn we find first that

dd∗ω|L = ∆dω|L = ∇∗∇ω|L + Cyω

where C depends on the Riemann curvature of L and other intrinsic quantities only. For the
second term suppose that [X, Y ] = 0 at p, then

dξ(X, Y ) = X(ξ(Y ))− Y (ξ(X))

= −∇X(ω(ei, A(ei, Y ))) +∇Y (ω(ei, A(ei, X)))

= −2ω(A(X, ei), A(Y, ei))− ω(ei,∇X(∇Y ei −∇Y ei)) + ω(ei,∇Y (∇Xei −∇Xei))

= −2ω(A(X, ei), A(Y, ei)) + ω(ei, R(X, Y )ei) + ω(ei, A(X,∇Y ei))− ω(ei, A(Y,∇Xei))

= ω(ei, R(X, Y )ei)− 2ω(A(X, ei), A(Y, ei)).

Now, on a Lagrangian submanifold we had that if Z,W are normal then

ω(Z,W ) = ω(JX, JY ) = ω(X, Y ).
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On a totally real submanifold the same need not be true, however we do at least have that if
Z = (JX)⊥ and W = (JY )⊥ then

ω(Z,W ) = ω(JX − (JX)T , JY − (JY )T )

= ω(JX, JY )− ω((JX)T , JY )− ω(JX, (JY )T ) + ω((JX)T , (JY )T )

= ω(X, Y )− g(J(JX)T , JY ) + g(X, (JY )T ) + ω((JX)⊥, (JY )⊥)

= ω(X, Y )− g(JX, Y ) + g(X, JY ) + ω((JX)⊥, (JY )⊥)

= ω(JX)⊥, (JY )⊥))− ω(X, Y ).

hence we can conclude that dξ = Cyω|L, where C again depends only on intrinsic quantities like
the Riemann curvature tensor. Assembling the above we have

d( ~Hyω) = −∇∗∇ω|L + Cyω|L

Now we return to the function f = |ωt|2 = gt(ωt, ωt) for t ∈ [0, T ]. Then

∂f

∂t
=
∂gt
∂t

(ωt, ωt) + 2gt

 ∂ωt
∂t︸︷︷︸

=d( ~Hyωt)

, ωt


≤ ∂gt

∂t
(ωt, ωt) + 2gt(−∇∗t∇tωt, ωt) + Cgt(ωt, ωt)

≤ −∇∗t∇t gt(ωt, ωt)︸ ︷︷ ︸
=f

−2gt(∇tωt,∇tωt) + Cf

≤ −∇∗t∇tf + Cf.

This means we can now apply the maximum principle to show that f must remain 0 for all time.
To do this we fix ε > 0 and define the new function

fε := f − εe2Ct.

Then since f(0) = 0 we have fε(0) = −ε < 0. Moreover, if we differentiate fε in t we get

∂fε
∂t
≤ −∇∗t∇tf + Cf − 2Cεe2Ct

= −∇∗t∇tfε + Cfε − Cεe2Ct

< −∇∗t∇tfε + Cfε

for all t ≥ 0. Suppose that there exists y ∈ L and T0 ∈ (0, T ] such that fε(y, T0) = −ε/2, where
T0 is the first time fε attains this value. Then

∂fε
∂t
≥ 0 −∇∗t∇tfε(y, T0) ≤ 0

but

0 ≤ ∂fε
∂t

< −∇∗t∇tfε + Cfε ≤ 0,

a contradiction. Hence letting ε→ 0 we see that f ≡ 0 for all time.
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Lemma 4.5. The evolution of θ (for zero Maslov class) is given by the equation

∂θ

∂t
= −d∗dθ = −∇∗∇θ = ∆θ.

Proof. We have

∂Ω

∂t
= L ~HΩ = d( ~HyΩ) = d(eiθi∇θyvol|L) = −eiθdθ ∧ ∗dθ + ieiθd(∗dθ).

On the other hand
∂Ω

∂t
=

∂

∂t
(eiθvol|L) = ieiθ

∂θ

∂t
vol|L + eiθ

∂

∂t
(vol|L).

Comparing real and imaginary parts we get

∂θ

∂t
= −d∗dθ.

Suppose now that L is a smooth zero Maslov class self-shrinker, i.e. that Lt =
√
−tL for all

t < 0. Let

ρ(t) :=

∫
Lt

θ2tΦ(0, 0)dH2,

where

Φ(x0, T ) =
e−|x−x0|

2/4(T−t0)

4π(T − t)
.

Then Huisken’s monotonicity formula says that

0 =
∂ρ

∂t
=

∫
Lt

(
∂θ2t
∂t
−∆θ2t

)
Φ(0, 0)dH2 −

∫
Lt

∣∣∣∣∣ ~H − ~F

2t

∣∣∣∣∣
2

Φ(0, 0)dH2.

Now the evolution equation for θ says that

∂θ2

∂t
= ∆θ2 − 2|dθ|2

so
∂θ2

∂t
−∆θ2 = −2|dθ|2 ≤ 0

Hence ∂ρ/∂t = 0 implies dθ = 0 which implies L is minimal. So 0 = ~H = ~F⊥ so L is a cone, and
so since it is smooth, L is in fact a plane.
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