Recent progress in Lagrangian mean curvature flow of surfaces

Jason D. Lotay

Oxford

24 June 2021

Mean curvature flow

$$L^n \hookrightarrow (M^m, g) \rightsquigarrow \text{volume functional Vol}(L)$$

- Critical points: minimal \Leftrightarrow mean curvature H=0
- Gradient flow: mean curvature flow (MCF) $\Leftrightarrow \frac{\partial L}{\partial t} = H$

Example: $n = 1 \rightsquigarrow \text{curves } \gamma$

- minimal \Leftrightarrow curvature $\kappa = 0 \Leftrightarrow$ geodesic
- MCF $\leftrightarrow \frac{\partial \gamma}{\partial t} = \kappa = \frac{\partial^2 \gamma}{\partial s^2}$ (s arclength)
- → nonlinear parabolic PDE

Lagrangian mean curvature flow

MCF $L^n \hookrightarrow M^m \leftrightarrow$ nonlinear parabolic PDE system

- m = n + 1 (hypersurfaces) \rightsquigarrow scalar PDE \rightsquigarrow \checkmark
- $m > n + 1 \rightsquigarrow ?!$

Lagrangian mean curvature flow

Lagrangian $\rightsquigarrow L^n \hookrightarrow (M^{2n}, \omega)$ symplectic, $\omega|_L \equiv 0$

(Smoczyk 1998) In Kähler–Einstein (M, ω) Lagrangian condition preserved by MCF \leadsto Lagrangian mean curvature flow (LMCF)

Calabi–Yau $M \Rightarrow$ critical points of LMCF are minima

Example: $F: \mathbb{R}^n \to \mathbb{R}^n \leadsto$

- $\mathsf{Graph}(F) \subseteq \mathbb{R}^{2n} \mathsf{Lagrangian} \Leftrightarrow F = \mathsf{grad}\, f, \, f: \mathbb{R}^n \to \mathbb{R}$
- LMCF $\leftrightarrow \frac{\partial f}{\partial t} = \sum_{j=1}^{n} \tan^{-1} \lambda_j$ (λ_j eigenvalues of Hess f)
- \rightsquigarrow fully nonlinear parabolic scalar PDE

Examples: gravitational instantons

 \mathcal{S}^1 -invariant M^4 gravitational instanton \Rightarrow hyperkähler \Rightarrow Calabi–Yau

Example: Eguchi–Hanson $T^*S^2 \rightsquigarrow S^2$ minimal Lagrangian

• infinitely many topological types containing \mathcal{S}^1 -invariant minimal Lagrangian surfaces L^2

Fibration: $S^1 \hookrightarrow M \setminus \{p_1, \dots, p_{k+1}\} \to \mathbb{R}^3 \setminus \{p_1, \dots, p_{k+1}\}$ with $\{p_1, \dots, p_{k+1}\} \subseteq \mathbb{R}^2 \to \text{Lagrangian } L^2 \subseteq M \leftrightarrow \text{curve } \gamma \subseteq \mathbb{R}^2$

String Theory \rightsquigarrow Mirror Symmetry for Calabi–Yau $M \rightsquigarrow$

Conjecture (Thomas-Yau 2002)

LMCF starting at stable L in M exists for all time and converges

Conjecture (Joyce 2015)

Long-time existence and convergence of LMCF with surgeries ↔ Bridgeland stability condition on Fukaya category

Singularities

 L^n oriented Lagrangian in Calabi–Yau M U(n)/ SO(n) oriented Lagrangian Grassmannian \leadsto determinant defines $e^{i\theta}:L\to \mathcal{S}^1$ Lagrangian angle

- LMCF converges \Rightarrow L zero Maslov $[\mathrm{d}\theta]=0$
- L stable \Rightarrow almost calibrated $|\sup \theta \inf \theta| < \pi \Rightarrow [d\theta] = 0$

Challenge: L zero Maslov \Rightarrow LMCF singularities are Type II

- tangent flow does not determine singularity model (in general)
- singularity model = ancient solution $(L_t)_{t<0}$ (Type II blow-up)

Theorem (Lambert-L.-Schulze, L.-Schulze-Székelyhidi)

Classification for Type II blow-ups of almost calibrated LMCF of surfaces → minimal Lagrangians and translators

Thomas-Yau conjecture

Conjecture (Thomas-Yau 2002)

LMCF starting at stable L in M exists for all time and converges

Theorem (L.–Oliveira)

Thomas-Yau conjecture is true for S^1 -invariant Lagrangians L^2 in S^1 -invariant gravitational instantons M^4