Introduction	Setting	Lagrangians	Flow

Lagrangian mean curvature flow and the Gibbons–Hawking ansatz

Jason D. Lotay

Oxford

29 October 2021

(Joint work with Goncalo Oliveira)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	Setting	Lagrangians	Flow
●00	00	00	0000
Mean curvature flo	W		

$$L^n \hookrightarrow (M^m, g) \rightsquigarrow$$
 volume functional $\operatorname{Vol}(L)$

• Critical points: minimal \Leftrightarrow mean curvature H = 0

• Gradient flow: mean curvature flow (MCF) $\Leftrightarrow \frac{\partial L}{\partial t} = H$

Example: $n = 1 \rightsquigarrow$ curves γ

• minimal \Leftrightarrow curvature $\kappa = 0 \Leftrightarrow$ geodesic

• MCF
$$\leftrightarrow \frac{\partial \gamma}{\partial t} = \kappa = \frac{\partial^2 \gamma}{\partial s^2}$$
 (s arclength)

• ~ nonlinear parabolic PDE

$$\bigcirc \longrightarrow \bigcirc \longrightarrow \circ \longrightarrow \cdot \quad \text{in finite time}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lagrangian mean curvature flow

MCF $L^n \hookrightarrow M^m \leftrightarrow$ nonlinear parabolic PDE system

- m = n + 1 (hypersurfaces) \rightsquigarrow scalar PDE $\rightsquigarrow \checkmark$
- $m > n + 1 \rightsquigarrow ?!$

Introduction

Lagrangian $\rightsquigarrow L^n \hookrightarrow (M^{2n}, \omega)$ symplectic, $\omega|_L \equiv 0$

(Smoczyk 1998) In Kähler–Einstein (M, ω) Lagrangian condition preserved by MCF \rightsquigarrow Lagrangian mean curvature flow (LMCF) Flow

Example: $F : \mathbb{R}^n \to \mathbb{R}^n \rightsquigarrow$

• $\mathsf{Graph}(F) \subseteq \mathbb{R}^{2n}$ Lagrangian $\Leftrightarrow F = \mathsf{grad} f, f : \mathbb{R}^n \to \mathbb{R}$

• LMCF
$$\leftrightarrow \frac{\partial f}{\partial t} = \sum_{j=1}^{n} \tan^{-1} \lambda_j$$
 (λ_j eigenvalues of Hess f)

• ~> fully nonlinear parabolic scalar PDE

Introduction	Setting	Lagrangians	Flow
000			0000
N.4. 1 .			
Main result			

Calabi–Yau $M \Rightarrow$ critical points of LMCF are minima

Question When does LMCF converge?

String Theory \rightsquigarrow Mirror Symmetry \rightsquigarrow

Conjecture (Thomas–Yau 2002)

LMCF starting at stable L in M exists for all time and converges

Main result: Proof of (version of) Thomas–Yau conjecture for large class of M^4

Introduction	Setting	Lagrangians	Flow
000	●0	00	0000
Cibbons-Ha	wking ansatz		

$$(x_1, x_2, x_3) \in \mathbb{R}^3, e^{i\psi} \in S^1$$

• $V : U \subseteq \mathbb{R}^3 \to \mathbb{R}^+$ harmonic function
• $X = (X_1, X_2, X_3) : U \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ vector field
curl $X = \text{grad } V$
• $S = Y_1 dx_1 + Y_2 dx_2 + Y_3 dx_3 + form \Rightarrow xdS = d$

• $\xi = X_1 dx_1 + X_2 dx_2 + X_3 dx_3$ 1-form $\Rightarrow *d\xi = dV$

Metric on M^4

$$g = V^{-1}(\mathrm{d}\psi + \xi)^2 + V(\mathrm{d}x_1^2 + \mathrm{d}x_2^2 + \mathrm{d}x_3^2)$$

• $\operatorname{Ric}(g) = 0 \leftrightarrow ``\Delta_g g = 0'' \Leftarrow \operatorname{hyperkähler Hol}(g) \subseteq \operatorname{SU}(2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- $(M^4,g) \mathcal{S}^1$ -invariant
- many (\mathcal{S}^1 -invariant) Lagrangians $L^2 \hookrightarrow M^4$

	the second second second		
Introduction	Setting	Lagrangians	Flow
000	⊙●	00	0000

Examples: gravitational instantons

 $V: U \subseteq \mathbb{R}^3 \to \mathbb{R}^+ \text{ harmonic,} \\ g = V^{-1} (\mathrm{d}\psi + \xi)^2 + V (\mathrm{d}x_1^2 + \mathrm{d}x_2^2 + \mathrm{d}x_3^2)$

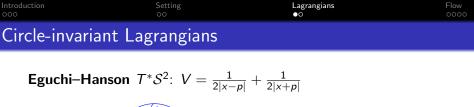
• Natural constraint: V bounded at $\infty \rightsquigarrow V$ has singularities p_i

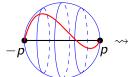
•
$$(M^4,g)$$
 smooth $\rightsquigarrow V \sim rac{1}{2|x-p_i|}$ near p_i

• At p_i circle shrinks to a point in M^4

Examples

•
$$V = m > 0 \Rightarrow M = S^1 \times \mathbb{R}^3$$
 cylinder
• $V = \frac{1}{2|x|} \Rightarrow M = \mathbb{R}^4$ Euclidean
• $V = m + \frac{1}{2|x|} \Rightarrow M = \mathbb{R}^4$ Taub-NUT
• $V = \frac{1}{2|x-p|} + \frac{1}{2|x+p|} \Rightarrow M = T^*S^2$ Eguchi-Hanson
• $p_1, \dots, p_{k+1} \in \mathbb{R}^3 \rightsquigarrow V = m + \sum_{i=1}^{k+1} \frac{1}{2|x-p_i|}$
multi-Eguchi-Hanson $(m = 0)$ and multi-Taub-NUT $(m > 0)$





