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Mean curvature flow

L" — (M™, g) ~» volume functional Vol(L)

@ Critical points: minimal < mean curvature H =0

L
e Gradient flow: mean curvature flow (MCF) < 0 =H

ot
Example: n =1 ~~ curves v
@ minimal < curvature kK = 0 < geodesic
87 0%y
e MCF «~ =—
ot T 92

@ ~~ nonlinear parabolic PDE

Q —— () — o — - in finite time

(s arclength)
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Lagrangian mean curvature flow

MCF L™ < M™ < nonlinear parabolic PDE system
e m= n+1 (hypersurfaces) ~» scalar PDE ~» v/
em>n+1~7l

Lagrangian ~ L" — (M?" w) symplectic, w|; = 0

(Smoczyk 1998) In Kahler-Einstein (M, w) Lagrangian condition
preserved by MCF ~~ Lagrangian mean curvature flow (LMCF)

Example: F:R" — R" ~~
o Graph(F) C R?" Lagrangian < F =gradf, f : R"” - R

f- n
o LMCF « gt = Ztan*1 Aj (A eigenvalues of Hess f)
j=1

@ ~~ fully nonlinear parabolic scalar PDE
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Main result

Calabi—Yau M = critical points of LMCF are minima

When does LMCF converge?

String Theory ~» Mirror Symmetry ~~

Conjecture (Thomas-Yau 2002)
LMCEF starting at stable L in M exists for all time and converges

Main result: Proof of (version of) Thomas—Yau conjecture for
large class of M*
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Gibbons—Hawking ansatz

(X1,X2,X3) S ]R3, eV e St
e V:UCR3— R* harmonic function
o X = (X1,X2,X3) : UC R®— R3 vector field

curl X = grad V
@ £ = Xidxg + Xodxo + Xzdxz 1-form = xdé = dV
Metric on M*
g =V {dy+£)?+ V(D3 + dxd + dx3)

@ Ric(g) =0 «+» “"Agg = 0" <« hyperkahler Hol(g) C SU(2)
o (M*, g) St-invariant
o many (S-invariant) Lagrangians L2 < M*
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Examples: gravitational instantons

V: U CR3 = R harmonic,
“dyp + €)% + V(A + dx + dx3)
@ Natural constraint: V bounded at co ~» V has singularities p;

o (M* g) smooth ~ V ~ near p;

1
2|x—pj|
@ At p; circle shrinks to a point in M*

Examples
° V:m>0:> M = S' x R3 cylinder
o V= 2| = M = R* Euclidean
o V= m+ﬁ = M = R* Taub-NUT
o V= 2|X ot 2|X+p| = M = T*S? Eguchi-Hanson
® P Pl ERZ s V=m+ 3T 2‘X1_p,.|
multi-Eguchi-Hanson (m = 0) and multi-Taub-NUT (m > 0)
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Circle-invariant Lagrangians

Eguchi-Hanson T*S?: V = ﬁ + oo

3x+p]
—P

Gibbons—Hawking M*: curves v C R3 « Sl-invariant LE/ C M4
o embedded closed curve in R3\ {p;} <+ embedded T2
e embedded arc endpoints pi, p» <+ embedded S?

e L, Lagrangian < ~y planar
e L, minimal < ~ straight line(s)
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Stability

v C R? C R3 ~~ 6 angle between ~ and horizontal

Definition

L, compact Lagangian ~ L. stable <
@ almost calibrated < | maxf —minf| <«

o whenever v ~ vi#7y2, [01,02] € (min 6, max6)




Thomas—Yau conjecture

(M*, g) multi-EH/TN: V = m+ >0 oL

Theorem (L.—Oliveira)

LMCF starting at stable S-invariant Lagrangian in (M*, g) exists
for all time and converges to a minimal Lagrangian

(Neves 2013): Any compact Lagrangian can be perturbed to
non-almost calibrated L so that LMCF starting at L develops
finite-time singularity (even preserving invariance)

LMCEF starting at any almost calibrated compact S*-invariant
Lagrangian in Eguchi—~Hanson T*S? exists for all time and
converges to S?




Flow of curves

k+1 1
_m+21 1 2|X p,

L, stable = v embedded arc in R? joining p1, p2

imce b _ o O

1 162
ot ot =VioR=Ve 0s2

~» flow degenerates at pi, p2

| max @ — min 6| non-increasing along flow = almost calibrated
preserved

f@@

Proof: 5; = Af# = apply maximum principle



Singularities

% = V1K, v arc joining p1, p>

P3

P1 P2

Suppose, for contradiction, 3 finite-time singularity (p, T)

@ p#pfori>?2

o 3 (X, tx) — (p, T) with V7 1|k|> = o0 as k — o0

@ Proof: stability + variation of € non-increasing

@ Proof: second fundamental form blows up at (p, T) +
almost calibrated = no “winding” around p1, p>



Blow-up analysis

3 (xk, t) — (p, T) singularity with V~!(k|?> — 00 as k — oo

V ~ near endpoints p1, po of curve v, % =V1g

_1
2|x—pil
Case 1: p # p1, p» ~ blow-up analysis for % =k
e variation of § < m = no singularity Y
Case 2: p=p; and V7 1|k| — co (“xx — p slowly”)
@ ‘“scale breaking” ~ flat blow-up limit for LMCF but nonlinear
limit curve Y
Case 3: p = p; and V~!|x| bounded (“xx — p quickly”)
@ blow-up limit = ancient solution for LMCF with planar
asymptotics = R?
o (Lambert—L.—Schulze): classification = must be flat plane }

Convergence: % = A# ~» Thomas—Yau conjecture
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