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Introduction

Conifolds

G2 geometry

conifolds ↔ solutions to first-order nonlinear PDE F (α) = 0

linearise on cone C  first-order linear PDE G (αC ) = 0

αC homogeneous  H(αL) = µαL on link L

Stability index: certain count ind(C ) of eigenvalues of H on L
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Moral and motivation

Moral: ind(C ) controls many aspects of conifolds in G2 geometry

Deformations

Gluing

Existence

Uniqueness

Motivation

Natural class of non-compact/singular manifolds

Examples of AC conifolds

Constructing examples is very difficult

Models for how singularities develop

M-theory – singularities are crucial
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G2 manifolds

(M7, ϕ) with ϕ distinguished 3-form

R7: ϕ0(u, v ,w) = g0(u × v ,w)

G2 = Stab(ϕ0)

M7 oriented  oriented isomorphism ιp : TpM → R7

 Λ3
+T ∗p M = GL+(7,R)-orbit of ι∗pϕ0

ϕ section of Λ3
+T ∗M  metric gϕ

Definition

(M7, ϕ) is a G2 manifold if

dϕ = d∗ϕϕ = 0 ⇔ ∇ϕϕ = 0 ⇔ Hol(gϕ) ⊆ G2

Linearised problem: essentially dα = d∗ϕα = 0 for 3-form α
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Coassociative 4-folds

(M7, ϕ) G2 manifold

V ⊆ TpM oriented 4-plane ⇒ ∗ϕϕ|V ≤ volV

d∗ϕϕ = 0 ⇒ ∗ϕϕ is a calibration

Definition

N4 ⊆ M7 coassociative ⇔ ∗ϕϕ|N = volN ⇔ ϕ|N = 0

N volume-minimizing: N ′ ∈ [N] ⇒

vol(N ′) =

∫
N′

volN′ ≥
∫

N′
∗ϕϕ =

∫
N
∗ϕϕ = vol(N).

v normal vector field ↔ vyϕ self-dual 2-form

Linearised problem: dα = 0 for self-dual 2-form α



Introduction G2 geometry Conifolds Stability index Applications

Products and cones

Products

M7 = S1 × Z 6 G2 manifold, N4 ⊆ S1 × Z 6 coassociative  

(Z , J, ω,Ω) Calabi–Yau 3-fold

ϕ = dθ ∧ ω + Re Ω and ∗ϕϕ = 1
2ω ∧ ω − dθ ∧ Im Ω

N4 ⊆ Z 6 ⇔ N complex surface, i.e. 1
2ω ∧ ω|N = volN

N4 = S1 × L3 ⇔ L special Lagrangian, i.e. ω|L = Re Ω|L = 0

Cones

N4 = R+ × L3 ⊆ R+ × Z 6 = M7

M7 G2 cone ⇔ (Z , J, ω,Ω) nearly Kähler

N4 coassociative cone ⇔ L ⊆ Z Lagrangian, i.e. ω|L = 0

Z = S6, L ⊆ S5 ⊆ S6 Hopf lift of holomorphic curve in CP2
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Twisted connected sums

(Kovalev 2003, CHNP 2012) Take Z± asymptotically cylindrical

CY 3-folds

Z 6
± ∼ S1 × R+ × Y 4

±, Y 4
± K3 surface

S1 × Z 6
± ∼ S1 × S1 × R+ × Y 4

±

“Twisted connected sum”: swap circles plus hyperkähler

rotation  (M7, ψ), dψ = 0, d∗ψψ “small”

(Joyce 1994) Perturb ψ  (M, ϕ) holonomy G2 manifold

Smooth complex surfaces in Z±  coassociatives in (M, ϕ)
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Conifolds

Conifolds: asymptotic cone C with link L

G2 conifolds

(Bryant–Salamon 1989) AC Λ2
+T ∗S4, Λ2

+T ∗CP2 with

L = CP3, SU(3)/T 2

(Bryant–Salamon 1989) AC S(S3), L = S3 × S3

CS – no known examples

Coassociative conifolds

(Harvey–Lawson 1982) AC N ∼= R2-bundle over S2, L

“squashed” S3

(Harvey–Lawson 1982) AC N ∼= R× S3, one end L

“squashed” S3 and other end R4

(L. 2006) AC from certain cones

(L. 2012) First CS examples
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Stability index

Coassociative cone C 4 ⊆ R7, Lagrangian link L3 ⊆ S6

dαC = 0, αC self-dual 2-form on C

αC = rλ(r 2∗αL + rdr ∧ αL), αL 1-form on L

 ∗dαL = (λ+ 2)αL, d∗αL = 0

mL(λ) dimension of space of solutions αL

mL(−2) = b1(L), mL(0) constant growth, mL(1) linear growth

Definition

Let C be the orbit of C under G2 nR7. The stability index

ind(C ) =
∑

λ∈(−1,1]

mL(λ)− dim C ≥ 0

Generalise: replace C by deformation family of C
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CS deformations

Theorem (L. 2007)

N CS coassociative in (M, ϕ) ⇒
∃ finite-dimensional I, O with dimO ≤ ind(C )

∃ smooth map π : I → O
such that moduli space of deformations M(N) ∼= π−1(0) locally.

ind(C ) = 0 ⇒ M(N) smooth

ind(C ) = 0 ⇒ N “stable” under deformations of ϕ, i.e. given

ϕs there exists Ns with ϕs |Ns ≡ 0

ind(C ) measures obstructions to deforming N

Key idea: M(N) ∼= F−1(0) with Coker(dF |0) = O and

ind(C ) part of ind(dF |0)
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Gluing

N+ CS coassociative in (M, ϕ) and tN− AC coassociative in R7

v dilation vector field  a = [vyϕ0|N− ] ∈ H2(N−)

Natural projections π± : H2(N±)→ H2(L)

Theorem (L. 2012)

π−(a) ∈ Imπ+, ind(C ) = 0 ⇒ can always glue to get Xt
∼= X and

dimM(X ) = dimM(N+) + dimM(N−)

Expected codim of M(N+) in M(X ) is dimM(N−) + ind(C )

Higher ind(C )  “less likely” N+ arises as limit of Xt

Key idea: need ϕ small on N+#tN−  obstructions

measured by ind(C )
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Existence

Theorem (L. 2012)

M twisted connected sum of S1 × Z±

Y ⊆ Z± complex surface with ordinary double points

⇒ ∃ CS coassociative deformation N of Y in M

C ∼= {(0, z1, z2, z3) ∈ C3 : a1z2
1 + a2z2

2 + a3z2
3 = 0}

L ∼= RP3 Hopf lift of Σ ∼= CP1 in CP2

Fourier expansion of αL such that ∗dαL = (λ+ 2)αL

αL ↔ eigenfunctions of ∆ plus H0(KΣ ⊗ Hλ+2)

ind(C ) = 0 ⇒ C Jacobi integrable

Geometric Measure Theory, elliptic regularity ⇒ Y CS
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Uniqueness

Theorem (Karigiannis–L. 2012)

AC G2 manifolds Λ2
+T ∗S4 and S(S3) are locally unique

Topological data plus ind(C ) measures AC deformations

L homogeneous ⇒ (Moroianu–Semmelmann 2010)

representation theory gives ind(C ) = 0

CS G2 manifolds with L = CP3 or L = S3 × S3 have smooth

moduli space

Only topological obstruction to gluing these AC M− to CS M+

M = M+#tM− ⇒ dimM(M+) = dimM(M)− 1

ind(C ) = 8 for L = SU(3)/T 2
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