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Mean curvature flow

Ln ↪→ (Mm, g)  volume functional Vol(L)

Critical points: minimal ⇔ mean curvature H = 0

Gradient flow: mean curvature flow (MCF) ⇔ ∂L

∂t
= H

Example: n = 1  curves γ

minimal ⇔ curvature κ = 0 ⇔ geodesic

MCF ↔ ∂γ

∂t
= κ =

∂2γ

∂s2
(s arclength)

 nonlinear parabolic PDE

in finite time
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Lagrangian mean curvature flow

MCF Ln ↪→ Mm ↔ nonlinear parabolic PDE system

m = n + 1 (hypersurfaces)  scalar PDE  X

m > n + 1  ?!

Lagrangian  Ln ↪→ (M2n, ω) symplectic, ω|L ≡ 0

(Smoczyk 1998) In Kähler–Einstein (M, ω) Lagrangian condition
preserved by MCF  Lagrangian mean curvature flow (LMCF)

Example: F : Rn → Rn  

Graph(F ) ⊆ R2n Lagrangian ⇔ F = grad f , f : Rn → R

LMCF ↔ ∂f

∂t
=

n∑
j=1

tan−1 λj (λj eigenvalues of Hess f )

 fully nonlinear parabolic scalar PDE
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Main result

Calabi–Yau M ⇒ critical points of LMCF are minima

Question

When does LMCF converge?

String Theory  Mirror Symmetry  

Conjecture (Thomas–Yau 2002)

LMCF starting at stable L in M exists for all time and converges

Main result: Proof of (version of) Thomas–Yau conjecture for
large class of M4
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Gibbons–Hawking ansatz

(x1, x2, x3) ∈ R3, e iψ ∈ S1

V : U ⊆ R3 → R+ harmonic function

X = (X1,X2,X3) : U ⊆ R3 → R3 vector field

curlX = gradV

ξ = X1dx1 + X2dx2 + X3dx3 1-form ⇒ ∗dξ = dV

Metric on M4

g = V−1(dψ + ξ)2 + V (dx21 + dx22 + dx23 )

Ric(g) = 0 ↔ “∆gg = 0” ⇐ hyperkähler Hol(g) ⊆ SU(2)

(M4, g) S1-invariant

many (S1-invariant) Lagrangians L2 ↪→ M4
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Examples: gravitational instantons

V : U ⊆ R3 → R+ harmonic,
g = V−1(dψ + ξ)2 + V (dx21 + dx22 + dx23 )

Natural constraint: V bounded at ∞  V has singularities pi

(M4, g) smooth  V ∼ 1
2|x−pi | near pi

At pi circle shrinks to a point in M4

Examples

V = m > 0 ⇒ M = S1 × R3 cylinder

V = 1
2|x | ⇒ M = R4 Euclidean

V = m + 1
2|x | ⇒ M = R4 Taub–NUT

V = 1
2|x−p| + 1

2|x+p| ⇒ M = T ∗S2 Eguchi–Hanson

p1, . . . , pk+1 ∈ R3  V = m +
∑k+1

i=1
1

2|x−pi |

multi-Eguchi–Hanson (m = 0) and multi-Taub–NUT (m > 0)
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Circle-invariant Lagrangians

Eguchi–Hanson T ∗S2: V = 1
2|x−p| + 1

2|x+p|

−p p
 minimal Lagrangian S2

Gibbons–Hawking M4: curves γ ⊆ R3 ↔ S1-invariant L2γ ⊆ M4

embedded closed curve in R3 \ {pi} ↔ embedded T 2

embedded arc endpoints p1, p2 ↔ embedded S2

Lemma

Lγ Lagrangian ⇔ γ planar

Lγ minimal ⇔ γ straight line(s)
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Stability

γ ⊆ R2 ⊆ R3  θ angle between γ and horizontal

p3

p2p1
θ2

θ1

γ1γ2

γ3

Definition

Lγ compact Lagangian  Lγ stable ⇔
almost calibrated ⇔ |max θ −min θ| < π

whenever γ ∼ γ1#γ2, [θ1, θ2] * (min θ,max θ)
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Thomas–Yau conjecture

(M4, g) multi-EH/TN: V = m +
∑k+1

i=1
1

2|x−pi |

Theorem (L.–Oliveira)

LMCF starting at stable S1-invariant Lagrangian in (M4, g) exists
for all time and converges to a minimal Lagrangian

(Neves 2013): Any compact Lagrangian can be perturbed to
non-almost calibrated L so that LMCF starting at L develops
finite-time singularity (even preserving invariance)

Corollary

LMCF starting at any almost calibrated compact S1-invariant
Lagrangian in Eguchi–Hanson T ∗S2 exists for all time and
converges to S2
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Flow of curves

V = m +
∑k+1

i=1
1

2|x−pi |

Lγ stable ⇒ γ embedded arc in R2 joining p1, p2

Lemma

LMCF
∂Lγ
∂t

= H ⇔ ∂γ

∂t
= V−1κ = V−1

∂2γ

∂s2

 flow degenerates at p1, p2

Lemma

|max θ −min θ| non-increasing along flow ⇒ almost calibrated
preserved

Proof: ∂θ
∂t = ∆θ ⇒ apply maximum principle
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Singularities

∂γ
∂t = V−1κ, γ arc joining p1, p2

p3

p2p1

Suppose, for contradiction, ∃ finite-time singularity (p,T )

Lemma

p 6= pi for i > 2

∃ (xk , tk)→ (p,T ) with V−1|κ|2 →∞ as k →∞

Proof: stability + variation of θ non-increasing

Proof: second fundamental form blows up at (p,T ) +
almost calibrated ⇒ no “winding” around p1, p2



Introduction Setting Lagrangians Flow

Blow-up analysis

∃ (xk , tk)→ (p,T ) singularity with V−1|κ|2 →∞ as k →∞

V ∼ 1
2|x−pi | near endpoints p1, p2 of curve γ, ∂γ

∂t = V−1κ

Case 1: p 6= p1, p2  blow-up analysis for ∂γ
∂t = κ

variation of θ < π ⇒ no singularity 	
Case 2: p = p1 and V−1|κ| → ∞ (“xk → p slowly”)

“scale breaking”  flat blow-up limit for LMCF but nonlinear
limit curve 	

Case 3: p = p1 and V−1|κ| bounded (“xk → p quickly”)

blow-up limit = ancient solution for LMCF with planar
asymptotics ∼= R2

(Lambert–L.–Schulze): classification ⇒ must be flat plane 	

Convergence: ∂θ
∂t = ∆θ  Thomas–Yau conjecture
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