Gibbons–Hawking M^4 : curves $\gamma \subseteq \mathbb{R}^3 \leftrightarrow S^1$ -invariant $L^2_{\gamma} \subseteq M^4$

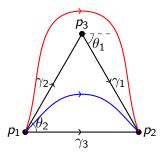
- embedded closed curve in $\mathbb{R}^3 \setminus \{p_i\} \leftrightarrow$ embedded T^2
- embedded arc endpoints p_1 , $p_2 \leftrightarrow$ embedded \mathcal{S}^2

Lemma

- L_{γ} Lagrangian $\Leftrightarrow \gamma$ planar
- L_{γ} minimal $\Leftrightarrow \gamma$ straight line(s)

Introduction	Setting	Lagrangians	Flow
000	00	⊙●	0000
Stability			

 $\gamma\subseteq \mathbb{R}^2\subseteq \mathbb{R}^3 \rightsquigarrow \theta$ angle between γ and horizontal



Definition

 L_{γ} compact Lagangian $\rightsquigarrow L_{\gamma}$ stable \Leftrightarrow

- almost calibrated $\Leftrightarrow |\max \theta \min \theta| < \pi$
- whenever $\gamma \sim \gamma_1 \# \gamma_2$, $[\theta_1, \theta_2] \nsubseteq (\min \theta, \max \theta)$

Introduction	Setting	Lagrangians	Flow
000	00	00	●ooo
Thomas–Yau o	conjecture		

$$(M^4,g)$$
 multi-EH/TN: $V=m+\sum_{i=1}^{k+1}rac{1}{2|x-p_i|}$

Theorem (L.–Oliveira)

LMCF starting at stable S^1 -invariant Lagrangian in (M^4, g) exists for all time and converges to a minimal Lagrangian

(Neves 2013): Any compact Lagrangian can be perturbed to non-almost calibrated L so that LMCF starting at L develops finite-time singularity (even preserving invariance)

Corollary

LMCF starting at any almost calibrated compact S^1 -invariant Lagrangian in Eguchi–Hanson T^*S^2 exists for all time and converges to S^2

Introduction	Setting	Lagrangians	Flow
000	00	00	o●oo
Flow of curves			

$$V = m + \sum_{i=1}^{k+1} \frac{1}{2|x-p_i|}$$

 L_γ stable $\Rightarrow \gamma$ embedded arc in \mathbb{R}^2 joining p_1 , p_2

Lemma

$$LMCF \ \frac{\partial L_{\gamma}}{\partial t} = H \Leftrightarrow \frac{\partial \gamma}{\partial t} = V^{-1}\kappa = V^{-1}\frac{\partial^2 \gamma}{\partial s^2}$$

 \rightsquigarrow flow degenerates at p_1, p_2

Lemma

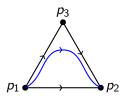
 $|\max \theta - \min \theta|$ non-increasing along flow \Rightarrow almost calibrated preserved

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof: $\frac{\partial \theta}{\partial t} = \Delta \theta \Rightarrow$ apply maximum principle

Introduction	Setting	Lagrangians	Flow
000	00	00	oo●o
Singularities			

$$rac{\partial \gamma}{\partial t} = V^{-1}\kappa$$
, γ arc joining p_1, p_2



Suppose, for contradiction, \exists finite-time singularity (p, T)

Lemma

•
$$p \neq p_i$$
 for $i > 2$

•
$$\exists \ (x_k, t_k)
ightarrow (p, T)$$
 with $V^{-1} |\kappa|^2
ightarrow \infty$ as $k
ightarrow \infty$

- Proof: stability + variation of θ non-increasing
- Proof: second fundamental form blows up at (p, T) + almost calibrated \Rightarrow no "winding" around p_1, p_2

ж

Introduction Setting Lagrangians Flow 000 00 00 00 000

Blow-up analysis

- $\exists (x_k, t_k) \to (p, T) \text{ singularity with } V^{-1} |\kappa|^2 \to \infty \text{ as } k \to \infty$
- $V\sim rac{1}{2|xho_i|}$ near endpoints p_1,p_2 of curve $\gamma, rac{\partial\gamma}{\partial t}=V^{-1}\kappa$

Case 1: $p \neq p_1, p_2 \rightsquigarrow$ blow-up analysis for $\frac{\partial \gamma}{\partial t} = \kappa$ • variation of $\theta < \pi \Rightarrow$ no singularity $\frac{1}{2}$

Case 2: $p = p_1$ and $V^{-1}|\kappa| \to \infty$ (" $x_k \to p$ slowly")

• "scale breaking" \rightsquigarrow flat blow-up limit for LMCF but nonlinear limit curve \natural

Case 3: $p = p_1$ and $V^{-1}|\kappa|$ bounded (" $x_k \rightarrow p$ quickly")

- blow-up limit = ancient solution for LMCF with planar asymptotics $\cong \mathbb{R}^2$
- (Lambert–L.–Schulze): classification \Rightarrow must be flat plane $\frac{1}{2}$

Convergence: $\frac{\partial \theta}{\partial t} = \Delta \theta \rightsquigarrow$ Thomas–Yau conjecture